JP5258175B2 - Au bonding wire for semiconductor elements - Google Patents

Au bonding wire for semiconductor elements Download PDF

Info

Publication number
JP5258175B2
JP5258175B2 JP2006184540A JP2006184540A JP5258175B2 JP 5258175 B2 JP5258175 B2 JP 5258175B2 JP 2006184540 A JP2006184540 A JP 2006184540A JP 2006184540 A JP2006184540 A JP 2006184540A JP 5258175 B2 JP5258175 B2 JP 5258175B2
Authority
JP
Japan
Prior art keywords
wire
mass
ppm
bonding
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006184540A
Other languages
Japanese (ja)
Other versions
JP2008016550A (en
Inventor
道孝 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2006184540A priority Critical patent/JP5258175B2/en
Publication of JP2008016550A publication Critical patent/JP2008016550A/en
Application granted granted Critical
Publication of JP5258175B2 publication Critical patent/JP5258175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012022N purity grades, i.e. 99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Description

本発明は半導体の集積回路素子上の電極と回路配線基板の外部リードとを接続するために使用する半導体素子用Auボンディングワイヤに関し、更に詳しくは高強度でありながらループ特性の優れた半導体素子用Auボンディングワイヤに関する。   The present invention relates to an Au bonding wire for a semiconductor element used to connect an electrode on a semiconductor integrated circuit element and an external lead of a circuit wiring board, and more particularly, for a semiconductor element having high strength but excellent loop characteristics. The present invention relates to an Au bonding wire.

従来から半導体装置に用いられるICチップ電極と外部リードを接続する線径15〜30μm程度の線としては、ボンディングワイヤの強度が優れていることから、純度99.99質量%以上の高純度金に微量の微量元素を添加した極細線が多用されている。
市販の純度99.99質量%以上の高純度金地金には、さまざまな微量元素が含まれている。例えば、Siが3質量ppm以下含まれていたり、Mgが1質量ppm以下含まれていたりすることがあるが、Be、Ca、Y、Ce、GeおよびGaが含まれることはほとんどない(例えば、非特許文献1参照)。
Conventionally, as a wire having a wire diameter of about 15 to 30 μm for connecting an IC chip electrode and an external lead used in a semiconductor device, the strength of the bonding wire is excellent. Extra fine wires added with a trace amount of trace elements are often used.
Commercially available high-purity gold bullion having a purity of 99.99% by mass or more contains various trace elements. For example, Si may be contained in 3 mass ppm or less, or Mg may be contained in 1 mass ppm or less, but Be, Ca, Y, Ce, Ge, and Ga are rarely contained (for example, Non-patent document 1).

このような高純度金に微量の微量元素を添加した極細線を用いて半導体素子用Auボンディングワイヤを接続する方法として、第一ボンドでは超音波併用熱圧着ボンディング法が主として用いられる。
この方法は、ワイヤ先端をアーク入熱で加熱溶融し、表面張力によりボールを形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上にボール部を圧着接合せしめ、その後の第二ボンドでは、直接ワイヤを外部リード側に超音波圧着によりウェッジ接合させる。そして、トランジスタやIC等の半導体装置として使用するためには、前記のボンディングワイヤによるボンディングの後に、Siチップ、ボンディングワイヤ、およびSiチップが取り付けられた部分のリードフレーム等を保護する目的で、エポキシ樹脂で封止する。
As a method for connecting an Au bonding wire for a semiconductor element using an ultrafine wire obtained by adding a trace amount of trace elements to such high-purity gold, an ultrasonic combined thermocompression bonding method is mainly used for the first bond.
In this method, the wire tip is heated and melted by arc heat input, and a ball is formed by surface tension. Then, the ball portion is pressure bonded to the electrode of the semiconductor element heated within a range of 150 to 300 ° C. In the second bond, the direct wire is wedge-bonded to the external lead side by ultrasonic pressure bonding. For use as a semiconductor device such as a transistor or an IC, an epoxy is used for the purpose of protecting the Si chip, the bonding wire, and the lead frame where the Si chip is attached after the bonding with the bonding wire. Seal with resin.

最近は半導体装置の小型化、高密度化の要求が高まる中で、ICチップの多ピン化及びこれに伴う狭ピッチ化に対応するため、第一ボンドから第二ボンドまでのループ間隔が短くなり、しかも、樹脂フローに耐えるだけの高強度のワイヤが要求されている。特に半導体装置の一層の高集積化および小型化、薄型化および高機能化に伴い、ボンディングワイヤの細線化によるワイヤ自身の絶対的な剛性の低下、ボンディングパッド間隔の狭小化による、隣接するワイヤ同士のショートを回避するために、ボンディングワイヤには高い破断応力を持つことが要求されている。同時に、ボンディングパッドの間隔も狭くなった場合、隣接するワイヤ同士の接触を防止するためにボンディングワイヤにはループ高さのバラツキが小さくリーニングが無いことが要求されている。   Recently, as the demand for miniaturization and higher density of semiconductor devices has increased, the loop interval from the first bond to the second bond has become shorter in order to cope with the increase in the number of pins of the IC chip and the resulting narrow pitch. Moreover, a high-strength wire that can withstand the resin flow is required. In particular, as semiconductor devices become more highly integrated, smaller, thinner, and more functional, adjacent wires are reduced due to a reduction in the absolute rigidity of the wires themselves due to thinning of the bonding wires and a reduction in bonding pad spacing. In order to avoid the short circuit, the bonding wire is required to have a high breaking stress. At the same time, when the spacing between the bonding pads becomes narrow, the bonding wires are required to have a small variation in loop height and no leaning in order to prevent contact between adjacent wires.

要求される諸特性を満たすために、高純度金地金に各種の微量元素が添加されてきた。しかし、従来のボンディングワイヤにおいては、破断応力とループ高さのバラツキとを満足させる特性が相反するものであるため、この2つの特性を両立できなかった。
添加元素を多くすれば、ワイヤの強度を高くすることができることは知られている。しかし、ワイヤの強度が高くなると、ワイヤのループが描きにくくなり、ループ高さのバラツキが大きくなったり、リーニングが生じやすくなったりして隣接ワイヤと接触してしまう。
In order to satisfy the required properties, various trace elements have been added to high purity gold bullion. However, in the conventional bonding wire, since the characteristics satisfying the breaking stress and the variation in the loop height are contradictory, these two characteristics cannot be achieved at the same time.
It is known that the wire strength can be increased by increasing the amount of additive elements. However, when the strength of the wire is increased, it becomes difficult to draw a loop of the wire, and variations in the loop height increase or leaning is likely to occur, resulting in contact with adjacent wires.

逆に添加元素を少なくすれば、ワイヤの強度が低くなりワイヤのループが描きやすくなるものの、ループ高さの高いものが得られずワイヤの高密度化を測ることができない。また、モールド時のワイヤフローが大きくなり、ワイヤ同士が接触してしまう。このように高強度であることとループ高さのばらつきが少ないという相反する特性が要求されるため、これまでの高密度実装では1個のICチップに複数種類のワイヤが使用され、複数の工程で高密度実装が行われていた。   Conversely, if the additive element is reduced, the strength of the wire is reduced and the wire loop can be easily drawn, but a high loop height cannot be obtained and the density of the wire cannot be measured. Moreover, the wire flow at the time of a molding becomes large, and wires will contact. In this way, since the contradictory characteristics of high strength and small variation in loop height are required, multiple types of wires are used for one IC chip in the conventional high-density mounting, and multiple processes are performed. High-density mounting was performed.

微量元素を添加した従来のボンディングワイヤの文献には、例えば、特許文献1、特許文献2および特許文献3がある。
特許文献1には、「カルシウムを3〜40重量ppm、ベリリウムを0.5〜15重量ppm、イットリウムを4〜30重量ppm、およびセリウムまたはランタンの一方または両者を4〜30重量ppmの範囲内で含有し、かつイットリウム、およびセリウムまたはランタンの一方または両者の総量を11重量ppm以上とし、なおかつカルシウム、イットリウム、およびセリウムまたはランタンの一方または両者の総量を70重量ppm以下とし、さらにインジウムを5〜60重量ppmの範囲内で含有し、残部が金とその不可避不純物からなるボンディング用金合金細線」が開示されている。
For example, Patent Literature 1, Patent Literature 2, and Patent Literature 3 are conventional literatures of bonding wires to which trace elements are added.
In Patent Document 1, “calcium is 3 to 40 ppm by weight, beryllium is 0.5 to 15 ppm by weight, yttrium is 4 to 30 ppm by weight, and one or both of cerium and lanthanum is within the range of 4 to 30 ppm by weight. And the total amount of one or both of yttrium and cerium or lanthanum is 11 ppm by weight or more, and the total amount of one or both of calcium, yttrium, cerium or lanthanum is 70 ppm by weight or less, and indium is 5 A gold alloy fine wire for bonding, which is contained in a range of ˜60 ppm by weight and the balance is made of gold and its inevitable impurities ”is disclosed.

この発明では、「カルシウム、ベリリウム、イットリウム、およびセリウムまたはランタンの一方または両者を含有する金合金細線がヤング率を向上させ、結果として樹脂封止時に生じるワイヤ流れを低減させる効果があることを見出した。この効果は、イットリウムを含まない希土類元素類の組み合わせの場合には、調質熱処理後の金合金細線の破断強度が、イットリウムとセリウムまたはランタンの一方または両者との組み合わせの場合と同様に向上するものの、ヤング率の向上には必ずしも十分でなかった。」として、これら4種類の添加元素の組合せに、ループ高さを高くする効果がある既知のInを組み合わせることによって、ループ高さのバラツキが小さくヤング率の高いボンディングワイヤを得ているものである。   According to the present invention, it has been found that a gold alloy fine wire containing one or both of calcium, beryllium, yttrium and cerium or lanthanum has an effect of improving Young's modulus and consequently reducing the wire flow generated during resin sealing. In the case of a combination of rare earth elements not containing yttrium, this effect is similar to that in the case of a combination of yttrium and one or both of cerium and lanthanum. Although it was improved, it was not always sufficient to improve the Young's modulus. ”By combining the combination of these four types of additive elements with known In that has the effect of increasing the loop height, the loop height was reduced. A bonding wire having a small variation and a high Young's modulus is obtained.

しかし、Inは、高価で毒性が強いため安全性の観点から問題となり、公害物質としての回収コストが高くなる欠点がある。また、Inを組み合わせると、かえってループ高さのばらつきが大きくなるという技術上の欠点がある。
特許文献2には、「純度99.99重量%以上の金に、Snを2〜50重量ppmと、Ca、Be、希土類元素のうちの少なくとも一種を1〜50重量ppmとを含有させた金合金線からなるボンディングワイヤー」が開示されている。そしてその実施例には「純度99.99重量%以上の高純度金に、Sn、Ca、Be、La、Ce、Eu、Yを種々の割合で添加し」た合金組成が開示され、「従来金線の機械的強度、及び耐熱強度を損なうことなく、ボール形成時のボール変形、及びボール表面への酸化膜形成もなく、ボンディングの際のボール硬度が低く、デバイスの損傷や電極パッド下のクラックの発生を防ぎ、安定したボンディングが可能である」とその効果が記載されている。
However, since In is expensive and highly toxic, there is a problem from the viewpoint of safety, and there is a disadvantage that the recovery cost as a pollutant increases. Further, when In is combined, there is a technical disadvantage that the variation of the loop height becomes rather large.
Patent Document 2 states that “gold having a purity of 99.99% by weight or more and containing 2 to 50 ppm by weight of Sn and 1 to 50 ppm by weight of at least one of Ca, Be, and rare earth elements. A bonding wire made of an alloy wire is disclosed. In that example, an alloy composition is disclosed, in which "Sn, Ca, Be, La, Ce, Eu, Y are added in various proportions to high-purity gold having a purity of 99.99% by weight or more" Without damaging the mechanical strength and heat resistance strength of the gold wire, there is no ball deformation during ball formation, and no oxide film is formed on the ball surface, and the ball hardness during bonding is low. “It is possible to prevent the occurrence of cracks and achieve stable bonding”.

しかし、上記の効果は、必須成分であるSnの共存下においてのみ得られるものであり、Snの添加量が2重量ppm未満の場合にはその効果が十分得られないとされている。
したがって、Snが存在しない「純度99.99重量%以上の高純度金に、Ca、Be、La、Ce、Eu、Yを種々の割合で添加し」た合金組成の金線では、満足のいくボンディング特性が得られないわけである。
However, the above effect is obtained only in the presence of Sn, which is an essential component, and it is said that the effect cannot be sufficiently obtained when the amount of Sn added is less than 2 ppm by weight.
Therefore, a gold wire having an alloy composition in which Sn is not present and “Ca, Be, La, Ce, Eu, and Y are added in various proportions to high-purity gold having a purity of 99.99% by weight or more” is satisfactory. Bonding characteristics cannot be obtained.

特許文献3には、「1〜50質量ppmのSn、2〜50質量ppmのPt、1〜100質量ppmのY、1〜100質量ppmのLa、Ce、Eu、Gd、Mg及びAgのうち少なくとも1種を含有し、これらの合計量が6〜150質量ppmであり、残部がAuと不可避不純物からなる半導体素子ボンディング用金合金線」および「更に1〜50質量ppmのBe及びCaのうち少なくとも1種を含有し、且つ添加元素の合計量が6〜150質量ppmであり、残部がAuと不可避不純物からなる半導体素子ボンディング用金合金線」が開示されている。
この合金線は、「高温で接合しても半導体装置を構成する配線の断線防止に有効であり、且つ圧着ボールの真円度の向上に加えて、圧着ボールの直径のばらつき抑制に有効な半導体素子ボンディング用金合金線を提供することを目的とする」ものであるが、SnとPtとの共存においてのみ上記の効果を発揮させるものである。よって、SnおよびPtがYと共存しなければ、上記の効果を発揮させることはできない。
Patent Document 3 includes “1-50 mass ppm of Sn, 2-50 mass ppm of Pt, 1-100 mass ppm of Y, 1-100 mass ppm of La, Ce, Eu, Gd, Mg, and Ag. It contains at least one kind, and the total amount thereof is 6 to 150 mass ppm, and the balance is Au and a gold alloy wire for bonding semiconductor elements made of unavoidable impurities ”and“ 1 to 50 mass ppm of Be and Ca. A “gold alloy wire for bonding semiconductor elements” containing at least one kind and having a total amount of additive elements of 6 to 150 ppm by mass and the balance being made of Au and inevitable impurities is disclosed.
This alloy wire is a “semiconductor that is effective in preventing disconnection of the wiring that constitutes a semiconductor device even when bonded at high temperatures, and in addition to improving the roundness of the press-bonded ball and suppressing variation in the diameter of the press-bonded ball. The object is to provide a gold alloy wire for element bonding. However, the above effect is exhibited only in the coexistence of Sn and Pt. Therefore, the above effects cannot be exhibited unless Sn and Pt coexist with Y.

特開平7−335686号公報JP 7-335686 A 特開平8−88242号公報JP-A-8-88242 特開2004−22887号公報JP 2004-22887 A D.J.Kinnebergらの「Origin and Effects of Impurities in High Purity Gold」(GoldBulletin誌 1998年、31巻2号58−67ページ“Origin and Effects of Impurities in High Purity Gold” by D.J.Kinneberg et al. (Gold Bulletin 1998, Vol. 31, No. 2, pp. 58-67

本発明は上述したような事情に鑑みてなされたものであり、その目的とするところは、ボンディングワイヤの線径が23μm以下へと細くなっても、破断強度が高くかつループ特性の優れた半導体素子用Auボンディングワイヤを提供するものである。   The present invention has been made in view of the circumstances as described above, and the object thereof is a semiconductor having high breaking strength and excellent loop characteristics even when the wire diameter of the bonding wire is reduced to 23 μm or less. An Au bonding wire for an element is provided.

本発明者は上記の課題を解決するため鋭意研究を重ねた結果、本発明を完成するに至った。すなわち、本発明の半導体素子用Auボンディングワイヤは、以下の通りである。
(a) Beを4〜7質量ppm、Caを15〜30質量ppm、Yを15〜30質量ppm、Ceを15〜30質量ppmおよび残部Auからなることを特徴とする半導体素子用Auボンディングワイヤ。
(b) Beを4〜7質量ppm、Caを15〜30質量ppm、Yを15〜30質量ppm、Ceを15〜30質量ppm、更にMg、Siおよびeの1種または2種以上を合計で5〜30質量ppmおよび残部Auからなることを特徴とする半導体素子用Auボンディングワイヤ。
(c) Au以外の元素の合計が100質量ppm未満である上記(b)に記載の半導体素子用Auボンディングワイヤ。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the Au bonding wire for semiconductor elements of the present invention is as follows.
(A) Au bonding wire for semiconductor elements, characterized in that it consists of 4-7 mass ppm of Be, 15-30 mass ppm of Ca, 15-30 mass ppm of Y, 15-30 mass ppm of Ce, and the balance Au. .
(B) Be a 4-7 mass ppm, 15 to 30 mass ppm of Ca, Y and 15 to 30 mass ppm, Ce and 15 to 30 mass ppm, further Mg, 1 species of Si and G e or two or more An Au bonding wire for semiconductor elements, comprising a total of 5 to 30 ppm by mass and the balance Au.
(C) The Au bonding wire for a semiconductor element according to (b), wherein the total of elements other than Au is less than 100 mass ppm.

本発明の半導体素子用Auボンディングワイヤによれば、極細線の線径が23μm以下の細い線径になってもワイヤ自身の絶対的な剛性を高めたままループ高さのばらつきを抑え、リーニングの発生を減らす効果を併せ持たせることができる。その結果、第一ボンドにおけるボンディング面積が狭くてすみ、高密度実装をおこなっても隣接するワイヤがショートすることはない。また、Mg、Siおよびeを更に添加したAu合金組成は、良好なループ特性を維持したまま第二ボンドにおける接合強度を増大させる効果がある。 According to the Au bonding wire for a semiconductor element of the present invention, even if the wire diameter of the ultrafine wire becomes a thin wire diameter of 23 μm or less, the variation in loop height is suppressed while increasing the absolute rigidity of the wire itself, and the It can also have the effect of reducing the occurrence. As a result, the bonding area of the first bond can be small, and adjacent wires do not short-circuit even when high-density mounting is performed. Also, Mg, and further Au alloy composition were added Si and G e, the effect of increasing the bonding strength of the second bond while maintaining good loop characteristics.

本発明者は、多種類の元素を添加してもループ特性の安定しているAu合金組成を探求したところ、Beの添加量が4〜7質量ppmという狭い範囲で、溶融ボール形状が安定し特異な効果を発揮することを知見した。
すなわち、Beの添加量が4〜7質量ppmの範囲では、所定量のCa、YおよびCeを含有するAu合金組成が破断荷重とループ特性の点で安定していることがわかった。また、上記の合金組成に対し、所定量のMg、Siおよびeを更に添加したAu合金組成は、上記の特性を維持したまま第二ボンドにおける接合強度を増大させることがわかった。
The inventor has searched for an Au alloy composition that has stable loop characteristics even when various elements are added. As a result, the molten ball shape is stable within a narrow range of 4 to 7 ppm by mass of Be. It has been found that it exhibits a unique effect.
That is, it was found that the Au alloy composition containing predetermined amounts of Ca, Y and Ce is stable in terms of breaking load and loop characteristics when the amount of Be added is in the range of 4 to 7 ppm by mass. Further, it was found that the Au alloy composition in which a predetermined amount of Mg, Si and Ge is further added to the above alloy composition increases the bonding strength in the second bond while maintaining the above characteristics.

上記添加元素の含有量は、Au合金の全体の質量に対してBeの添加量は4〜7質量ppmである。Beが4質量ppm未満では、他のCa、YおよびCeの共存元素の含有量が多いためボンディングワイヤのリーニングやループ高さのばらつきにおいて不安定となりやすい。また、Beの添加量が7質量ppmを超えると、溶融ボールの形状がいびつになりやすい。
Ca、YおよびCeの添加量は、それぞれ、15〜30質量ppmである。Beの添加量の範囲が限定されているため、共存元素の含有量も狭い範囲に限定される。Beと共存元素とのバランスは破断荷重に対する耐力点荷重の比(耐力点荷重/破断荷重)、いわゆるP/B比に表れる。バランスがとれている場合は、P/B比が低く安定しているのに対し、Beと共存元素とのバランスが崩れると、P/B比の値が悪くなる。
The content of the additive element is 4 to 7 ppm by mass with respect to the total mass of the Au alloy. When Be is less than 4 ppm by mass, the content of coexisting elements of other Ca, Y, and Ce is large, so that it tends to be unstable in the bonding wire leaning and the variation in loop height. Moreover, when the addition amount of Be exceeds 7 mass ppm, the shape of the molten ball tends to be distorted.
The addition amount of Ca, Y, and Ce is 15-30 mass ppm, respectively. Since the range of the addition amount of Be is limited, the content of coexisting elements is also limited to a narrow range. The balance between Be and the coexisting elements appears in the ratio of the yield point load to the break load (the yield point load / break load), the so-called P / B ratio. When the balance is established, the P / B ratio is low and stable, but when the balance between Be and the coexisting elements is lost, the value of the P / B ratio is deteriorated.

Au合金の全体の質量に対してCaの添加量は15〜30質量ppmである。Caの添加量が15質量ppm未満では、ワイヤ自身の絶対的な剛性が無くなり、ワイヤの強度が弱くなる。Caの添加量が30質量ppmを超えると、Beの添加量とのバランスを欠いて溶融ボールの形状がいびつとなり、ループ特性も悪くなる。YまたはCeの希土類元素の添加量は、それぞれ15質量ppm未満、あるいは、30質量ppmを超えて添加されると、Beの添加量とのバランスを欠いて溶融ボールの形状がいびつとなりループ特性も悪くなる。
Mg、Siおよびeの添加量は、これらの元素の添加量が総量で5〜30質量ppmの範囲内にあれば、ループ特性や破断荷重が良好なまま、第二ボンドにおける接合強度を増大させる。ただし、総量で5質量ppm未満の場合は、第二ボンドにおける接合強度を増大させることができない。また、総量で30質量ppmを超えると、溶融ボール形状やループ特性に悪影響を及ぼすようになる。
The addition amount of Ca is 15 to 30 ppm by mass with respect to the total mass of the Au alloy. When the added amount of Ca is less than 15 ppm by mass, the wire itself has no absolute rigidity and the strength of the wire is weakened. When the addition amount of Ca exceeds 30 ppm by mass, the shape of the molten ball becomes distorted due to a lack of balance with the addition amount of Be, and the loop characteristics also deteriorate. When the addition amount of rare earth elements of Y or Ce is less than 15 ppm by mass or more than 30 ppm by mass, the shape of the molten ball becomes distorted due to a lack of balance with the addition amount of Be, and the loop characteristics are also reduced. Deteriorate.
If the added amount of these elements is in the range of 5 to 30 ppm by mass, the addition strength of Mg, Si and Ge increases the bonding strength in the second bond while maintaining the loop characteristics and breaking load. Let However, when the total amount is less than 5 ppm by mass, the bonding strength in the second bond cannot be increased. On the other hand, when the total amount exceeds 30 ppm by mass, the molten ball shape and loop characteristics are adversely affected.

Auの純度は99.99質量%以上、好ましくは99.999質量%以上である。Beの添加量の範囲が限定的であるため、純度はできるだけ高いことが好ましい。Beの純度は98.5質量%以上、好ましくは99.8質量%以上である。また、Y、Ce、Ca、Mg、Siおよびeの純度は99質量%以上、好ましくは99.9質量%以上である。これらの元素の純度は、ループ特性、特にリーニング特性に影響しやすいので、できるだけ高純度のものを用いるのが好ましい。
なお、本発明のAuマトリックスに対する全微量元素の合計は、100ppm以下、好ましくは20〜90ppmの範囲が好ましい。「99.99質量%以上のAu」と表示できるからである。
The purity of Au is 99.99% by mass or more, preferably 99.999% by mass or more. Since the range of the addition amount of Be is limited, the purity is preferably as high as possible. The purity of Be is 98.5% by mass or more, preferably 99.8% by mass or more. The purity of Y, Ce, Ca, Mg, Si and Ge is 99% by mass or more, preferably 99.9% by mass or more. Since the purity of these elements tends to affect the loop characteristics, particularly the leaning characteristics, it is preferable to use those having as high a purity as possible.
In addition, the total of all trace elements with respect to the Au matrix of the present invention is 100 ppm or less, and preferably in the range of 20 to 90 ppm. This is because “99.99 mass% or more Au” can be displayed.

次に、本発明を実施例により説明する。
[実施例1〜8]
純度99.999質量%の高純度Auに微量元素として表1に記載の数値(質量ppm)になるように配合し、真空溶解炉で溶解鋳造した。これを伸線加工して、線径が25μmのところで最終熱処理し、伸び率を4%に調整した。この極細線を株式会社新川製の汎用ボンディング装置(モデル:UTC−1000型)を用い、60μm角のAlパッド上の半導体チップへ大気中で溶融ボールを形成した。次いで、60μm角のAlパッド内に第一ボンドをした後、台形ループモード(ループ高さ200μm、ループ長さ4.0mmによって第一ボンドから第二ボンドまでループを描いた。
Next, an example explains the present invention.
[Examples 1 to 8]
It mix | blended so that it might become the numerical value (mass ppm) of Table 1 as a trace element in high purity Au of purity 99.999 mass%, and melt-cast it with the vacuum melting furnace. This was drawn and subjected to final heat treatment when the wire diameter was 25 μm, and the elongation was adjusted to 4%. Using this ultrafine wire, a general-purpose bonding apparatus (model: UTC-1000 type) manufactured by Shinkawa Co., Ltd. was used to form a molten ball on the semiconductor chip on a 60 μm square Al pad in the air. Next, after a first bond was made in a 60 μm square Al pad, a loop was drawn from the first bond to the second bond in a trapezoidal loop mode (loop height 200 μm, loop length 4.0 mm).

この時、溶融ボールの形状をボンディング装置に内蔵された実体顕微鏡(倍率400倍)で観察した。この評価結果を表2に示す。
ここで、真球の溶融ボールは○印で、底部が平らな溶融ボールは△印で、引巣ができた溶融ボールは×印で示した。
また、各々の合金組成に対し、1000本ボンディングしたときのリーニングとループ高さのばらつきを測定した。それらの評価結果も表2に示す。
[評価方法]ここで、リーニングは、第一ボンドから第二ボンドまでループを描いたとき、ループの高さ方向(Z方向)における最高点をXY平面に投射して第一ボンドと第二ボンドを結んだXY平面上の直線からの最短距離のずれを自動三次元測定器によって測定し、これをリーニング量(傾き量)として表した。また、ループ高さは、第一ボンドから第二ボンドまでループを描いた際に自動三次元測定器のカメラを追随させ、ループの高さ方向(Z方向)における最高点を測定した。そして、リーニングおよびループ高さのそれぞれのばらつきを算出し、標準偏差によって定量的評価を行った。
At this time, the shape of the molten ball was observed with a stereomicroscope (400 times magnification) incorporated in the bonding apparatus. The evaluation results are shown in Table 2.
Here, true melted balls are indicated by ◯ marks, melt balls having a flat bottom are indicated by △ marks, and melted balls having a hollow are indicated by × marks.
In addition, with respect to each alloy composition, variations in leaning and loop height when 1000 pieces were bonded were measured. The evaluation results are also shown in Table 2.
[Evaluation Method] Here, when the loop is drawn from the first bond to the second bond, the first point and the second bond are projected by projecting the highest point in the height direction (Z direction) of the loop onto the XY plane. The shift of the shortest distance from the straight line on the XY plane connecting the two was measured with an automatic three-dimensional measuring instrument, and this was expressed as a leaning amount (an inclination amount). The loop height was determined by making the camera of an automatic three-dimensional measuring device follow the loop from the first bond to the second bond and measuring the highest point in the loop height direction (Z direction). Then, each variation of leaning and loop height was calculated, and quantitative evaluation was performed based on the standard deviation.

更に、破断荷重、P/B比および第二ボンドの接合強度を求めた。それらの評価結果も表2に示す。
「破断荷重」の評価は、以下のとおり行った。表1に記載の伸び率を4%に調整したワイヤを10cm長に切り出し、各10本引っ張り試験し、その平均値を求めることで評価した。
平均値が15.5gf以上のものを○印で、14.5 gf以上15.5gf未満のものを△印で、14.5gf未満のものを×印で示した。
また、P/B比は、0.7以下のものを○印で、0.7〜0.9のものを△印で、0.9以上のものを×印で示した。
また、第二ボンドにおける接合強度は、12g・N以上のものを◎印で、10〜12g・Nのものを○印で、8〜10g・Nのものを△印で、8g・N未満のものを×印で表した。
Furthermore, the breaking load, the P / B ratio, and the bonding strength of the second bond were determined. The evaluation results are also shown in Table 2.
Evaluation of “breaking load” was performed as follows. A wire having an elongation percentage adjusted to 4% described in Table 1 was cut into a length of 10 cm, 10 wires were each subjected to a tensile test, and the average value was obtained for evaluation.
Those having an average value of 15.5 gf or more are indicated by ◯, those having 14.5 gf or more and less than 15.5 gf by Δ, and those having less than 14.5 gf by x.
The P / B ratios of 0.7 or less are indicated by ◯, those of 0.7 to 0.9 are indicated by Δ, and those of 0.9 or more are indicated by ×.
The bonding strength of the second bond is 12 g · N or more with ◎, 10-12 g · N with ◯, 8-10 g · N with △, and less than 8 g · N. Things are represented by crosses.

[比較例1〜8]
微量元素の組成が異なるAu合金極細線を実施例と同様にして線径が25μmのところで最終熱処理し、伸び率を4%に調整した。この極細線を実施例と同様にして評価した。その成分組成を表1に、それらの評価結果を表2に併せて示す。
[Comparative Examples 1-8]
Au alloy ultrafine wires having different trace element compositions were subjected to final heat treatment in the same manner as in the Examples when the wire diameter was 25 μm, and the elongation was adjusted to 4%. This extra fine wire was evaluated in the same manner as in the example. The component composition is shown in Table 1, and the evaluation results are shown in Table 2.

Figure 0005258175
Figure 0005258175

Figure 0005258175
Figure 0005258175

上記の結果から明らかなように、本発明のAu合金ボンディングワイヤは、Beの範囲が限定的であり、微量元素の添加量が狭い範囲内で効果的に作用しあっている結果、満足のいくボンディング効果が得られることがわかる。これに対し比較例のAu合金ボンディングワイヤの場合は、微量元素の添加量がバランスを欠いているため、本発明と類似の組成を採用しているにもかかわらず、満足のいくボンディング効果が得られないことがわかる。   As is apparent from the above results, the Au alloy bonding wire of the present invention has a limited range of Be, and is satisfactory as a result of effectively acting within a narrow range of addition of trace elements. It can be seen that a bonding effect can be obtained. On the other hand, in the case of the Au alloy bonding wire of the comparative example, since the addition amount of trace elements is not balanced, a satisfactory bonding effect is obtained even though the composition similar to the present invention is adopted. I can't understand.

本発明によれば、極細線の線径が23μm以下の細い線径になってもワイヤ自身の絶対的な剛性を高めたままループ高さのばらつきを抑え、リーニングの発生を減らす効果を併せ持たせることができ、第一ボンドにおけるボンディング面積が狭くてすみ、高密度実装をおこなっても隣接するワイヤがショートすることはない。よって、半導体機器の製造技術の分野に貢献するところ大である。   According to the present invention, even if the wire diameter of the ultra-thin wire becomes a thin wire diameter of 23 μm or less, it has an effect of suppressing the occurrence of leaning by suppressing variation in the loop height while increasing the absolute rigidity of the wire itself. The bonding area of the first bond can be small, and even when high-density mounting is performed, adjacent wires do not short-circuit. Therefore, it greatly contributes to the field of semiconductor device manufacturing technology.

Claims (3)

Beを4〜7質量ppm、Caを15〜30質量ppm、Yを15〜30質量ppm、Ceを15〜30質量ppmおよび残部が純度99.999質量%以上のAuからなることを特徴とする半導体素子用Auボンディングワイヤ。 It is characterized in that Be is 4-7 mass ppm, Ca is 15-30 mass ppm, Y is 15-30 mass ppm, Ce is 15-30 mass ppm, and the balance is Au with a purity of 99.999 mass% or more. Au bonding wire for semiconductor elements. Beを4〜7質量ppm、Caを15〜30質量ppm、Yを15〜30質量ppm、Ceを15〜30質量ppm、更にMg、SiおよびGeの1種または2種以上を合計で5〜30質量ppmおよび残部が純度99.999質量%以上のAuからなることを特徴とする半導体素子用Auボンディングワイヤ。 4-7 mass ppm of Be, 15-30 mass ppm of Ca, 15-30 mass ppm of Y, 15-30 mass ppm of Ce, and one or more of Mg, Si and Ge in total 5 to 5 An Au bonding wire for a semiconductor element, comprising 30 mass ppm and the balance of Au having a purity of 99.999 mass% or more . Au以外の元素の合計が100質量ppm未満である請求項2に記載の半導体素子用Auボンディングワイヤ。

The Au bonding wire for a semiconductor device according to claim 2, wherein the total of elements other than Au is less than 100 ppm by mass.

JP2006184540A 2006-07-04 2006-07-04 Au bonding wire for semiconductor elements Active JP5258175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184540A JP5258175B2 (en) 2006-07-04 2006-07-04 Au bonding wire for semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184540A JP5258175B2 (en) 2006-07-04 2006-07-04 Au bonding wire for semiconductor elements

Publications (2)

Publication Number Publication Date
JP2008016550A JP2008016550A (en) 2008-01-24
JP5258175B2 true JP5258175B2 (en) 2013-08-07

Family

ID=39073304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184540A Active JP5258175B2 (en) 2006-07-04 2006-07-04 Au bonding wire for semiconductor elements

Country Status (1)

Country Link
JP (1) JP5258175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024907B2 (en) * 2010-01-06 2012-09-12 田中電子工業株式会社 Gold (Au) alloy bonding wire
KR102395655B1 (en) * 2018-10-11 2022-05-06 주식회사 엘지에너지솔루션 A solid electrolyte membrane and an all solid type battery comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154242A (en) * 1982-03-10 1983-09-13 Mitsubishi Metal Corp Fine wire of gold alloy for bonding semiconductor element
JP2773202B2 (en) * 1989-03-24 1998-07-09 三菱マテリアル株式会社 Au alloy extra fine wire for semiconductor element bonding
JP3143755B2 (en) * 1992-01-06 2001-03-07 新日本製鐵株式会社 Gold alloy fine wire for bonding
JP3012466B2 (en) * 1994-10-21 2000-02-21 タツタ電線株式会社 Gold alloy wires for semiconductor devices
JP3779817B2 (en) * 1998-04-24 2006-05-31 タツタ電線株式会社 Gold alloy wire for semiconductor elements
JP3811600B2 (en) * 1999-09-29 2006-08-23 タツタ電線株式会社 Semiconductor element gold alloy wire
JP2005138113A (en) * 2003-11-04 2005-06-02 Sumitomo Metal Mining Co Ltd Method for casting ingot for bonding wire and bonding wire produced by using the method
JP2006073693A (en) * 2004-09-01 2006-03-16 Sumitomo Metal Mining Co Ltd Bonding wire

Also Published As

Publication number Publication date
JP2008016550A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP3969671B2 (en) Au alloy bonding wire
JP4117331B2 (en) Au bonding wire for semiconductor elements
JP5258175B2 (en) Au bonding wire for semiconductor elements
WO2012117512A1 (en) BONDING WIRE OF GOLD (Au) ALLOY
JP4195495B1 (en) Gold alloy wire for ball bonding
JP3779817B2 (en) Gold alloy wire for semiconductor elements
JPH1167811A (en) Gold and silver alloy thin wire for semiconductor device
JP3811600B2 (en) Semiconductor element gold alloy wire
WO2018180189A1 (en) Bonding wire and semiconductor device
CN111656501A (en) Bonding wire
TWI391503B (en) Wire with gold alloy wire
JP3535657B2 (en) Gold alloy wire for semiconductor elements
KR101047827B1 (en) Gold Alloy Wire for Ball Bonding
KR100796570B1 (en) Gold alloy wire for bonding of semiconductor device
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JPH0719787B2 (en) Gold alloy fine wire for bonding
JP3012466B2 (en) Gold alloy wires for semiconductor devices
JP5024907B2 (en) Gold (Au) alloy bonding wire
JP5339101B2 (en) Bump wire
JPH08293516A (en) Gold alloy fine wire for semiconductor element
JP2003133362A (en) Semiconductor device and bonding wire for the same
JP3346871B2 (en) Gold alloy for semiconductor devices
JPH0719788B2 (en) Gold alloy fine wire for bonding
JP2008027951A (en) Gold alloy for connecting semiconductor device
JPH0143824B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120703

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250