JP5259923B2 - Optical amplification module and laser light source - Google Patents

Optical amplification module and laser light source Download PDF

Info

Publication number
JP5259923B2
JP5259923B2 JP2006012998A JP2006012998A JP5259923B2 JP 5259923 B2 JP5259923 B2 JP 5259923B2 JP 2006012998 A JP2006012998 A JP 2006012998A JP 2006012998 A JP2006012998 A JP 2006012998A JP 5259923 B2 JP5259923 B2 JP 5259923B2
Authority
JP
Japan
Prior art keywords
optical
optical amplification
medium
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006012998A
Other languages
Japanese (ja)
Other versions
JP2007194501A (en
Inventor
忍 玉置
素貴 角井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Megaopto Co Ltd
Original Assignee
Megaopto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megaopto Co Ltd filed Critical Megaopto Co Ltd
Priority to JP2006012998A priority Critical patent/JP5259923B2/en
Priority to US11/443,456 priority patent/US7532391B2/en
Publication of JP2007194501A publication Critical patent/JP2007194501A/en
Priority to US12/423,097 priority patent/US7982945B2/en
Application granted granted Critical
Publication of JP5259923B2 publication Critical patent/JP5259923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、被増幅光を光増幅媒体において光増幅する光増幅モジュール、および、このような光増幅モジュールを備えるレーザ光源に関するものである。   The present invention relates to an optical amplification module that optically amplifies light to be amplified in an optical amplification medium, and a laser light source including such an optical amplification module.

現在、レーザ光を用いた加工技術が注目されており、加工用や医療用など各分野においてレーザ光源の需要が高まっている。各種のレーザ光源の中で特に注目されているレーザ光源として、ファイバレーザ光源が挙げられる。このファイバレーザ光源は、YbやErやTmなどの各種希土類元素を添加された光ファイバを光増幅媒体として備え、この光増幅媒体に励起光を供給して被増幅光を光増幅したり、共振器構造によりレーザ発振させたりすることができる。ファイバレーザ光源の利点として、レーザ光が光ファイバ内で閉じ込められていることから扱いが容易である点、熱放射性が良いことから大規模な冷却設備を必要とすることがない点、などが挙げられる。
CLEO/Europe Conference’05, No.CP2-2-THU, 2005
Currently, processing technology using laser light is attracting attention, and demand for laser light sources is increasing in various fields such as processing and medical use. A fiber laser light source is mentioned as a laser light source which attracts special attention among various laser light sources. This fiber laser light source includes an optical fiber to which various rare earth elements such as Yb, Er, and Tm are added as an optical amplifying medium, supplies pumping light to the optical amplifying medium, and optically amplifies the amplified light, or resonates. The laser structure can be used to oscillate the laser. Advantages of the fiber laser light source include that it is easy to handle because the laser light is confined in the optical fiber, and that it does not require a large-scale cooling facility because of its good thermal radiation. It is done.
CLEO / Europe Conference'05, No.CP2-2-THU, 2005

しかし、高パワーの光が光ファイバ内で発生することにより、光ファイバ内の添加物や不純物にダメージを与え、光ファイバ自体の損失が増加してしまう現象が発生してしまう。これは、フォトダークニングと呼ばれる現象であり、反転分布率が高い状態の光増幅媒体内の希土類元素が高出力な光によってダメージを受けてしまうためである。特に希土類添加濃度が高いファイバでは発生しやすい。   However, when high-power light is generated in the optical fiber, a phenomenon occurs in which the additives and impurities in the optical fiber are damaged and the loss of the optical fiber itself increases. This is a phenomenon called photodarkening, because the rare earth element in the optical amplifying medium having a high inversion distribution rate is damaged by high-power light. In particular, it is likely to occur in fibers with a high rare earth addition concentration.

本発明は、上記問題点を解消する為になされたものであり、フォトダークニングの発現を抑圧することができる光増幅モジュールおよびレーザ光源を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an optical amplification module and a laser light source capable of suppressing the occurrence of photodarkening.

本発明に係るレーザ光源は、被増幅光を出射する被増幅用光源と、被増幅光を入力して、被増幅光を増幅して出力する光増幅モジュールとを有する。光増幅モジュールは、(1) 希土類元素Ybを光導波領域に添加され、被増幅光を入力する第1光増幅媒体と、(2) 第1光増幅媒体と接続され、第1光増幅媒体のYb元素濃度より高い濃度のYb元素を光導波領域に添加された第2光増幅媒体と、(3) 第1光増幅媒体に励起光を出力し、その結果第1光増幅媒体から励起光を第2光増幅媒体に伝搬させる励起部とを備え、第1光増幅媒体および第2光増幅媒体は、被増幅光をシングルモード伝搬させるコアと、励起光をマルチモード伝搬させる内側クラッドと、内側クラッドを取り囲む外側クラッドとを含み、Yb元素の添加濃度が2000wt.ppm以上7500wt.ppm以下であり、第1光増幅媒体中での反転分布率が40%以上であり、被増幅光を第1光増幅媒体および第2光増幅媒体において光増幅し、1064nm波長の光を出射することを特徴とする。
A laser light source according to the present invention includes a light source for amplification that emits light to be amplified, and an optical amplification module that inputs the light to be amplified, amplifies the light to be amplified, and outputs the amplified light. The optical amplification module includes: (1) a rare earth element Yb added to the optical waveguide region and a first optical amplification medium for inputting the amplified light; and (2) a first optical amplification medium connected to the first optical amplification medium. A second optical amplifying medium in which a Yb element having a concentration higher than the Yb element concentration is added to the optical waveguide region; and (3) outputting excitation light to the first optical amplifying medium, and as a result, exciting light from the first optical amplifying medium. An excitation unit for propagating to the second optical amplification medium, and the first optical amplification medium and the second optical amplification medium have a core for propagating the amplified light in a single mode, an inner cladding for propagating the excitation light in a multimode, and an inner side The Yb element addition concentration is 2000 wt.ppm or more and 7500 wt.ppm or less , the inversion distribution rate in the first optical amplifying medium is 40% or more, Optical amplification in optical amplification medium and second optical amplification medium , Characterized in that it emits light of a 1064nm wavelength.

本発明に係る光増幅モジュールでは、励起部で出力された励起光は、初めに第1光増幅媒体に伝搬され、続いて第2光増幅媒体に伝搬される。そして、入力された被増幅光は、第1光増幅媒体および第2光増幅媒体において光増幅され、その光増幅された光が出力される。初めに励起光が伝搬する第1光増幅媒体では、伝搬する励起光のパワーが比較的大きいものの、Yb元素濃度が比較的低い。一方、続いて励起光が伝搬する第2光増幅媒体では、Yb元素濃度が比較的高いものの、伝搬する励起光のパワーが比較的小さくなる。したがって、第1光増幅媒体および第2光増幅媒体の何れにおいても、フォトダークニングの発現が抑制され、高い利得で被増幅光が光増幅され得る。
In the optical amplification module according to the present invention, the excitation light output from the excitation unit is first propagated to the first optical amplification medium, and then propagated to the second optical amplification medium. The inputted amplified light is optically amplified in the first optical amplification medium and the second optical amplification medium, and the optically amplified light is output. In the first optical amplifying medium through which pumping light first propagates, the power of the propagating pumping light is relatively large, but the Yb element concentration is relatively low. On the other hand, in the second optical amplifying medium through which the excitation light subsequently propagates, although the Yb element concentration is relatively high, the power of the propagating excitation light is relatively small. Therefore, in both the first optical amplification medium and the second optical amplification medium, the occurrence of photodarkening is suppressed, and the amplified light can be optically amplified with a high gain.

本発明に係るレーザ光源は、第1光増幅媒体のYb元素濃度が第2光増幅媒体のYb元素濃度の半分以下であるのが好適である。第1光増幅媒体の吸収条長積が第2光増幅媒体の吸収条長積の60%以上であるのが好適である。第2光増幅媒体の励起光入射端領域での反転分布率が40%未満であるのが好適である。また、第1光増幅媒体および第2光増幅媒体は、Yb元素以外の3価の正イオンを光導波領域に添加されているのが好適である。これらの場合には、フォトダークニングの発現が更に効果的に抑制され得る。
Laser light source according to the present invention, Yb element concentration of the first optical amplifying medium is preferably not more than half of Yb element concentration of the second optical amplifying medium. It is preferable that the absorption length product of the first optical amplification medium is 60% or more of the absorption length product of the second optical amplification medium. The inversion distribution ratio in the excitation light incident end region of the second optical amplification medium is preferably less than 40%. In the first optical amplification medium and the second optical amplification medium, it is preferable that trivalent positive ions other than the Yb element are added to the optical waveguide region. In these cases, the occurrence of photodarkening can be more effectively suppressed.

本発明に係るレーザ光源は、被増幅光を出力する被増幅光用光源を有し、被増幅光を第1光増幅媒体に出力する上記の本発明に係る光増幅モジュールとを備えることを特徴とする。このレーザ光源では、被増幅光用光源から出力された被増幅光は光増幅モジュールにおいて光増幅され、その光増幅された光が出力される。   A laser light source according to the present invention includes a light source for amplified light that outputs amplified light, and includes the optical amplification module according to the present invention that outputs the amplified light to a first optical amplification medium. And In this laser light source, the amplified light output from the light source for amplified light is optically amplified in the optical amplification module, and the optically amplified light is output.

本発明によれば、フォトダークニングの発現を抑圧することができる。   According to the present invention, the occurrence of photodarkening can be suppressed.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係るレーザ光源1の構成図である。この図に示される本実施形態のレーザ光源1は、被増幅光用光源10および光増幅モジュール20を備える。このレーザ光源1では、被増幅光用光源10から出力された被増幅光は光増幅モジュール20において光増幅され、その光増幅された光が出力される。   FIG. 1 is a configuration diagram of a laser light source 1 according to the present embodiment. The laser light source 1 of this embodiment shown in this figure includes a light source for amplified light 10 and an optical amplification module 20. In the laser light source 1, the light to be amplified output from the light source for amplified light 10 is optically amplified in the optical amplification module 20, and the light amplified light is output.

光増幅モジュール20は、第1光増幅媒体21、第2光増幅媒体22および励起部23を備える。第1光増幅媒体21および第2光増幅媒体22それぞれは、希土類元素を光導波領域に添加された光導波路であり、好適には希土類元素としてのYb元素をコア領域に添加された光ファイバである。第1光増幅媒体21および第2光増幅媒体22は、各々の一端が互いに光学的に接続され、好適には融着接続されている。第1光増幅媒体21の希土類元素濃度より第2光増幅媒体22の希土類元素濃度が高い。   The optical amplification module 20 includes a first optical amplification medium 21, a second optical amplification medium 22, and an excitation unit 23. Each of the first optical amplification medium 21 and the second optical amplification medium 22 is an optical waveguide in which a rare earth element is added to the optical waveguide region, and preferably an optical fiber in which a Yb element as a rare earth element is added to the core region. is there. One end of each of the first optical amplification medium 21 and the second optical amplification medium 22 is optically connected to each other, and preferably fusion-connected. The rare earth element concentration of the second optical amplification medium 22 is higher than the rare earth element concentration of the first optical amplification medium 21.

励起部23は、励起光源24および光カプラ25を含む。励起光源24は、第1光増幅媒体21および第2光増幅媒体22それぞれに添加された希土類元素を励起し得る波長の励起光を出力するものであり、好適にはレーザダイオードを含む。光カプラ25は、励起光源24から出力された励起光を入力して、その励起光を第1光増幅媒体21へ出力する。   The excitation unit 23 includes an excitation light source 24 and an optical coupler 25. The excitation light source 24 outputs excitation light having a wavelength capable of exciting the rare earth element added to each of the first optical amplification medium 21 and the second optical amplification medium 22, and preferably includes a laser diode. The optical coupler 25 receives the excitation light output from the excitation light source 24 and outputs the excitation light to the first optical amplification medium 21.

この光増幅モジュール20では、励起光源24から出力された励起光は、光カプラ25を経て、第1光増幅媒体21および第2光増幅媒体22の順に伝搬する。被増幅光用光源10から出力された被増幅光は光増幅モジュール20に入力され、その被増幅光は光カプラ25を経た後に第1光増幅媒体21および第2光増幅媒体22において光増幅さる。そして、この光増幅された光が光増幅モジュール20から出力される。   In the optical amplification module 20, the excitation light output from the excitation light source 24 propagates in the order of the first optical amplification medium 21 and the second optical amplification medium 22 through the optical coupler 25. The amplified light output from the light source for amplified light 10 is input to the optical amplification module 20, and the amplified light is optically amplified in the first optical amplification medium 21 and the second optical amplification medium 22 after passing through the optical coupler 25. . The light amplified light is output from the light amplification module 20.

このように、本実施形態では、励起部23で出力された励起光は、初めに第1光増幅媒体21に伝搬され、続いて第2光増幅媒体22に伝搬される。初めに励起光が伝搬する第1光増幅媒体21では、伝搬する励起光のパワーが比較的大きいものの、希土類元素濃度が比較的低い。一方、続いて励起光が伝搬する第2光増幅媒体22では、希土類元素濃度が比較的高いものの、伝搬する励起光のパワーが比較的小さくなる。したがって、第1光増幅媒体21および第2光増幅媒体22の何れにおいても、フォトダークニングの発現が抑制され、高い利得で被増幅光が光増幅され得る。   Thus, in the present embodiment, the excitation light output from the excitation unit 23 is first propagated to the first optical amplification medium 21 and then propagated to the second optical amplification medium 22. In the first optical amplifying medium 21 where the pumping light first propagates, the power of the pumping light propagating is relatively large, but the rare earth element concentration is relatively low. On the other hand, in the second optical amplifying medium 22 through which the excitation light subsequently propagates, although the rare earth element concentration is relatively high, the power of the propagated excitation light is relatively small. Therefore, in any of the first optical amplifying medium 21 and the second optical amplifying medium 22, the occurrence of photodarkening is suppressed, and the amplified light can be optically amplified with a high gain.

第1光増幅媒体21中での反転分布率が40%以上であり、第1光増幅媒体21の希土類元素濃度が第2光増幅媒体22の希土類元素濃度の半分以下であるのが好適である。第1光増幅媒体21の吸収条長積が第2光増幅媒体22の吸収条長積の60%以上であるのが好適である。第2光増幅媒体22の励起光入射端領域での反転分布率が40%未満であるのが好適である。また、第1光増幅媒体21および第2光増幅媒体22それぞれは、希土類元素以外の3価の正イオン(例えばAl3+)を光導波領域に添加されているのが好適である。これらの場合には、フォトダークニングの発現が更に効果的に抑制され得る。 The inversion distribution ratio in the first optical amplification medium 21 is preferably 40% or more, and the rare earth element concentration of the first optical amplification medium 21 is preferably less than half of the rare earth element concentration of the second optical amplification medium 22. . The absorption length product of the first optical amplification medium 21 is preferably 60% or more of the absorption length product of the second optical amplification medium 22. The inversion distribution ratio in the excitation light incident end region of the second optical amplification medium 22 is preferably less than 40%. Each of the first optical amplifying medium 21 and the second optical amplifying medium 22 is preferably added with trivalent positive ions (for example, Al 3+ ) other than rare earth elements in the optical waveguide region. In these cases, the occurrence of photodarkening can be more effectively suppressed.

図2は、第1光増幅媒体21および第2光増幅媒体22それぞれの断面および屈折率プロファイルを示す図である。同図(a)は断面を示し、同図(b)は径方向の屈折率プロファイルを示す。この図に示されるように、第1光増幅媒体21および第2光増幅媒体22それぞれは、希土類元素を添加され被増幅光をシングルモード伝搬させるコア201と、励起光をマルチモード伝搬させる内側クラッド202と、この内側クラッド202を取り囲む外側クラッド203とを含むのが好適である。また、第1光増幅媒体21および第2光増幅媒体22それぞれの希土類元素濃度が2000wt.ppm以上であるのが好適である。これらの場合には、フォトダークニングの発現が抑制され、更に高い利得で被増幅光が光増幅され得る。   FIG. 2 is a diagram showing cross sections and refractive index profiles of the first optical amplifying medium 21 and the second optical amplifying medium 22, respectively. FIG. 4A shows a cross section, and FIG. 4B shows a refractive index profile in the radial direction. As shown in this figure, each of the first optical amplifying medium 21 and the second optical amplifying medium 22 includes a core 201 that adds a rare earth element and propagates light to be amplified in a single mode, and an inner cladding that propagates pump light in a multimode. Preferably, 202 and an outer cladding 203 surrounding the inner cladding 202 are included. Further, the rare earth element concentration of each of the first optical amplifying medium 21 and the second optical amplifying medium 22 is preferably 2000 wt.ppm or more. In these cases, the occurrence of photodarkening is suppressed, and the amplified light can be optically amplified with a higher gain.

図3は、比較例のレーザ光源9の構成図である。この図に示される比較例のレーザ光源9は、被増幅光用光源10および光増幅モジュール20Aを備える。このレーザ光源9では、被増幅光用光源10から出力された被増幅光は光増幅モジュール20Aにおいて光増幅され、その光増幅された光が出力される。この比較例の光増幅モジュール20Aは、本実施形態に係る光増幅モジュール20中の第1光増幅媒体21を除いた構成である。   FIG. 3 is a configuration diagram of the laser light source 9 of the comparative example. The laser light source 9 of the comparative example shown in this figure includes an amplified light source 10 and an optical amplification module 20A. In the laser light source 9, the amplified light output from the amplified light source 10 is optically amplified by the optical amplification module 20A, and the optically amplified light is output. The optical amplification module 20A of this comparative example has a configuration excluding the first optical amplification medium 21 in the optical amplification module 20 according to this embodiment.

以下では、比較例のレーザ光源9と対比しつつ、本実施形態に係るレーザ光源1の作用効果について更に説明する。第1光増幅媒体21および第2光増幅媒体22それぞれは、図2に示されるような構成の光ファイバであって、希土類元素としてYb元素がコア201に添加されている。励起光の波長は915nmであり、被増幅光の波長は1064nmである。第2光増幅媒体22のYb元素濃度は15000wt.ppmである。   Below, the effect of the laser light source 1 which concerns on this embodiment is further demonstrated, contrasting with the laser light source 9 of a comparative example. Each of the first optical amplifying medium 21 and the second optical amplifying medium 22 is an optical fiber configured as shown in FIG. 2, and a Yb element is added to the core 201 as a rare earth element. The wavelength of the excitation light is 915 nm, and the wavelength of the amplified light is 1064 nm. The Yb element concentration of the second optical amplifying medium 22 is 15000 wt.ppm.

図4は、比較例のレーザ光源9に含まれる光増幅媒体22における反転分布率の長手方向分布を示す図である。横軸は、光カプラ25からの励起光伝搬距離を表している。この図に示されるように、光増幅媒体22において、励起光入射端に近いほど、反転分布率が高く、増幅度も大きい。それ故、フォトダークニングが発現し易い。   FIG. 4 is a diagram illustrating the longitudinal distribution of the inversion distribution rate in the optical amplifying medium 22 included in the laser light source 9 of the comparative example. The horizontal axis represents the pumping light propagation distance from the optical coupler 25. As shown in this figure, in the optical amplifying medium 22, the closer to the excitation light incident end, the higher the inversion distribution ratio and the larger the amplification degree. Therefore, photodarkening tends to occur.

図5は、本実施形態に係るレーザ光源1に含まれる第1光増幅媒体21および第2光増幅媒体22における反転分布率の長手方向分布を示す図である。横軸は、光カプラ25からの励起光伝搬距離を表している。ここでは、上記比較例の場合と同じ出力パワーとなるように励起光パワーを一定とした。上記比較例の場合と同じ吸収条長積となるように、第1光増幅媒体21の希土類添加濃度および長さL1を調整するとともに、第2光増幅媒体22の長さL2を調整した。この図に示されるように、例えば、第1光増幅媒体21の希土類イオン濃度を第2光増幅媒体22の希土類イオン濃度の半分(つまり、第1光増幅媒体21の希土類イオン濃度を7500wt.ppm)とし、第2光増幅媒体22の長さL2を5〜6mとすると、第2光増幅媒体22の励起光入射端での反転分布率は、約40〜50%となり、十分に低くなっていることがわかる。したがって、フォトダークニングの発現が抑制され得る。   FIG. 5 is a diagram showing the longitudinal distribution of the inversion distribution ratio in the first optical amplification medium 21 and the second optical amplification medium 22 included in the laser light source 1 according to the present embodiment. The horizontal axis represents the pumping light propagation distance from the optical coupler 25. Here, the pumping light power was made constant so that the same output power as in the comparative example was obtained. The rare earth addition concentration and the length L1 of the first optical amplifying medium 21 were adjusted, and the length L2 of the second optical amplifying medium 22 was adjusted so as to have the same absorption length product as in the comparative example. As shown in this figure, for example, the rare earth ion concentration of the first optical amplification medium 21 is half of the rare earth ion concentration of the second optical amplification medium 22 (that is, the rare earth ion concentration of the first optical amplification medium 21 is 7500 wt. Ppm). ) And the length L2 of the second optical amplifying medium 22 is 5 to 6 m, the inversion distribution rate at the excitation light incident end of the second optical amplifying medium 22 is about 40 to 50%, which is sufficiently low. I understand that. Therefore, the occurrence of photodarkening can be suppressed.

また、励起光波長を974nmとし、上記と同じ励起光パワーとし、上記と同じ出力パワーとなるように、第1光増幅媒体21の長さL1および第2光増幅媒体22の長さL2を調整した。第1光増幅媒体21を用いること無く、濃度が大きい第2光増幅媒体22を全て使った場合、第2光増幅媒体22の長さL2は約6mで十分であることを確認した。これは、Yb元素が添加された光増幅媒体において、波長974nmの方が波長915nmに比べ吸収係数が大きく、長さが短くて澄むからである。   Further, the length L1 of the first optical amplifying medium 21 and the length L2 of the second optical amplifying medium 22 are adjusted so that the pumping light wavelength is 974 nm, the same pumping light power as above, and the same output power as above. did. It was confirmed that when the second optical amplification medium 22 having a high concentration was used without using the first optical amplification medium 21, a length L2 of the second optical amplification medium 22 was about 6 m. This is because, in the optical amplifying medium to which the Yb element is added, the wavelength 974 nm has a larger absorption coefficient than the wavelength 915 nm, and is shorter and clearer.

図6は、本実施形態に係るレーザ光源1に含まれる第1光増幅媒体21および第2光増幅媒体22における反転分布率の長手方向分布を示す図である。ここでは、励起光波長を974nmとし、濃度の小さい第1光増幅媒体21を用い、第2光増幅媒体22の長さL2を3.5mとして、第1光増幅媒体21および第2光増幅媒体22のトータルの吸収条長積を調整した。その結果、第2光増幅媒体22の励起光入射端での反転分布率は、約40%となり、十分に低くなることがわかる。フォトダークニングの発現を抑圧するためには、波長974nmの励起光を用いた方が、反転分布率を小さくでき、抑圧法として有効である。   FIG. 6 is a diagram showing the longitudinal distribution of the inversion distribution ratio in the first optical amplification medium 21 and the second optical amplification medium 22 included in the laser light source 1 according to the present embodiment. Here, the pumping light wavelength is 974 nm, the first optical amplifying medium 21 having a low concentration is used, the length L2 of the second optical amplifying medium 22 is 3.5 m, and the first optical amplifying medium 21 and the second optical amplifying medium are used. The total absorbent strip length product of 22 was adjusted. As a result, the inversion distribution ratio at the excitation light incident end of the second optical amplifying medium 22 is about 40%, which is sufficiently low. In order to suppress the occurrence of photodarkening, the use of excitation light having a wavelength of 974 nm can reduce the inversion distribution ratio and is effective as a suppression method.

本実施形態に係るレーザ光源1または光増幅モジュール20において、第1光増幅媒体21の濃度が薄いことは、光増幅媒体21,22の全体の長さが長くなってしまうことと同義であり、その故、光増幅媒体21,22において非線形シフト量が大きくなってしまう。図7は、本実施形態に係るレーザ光源1において第2光増幅媒体22の長さL2と非線形シフト量との関係を示す図である。励起光波長が974nmであって、第2光増幅媒体22の長さL2が3.5mである場合、非線形シフト量は、比較例の構成(図3)の非線形シフト量に対して約1dB以下に抑圧され得る。この値は、第1光増幅媒体21と第2光増幅媒体22との間の融着部の損失ばらつきや、第2光増幅媒体22から出力端までの間の損失ばらつきの範囲内と判断できるため、第1光増幅媒体21を用いることに因り増加する非線形シフト量は問題にならない。   In the laser light source 1 or the optical amplification module 20 according to the present embodiment, a low concentration of the first optical amplification medium 21 is synonymous with an increase in the overall length of the optical amplification media 21 and 22. Therefore, the nonlinear shift amount becomes large in the optical amplification media 21 and 22. FIG. 7 is a diagram showing the relationship between the length L2 of the second optical amplifying medium 22 and the nonlinear shift amount in the laser light source 1 according to the present embodiment. When the pumping light wavelength is 974 nm and the length L2 of the second optical amplifying medium 22 is 3.5 m, the nonlinear shift amount is about 1 dB or less with respect to the nonlinear shift amount of the configuration of the comparative example (FIG. 3). Can be suppressed. This value can be determined to be within the range of the loss variation of the fused portion between the first optical amplification medium 21 and the second optical amplification medium 22 and the loss variation between the second optical amplification medium 22 and the output end. Therefore, the amount of nonlinear shift that increases due to the use of the first optical amplifying medium 21 does not matter.

本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。上記実施形態では、被増幅光の伝搬方向と同じ方向に励起光を伝搬させる前方向励起であったが、被増幅光の伝搬方向と逆の方向に励起光を伝搬させる後方向励起であってもよい。   The present invention is not limited to the above embodiment, and various modifications can be made. In the above embodiment, the forward pumping is used to propagate the pumping light in the same direction as the propagation direction of the amplified light, but the backward pumping is used to propagate the pumping light in the direction opposite to the propagation direction of the amplified light. Also good.

本実施形態に係るレーザ光源1の構成図である。It is a block diagram of the laser light source 1 which concerns on this embodiment. 第1光増幅媒体21および第2光増幅媒体22それぞれの断面および屈折率プロファイルを示す図である。It is a figure which shows the cross section and refractive index profile of each of the 1st optical amplification medium 21 and the 2nd optical amplification medium 22. 比較例のレーザ光源9の構成図である。It is a block diagram of the laser light source 9 of a comparative example. 比較例のレーザ光源9に含まれる増幅媒体22における反転分布率の長手方向分布を示す図である。It is a figure which shows the longitudinal direction distribution of the inversion distribution rate in the amplification medium 22 contained in the laser light source 9 of a comparative example. 本実施形態に係るレーザ光源1に含まれる第1光増幅媒体21および第2光増幅媒体22における反転分布率の長手方向分布を示す図である。It is a figure which shows the longitudinal direction distribution of the inversion distribution rate in the 1st optical amplification medium 21 and the 2nd optical amplification medium 22 which are included in the laser light source 1 which concerns on this embodiment. 本実施形態に係るレーザ光源1に含まれる第1光増幅媒体21および第2光増幅媒体22における反転分布率の長手方向分布を示す図である。It is a figure which shows the longitudinal direction distribution of the inversion distribution rate in the 1st optical amplification medium 21 and the 2nd optical amplification medium 22 which are included in the laser light source 1 which concerns on this embodiment. 本実施形態に係るレーザ光源1において第2光増幅媒体22の長さL2と非線形シフト量との関係を示す図である。It is a figure which shows the relationship between the length L2 of the 2nd optical amplification medium 22, and the nonlinear shift amount in the laser light source 1 which concerns on this embodiment.

符号の説明Explanation of symbols

1…レーザ光源、10…被増幅光用光源、20…光増幅モジュール、21…第1光増幅媒体、22…第2光増幅媒体、23…励起部、24…励起光源、25…光カプラ。   DESCRIPTION OF SYMBOLS 1 ... Laser light source, 10 ... Light source for to-be-amplified light, 20 ... Optical amplification module, 21 ... 1st optical amplification medium, 22 ... 2nd optical amplification medium, 23 ... Excitation part, 24 ... Excitation light source, 25 ... Optical coupler.

Claims (5)

被増幅光を出射する被増幅用光源と、
前記被増幅光を入力して、前記被増幅光を増幅して出力する光増幅モジュールとを有し、
前記光増幅モジュールは、
希土類元素Ybを光導波領域に添加され、前記被増幅光を入力する第1光増幅媒体と、
前記第1光増幅媒体と接続され、前記第1光増幅媒体のYb元素濃度より高い濃度のYb元素を光導波領域に添加された第2光増幅媒体と、
前記第1光増幅媒体に励起光を出力し、その結果前記第1光増幅媒体から励起光を前記第2光増幅媒体に伝搬させる励起部と
を備え、
前記第1光増幅媒体および前記第2光増幅媒体は、被増幅光をシングルモード伝搬させるコアと、励起光をマルチモード伝搬させる内側クラッドと、前記内側クラッドを取り囲む外側クラッドとを含み、前記Yb元素の添加濃度が2000wt.ppm以上7500wt.ppm以下であり、
前記第1光増幅媒体中での反転分布率が40%以上であり、
前記被増幅光を前記第1光増幅媒体および前記第2光増幅媒体において光増幅し、1064nm波長の光を出射する
ことを特徴とするレーザ光源。
A light source for amplification that emits light to be amplified;
An optical amplification module that inputs the amplified light and amplifies and outputs the amplified light;
The optical amplification module includes:
A rare earth element Yb added to the optical waveguide region, and a first optical amplification medium for inputting the amplified light;
A second optical amplifying medium connected to the first optical amplifying medium, wherein a Yb element having a concentration higher than the Yb element concentration of the first optical amplifying medium is added to the optical waveguide region;
An excitation unit that outputs excitation light to the first optical amplification medium and, as a result, propagates excitation light from the first optical amplification medium to the second optical amplification medium;
The first optical amplifying medium and the second optical amplifying medium include a core that propagates light to be amplified in a single mode, an inner cladding that propagates pumping light in a multimode, and an outer cladding that surrounds the inner cladding, and the Yb The additive concentration of the element is 2000 wt.ppm or more and 7500 wt.ppm or less ,
The inversion distribution ratio in the first optical amplification medium is 40% or more;
The laser light source, wherein the light to be amplified is optically amplified in the first optical amplification medium and the second optical amplification medium, and light having a wavelength of 1064 nm is emitted.
記第1光増幅媒体のYb元素濃度が前記第2光増幅媒体のYb元素濃度の半分以下であることを特徴とする請求項1記載のレーザ光源。 The laser light source according to claim 1, wherein the Yb element density before Symbol first optical amplifying medium, characterized in that less than half of Yb element concentration of the second optical amplifying medium. 前記第1光増幅媒体の吸収条長積が前記第2光増幅媒体の吸収条長積の60%以上であることを特徴とする請求項1記載のレーザ光源。   2. The laser light source according to claim 1, wherein an absorption length product of the first optical amplification medium is 60% or more of an absorption length product of the second optical amplification medium. 前記第2光増幅媒体の励起光入射端領域での反転分布率が40%未満であることを特徴とする請求項1記載のレーザ光源。   2. The laser light source according to claim 1, wherein an inversion distribution ratio in an excitation light incident end region of the second optical amplification medium is less than 40%. 前記第1光増幅媒体および前記第2光増幅媒体は、Yb元素以外の3価の正イオンが光導波領域に添加されていることを特徴とする請求項1記載のレーザ光源。
2. The laser light source according to claim 1, wherein trivalent positive ions other than Yb element are added to the optical waveguide region in the first optical amplification medium and the second optical amplification medium.
JP2006012998A 2006-01-20 2006-01-20 Optical amplification module and laser light source Expired - Fee Related JP5259923B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006012998A JP5259923B2 (en) 2006-01-20 2006-01-20 Optical amplification module and laser light source
US11/443,456 US7532391B2 (en) 2006-01-20 2006-05-31 Optical amplification module and laser light source designed to suppress photodarkening
US12/423,097 US7982945B2 (en) 2006-01-20 2009-04-14 Optical amplification module and laser light source designed to suppress photodarkening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012998A JP5259923B2 (en) 2006-01-20 2006-01-20 Optical amplification module and laser light source

Publications (2)

Publication Number Publication Date
JP2007194501A JP2007194501A (en) 2007-08-02
JP5259923B2 true JP5259923B2 (en) 2013-08-07

Family

ID=38449936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012998A Expired - Fee Related JP5259923B2 (en) 2006-01-20 2006-01-20 Optical amplification module and laser light source

Country Status (1)

Country Link
JP (1) JP5259923B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290203A (en) 2008-04-30 2009-12-10 Sumitomo Electric Ind Ltd Optical amplification module and laser light source device
WO2021240910A1 (en) * 2020-05-28 2021-12-02 株式会社フジクラ Optical fiber connector and fiber laser device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870235B2 (en) * 1991-06-24 1999-03-17 日本電気株式会社 Optical fiber amplifier
JP2636152B2 (en) * 1993-11-24 1997-07-30 住友電気工業株式会社 Optical fiber amplifier and optical communication system
US5937134A (en) * 1997-08-07 1999-08-10 Lucent Technologies Inc. Cladding pumped fiber lasers
JP4094126B2 (en) * 1998-07-09 2008-06-04 富士通株式会社 Rare earth doped optical fiber and optical fiber amplifier using the same
JP3551155B2 (en) * 2000-03-01 2004-08-04 日本電気株式会社 Optical fiber amplifier and optical amplifier including the same
JP2002261366A (en) * 2000-12-26 2002-09-13 Sumitomo Electric Ind Ltd Amplifying optical fiber, and optical fiber amplifier including the same
EP1280247B1 (en) * 2001-07-23 2003-10-01 Alcatel Optical fiber amplifier device and communications system using the optical fiber amplifier device

Also Published As

Publication number Publication date
JP2007194501A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
Han et al. Numerical investigation of the ASE and power scaling of cladding-pumped Er–Yb codoped fiber amplifiers
JP5238509B2 (en) Photonic bandgap fiber
US7848368B2 (en) Fiber laser system
JP5260146B2 (en) Light source device
JP4443627B2 (en) Optical fiber laser
JP5198292B2 (en) Fiber laser with excellent reflected light resistance
JP2009032910A (en) Optical fiber for optical fiber laser, method of manufacturing the same and optical fiber laser
JP2010129886A (en) Optical fiber for fiber laser, and fiber laser
JP2014057085A (en) Optical amplification module and laser light source device
US7982945B2 (en) Optical amplification module and laser light source designed to suppress photodarkening
JP2008535248A (en) Optical system utilizing high power signal transmission optical fiber and method of operating such optical system
JP5980909B2 (en) High power single mode fiber laser system operating in the 2μm range
JP4269453B2 (en) Optical fiber for optical amplification and optical fiber amplifier
JP5109443B2 (en) Optical module and processing method
JP5259923B2 (en) Optical amplification module and laser light source
US11835776B2 (en) Filter device and laser apparatus
JP2001013346A (en) Double-clad fiber, and optical amplifier and fiber laser using it
Aljaff et al. Design optimization for efficient erbium-doped fiber amplifiers
JP2010272636A (en) Optical fiber amplification module, and light source device
WO2021045074A1 (en) Optical amplifying device
JP4899705B2 (en) Optical amplification module
JP6261726B2 (en) Optical amplifier using optical fiber
JPWO2012165588A1 (en) Light source device and processing method
JP4873645B2 (en) Optical fiber Raman laser device
JP5202820B2 (en) Optical coupler, fiber laser and optical fiber amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees