JP5258266B2 - Polyurethane urea elastic fiber and method for producing the same - Google Patents

Polyurethane urea elastic fiber and method for producing the same Download PDF

Info

Publication number
JP5258266B2
JP5258266B2 JP2007291589A JP2007291589A JP5258266B2 JP 5258266 B2 JP5258266 B2 JP 5258266B2 JP 2007291589 A JP2007291589 A JP 2007291589A JP 2007291589 A JP2007291589 A JP 2007291589A JP 5258266 B2 JP5258266 B2 JP 5258266B2
Authority
JP
Japan
Prior art keywords
heat treatment
elastic fiber
polyurethane urea
urea elastic
specific viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007291589A
Other languages
Japanese (ja)
Other versions
JP2009114595A (en
Inventor
拓也 片岡
潤一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007291589A priority Critical patent/JP5258266B2/en
Publication of JP2009114595A publication Critical patent/JP2009114595A/en
Application granted granted Critical
Publication of JP5258266B2 publication Critical patent/JP5258266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エステル交編丸編生地等でストレッチ性を付与する目的で用いられるポリウレタンウレア弾性繊維及びその製造方法に関するものであり、詳しくは、耐熱性を有するポリウレタンウレア弾性繊維及びその製造方法に関するものである。   The present invention relates to a polyurethane urea elastic fiber used for the purpose of imparting stretch properties to an ester interwoven knitted circular knitted fabric and the like, and a method for producing the same, and more particularly, to a polyurethane urea elastic fiber having heat resistance and a method for producing the same. Is.

ポリウレタンウレア弾性繊維は、他の合成繊維には無い優れた伸長特性と優れた伸長回復性を有し、ナイロン繊維や綿等と交編しファンデーション、パンティーストッキング、靴下口ゴム等の分野で広範囲に使用されてきた。その中で、近年、代表的な汎用合成繊維であるポリエステル繊維とポリウレタンウレア弾性繊維とからなる複合布帛素材の需要がアウター衣料分野やスポーツ衣料分野で、急激に伸びている。しかしながら、一般に100℃付近での染色温度で染められるナイロン繊維とは異なり、ポリエステル繊維の染色は、液熱温度130℃前後で行われる。   Polyurethane urea elastic fibers have excellent elongation characteristics and excellent recovery properties that are not found in other synthetic fibers, and are knitted with nylon fibers, cotton, etc., in a wide range of fields such as foundations, pantyhose, and socks. Have been used. Among them, in recent years, the demand for composite fabric materials composed of polyester fibers and polyurethane urea elastic fibers, which are typical general-purpose synthetic fibers, has been increasing rapidly in the outer clothing field and sports clothing field. However, unlike nylon fibers, which are generally dyed at a dyeing temperature around 100 ° C., polyester fibers are dyed at a liquid heat temperature of around 130 ° C.

一方、交編して使用するポリウレタンウレア弾性繊維は、他の合成繊維と比較して耐熱性能が十分ではなく、ポリエステル繊維とポリウレタンウレア弾性繊維の交編生地を通常の染色条件で染色しても、破断強度の低下が生じるか、伸長回復性等の特性を低下させるか、熱切断したりすることもあり商品価値が無くなってしまうことが多々あった。22デシテックスなどの細い繊度の糸を使う薄地の生地では顕著であり、特に、色合わせのために繰り返し染色が行われる問題が起きていた。そのため、染色時の液熱温度は130℃を超える温度では行わないのが一般的である。しかしながら、ポリエステル繊維の染色に用いられる分散染料は高温染着型のものが多いため、染色温度を下げると、ポリエステル繊維への染着が不充分になり、染色の再現性の不良が発生することがあった。こういった事情から、120℃付近でポリエステルへの染着性が優れる特殊な分散染料を使用するか、低温で染色可能なポリエステル繊維を使用するか、色合わせを行うために繰り返し染色を行う等の方法が行われてきた。   On the other hand, polyurethane urea elastic fibers used by knitting do not have sufficient heat resistance compared to other synthetic fibers, and even if knitted fabrics of polyester fibers and polyurethane urea elastic fibers are dyed under normal dyeing conditions. In many cases, the product value is lost because the breaking strength is lowered, the properties such as elongation recovery properties are lowered, or the film is thermally cut. This is particularly noticeable in thin fabrics using yarns with a fine fineness such as 22 decitex, and in particular, there has been a problem of repeated dyeing for color matching. Therefore, the liquid heat temperature at the time of dyeing is generally not performed at a temperature exceeding 130 ° C. However, disperse dyes used for dyeing polyester fibers are often dyed at high temperature, so if the dyeing temperature is lowered, dyeing to polyester fibers will be insufficient, resulting in poor reproducibility of dyeing. was there. For this reason, use special disperse dyes that have excellent dyeability to polyester near 120 ° C, use polyester fibers that can be dyed at low temperatures, or repeat dyeing to perform color matching, etc. The method has been carried out.

従って、ポリウレタンウレア弾性繊維の耐熱性の向上が強く望まれている。
一般的にポリウレタンウレア弾性繊維は、有機ジオールが過剰モルのジイソシアネート化合物で連結されたプレポリマーと呼ばれるものに有機ジアミンを添加し、アミノ基とイソシアネート基とを反応させることにより、ウレア基を持ったハードセグメントを形成する。このハードセグメントはポリマー全体の架橋点となるため、ポリウレタンウレア弾性繊維の耐熱性に大きな影響を与える。このハードセグメントを強化することにより耐熱性を向上させることや、ポリマーの分子量を上げることにより耐熱性を向上させること等が行われてきた(特許文献1乃至4参照)。
しかしながら、これらの方法を用いると、加工工程における生地の幅合わせ等の工程において熱で幅合わせを行うためのセット性が低下するために、生地加工での工程性が悪くなるという問題が発生したり、ポリウレタンウレア溶液の粘度が経時により急激に上昇し、紡糸することが困難になる等の問題も発生したりするため、技術的な提案はされていても実際には、工業的な生産が難しい。従って、エステル交編での丸編生地においては、130℃以上で繰り返し染色が可能なポリウレタンウレア弾性繊維が望まれていた。
Therefore, it is strongly desired to improve the heat resistance of the polyurethane urea elastic fiber.
In general, polyurethaneurea elastic fibers have urea groups by adding organic diamine to a so-called prepolymer in which organic diols are linked by an excess molar diisocyanate compound and reacting amino groups with isocyanate groups. Form a hard segment. Since this hard segment serves as a cross-linking point for the entire polymer, it greatly affects the heat resistance of the polyurethaneurea elastic fiber. The heat resistance has been improved by strengthening the hard segment, and the heat resistance has been improved by increasing the molecular weight of the polymer (see Patent Documents 1 to 4).
However, when these methods are used, there is a problem that the processability in dough processing deteriorates because the setability for adjusting the width by heat in the process such as width adjustment of the dough in the processing process is reduced. Or the viscosity of the polyurethane urea solution suddenly rises over time, causing problems such as difficulty in spinning. difficult. Accordingly, polyurethane urea elastic fibers that can be repeatedly dyed at 130 ° C. or higher have been desired for circular knitted fabrics by ester knitting.

特許第3352105号公報Japanese Patent No. 3352105 特開平05−078569号公報Japanese Patent Laid-Open No. 05-078569 特表2003−504477号公報JP-T-2003-504477 特開2000−290836号公報JP 2000-290836 A

本発明は、ポリエステル繊維とポリウレタンウレア弾性繊維との交編生地を130℃以上での高温での繰り返し染色しても糸切れしにくく、かつ従来のポリウレタンウレア弾性繊維の伸長回復性、熱セット性を損なわず、上記に示す従来技術の欠点を解消することを目的としてなされたものである。   The present invention is less susceptible to yarn breakage even when a knitted fabric of polyester fibers and polyurethane urea elastic fibers is repeatedly dyed at a high temperature of 130 ° C. or higher, and is capable of stretching recovery and heat setting of conventional polyurethane urea elastic fibers. It was made for the purpose of eliminating the drawbacks of the prior art described above without impairing the above.

本発明者らは、上記課題を解決するために鋭意検討した結果、両末端アミン化合物を含有し、特定の比粘度を有するポリウレタンウレア弾性繊維が、高温染色処理を行っても、伸長回復性、熱セット性に優れることを見出し、本発明に到達した。
すなわち、本発明は以下の通りである。
[1]下記の式(5)で示される化合物、およびエチレンジアミン、1,2−プロピレンジアミンから選ばれる少なくとも1種の両末端アミン化合物を含有し、液熱処理前の比粘度ηSP,2/Cが0.8以上、2.2以下であり、かつ下記式(1)で示される比粘度差ΔηSP/Cが0.5以上、3.0以下であり、加工想定処理(B)後の下記式(3)で示される熱セット率が70%以上であることを特徴とするポリウレタンウレア弾性繊維。
ΔηSP/C=ηSP,1/C−ηSP,2/C ・・・(1)
ΔηSP/C : 比粘度差
ηSP,1/C : 130℃30分間液熱処理後の比粘度
ηSP,2/C : 液熱処理前の比粘度
熱セット率(%)=[(I−I 0 )/(I 1 −I 0 )]×100 ・・・(3)
0 : 初期サンプル長(mm)
1 : 液熱処理を行う時のサンプル長(mm)
I : 液熱処理を行った後にリラックス状態になるサンプル長(mm)
加工想定処理(B):ポリウレタンウレア弾性繊維を100%伸張状態で190℃1分間の乾熱処理、130℃30分間の液熱処理、および170℃1分間の乾熱処理を行う。

Figure 0005258266
(式中、R 1 は炭素原子数2〜8の直鎖状または分岐状アルキレン基、R 2 は炭素原子数
6〜15の脂環族アルキレン基、炭素原子数1〜4の直鎖状または分岐状アルキレン基あるいはジアルキレン置換フェニレン基またはメタンジフェニレン基である。)
[2]両末端アミン化合物の含有量が片末端アミン化合物に対して40mol%等量以上200mol%等量未満であることを特徴とする上記[1]に記載のポリウレタンウレア弾性繊維。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that, even when a polyurethane urea elastic fiber containing both terminal amine compounds and having a specific specific viscosity is subjected to a high-temperature dyeing treatment, the stretch recovery property, The inventors have found that the heat setting property is excellent and have reached the present invention.
That is, the present invention is as follows.
[1] A compound represented by the following formula (5), and at least one bi-terminal amine compound selected from ethylenediamine and 1,2-propylenediamine, and having a specific viscosity η SP, 2 / C before liquid heat treatment Is 0.8 or more and 2.2 or less, and the specific viscosity difference Δη SP / C represented by the following formula (1) is 0.5 or more and 3.0 or less , and after processing assumption processing (B) A polyurethane urea elastic fiber having a heat set rate represented by the following formula (3) of 70% or more .
Δη SP / C = η SP, 1 / C-η SP, 2 / C (1)
Δη SP / C: Specific viscosity difference η SP, 1 / C: Specific viscosity after liquid heat treatment at 130 ° C. for 30 minutes η SP, 2 / C: Specific viscosity before liquid heat treatment
Thermal setting rate (%) = [(I−I 0 ) / (I 1 −I 0 )] × 100 (3)
I 0 : Initial sample length (mm)
I 1 : Sample length when performing liquid heat treatment (mm)
I: Sample length (mm) that is in a relaxed state after liquid heat treatment
Assumed processing (B): A polyurethane urea elastic fiber is subjected to a dry heat treatment at 190 ° C. for 1 minute, a liquid heat treatment at 130 ° C. for 30 minutes, and a dry heat treatment at 170 ° C. for 1 minute in a 100% stretched state.
Figure 0005258266
Wherein R 1 is a linear or branched alkylene group having 2 to 8 carbon atoms, and R 2 is the number of carbon atoms.
They are a 6-15 alicyclic alkylene group, a C1-C4 linear or branched alkylene group, a dialkylene substituted phenylene group, or a methane diphenylene group. )
[2] The polyurethane urea elastic fiber according to the above [1], wherein the content of both terminal amine compounds is 40 mol% or more and less than 200 mol% equivalents relative to the one terminal amine compound.

[3]下記に示す加工想定処理(A)後の強度保持率が70%以上であることを特徴とする上記[1]または[2]に記載のポリウレタンウレア弾性繊維。
加工想定処理(A):ポリウレタンウレア弾性繊維を50%伸張状態で190℃1分間の乾熱処理後、130℃60分間の液熱処理を行う。
[4]下記に示す加工想定処理(B)後の下記式(2)で示される200%R/Sが90%以上であることを特徴とする上記[1]〜[3]のいずれかに記載のポリウレタンウレア弾性繊維。
200%R/S=200%応力(往)/200%応力(帰) ・・・(2)
200%応力(往): 300%伸張繰り返し、3回目の200%往きの応力(g)
200%応力(帰): 300%伸張繰り返し、3回目の200%帰りの応力(g)
加工想定処理(B):ポリウレタンウレア弾性繊維を100%伸張状態で190℃1分間の乾熱処理、130℃30分間の液熱処理、および170℃1分間の乾熱処理を行う。
[3] The polyurethaneurea elastic fiber according to the above [1] or [2], wherein the strength retention after the assumed processing (A) shown below is 70% or more.
Process assumed treatment (A): A polyurethane urea elastic fiber is subjected to a dry heat treatment at 190 ° C. for 1 minute in a 50% stretched state, followed by a liquid heat treatment at 130 ° C. for 60 minutes.
[4] In any one of the above [1] to [3], 200% R / S represented by the following formula (2) after the processing assumption process (B) shown below is 90% or more. The polyurethane urea elastic fiber described.
200% R / S = 200% stress (out) / 200% stress (return) (2)
200% stress (outward): Repeated 300% extension, the third 200% outward stress (g)
200% stress (return): 300% stretch repetition, third 200% return stress (g)
Assumed processing (B): A polyurethane urea elastic fiber is subjected to a dry heat treatment at 190 ° C. for 1 minute, a liquid heat treatment at 130 ° C. for 30 minutes, and a dry heat treatment at 170 ° C. for 1 minute in a 100% stretched state.

]両末端アミン化合物を添加し、乾式紡糸することを特徴とする上記[1]〜[]のいずれかに記載のポリウレタンウレア弾性繊維の製造方法。
[ 5 ] The method for producing a polyurethane urea elastic fiber according to any one of the above [1] to [ 4 ], wherein an amine compound at both ends is added and dry spinning is performed.

本発明のポリウレタンウレア弾性繊維は、耐熱性を有するため、ポリエステルと交編し、130℃以上での高温での繰り返し染色を可能とし、かつポリウレタンウレア弾性繊維の伸縮特性を損なうことが無い。また、染色加工時の糸切れ欠点の発生が少なく加工時の色合わせのための繰り返し染色が可能なポリウレタンウレア弾性繊維を作製することを可能とする。また、本発明でのポリウレタンウレア弾性繊維は製造工程において、容易に作製でき、かつ高耐熱性を有し、加工工程性もよいものである。   Since the polyurethaneurea elastic fiber of the present invention has heat resistance, it can be knitted with polyester, can be repeatedly dyed at a high temperature of 130 ° C. or higher, and does not impair the stretch characteristics of the polyurethaneurea elastic fiber. In addition, it is possible to produce a polyurethane urea elastic fiber that is less likely to cause yarn breakage during dyeing and can be repeatedly dyed for color matching during processing. Further, the polyurethane urea elastic fiber in the present invention can be easily produced in the production process, has high heat resistance, and has good processability.

以下、本願発明について詳述する。
本発明のポリウレタンウレア弾性繊維は、液熱処理前の比粘度ηSP,2/Cが0.8以上、2.2以下であり、かつ下記式(1)で示される比粘度差ΔηSP/Cが0.5以上、3.0以下であることを特徴とする。
ΔηSP/C=ηSP,1/C−ηSP,2/C ・・・(1)
ΔηSP/C : 比粘度差
ηSP,1/C : 130℃30分間液熱処理後の比粘度
ηSP,2/C : 液熱処理前の比粘度
比粘度は、後述する方法で測定される、ポリマー分子量の指標である。液熱処理前の比粘度が0.8以上2.2以下であれば、加工工程における生地の幅合わせ等の工程において熱で幅合わせを行うためのセット性が優れる。0.8未満であると、加工工程での乾熱工程段階において、熱切断が発生しやすい。また、2.2を超えると、加工工程における生地の幅合わせ等の工程において熱で幅合わせを行うためのセット性が低下するために、生地加工での工程性が悪くなる問題が発生する。
比粘度差は、液熱処理によるポリマー分子量の変動の指標である。上記式(1)で示される比粘度差ΔηSP/Cが0.5以上3.0以下であれば、繰り返し染色時の熱切断を抑制し、生地の幅合わせ等に必要な熱セット性が通常の加工条件で行える。0.5未満であると、染色時に熱切断したりすることもある。3.0を超えると、加工工程における生地の幅合わせ等の工程において熱で幅合わせを行うためのセット性が低下するために、生地加工での工程性が悪くなる問題が発生する。
Hereinafter, the present invention will be described in detail.
The polyurethane urea elastic fiber of the present invention has a specific viscosity η SP, 2 / C before liquid heat treatment of 0.8 or more and 2.2 or less, and a specific viscosity difference Δη SP / C represented by the following formula (1). Is 0.5 or more and 3.0 or less.
Δη SP / C = η SP, 1 / C-η SP, 2 / C (1)
Δη SP / C: Specific viscosity difference η SP, 1 / C: Specific viscosity after liquid heat treatment at 130 ° C. for 30 minutes η SP, 2 / C: Specific viscosity before liquid heat treatment Specific viscosity is measured by the method described below. It is an index of polymer molecular weight. If the specific viscosity before liquid heat treatment is 0.8 or more and 2.2 or less, the setability for performing the width alignment with heat in the process such as the width alignment of the dough in the processing step is excellent. If it is less than 0.8, thermal cutting is likely to occur in the dry heat process step of the processing process. On the other hand, if it exceeds 2.2, the setting property for performing the width adjustment by heat in the process such as the width adjustment of the dough in the processing step is deteriorated, so that the processability in the dough processing deteriorates.
The specific viscosity difference is an index of fluctuation of the polymer molecular weight due to the liquid heat treatment. If the specific viscosity difference Δη SP / C represented by the above formula (1) is 0.5 or more and 3.0 or less, thermal cutting at the time of repeated dyeing is suppressed, and the heat setting property necessary for adjusting the width of the fabric is obtained. It can be done under normal processing conditions. If it is less than 0.5, thermal cutting may occur during dyeing. If it exceeds 3.0, the setting property for performing the width adjustment with heat in the process such as the width adjustment of the dough in the processing step is deteriorated, so that the processability in the dough processing is deteriorated.

更に、本発明のポリウレタンウレア弾性繊維は、繰り返し染色に対応するために、後述する方法で測定される加工想定処理(A)後の強度保持率が70%以上であることが好ましい。70%未満であると、染色時に熱切断したりすることもある。このようなポリウレタンウレア弾性繊維であれば、弾性繊維とエステルとの交編生地の加工染色処理時の生地パワー低下抑制及び生地での欠点の発生抑制に優れる。   Furthermore, the polyurethane urea elastic fiber of the present invention preferably has a strength retention after processing assumed treatment (A) measured by a method described later of 70% or more in order to cope with repeated dyeing. If it is less than 70%, thermal cutting may occur during dyeing. Such a polyurethane urea elastic fiber is excellent in suppressing the decrease in the fabric power during the processing and dyeing treatment of the knitted fabric of the elastic fiber and the ester and in suppressing the occurrence of defects in the fabric.

また、本発明のポリウレタンウレア弾性繊維は、繰り返し染色−熱セット後の布帛性能を保持するために、後述する方法で測定される加工想定処理(B)後の200%R/Sが90%以上であることが好ましい。ここで、200%R/Sとは、ポリウレタンウレア弾性繊維とエステルとの交編生地の伸張回復性を示す指標であり、これが90%以上であれば生地でのパワー及び伸張回復性に優れる。90%未満であると、伸長回復性等の特性の低下により、商品価値が無くなってしまうこともある。
更に、本発明のポリウレタンウレア弾性繊維は、加工想定処理(B)後の熱セット率が70%以上であることが好ましい。このようなポリウレタンウレア弾性繊維であれば、生地の幅合わせ等に必要な熱セット性が通常の加工条件で行えるため好ましい。70%未満であると、加工工程における生地の幅合わせ等の工程において熱で幅合わせを行うためのセット性が低下するために、生地加工での工程性が悪くなる問題が発生する。
Further, the polyurethane urea elastic fiber of the present invention has a 200% R / S of 90% or more after the assumed processing (B) measured by the method described later in order to maintain the fabric performance after repeated dyeing and heat setting. It is preferable that Here, 200% R / S is an index indicating the stretch recovery property of the knitted fabric of polyurethane urea elastic fiber and ester. If it is 90% or more, the power and stretch recovery property of the fabric are excellent. If it is less than 90%, the commercial value may be lost due to a decrease in properties such as elongation recovery.
Furthermore, the polyurethane urea elastic fiber of the present invention preferably has a heat set rate of 70% or more after the assumed processing (B). Such a polyurethane urea elastic fiber is preferable because the heat setting property required for adjusting the width of the fabric can be performed under normal processing conditions. If it is less than 70%, the setting property for performing the width adjustment by heat in the process such as the width adjustment of the dough in the processing step is deteriorated, so that the processability in the dough processing is deteriorated.

更に、本願発明について詳述する。
本発明のポリウレタンウレア弾性糸は、実質的に線状の高分子ジオールと両末端イソシアネート化合物とで調製整されたイソシアネート末端のプレポリマーに、片末端アミン化合物および両末端アミン化合物を有するアミン溶液を、一段または多段階に反応せしめて得られる、分子内にウレタン基とウレア基を有するポリウレタンウレア高分子重合体を乾式紡糸、湿式紡糸、反応紡糸、又は溶融紡糸することによって得られるものである。特に好ましいのは、工程性が容易であること、伸張特性等の物性発現の観点から乾式紡糸である。
Further, the present invention will be described in detail.
The polyurethane urea elastic yarn of the present invention is prepared by adding an amine solution having a single-end amine compound and a bi-terminal amine compound to an isocyanate-terminated prepolymer prepared by a substantially linear polymer diol and a bi-terminal isocyanate compound. These are obtained by dry-spinning, wet-spinning, reactive spinning, or melt-spinning of a polyurethaneurea polymer having a urethane group and a urea group in the molecule, obtained by reacting in one or more stages. Particularly preferred is dry spinning from the viewpoint of easy processability and physical properties such as elongation characteristics.

本発明におけるプレポリマーの高分子ジオール成分としては、ポリテトラメチレングリコール、ポリカーボネートジオール、ポリプロピレングリコール、ポリブチレンアジペートジオール、ポリカプロラクトンジオールや下記式(3)又は(4)で示される繰り返し単位を有する共重合ジオールを含むことを特徴とする共重合ジオール等が使用される。これらグリコールの数平均分子量は、好ましいのは、数平均分子量300〜10000のポリエーテルジオール類もしくは、共重合ジオールであり、特に好ましいのは、数平均分子量1000〜2500のポリテトラメチレングリコール(PTMG)である。   The polymer diol component of the prepolymer in the present invention includes polytetramethylene glycol, polycarbonate diol, polypropylene glycol, polybutylene adipate diol, polycaprolactone diol, and a copolymer having a repeating unit represented by the following formula (3) or (4). A copolymerized diol characterized by containing a polymerized diol is used. The number average molecular weight of these glycols is preferably a polyether diol having a number average molecular weight of 300 to 10,000 or a copolymerized diol, and particularly preferably polytetramethylene glycol (PTMG) having a number average molecular weight of 1000 to 2500. It is.

Figure 0005258266
Figure 0005258266

Figure 0005258266
Figure 0005258266

ポリウレタンプレポリマーを構成する両末端イソシアネート成分としては、下記の化合物群を含む多くの化合物の例が知られている。例えば、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、4,4’−ジフェニルプロパンジイソシアネート等が挙げられる。好ましくは、ベンゼン環を有するジイソシアネート化合物で特に4,4’−ジフェニルメタンジイソシアネート(MDI)が好ましい。
上記、高分子ジオールと両末端イソシアネート化合物とで調整されたイソシアネート末端のプレポリマーと重合する片末端アミン化合物としては、下記の化合物を含む化合物の例が知られている。例えば、ジエチルアミン、n−ブチルアミン、モノエタノールアミン等が挙げられる。好ましいのは、ジエチルアミンである。
また、両末端アミン化合物としては、例えば、エチレンジアミン、1,2−プロピレンジアミン、ドデカメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、トリエチレンジアミン、トリメチレンジアミン等がある。また、4,4’−ジフェニルメタンジイソシアネート等の両末端イソシアネート成分の両末端にエチレンジアミン、1,2−プロピレンジアミンやドデカメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、ジアミノフェニルメタン、トリエチレンジアミン、トリメチレンジアミン等を反応させたウレア結合を有する下記構造式で示される化合物(5)等が挙げられる。又、これらジアミンの混合物でも良い。好ましくは、エチレンジアミン、1,2−プロピレンジアミンである。
As examples of the both-end isocyanate component constituting the polyurethane prepolymer, many examples of compounds including the following compound groups are known. For example, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyl ether diisocyanate, 4,4′-diphenylpropane diisocyanate and the like can be mentioned. Preferably, it is a diisocyanate compound having a benzene ring, and 4,4′-diphenylmethane diisocyanate (MDI) is particularly preferable.
As the above-mentioned one-end amine compound polymerized with an isocyanate-terminated prepolymer adjusted with a polymer diol and a both-end isocyanate compound, examples of compounds containing the following compounds are known. For example, diethylamine, n-butylamine, monoethanolamine and the like can be mentioned. Preference is given to diethylamine.
Moreover, as both-end amine compounds, for example, ethylenediamine, 1,2-propylenediamine, dodecamethylenediamine, hexamethylenediamine, nonamethylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, triethylenediamine, There are trimethylenediamine and the like. In addition, ethylenediamine, 1,2-propylenediamine, dodecamethylenediamine, hexamethylenediamine, nonamethylenediamine, o-phenylenediamine, m-phenylenediamine, Examples thereof include a compound (5) represented by the following structural formula having a urea bond obtained by reacting p-phenylenediamine, diaminophenylmethane, triethylenediamine, trimethylenediamine and the like. A mixture of these diamines may also be used. Preferred are ethylenediamine and 1,2-propylenediamine.

Figure 0005258266
(式中、R1 は炭素原子数2〜8の直鎖状または分岐状アルキレン基、R2 は炭素原子数6〜15の脂環族アルキレン基、炭素原子数1〜4の直鎖状または分岐状アルキレン基あるいはジアルキレン置換フェニレン基またはメタンジフェニレン基である。)
Figure 0005258266
(Wherein R 1 is a linear or branched alkylene group having 2 to 8 carbon atoms, R 2 is an alicyclic alkylene group having 6 to 15 carbon atoms, a straight chain having 1 to 4 carbon atoms, or A branched alkylene group, a dialkylene-substituted phenylene group, or a methanediphenylene group.)

本発明のポリウレタンウレア弾性繊維は、両末端アミン化合物が含有されていることを特徴とする。含有とは、繊維中に未反応の両末端アミン化合物が残存している状態を示す。両末端アミン化合物が含有されることによって、片末端アミン化合物と両末端アミン化合物の交換反応であるアミノリシス反応により、加工処理時に分子量が増大する効果を発現することができる。
両末端アミン化合物を含有させる方法としては、ポリウレタンプレポリマーと重合反応させる両末端アミン化合物と片末端アミン化合物の混合溶液中に、両末端アミン化合物を過剰量添加することにより作製する方法や、重合後、紡糸する前の工程で両末端アミン化合物を直接添加しても良い。
又、本発明の性能を発現させる両末端アミン化合物としては、前述する比粘度差ΔηSP/Cを発生するものであれば、如何なるものでも良い。プレポリマーと重合させる両末端アミン化合物と同じ化合物でも、別の化合物でも良い。例えば、エチレンジアミン、1,2−プロピレンジアミン、ドデカメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、トリエチレンジアミン、トリメチレンジアミン等が挙げられる。また、4,4’−ジフェニルメタンジイソシアネート等の両末端イソシアネート成分の両末端にエチレンジアミン、1,2−プロピレンジアミンやドデカメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、ジアミノフェニルメタン、トリエチレンジアミン、トリメチレンジアミン等を反応させた前述のウレア結合を有する化合物(5)等が挙げられる。又、これらジアミンの混合物でも良い。原液の安定性、耐熱時の性能の面から4,4’−ジフェニルメタンジイソシアネート等の両末端イソシアネート成分の両末端にエチレンジアミンや1,2−プロピレンジアミン等の一級アミンを反応させたウレア結合を有する上記の化合物(5)が好ましい。
The polyurethaneurea elastic fiber of the present invention is characterized in that both end amine compounds are contained. Containing indicates a state in which unreacted both terminal amine compounds remain in the fiber. By containing both terminal amine compounds, the effect of increasing the molecular weight during processing can be exhibited by the aminolysis reaction, which is an exchange reaction between the one terminal amine compound and the both terminal amine compounds.
As a method of containing both terminal amine compounds, a method of preparing by adding an excessive amount of both terminal amine compounds in a mixed solution of both terminal amine compounds and one terminal amine compounds to be polymerized with the polyurethane prepolymer, or polymerization Thereafter, the amine compounds at both ends may be added directly in the step before spinning.
Moreover, as a both-end amine compound which expresses the performance of this invention, what kind of thing may be used as long as it produces the above-mentioned specific viscosity difference (DELTA) (eta) SP / C. The same compound as the both-end amine compound to be polymerized with the prepolymer or another compound may be used. For example, ethylenediamine, 1,2-propylenediamine, dodecamethylenediamine, hexamethylenediamine, nonamethylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, triethylenediamine, trimethylenediamine and the like can be mentioned. In addition, ethylenediamine, 1,2-propylenediamine, dodecamethylenediamine, hexamethylenediamine, nonamethylenediamine, o-phenylenediamine, m-phenylenediamine, Examples include the compound (5) having the above-described urea bond obtained by reacting p-phenylenediamine, diaminophenylmethane, triethylenediamine, trimethylenediamine and the like. A mixture of these diamines may also be used. The above having a urea bond in which primary amines such as ethylenediamine and 1,2-propylenediamine are reacted at both ends of both end isocyanate components such as 4,4′-diphenylmethane diisocyanate from the standpoint of stability of stock solution and heat resistant performance The compound (5) is preferred.

具体的には、下記化合物(6)で示されるN,N’−(メチレンジ−4,1−フェニレン)ビス[2−(2−メチルエチルアミノ)−ウレア]が耐熱性の面から望ましい。

Figure 0005258266
Specifically, N, N ′-(methylenedi-4,1-phenylene) bis [2- (2-methylethylamino) -urea] represented by the following compound (6) is desirable from the viewpoint of heat resistance.
Figure 0005258266

ポリウレタンプレポリマーと重合反応させる両末端アミン化合物と片末端アミン化合物の混合溶液中に、両末端アミン化合物を過剰量添加する方法では、反応性等を考慮して、得られたポリウレタンウレア弾性繊維中に両末端アミン化合物が残存するようにポリマー設計、原料や反応条件の設定を行う必要がある。一例として、反応性の異なる複数の両末端アミン化合物を混用し、重合条件調整により反応性の高い化合物のみ重合反応に寄与させ、反応性の低い両末端アミン化合物をポリマーに残存させる方法や、一種類の両末端アミン化合物を大過剰添加し、分子量が設計値になったところで反応を終了させて両末端アミン化合物の一部を残存させる方法等が挙げられる。
これに対し、両末端アミン化合物を重合後のポリウレタンウレアに追添する方法であれば、ポリウレタンウレア弾性繊維中に含有される量が調整しやすく、より好ましい。この場合の両末端アミン化合物の添加量としては、ポリウレタンプレポリマー中の片末端アミン化合物仕込み量より過剰に添加させれば良く、片末端アミン化合物仕込み量に対し、40mol%等量以上200mol%等量未満過剰に添加することにより本発明の耐熱性を有するポリウレタンウレア弾性糸を好適に作製することが出来る。ポリウレタンプレポリマー中の片末端アミン化合物に対し、40mol%等量未満であると液熱処理後の比粘度上昇が小さく、効果の発現が充分で無いことがある。又、200mol%等量以上の両末端アミン化合物を添加すると重合原液の急激な粘度上昇が発生し、紡糸安定性に影響することがある。
In the method of adding an excessive amount of both terminal amine compounds to the mixed solution of both terminal amine compounds and one terminal amine compounds to be polymerized and reacted with the polyurethane prepolymer, in the obtained polyurethane urea elastic fiber in consideration of reactivity and the like. It is necessary to set the polymer design, raw materials and reaction conditions so that the amine compounds at both ends remain. As an example, a method may be used in which a plurality of both-end amine compounds having different reactivities are mixed, and only a highly reactive compound contributes to the polymerization reaction by adjusting the polymerization conditions, and the less-reactive both-end amine compounds remain in the polymer. Examples thereof include a method of adding a large excess of both types of both-end amine compounds and terminating the reaction when the molecular weight reaches the design value to leave a part of both-end amine compounds.
On the other hand, if it is the method of adding both terminal amine compounds to the polyurethane urea after superposition | polymerization, the quantity contained in a polyurethane urea elastic fiber will be easy to adjust, and it is more preferable. In this case, the addition amount of the both-end amine compound may be added in excess of the one-end amine compound charge amount in the polyurethane prepolymer. The polyurethane urea elastic yarn having heat resistance according to the present invention can be suitably produced by adding it in excess of less than the amount. If the amount is less than 40 mol% equivalent to the one-terminal amine compound in the polyurethane prepolymer, the increase in the specific viscosity after the liquid heat treatment is small, and the effect may not be sufficiently exhibited. Moreover, when 200 mol% equivalent amount or more of both terminal amine compounds are added, a sudden increase in viscosity of the polymerization stock solution occurs, which may affect the spinning stability.

又、本発明のポリウレタンウレア弾性繊維に、表面にステアリン酸が付着しているハイドロタルサイトを含有させることにより、染色等の加工工程時での糸切れ抑制することが出来る。
スルホコハク酸系金属塩、α−オレフィンスルホン酸塩、α−スルホ脂肪酸メチルエステル塩、ラウリル硫酸ナトリウムなどの界面活性剤をポリウレタンウレア弾性繊維に対して、0.1〜5重量%の範囲で含有させることにより、更に糸切れを抑制させ、エステル交編丸編生地での、130℃以上の温度での加工処理を可能とする。界面活性剤としては、上記のものであれば、如何なる化合物でも良いが、好ましくは、スルホコハク酸金属塩が破断強度向上としての効果が高いことから好ましい。
Moreover, the polyurethane urea elastic fiber of the present invention contains hydrotalcite having stearic acid attached to the surface, whereby yarn breakage during processing such as dyeing can be suppressed.
Surfactants such as sulfosuccinic acid-based metal salts, α-olefin sulfonates, α-sulfo fatty acid methyl ester salts, sodium lauryl sulfate and the like are contained in the polyurethane urea elastic fiber in an amount of 0.1 to 5% by weight. As a result, yarn breakage can be further suppressed, and processing at a temperature of 130 ° C. or higher can be performed on the ester knitted circular knitted fabric. As the surfactant, any compound may be used as long as it is as described above, but a sulfosuccinic acid metal salt is preferable because it has a high effect of improving the breaking strength.

上記ポリウレタンウレア弾性繊維には、必要に応じて、公知のポリウレタンウレア弾性繊維に使用される特定の化学構造を有する有機または無機の配合剤、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ビンダードアミン系化合物等の紫外線吸収剤、ビンダードフェノール系化合物等の酸化防止剤、硫酸バリウム、酸化マグネシウム、珪酸マグネシウム、珪酸カルシウム、酸化亜鉛等のような無機微粒子、ステアリン酸マグネシウム、ステアリン酸カルシウム、ポリテトラフルオロエチレン、オルガノポリシロキサン等の粘着防止剤を含有させることも出来る。
本発明でのポリウレタンウレア弾性繊維の繊度としては、丸編、経編用途として11デシテックス以上310デシテックス以下のものが好ましい。
For the polyurethane urea elastic fiber, an organic or inorganic compounding agent having a specific chemical structure used for a known polyurethane urea elastic fiber, for example, a benzophenone compound, a benzotriazole compound, or a binder amine is used. UV absorbers such as compound compounds, antioxidants such as binderd phenol compounds, inorganic fine particles such as barium sulfate, magnesium oxide, magnesium silicate, calcium silicate, zinc oxide, magnesium stearate, calcium stearate, polytetrafluoro An anti-sticking agent such as ethylene or organopolysiloxane can also be contained.
The fineness of the polyurethane urea elastic fiber in the present invention is preferably 11 dtex or more and 310 dtex or less for circular knitting and warp knitting.

以下に、本発明を実施例などにより更に詳しく説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
なお、測定法、評価方法は下記の通りである。
<熱処理方法>
高温高圧染色機(NISSEN CORPORATION TYPE 12LMP-E )を用いて、下記の方法でそれぞれ熱処理を行った。金枠への取り付け方法を図1に示す。
1.加工想定処理(A):強度保持率測定用サンプルの処理条件
(i)190℃1分間の乾熱処理
金枠に無伸長下で被処理部分I=50mmの試験サンプル糸をセットし、これを50%伸長し、被処理部分I=75mmで固定した。金枠ごと190℃に加熱されたピンテンターで1分間乾熱処理を行った。ピンテンターから取り出した金枠を室温で放冷させた。
(ii)130℃30分間の液熱処理
上記(i)の処理後の金枠を染色機内部のポット内でイオン交換水に浸漬させて液熱処理を行った。処理条件は80℃から2.0℃/分で昇温させて行き、130℃で30分保ち、その後冷却を行った。染色機より取り出した金枠から試験サンプル糸を外し、フリーな状態にリラックスさせ、温度20℃、湿度65wt%の雰囲気で12時間以上風乾した後、強度測定を行った。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Measurement methods and evaluation methods are as follows.
<Heat treatment method>
Using a high-temperature high-pressure dyeing machine (NISSEN CORPORATION TYPE 12LMP-E), heat treatment was performed by the following methods. FIG. 1 shows a method for attaching to a metal frame.
1. Assumed processing (A): Processing conditions of sample for measuring strength retention rate (i) Dry heat treatment at 190 ° C. for 1 minute A test sample yarn having a to-be-processed part I 0 = 50 mm is set in a metal frame under no elongation. The film was stretched by 50% and fixed at a portion to be treated I 1 = 75 mm. Dry heat treatment was performed for 1 minute with a pin tenter heated to 190 ° C. together with the metal frame. The metal frame taken out from the pin tenter was allowed to cool at room temperature.
(Ii) Liquid heat treatment at 130 ° C. for 30 minutes The liquid frame after the treatment of (i) was immersed in ion-exchanged water in a pot inside the dyeing machine and subjected to liquid heat treatment. The treatment condition was that the temperature was raised from 80 ° C. at 2.0 ° C./min, kept at 130 ° C. for 30 minutes, and then cooled. The test sample yarn was removed from the metal frame taken out from the dyeing machine, relaxed to a free state, air-dried in an atmosphere at a temperature of 20 ° C. and a humidity of 65 wt% for 12 hours or more, and then the strength was measured.

2.加工想定処理(B):200%R/S、熱セット率、測定用サンプルの処理条件
(i)190℃1分間の乾熱処理
金枠に無伸長下で被処理部分I=75mmの試験サンプル糸をセットし、これを100%伸長させ、被処理部分I=150mmで固定した。金枠ごと190℃に加熱されたピンテンターで1分間乾熱処理を行った。ピンテンターから取り出した金枠を室温で放冷させた。
(ii)130℃30分間の液熱処理
上記(i)の処理後の金枠を、上記1.と同様な方法で130℃30分間の液熱処理を行った。染色機から取り出した金枠から試験サンプル糸を外さずに金枠ごと風乾し、次の熱処理を行った。
(iii)170℃1分間の乾熱処理
上記(ii)の処理後風乾された試験サンプル糸がセットされた金枠を、そのまま170℃に加熱されたピンテンターで1分間乾熱処理を行った。
ピンテンターから取り出した金枠が室温に放冷された状態で、下記に示す熱セット率の測定を行った後、金枠から試験サンプル糸を外し、フリーな状態でリラックスさせ、温度20℃、湿度65wt%の雰囲気下で12時間以上放置した後、下記に示す200%R/Sの測定を行った。
2. Assumed processing (B): 200% R / S, heat setting rate, processing conditions of sample for measurement (i) Dry heat treatment at 190 ° C. for 1 minute A test sample with a part to be processed I 0 = 75 mm under no elongation in a metal frame The yarn was set, stretched 100%, and fixed at the portion to be treated I 1 = 150 mm. Dry heat treatment was performed for 1 minute with a pin tenter heated to 190 ° C. together with the metal frame. The metal frame taken out from the pin tenter was allowed to cool at room temperature.
(Ii) Liquid heat treatment at 130 ° C. for 30 minutes. A liquid heat treatment at 130 ° C. for 30 minutes was performed in the same manner as described above. Without removing the test sample yarn from the metal frame taken out from the dyeing machine, the whole metal frame was air-dried and subjected to the following heat treatment.
(Iii) Dry heat treatment at 170 ° C. for 1 minute The metal frame on which the test sample yarn that had been air-dried after the treatment of (ii) was set was subjected to a dry heat treatment for 1 minute with a pin tenter heated to 170 ° C. as it was.
In the state where the metal frame taken out from the pin tenter is allowed to cool to room temperature, after measuring the heat setting rate shown below, remove the test sample yarn from the metal frame, relax in a free state, temperature 20 ° C, humidity After being left for 12 hours or more in an atmosphere of 65 wt%, the following 200% R / S measurement was performed.

3.比粘度測定用サンプルの処理条件
試験サンプル糸を約2g採取し、無伸長の状態下で染色機内部のポット内でイオン交換水に浸漬させて処理を行った。処理条件は80℃から2.0℃/分で昇温させて行き、130℃で30分保ち、その後冷却を行った。染色機より取り出した試験体は、温度20℃、湿度65wt%の雰囲気で12時間以上風乾した後、下記に示す比粘度(ηSP/C)測定方法に従い、測定を行った。
3. Processing conditions of specific viscosity measurement sample About 2 g of test sample yarn was sampled and immersed in ion-exchanged water in a pot inside the dyeing machine under non-stretched condition. The treatment condition was that the temperature was raised from 80 ° C. at 2.0 ° C./min, kept at 130 ° C. for 30 minutes, and then cooled. The test specimen taken out from the dyeing machine was air-dried for 12 hours or more in an atmosphere of a temperature of 20 ° C. and a humidity of 65 wt%, and then measured according to the specific viscosity (η SP / C) measurement method shown below.

<比粘度ηSP/Cの測定方法>
比粘度(ηSP/C);
ポリマー分子量の評価として比粘度を測定した。200ml三角フラスコに、液熱処理前または液熱処理後のサンプルを0.2gと、新しい石油エーテルを100ml入れ、5分間ゆっくりと攪拌する。三角フラスコ中の石油エーテルを新しい石油エーテルと交換し、更に5分間ゆっくりと攪拌後、サンプルを三角フラスコから取り出し、3時間風乾する。この試験サンプルの重量(W1)を正確に精評する。0.5wt%のジメチルアセトアミド(DMAc)溶液にするために、試験サンプルを入れた50mlサンプル瓶にジメチルアセトアミドを加えて正確に重量(W2)を測定し溶解させて試験サンプル溶液の濃度Cを求める。オストワルド粘度計にて25℃の恒温水槽中で、溶媒と上記の試験サンプル溶液の流下時間を測定した。下記式(7)により比粘度を求めた。
<Measurement method of specific viscosity η SP / C>
Specific viscosity (η SP / C);
Specific viscosity was measured as an evaluation of polymer molecular weight. In a 200 ml Erlenmeyer flask, add 0.2 g of the sample before or after the liquid heat treatment and 100 ml of new petroleum ether, and slowly stir for 5 minutes. The petroleum ether in the Erlenmeyer flask is replaced with fresh petroleum ether, and after stirring for another 5 minutes, the sample is removed from the Erlenmeyer flask and air-dried for 3 hours. Accurately evaluate the weight (W1) of this test sample. In order to obtain a 0.5 wt% dimethylacetamide (DMAc) solution, dimethylacetamide is added to a 50 ml sample bottle containing the test sample, and the weight (W2) is accurately measured and dissolved to obtain the concentration C of the test sample solution. . The flow time of the solvent and the test sample solution was measured in a constant temperature water bath at 25 ° C. using an Ostwald viscometer. The specific viscosity was determined by the following formula (7).

(ηSP/C)={(t−t0 )/t0 }/C ・・・(7)
t : 試験サンプル溶液の流下速度(秒)
0 : 溶媒(DMAc)の流下速度(秒)
C : 試験糸の濃度(wt%)(W1/W2×100)
又、次式により、比粘度差ΔηSP/Cを求めた。
ΔηSP/C=ηSP,1/C−ηSP,2/C ・・・(1)
ΔηSP/C : 比粘度差
ηSP,1/C : 130℃30分間液熱処理後の比粘度
ηSP,2/C : 液熱処理前の比粘度
SP / C) = {(t−t 0 ) / t 0 } / C (7)
t: Flow velocity of test sample solution (seconds)
t 0 : Flowing speed of solvent (DMAc) (second)
C: Test yarn concentration (wt%) (W1 / W2 × 100)
Moreover, specific viscosity difference (DELTA) (eta) SP / C was calculated | required by following Formula.
Δη SP / C = η SP, 1 / C-η SP, 2 / C (1)
Δη SP / C: Specific viscosity difference η SP, 1 / C: Specific viscosity after liquid heat treatment at 130 ° C. for 30 minutes η SP, 2 / C: Specific viscosity before liquid heat treatment

<強度保持率>
温度20℃、湿度65wt%の条件下で、引張試験機オリエテンテック(株)製UTM−III−100型により測定した。試験機に熱処理前または熱処理後のサンプルを掴み間隔50mmでセットし、変形速度1000%/分で破断するまで引張り、破断時の応力(強度)と伸度(伸長する前に対する伸長率%)を測定した。なお測定値は下記式(8)による熱処理前の破断強度に対する熱処理後の破断強度の割合(%)を強度保持率とした。
強度保持率(%)=(TS後/TS前)×100 ・・・(8)
TS後 : 熱処理後の破断強度(cN)
TS前 : 熱処理前の破断強度(cN)
<Strength retention>
The measurement was performed with a tensile tester UTM-III-100 manufactured by Oriente Tech Co., Ltd. under conditions of a temperature of 20 ° C. and a humidity of 65 wt%. Set the sample before or after heat treatment to the test machine with a gripping interval of 50 mm, pull it until it breaks at a deformation rate of 1000% / min, and set the stress (strength) and elongation (elongation% relative to before elongation) at break. It was measured. In addition, the measured value made the ratio (%) of the breaking strength after the heat processing with respect to the breaking strength before the heat treatment according to the following formula (8) as the strength retention.
Strength retention (%) = (after TS / before TS) × 100 (8)
After TS: Breaking strength after heat treatment (cN)
Before TS: Breaking strength before heat treatment (cN)

<200%R/Sの測定方法>
温度20℃、湿度65wt%の条件下で、引張試験機オリエテンテック(株)製UTM−III−100型により測定した。試験機に熱処理後のサンプルを掴み間隔50mmでセットし、変形速度1000%/分で300%伸張するのを3回繰り返し試験を行い、3回目の往きの200%応力と帰りの200%応力の比を200%R/Sとした。
200%R/S=200%応力(往)/200%応力(帰) ・・・(2)
200%応力(往): 300%伸張繰り返し、3回目の200%往きの応力(g)
200%応力(帰): 300%伸張繰り返し、3回目の200%帰りの応力(g)
<Measurement method of 200% R / S>
The measurement was performed with a tensile tester UTM-III-100 manufactured by Oriente Tech Co., Ltd. under conditions of a temperature of 20 ° C. and a humidity of 65 wt%. The test piece was heat-treated on a test machine, set at a spacing of 50 mm, and stretched 300% at a deformation rate of 1000% / min. The test was repeated three times. The ratio was 200% R / S.
200% R / S = 200% stress (out) / 200% stress (return) (2)
200% stress (outward): Repeated 300% extension, the third 200% outward stress (g)
200% stress (return): 300% stretch repetition, third 200% return stress (g)

<熱セット率測定方法>
上記加工想定処理(B)後の、試験サンプル糸がセットされた金枠のサンプル長をゆっくりと狭めていき、糸がリラックス状態になった時の長さIを測定し、下記式(3)で示される熱処理前の長さに対する割合(%)を熱セット率とした。なおここで、I、Iは液熱処理時の値(I=75mm、I=150mm)である。
熱セット率(%)=[(I−I0 )/(I1 −I0 )]×100 ・・・(3)
0 : 初期サンプル長(mm)
1 : 液熱処理を行う時のサンプル長(mm)
I : 液熱処理を行った後にリラックス状態になるサンプル長(mm)
<Heat set rate measurement method>
After the processing assumption process (B), the sample length of the metal frame in which the test sample yarn is set is gradually narrowed, and the length I when the yarn is in a relaxed state is measured. The ratio (%) with respect to the length before the heat treatment indicated by is the heat set rate. Here, I 0 and I 1 are values at the time of liquid heat treatment (I 0 = 75 mm, I 1 = 150 mm).
Thermal setting rate (%) = [(I−I 0 ) / (I 1 −I 0 )] × 100 (3)
I 0 : Initial sample length (mm)
I 1 : Sample length when performing liquid heat treatment (mm)
I: Sample length (mm) that is in a relaxed state after liquid heat treatment

<糸切れ性評価方法>
4口丸編機(大隈製24ゲージ30インチ)を使用し、ポリエチレンテレフタレート繊維84T/36fを4chに、ポリウレタンウレア弾性繊維を4chに供給して交編丸編生地を作製し、フリー状態での乾熱セット後、精錬処理を行い、液流染色機で染色温度130℃、135℃において1回の染色時間45分間での液熱染色処理を繰り返しで3回染色を行った。この生地を検反機上で穴開きの個数の巾180cm長さ200cmでポリウレタンウレア弾性繊維が断糸して穴開きしている箇所の個数で評価を行った。ポリウレタンウレア弾性繊維が断糸していることは、マイクロスコープを用いて確認を行った。
<Thread breakability evaluation method>
Using a 4-neck circular knitting machine (24 gauge, 30 inch, manufactured by Otsuki), supply polyethylene terephthalate fiber 84T / 36f to 4ch and polyurethane urea elastic fiber to 4ch to produce a knitted circular knitted fabric. After the dry heat setting, a refining process was performed, and the liquid heat dyeing process was repeated three times with a liquid dyeing machine at a dyeing temperature of 130 ° C. and 135 ° C. for one dyeing time of 45 minutes. This fabric was evaluated on the inspection machine by the number of locations where the polyurethane urea elastic fiber was broken and perforated with a width of 180 cm and a length of 200 cm on the inspection machine. It was confirmed using a microscope that the polyurethane urea elastic fiber was broken.

[実施例1〜3]
数平均分子量1800のポリオキシテトラメチレングリコール2200gをジメチルアセトアミド1400gに溶解させ、4,4’−ジフェニルメタンジイソシアネート480gと乾燥窒素雰囲気下、50℃で2時間、攪拌下で反応させて、末端がイソシアネートであるポリウレタンプレポリマー溶液を得た。得られたポリウレタンプレポリマー溶液を、15℃の水浴バスで冷却し、ジメチルアセトアミド1900gに溶解し、ポリウレタンプレポリマー溶液を希釈した。一方、エチレンジアミン40.28g及びジエチルアミン5.82gを乾燥DMAcに溶解し、これを前記ポリウレタンプレポリマー溶液に30℃下で添加して30℃で濃度30重量%、粘度4500ポイズのポリウレタンウレア溶液を得た。
[Examples 1 to 3]
2200 g of polyoxytetramethylene glycol having a number average molecular weight of 1800 is dissolved in 1400 g of dimethylacetamide and reacted with 480 g of 4,4′-diphenylmethane diisocyanate under stirring in a dry nitrogen atmosphere at 50 ° C. for 2 hours. A polyurethane prepolymer solution was obtained. The obtained polyurethane prepolymer solution was cooled in a water bath at 15 ° C. and dissolved in 1900 g of dimethylacetamide to dilute the polyurethane prepolymer solution. On the other hand, 40.28 g of ethylenediamine and 5.82 g of diethylamine were dissolved in dry DMAc and added to the polyurethane prepolymer solution at 30 ° C. to obtain a polyurethane urea solution having a concentration of 30% by weight and a viscosity of 4500 poise at 30 ° C. It was.

得られた溶液に酸化防止剤として、分子量約2300のp−クレゾールとジシクロペンタジエン及びイソブテンの縮合生成物をポリマー固形分に対し1重量%を添加し、50℃窒素雰囲気下で3時間攪拌混合した。このポリウレタンプレポリマー中の片末端アミン化合物に対して、先述した化合物(6)を上記ポリマー原液中のジエチルアミンに対して、60mol%等量(実施例1)、及び80mol%等量(実施例2)、120mol%等量(実施例3)添加したものを10℃窒素雰囲気下で更に3時間攪拌混合し、紡糸用ポリマー原液を作製した。これを真空ポンプで脱泡を行った後、すぐに、熱風炉温度が310℃に保たれた乾式紡糸機にホールオリフィスから吐出させて、紡糸、乾燥、仮撚り、オイリングを行い、800m/分で巻き取り繊度が22デシテックス、2フィラメントのポリウレタンウレア弾性繊維を得た。
得られた弾性繊維の比粘度測定結果を表1に、繊維諸物性を表2に、糸切れ性評価を表3に各々示す。
As an antioxidant, 1% by weight of a condensation product of p-cresol having a molecular weight of about 2300, dicyclopentadiene and isobutene is added to the polymer solid content as an antioxidant, and the mixture is stirred and mixed in a nitrogen atmosphere at 50 ° C. for 3 hours. did. 60 mol% equivalent (Example 1) and 80 mol% equivalent (Example 2) of the compound (6) described above with respect to diethylamine in the polymer stock solution with respect to the one-end amine compound in this polyurethane prepolymer. ), 120 mol% equivalent (Example 3) was added and stirred and mixed in a nitrogen atmosphere at 10 ° C. for 3 hours to prepare a spinning polymer stock solution. Immediately after defoaming this with a vacuum pump, it was discharged from a hole orifice into a dry spinning machine maintained at 310 ° C., spinning, drying, false twisting, oiling, and 800 m / min. Thus, a polyurethane urea elastic fiber having a winding fineness of 22 dtex and 2 filaments was obtained.
The specific viscosity measurement results of the obtained elastic fiber are shown in Table 1, fiber properties are shown in Table 2, and thread breakage evaluation is shown in Table 3.

[実施例4]
実施例1〜3において、化合物(6)をポリウレタンプレポリマー中の片末端アミン化合物に対して、60mol%等量添加させ、かつ表面にステアリン酸が付着しているハイドロタルサイトをポリウレタンウレアポリマーに対して3wt%添加し、かつスルホコハク酸ジ−2−エチルヘキシルエステルナトリウム塩(CYTEC社製)を0.5wt%添加し、50℃窒素雰囲気下で3時間攪拌混合し、紡糸用ポリマー原液を作製した。このポリマー原液を用いて実施例1〜3と同様な方法で、繊度が22デシテックス、2フィラメントの糸を得た。
得られた弾性繊維の比粘度測定結果を表1に、繊維諸物性を表2に、糸切れ性評価を表3に各々示す。
[Example 4]
In Examples 1 to 3, compound (6) was added in an amount equal to 60 mol% with respect to the one-terminal amine compound in the polyurethane prepolymer, and hydrotalcite having stearic acid attached to the surface was converted to polyurethane urea polymer. 3 wt% was added, and 0.5 wt% of sulfosuccinic acid di-2-ethylhexyl ester sodium salt (manufactured by CYTEC) was added, and the mixture was stirred and mixed in a nitrogen atmosphere at 50 ° C. for 3 hours to prepare a polymer solution for spinning. . Using this polymer stock solution, a yarn having a fineness of 22 dtex and 2 filaments was obtained in the same manner as in Examples 1 to 3.
The specific viscosity measurement results of the obtained elastic fiber are shown in Table 1, fiber properties are shown in Table 2, and thread breakage evaluation is shown in Table 3.

[実施例5]
実施例1〜3において、化合物(6)を20mol%等量添加する以外は実施例1〜3と同様な方法で、繊度が22デシテックス、2フィラメントの糸を得た。
得られた弾性繊維の比粘度測定結果を表1に、繊維諸物性を表2に、糸切れ性評価を表3に各々示す。
[Example 5]
In Examples 1 to 3, yarns having a fineness of 22 dtex and 2 filaments were obtained in the same manner as in Examples 1 to 3 except that 20 mol% of the compound (6) was added in an equivalent amount.
The specific viscosity measurement results of the obtained elastic fiber are shown in Table 1, fiber properties are shown in Table 2, and thread breakage evaluation is shown in Table 3.

[比較例1]
実施例1〜3において、化合物(6)を200mol%等量添加する以外は実施例1〜3と同様な方法で、紡糸することを試みたが、原液の粘度の上昇が著しく早い上に、紡糸時に糸切れが多発し、製品を採取することができなかった。
[Comparative Example 1]
In Examples 1 to 3, an attempt was made to spin in the same manner as in Examples 1 to 3 except that 200 mol% of the compound (6) was added in an equivalent amount. Many yarn breaks occurred during spinning, and the product could not be collected.

[比較例2]
実施例1〜3において、両末端アミン化合物を添加しないこと以外は実施例1〜3と同様な方法で繊度が22デシテックス、2フィラメントの糸を得た。
得られた弾性繊維の比粘度測定結果を表1に、繊維諸物性を表2に、糸切れ性評価を表3に各々示す。
[Comparative Example 2]
In Examples 1 to 3, yarns having a fineness of 22 dtex and 2 filaments were obtained in the same manner as in Examples 1 to 3 except that both end amine compounds were not added.
The specific viscosity measurement results of the obtained elastic fiber are shown in Table 1, fiber properties are shown in Table 2, and thread breakage evaluation is shown in Table 3.

[比較例3]
以下の方法で特許文献1の実施例15を追試した。
数平均分子量1830のPTMG400gとMDI87gとを窒素ガス雰囲気中70℃で3時間攪拌しつつ反応させ、末端イソシアネート基を有する中間重合体を得た。次いで室温まで冷却し、乾燥ジメチルアセトアミドを加えて、濃度40重量%の中間重合体溶液とした。次いで、エチレンジアミン7.28gとジエチルアミン1.11gとを含むジメチルアセトアミド溶液を激しく攪拌された中間重合体溶液中に加え、濃度30重量%のポリウレタンウレア溶液を得た。次いで酸化防止剤として約分子量2300のp−クレゾールとジシクロペンタジエン及びイソブテンの縮合生成物をポリマーに対して5重量%を添加し、攪拌混合した。さらに、化合物(6)を3.02g(50mol%)を含むジメチルアセトアミド溶液を加え、混合、脱泡し、濃度30重量%、粘度3400ポイズ/30℃の紡糸用組成液を得た。これを熱風温度が270℃に保たれた乾式紡糸機にオリフィスを通して供給し、紡糸、乾燥、仮撚り、オイリングを行い、800m/分で巻き取り繊度が22デシテックス、2フィラメントの糸を得た。
得られた弾性繊維の比粘度測定結果を表1に、繊維諸物性を表2に、糸切れ性評価を表3に各々示す。
[Comparative Example 3]
Example 15 of Patent Document 1 was additionally tested by the following method.
400 g of PTMG having a number average molecular weight of 1830 and 87 g of MDI were reacted with stirring in a nitrogen gas atmosphere at 70 ° C. for 3 hours to obtain an intermediate polymer having a terminal isocyanate group. Next, the mixture was cooled to room temperature, and dry dimethylacetamide was added to obtain an intermediate polymer solution having a concentration of 40% by weight. Next, a dimethylacetamide solution containing 7.28 g of ethylenediamine and 1.11 g of diethylamine was added to the vigorously stirred intermediate polymer solution to obtain a polyurethane urea solution having a concentration of 30% by weight. Next, 5% by weight of a condensation product of p-cresol having a molecular weight of about 2300, dicyclopentadiene and isobutene as an antioxidant was added to the polymer and mixed with stirring. Further, a dimethylacetamide solution containing 3.02 g (50 mol%) of compound (6) was added, mixed and degassed to obtain a spinning composition liquid having a concentration of 30% by weight and a viscosity of 3400 poise / 30 ° C. This was supplied through an orifice to a dry spinning machine maintained at a hot air temperature of 270 ° C., and spinning, drying, false twisting, and oiling were carried out to obtain a yarn having a winding fineness of 22 dtex and 2 filaments at 800 m / min.
The specific viscosity measurement results of the obtained elastic fiber are shown in Table 1, fiber properties are shown in Table 2, and thread breakage evaluation is shown in Table 3.

Figure 0005258266
Figure 0005258266

Figure 0005258266
Figure 0005258266

Figure 0005258266
Figure 0005258266

本発明のポリウレタンウレア弾性繊維は、エステル交編丸編生地での染色時の加工工程性に優れるため、代表的な汎用合成繊維であるポリエステル繊維とポリウレタン弾性繊維とからなる複合布帛素材を用いるインナー衣料分野、アウター衣料分野やスポーツ衣料分野で好適に利用することが出来る。   Since the polyurethane urea elastic fiber of the present invention is excellent in the processability at the time of dyeing with an ester interwoven knitted circular knitted fabric, an inner using a composite fabric material composed of polyester fibers and polyurethane elastic fibers, which are typical general-purpose synthetic fibers. It can be suitably used in the clothing field, outer clothing field and sports clothing field.

熱処理を行う際の、繊維の金枠への取り付け方法を示す図である。It is a figure which shows the attachment method to the metal frame at the time of performing heat processing.

Claims (5)

下記の式(5)で示される化合物、およびエチレンジアミン、1,2−プロピレンジアミンから選ばれる少なくとも1種の両末端アミン化合物を含有し、液熱処理前の比粘度ηSP,2/Cが0.8以上、2.2以下であり、かつ下記式(1)で示される比粘度差ΔηSP/Cが0.5以上、3.0以下であり、加工想定処理(B)後の下記式(3)で示される熱セット率が70%以上であることを特徴とするポリウレタンウレア弾性繊維。
ΔηSP/C=ηSP,1/C−ηSP,2/C ・・・(1)
ΔηSP/C : 比粘度差
ηSP,1/C : 130℃30分間液熱処理後の比粘度
ηSP,2/C : 液熱処理前の比粘度
熱セット率(%)=[(I−I 0 )/(I 1 −I 0 )]×100 ・・・(3)
0 : 初期サンプル長(mm)
1 : 液熱処理を行う時のサンプル長(mm)
I : 液熱処理を行った後にリラックス状態になるサンプル長(mm)
加工想定処理(B):ポリウレタンウレア弾性繊維を100%伸張状態で190℃1分間の乾熱処理、130℃30分間の液熱処理、および170℃1分間の乾熱処理を行う。
Figure 0005258266
(式中、R 1 は炭素原子数2〜8の直鎖状または分岐状アルキレン基、R 2 は炭素原子数6〜15の脂環族アルキレン基、炭素原子数1〜4の直鎖状または分岐状アルキレン基あるいはジアルキレン置換フェニレン基またはメタンジフェニレン基である。)
It contains a compound represented by the following formula (5), and at least one both-end amine compound selected from ethylenediamine and 1,2-propylenediamine, and has a specific viscosity η SP, 2 / C of 0. 8 or more, or 2.2 or less, and the following formula (1) specific viscosity difference .DELTA..eta SP / C indicated by 0.5 or more and 3.0 or less, the following equation after the processing contemplated process (B) ( 3. A polyurethaneurea elastic fiber, wherein the heat set rate shown in 3) is 70% or more .
Δη SP / C = η SP, 1 / C-η SP, 2 / C (1)
Δη SP / C: Specific viscosity difference η SP, 1 / C: Specific viscosity after liquid heat treatment at 130 ° C. for 30 minutes η SP, 2 / C: Specific viscosity before liquid heat treatment
Thermal setting rate (%) = [(I−I 0 ) / (I 1 −I 0 )] × 100 (3)
I 0 : Initial sample length (mm)
I 1 : Sample length when performing liquid heat treatment (mm)
I: Sample length (mm) that is in a relaxed state after liquid heat treatment
Assumed processing (B): A polyurethane urea elastic fiber is subjected to a dry heat treatment at 190 ° C. for 1 minute, a liquid heat treatment at 130 ° C. for 30 minutes, and a dry heat treatment at 170 ° C. for 1 minute in a 100% stretched state.
Figure 0005258266
(Wherein R 1 is a linear or branched alkylene group having 2 to 8 carbon atoms, R 2 is an alicyclic alkylene group having 6 to 15 carbon atoms, a straight chain having 1 to 4 carbon atoms, or A branched alkylene group, a dialkylene-substituted phenylene group, or a methanediphenylene group.)
両末端アミン化合物の含有量が片末端アミン化合物に対して40mol%等量以上200mol%等量未満であることを特徴とする請求項1に記載のポリウレタンウレア弾性繊維。   The polyurethane urea elastic fiber according to claim 1, wherein the content of both terminal amine compounds is 40 mol% or more and less than 200 mol% equivalents relative to the one terminal amine compound. 下記に示す加工想定処理(A)後の強度保持率が70%以上であることを特徴とする請求項1または2に記載のポリウレタンウレア弾性繊維。
加工想定処理(A):ポリウレタンウレア弾性繊維を50%伸張状態で190℃1分間の乾熱処理後、130℃60分間の液熱処理を行う。
The polyurethane urea elastic fiber according to claim 1 or 2, wherein the strength retention after the processing assumed treatment (A) shown below is 70% or more.
Process assumed treatment (A): A polyurethane urea elastic fiber is subjected to a dry heat treatment at 190 ° C. for 1 minute in a 50% stretched state, followed by a liquid heat treatment at 130 ° C. for 60 minutes.
下記に示す加工想定処理(B)後の下記式(2)で示される200%R/Sが90%以上であることを特徴とする請求項1〜3のいずれかに記載のポリウレタンウレア弾性繊維。
200%R/S=200%応力(往)/200%応力(帰) ・・・(2)
200%応力(往): 300%伸張繰り返し、3回目の200%往きの応力(g)
200%応力(帰): 300%伸張繰り返し、3回目の200%帰りの応力(g)
加工想定処理(B):ポリウレタンウレア弾性繊維を100%伸張状態で190℃1分間の乾熱処理、130℃30分間の液熱処理、および170℃1分間の乾熱処理を行う。
The polyurethane urea elastic fiber according to any one of claims 1 to 3, wherein 200% R / S represented by the following formula (2) after the assumed processing (B) shown below is 90% or more. .
200% R / S = 200% stress (out) / 200% stress (return) (2)
200% stress (outward): Repeated 300% extension, the third 200% outward stress (g)
200% stress (return): 300% stretch repetition, third 200% return stress (g)
Assumed processing (B): A polyurethane urea elastic fiber is subjected to a dry heat treatment at 190 ° C. for 1 minute, a liquid heat treatment at 130 ° C. for 30 minutes, and a dry heat treatment at 170 ° C. for 1 minute in a 100% stretched state.
両末端アミン化合物を添加し、乾式紡糸することを特徴とする請求項1〜のいずれかに記載のポリウレタンウレア弾性繊維の製造方法。 The method for producing a polyurethane urea elastic fiber according to any one of claims 1 to 4 , wherein both end amine compounds are added and dry spinning is performed.
JP2007291589A 2007-11-09 2007-11-09 Polyurethane urea elastic fiber and method for producing the same Active JP5258266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291589A JP5258266B2 (en) 2007-11-09 2007-11-09 Polyurethane urea elastic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291589A JP5258266B2 (en) 2007-11-09 2007-11-09 Polyurethane urea elastic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009114595A JP2009114595A (en) 2009-05-28
JP5258266B2 true JP5258266B2 (en) 2013-08-07

Family

ID=40782044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291589A Active JP5258266B2 (en) 2007-11-09 2007-11-09 Polyurethane urea elastic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5258266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031775A (en) * 2019-08-13 2021-03-01 旭化成株式会社 Polyurethane elastic fiber and fiber structure including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352105B2 (en) * 1991-04-12 2002-12-03 旭化成株式会社 Diaminourea compound, its production method and highly heat-resistant polyurethaneurea and its production method
JP2991568B2 (en) * 1991-06-13 1999-12-20 旭化成工業株式会社 Linear segmented polyurethane urea and method for producing the same
JPH0931149A (en) * 1995-07-20 1997-02-04 Asahi Chem Ind Co Ltd Polyurethaneurea having segment with controlled molecular weight distribution and its production
JPH0959821A (en) * 1995-08-23 1997-03-04 Asahi Chem Ind Co Ltd Production of polyurethane-urea elastic fiber
JPH09302062A (en) * 1996-05-10 1997-11-25 Toyobo Co Ltd Stabilized polyurethaneurea polymer solution and elastic yarn made of polyurethaneurea polymer
JPH1077323A (en) * 1996-08-30 1998-03-24 Asahi Chem Ind Co Ltd Polyurethane urea polymer solution and production of elastic formed product therefrom
JP4343446B2 (en) * 1999-03-19 2009-10-14 旭化成せんい株式会社 Polyurethane urea elastic fiber and method for producing the same

Also Published As

Publication number Publication date
JP2009114595A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
EP1170407B1 (en) Elastic polyurethane-urea fiber and process for producing the same
KR0136854B1 (en) Fiber from polyether based spandex
JP3565853B2 (en) High-speed spinning spandex based on polyether
CA2529696A1 (en) Spandex having low heat-set temperature and materials for their production
KR20080005538A (en) Spandex compositions for high speed spinning
WO2018066592A1 (en) Method for producing polyurethane elastic fiber
KR102434117B1 (en) Method of making polyurethane or polyurethane urea strands
CN111394821A (en) High-strength and high-resilience spandex fiber and preparation method thereof
KR100670867B1 (en) Spandex with high heat-set efficiency
JP6031331B2 (en) Polyurethane elastic fiber and method for producing the same
JP5258266B2 (en) Polyurethane urea elastic fiber and method for producing the same
JP2003155624A (en) High-uniformity spandex and method for producing the same
TW499450B (en) Polyurethaneureas, polyurethaneurea fibre and preparation thereof
JP2008184722A (en) Woven fabric made of polyurethane-urea elastic fibers
JP6063210B2 (en) Polyurethane elastic fiber and its fiber product
KR101426208B1 (en) Polyurethaneurea elastic fiber with high uniformity and excellent heat settable property
US6720403B1 (en) Polyurethaneurea and spandex comprising same
KR101086744B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber with Excellent Heat Settable Property at Low Temperature
JP2001098446A (en) Knit or woven union cloth containing polyurethane polyurea
JP2003020521A (en) Polyurethane elastic fiber
KR100561155B1 (en) Polyurethane Ureas, Polyurethane Urea Fibres and Method for the Production Thereof
JP3637503B2 (en) Polyurethane fiber, clothing and clothing secondary materials
JP6271666B2 (en) Polyurethane elastic fiber
MXPA02005342A (en) Composition of an elastic fiber which can resist water containing chlorine.
KR100569679B1 (en) A polyurethaneurea elastic fiber, and a process of preparing for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350