JP5257944B2 - Manufacturing method of inorganic / polymer composite molded body - Google Patents

Manufacturing method of inorganic / polymer composite molded body Download PDF

Info

Publication number
JP5257944B2
JP5257944B2 JP2009133988A JP2009133988A JP5257944B2 JP 5257944 B2 JP5257944 B2 JP 5257944B2 JP 2009133988 A JP2009133988 A JP 2009133988A JP 2009133988 A JP2009133988 A JP 2009133988A JP 5257944 B2 JP5257944 B2 JP 5257944B2
Authority
JP
Japan
Prior art keywords
metal compound
inorganic
polymer
composite molded
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009133988A
Other languages
Japanese (ja)
Other versions
JP2010280779A (en
Inventor
孝秀 亀田
英隆 中山
智 依田
武 古屋
勝人 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Kasei Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
CI Kasei Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Kasei Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical CI Kasei Co Ltd
Priority to JP2009133988A priority Critical patent/JP5257944B2/en
Publication of JP2010280779A publication Critical patent/JP2010280779A/en
Application granted granted Critical
Publication of JP5257944B2 publication Critical patent/JP5257944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、押出機を用いて無機物・ポリマーコンポジット成形体を製造する方法に関する。   The present invention relates to a method for producing an inorganic / polymer composite molded body using an extruder.

一般に、樹脂やゴムの物性(例えば耐磨耗性、耐熱性、耐衝撃性、靱性、引張強度、引き裂き強度等)を改良するために、炭酸カルシウム、シリカ、マイカ、クレー等の無機粉末を配合することがある。
近年、ナノスケールの化学が注目され、ナノオーダーの粒径の無機粉末を樹脂やゴムに配合する試みもなされている。
しかし、樹脂にナノオーダーの無機粉末を配合すると、無機粉末が凝集して分散不良が生じ、さらには増粘を起こすことがあった。また、使用時に、無機粉末が粉塵として舞い上がって、作業環境を損なうことがあった。
In general, inorganic powders such as calcium carbonate, silica, mica and clay are blended to improve the physical properties of resins and rubbers (for example, wear resistance, heat resistance, impact resistance, toughness, tensile strength, tear strength, etc.) There are things to do.
In recent years, nanoscale chemistry has attracted attention, and attempts have been made to blend inorganic powder having a nano-order particle size into resin or rubber.
However, when nano-order inorganic powder is blended with the resin, the inorganic powder aggregates to cause poor dispersion and further increase the viscosity. In addition, when used, the inorganic powder may fly up as dust, which may impair the working environment.

上記の問題点を解決するために、特許文献1では、ポリプロピレンにテトラエトキシシラン等の金属化合物と水とを配合し、押出機で混合した後、金属化合物を加水分解してサブミクロンオーダーのシリカ粒子をポリプロピレン中に生成させて、微多孔性フィルムを製造することが提案されている。
特許文献2では、超臨界流体と金属化合物とポリマーからなる均一相を形成する工程、該均一相を減圧してポリマーを発泡させる工程、減圧して発泡セル内で超臨界流体と金属化合物を相分離させる工程、金属化合物を分解させて固体状の金属酸化物を得る工程を有して、無機物・ポリマーコンポジット成形体を製造する方法が提案されている。
In order to solve the above problems, in Patent Document 1, a metal compound such as tetraethoxysilane and water are blended with polypropylene and mixed with an extruder, and then the metal compound is hydrolyzed to sub-micron order silica. It has been proposed to produce particles in polypropylene to produce a microporous film.
In Patent Document 2, a step of forming a homogeneous phase composed of a supercritical fluid, a metal compound and a polymer, a step of foaming the polymer by reducing the pressure of the homogeneous phase, and a phase reduction of the supercritical fluid and the metal compound in the foamed cell. There has been proposed a method for producing an inorganic / polymer composite molded body having a step of separating and a step of decomposing a metal compound to obtain a solid metal oxide.

特開平10−287758号公報JP-A-10-287758 特開2007−332242号公報JP 2007-332242 A

しかし、特許文献1に記載の方法では、ポリマーとの親和性の点から、均一に混合できる金属化合物の量には限りがある。そのため、所望の無機粉末量にするためには、押出機での金属化合物の混合を複数回繰り返す必要があった。
また、金属化合物を加水分解させるために配合する水の量が少なすぎると、シリカ粒子の生成量が不充分になり、成形後のフィルムに含まれる未反応の金属化合物の残留量が多くなることがあった。一方、水の量が多すぎると、水分を除去するために、長時間にわたる乾燥工程が必要となり、生産性が低くなった。
However, in the method described in Patent Document 1, the amount of the metal compound that can be uniformly mixed is limited from the viewpoint of the affinity with the polymer. Therefore, in order to obtain a desired inorganic powder amount, it was necessary to repeat the mixing of the metal compound in the extruder a plurality of times.
In addition, if the amount of water added to hydrolyze the metal compound is too small, the amount of silica particles generated is insufficient, and the residual amount of unreacted metal compound contained in the film after molding increases. was there. On the other hand, when the amount of water is too large, a drying process over a long period of time is required to remove moisture, resulting in low productivity.

特許文献2に記載の製造方法では、金属化合物の分解が不充分であるため、成形後に未分解の金属化合物を熱、沸騰水、活性エネルギー放射線等を用いて分解して固体状の金属酸化物とする必要があった。そのため、生産性が低くなる傾向にあった。   In the production method described in Patent Document 2, since the decomposition of the metal compound is insufficient, the undecomposed metal compound is decomposed after molding using heat, boiling water, active energy radiation, or the like to form a solid metal oxide It was necessary to. Therefore, productivity tends to be low.

そこで、本発明は、無機粉末を充分量含有する無機物・ポリマーコンポジット成形体を高い生産性で製造できる無機物・ポリマーコンポジット成形体の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing an inorganic / polymer composite molded body that can produce an inorganic / polymer composite molded body containing a sufficient amount of inorganic powder with high productivity.

本発明者らは、上記課題を解決するための方法について検討した結果、特許文献1に記載の方法ではテトラエトキシシラン等の金属化合物の分解が生じにくく、金属化合物が有効利用されていないことを見出した。また、溶融ポリマー中に触媒を存在させることで、金属化合物の分解を促進できることを見出した。そして、その知見に基づき、さらに検討して、以下の無機物・ポリマーコンポジット成形体の製造方法を発明した。   As a result of examining the method for solving the above problems, the present inventors have found that the method described in Patent Document 1 hardly decomposes a metal compound such as tetraethoxysilane, and the metal compound is not effectively used. I found it. Moreover, it discovered that decomposition | disassembly of a metal compound could be accelerated | stimulated by making a catalyst exist in molten polymer. And based on the knowledge, it further examined and invented the manufacturing method of the following inorganic substance and a polymer composite molded object.

[1] 溶融状態のポリマーと、該溶融状態のポリマーと均一相を形成し得る流動性金属化合物とを混合して相溶状態の溶融体を調製し、前記流動性金属化合物から固体状金属化合物を生成させる反応の触媒の存在下で、前記溶融体に含まれる流動性金属化合物を反応させて固体状金属化合物にして、ポリマーおよび固体状金属化合物を含む複合材を調製する複合材調製工程と、
前記複合材を押出成形する成形工程とを有する無機物・ポリマーコンポジット成形体の製造方法であって、
成形工程前に、前記溶融体または前記複合材に発泡剤を添加する発泡剤添加工程を有し、成形工程にて前記複合材を押出成形すると共に発泡させる、無機物・ポリマーコンポジット成形体の製造方法。
] 前記発泡剤が二酸化炭素および/または窒素である、[]に記載の無機物・ポリマーコンポジット成形体の製造方法。
] 前記流動性金属化合物が金属のアルコキシド、金属のβ−ジケトナート錯体、金属の酢酸塩よりなる群から選ばれる少なくとも1種であり、前記流動性金属化合物に含まれる金属が、ケイ素、チタン、カルシウム、亜鉛、スズおよびインジウムよりなる群から選ばれる少なくとも1種である、[1]又は[2]のいずれかに記載の無機物・ポリマーコンポジット成形体の製造方法。
] 前記複合材調製工程では、酸触媒または塩基触媒を放出する触媒放出化合物をポリマーに添加し、該触媒放出化合物から放出された触媒の存在下で、前記溶融体に含まれる流動性金属化合物を反応させる、[1]〜[]のいずれかに記載の無機物・ポリマーコンポジット成形体の製造方法。
] 前記触媒放出化合物がジシラザン類および/またはクロロシラン類である、[]に記載の無機物・ポリマーコンポジット成形体の製造方法。
] 前記複合材調製工程にて、溶融体に水分を添加する、[1]〜[]のいずれかに記載の無機物・ポリマーコンポジット成形体の製造方法。
[1] A molten polymer and a flowable metal compound capable of forming a homogeneous phase with the molten polymer are mixed to prepare a compatible melt, and the solid metal compound is prepared from the flowable metal compound. A composite material preparation step of preparing a composite material containing a polymer and a solid metal compound by reacting a fluid metal compound contained in the melt into a solid metal compound in the presence of a reaction catalyst for generating ,
A method for producing an inorganic / polymer composite molded body having a molding step of extruding the composite material ,
A method for producing an inorganic / polymer composite molded body, comprising a foaming agent addition step of adding a foaming agent to the melt or the composite material before the molding step, and extruding and foaming the composite material in the molding step. .
[ 2 ] The method for producing an inorganic / polymer composite molded article according to [ 1 ], wherein the foaming agent is carbon dioxide and / or nitrogen.
[ 3 ] The fluid metal compound is at least one selected from the group consisting of a metal alkoxide, a metal β-diketonate complex, and a metal acetate, and the metal contained in the fluid metal compound is silicon or titanium. The method for producing an inorganic / polymer composite molded article according to any one of [1] and [2] , which is at least one selected from the group consisting of calcium, zinc, tin and indium.
[ 4 ] In the composite material preparation step, a catalyst releasing compound that releases an acid catalyst or a base catalyst is added to a polymer, and the fluid metal contained in the melt in the presence of the catalyst released from the catalyst releasing compound. The method for producing an inorganic / polymer composite molded article according to any one of [1] to [ 3 ], wherein the compound is reacted.
[ 5 ] The method for producing an inorganic / polymer composite molded article according to [ 4 ], wherein the catalyst releasing compound is a disilazane and / or a chlorosilane.
[ 6 ] The method for producing an inorganic / polymer composite molded body according to any one of [1] to [ 5 ], wherein water is added to the melt in the composite material preparation step.

本発明の無機物・ポリマーコンポジット成形体の製造方法によれば、固体状金属化合物からなる無機粉末を充分量含有する無機物・ポリマーコンポジット成形体を高い生産性で製造できる。   According to the method for producing an inorganic / polymer composite molded body of the present invention, an inorganic / polymer composite molded body containing a sufficient amount of an inorganic powder composed of a solid metal compound can be produced with high productivity.

本発明の無機物・ポリマーコンポジット成形体の製造方法の一実施形態例について説明する。
本実施形態例の製造方法により製造される無機物・ポリマーコンポジット成形体は、発泡ポリマーと、発泡ポリマーの発泡セル内に存在する固体状金属化合物とを含有する発泡成形体である。
An embodiment of the method for producing an inorganic / polymer composite molded body of the present invention will be described.
The inorganic / polymer composite molded body produced by the production method of the present embodiment is a foamed molded article containing a foamed polymer and a solid metal compound present in the foamed cell of the foamed polymer.

<無機物・ポリマーコンポジット成形体>
無機物・ポリマーコンポジット成形体を構成するポリマーとしては熱可塑性樹脂が使用され、中でも、オレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂が好ましい。
<Inorganic / polymer composite moldings>
As the polymer constituting the inorganic / polymer composite molded body, a thermoplastic resin is used, and among them, an olefin resin, a polyester resin, and a polyamide resin are preferable.

オレフィン系樹脂:エチレン又はプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン等のα−オレフィン、又はシクロペンテン、シクロヘキセン、シクロオクテン、シクロペンタジエン、1,3−シクロヘキサジエン、ビシクロ[2.2.1]ヘプタ−2−エン、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン、テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン等のシクロオレフィンの単独重合体、上記α−オレフィン同士の共重合体、およびα−オレフィンと共重合可能な他の単量体、酢酸ビニル、マレイン酸、無水マレイン酸、ビニルアルコール、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル等との共重合体等が挙げられる。 Olefin resin: α-olefin such as ethylene or propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, or cyclopentene, cyclohexene, cyclooctene, cyclopentadiene, 1,3-cyclohexadiene , Bicyclo [2.2.1] hept-2-ene, tricyclo [4.3.0.1 2,5 ] deca-3,7-diene, tetracyclo [4.4.0.1 2,5 . 1,7,10 ] cycloolefin homopolymers such as dodec-3-ene, copolymers of the above α-olefins, and other monomers copolymerizable with α-olefins, vinyl acetate, maleic acid, And copolymers with maleic anhydride, vinyl alcohol, methacrylic acid, methyl methacrylate, ethyl methacrylate and the like.

ポリエステル系樹脂:テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、アジピン酸、セバシン酸等のジカルボン酸単量体とエチレングリコール、プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール、ビスフェノール化合物又はその誘導体のアルキレンオキサイド付加物、トリメチロールプロパン、グリセリン、ペンタエリスリトール等のジオール又は多価アルコール単量体との共重合体、乳酸、p−ヒドロキシ安息香酸や、2,6−ヒドロキシナフトエ酸、等のヒドロキシカルボン酸等の(共)重合体等が挙げられる。   Polyester resins: terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, adipic acid, sebacic acid and other dicarboxylic acid monomers and ethylene glycol, propylene glycol, 1,4-butylene Diols such as glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polypropylene glycol, polyoxytetramethylene glycol, alkylene oxide adducts of bisphenol compounds or derivatives thereof, diols such as trimethylolpropane, glycerin, pentaerythritol, or polyvalent Examples include copolymers with alcohol monomers, (co) polymers such as hydroxycarboxylic acids such as lactic acid, p-hydroxybenzoic acid, and 2,6-hydroxynaphthoic acid.

ポリアミド系樹脂:3員環以上のラクタム、重合可能なω−アミノ酸、二塩基酸とジアミンなどの重縮合によって得られる鎖中に酸アミド結合を有する重合体である。具体的には、ε−カプロラクタム、アミノカプロン酸、エナントラクタム、7−アミノヘプタン酸、11−アミノウンデカン酸、9−アミノノナン酸、α−ピロリドン、α−ピペリドンなどの重合体、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミンなどのジアミンと、テレフタル酸、イソフタル酸、アジピン酸、セバシン酸、ドデカン二塩基酸、グルタール酸などのジカルボン酸と重縮合させて得られる重合体またはこれらの共重合体である。例えば、ナイロン−4、ナイロン−6、ナイロン−7、ナイロン−8、ナイロン−11、ナイロン−12、ナイロン−6、6、ナイロン−6、10、ナイロン−6、11、ナイロン−6、12、ナイロン−6T、ナイロン−6/ナイロン−6、6共重合体、ナイロン−6/ナイロン−12共重合体、ナイロン−6/ナイロン−6T共重合体、ナイロン−6I/ナイロン−6T共重合体等が挙げられる。   Polyamide resin: a polymer having an acid amide bond in a chain obtained by polycondensation of a lactam having a three or more member ring, a polymerizable ω-amino acid, a dibasic acid and a diamine. Specifically, polymers such as ε-caprolactam, aminocaproic acid, enanthractam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, α-pyrrolidone, α-piperidone, hexamethylenediamine, nonamethylene A polycondensation obtained by polycondensation with a diamine such as diamine, undecamethylenediamine, dodecamethylenediamine, or metaxylenediamine, and a dicarboxylic acid such as terephthalic acid, isophthalic acid, adipic acid, sebacic acid, dodecane dibasic acid, or glutaric acid. Or a copolymer thereof. For example, nylon-4, nylon-6, nylon-7, nylon-8, nylon-11, nylon-12, nylon-6, 6, nylon-6, 10, nylon-6, 11, nylon-6, 12, Nylon-6T, nylon-6 / nylon-6, 6 copolymer, nylon-6 / nylon-12 copolymer, nylon-6 / nylon-6T copolymer, nylon-6I / nylon-6T copolymer, etc. Is mentioned.

なお、上記樹脂が共重合体である場合には、その構造はランダム、ブロック等のいずれであってもよく、立体規則性を有する場合には、アイソタクチック、アタクチック、シンジオタクチックのいずれでもよい。   When the resin is a copolymer, the structure may be random, block, or the like. When the resin has stereoregularity, any of isotactic, atactic, and syndiotactic may be used. Good.

さらに、上記の樹脂以外に、ポリカーボネート系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリビニルアルコール、塩化ビニル系樹脂、スチレン系樹脂、ポリアクリロニトリル、セロハン、ポリ塩化ビニリデン、フッ素樹脂、ポリアセタール、ポリスルホン、ABS樹脂、ポリエーテルエーテルケトン等の樹脂も使用できる。
また、天然ゴム、イソプレンゴム、ブタジエンゴム、1,2−ポリブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン−プロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴムなどのゴム、エラストマー等も使用できる。
In addition to the above resins, polycarbonate resin, acrylic resin, urethane resin, polyvinyl alcohol, vinyl chloride resin, styrene resin, polyacrylonitrile, cellophane, polyvinylidene chloride, fluororesin, polyacetal, polysulfone, ABS resin Resins such as polyetheretherketone can also be used.
Natural rubber, isoprene rubber, butadiene rubber, 1,2-polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polysulfide rubber In addition, rubber such as silicone rubber, fluorine rubber, and urethane rubber, elastomer, and the like can be used.

固体状金属化合物としては、各種金属の酸化物または水酸化物が挙げられるが、ケイ素、チタン、カルシウム、亜鉛、スズおよびインジウムよりなる群から選ばれる少なくとも1種の金属を有する酸化物または水酸化物が好ましい。なお、本発明においては、金属は半金属も含む。
固体状金属化合物は、無機物・ポリマーコンポジット発泡成形体の機械的物性や熱的物性等を向上させる役割を果たす。
Examples of the solid metal compound include various metal oxides or hydroxides, and oxides or hydroxides having at least one metal selected from the group consisting of silicon, titanium, calcium, zinc, tin, and indium. Things are preferred. In the present invention, the metal includes a semimetal.
The solid metal compound plays a role of improving the mechanical properties and thermal properties of the inorganic / polymer composite foam molded article.

また、無機物・ポリマーコンポジット成形体は、例えば、可塑剤、安定剤、耐衝撃性向上剤、難燃剤、結晶核剤、滑剤、帯電防止剤、界面活性剤、顔料、染料、充填剤、酸化防止剤、加工助剤、紫外線吸収剤、防曇剤、防菌剤、防黴剤等の添加剤を含有してもよい。添加剤は1種を単独で使用してもよいし、2種以上を併用してもよい。   In addition, inorganic / polymer composite moldings include, for example, plasticizers, stabilizers, impact resistance improvers, flame retardants, crystal nucleating agents, lubricants, antistatic agents, surfactants, pigments, dyes, fillers, and antioxidants. Additives such as agents, processing aids, ultraviolet absorbers, antifogging agents, antibacterial agents, and antifungal agents may be contained. An additive may be used individually by 1 type and may use 2 or more types together.

無機物・ポリマーコンポジット成形体においては、発泡倍率が2〜50倍であることが好ましく、3〜30倍であることがより好ましい。発泡倍率が2倍以上であれば、発泡体としての特性を充分に発揮でき、50倍以下であれば、無機物・ポリマーコンポジット成形体の機械的強度を充分なものとすることができる。
発泡セルの平均発泡径は1.0〜500μmであることが好ましく、1.0〜200μmであることがより好ましい。発泡セルの平均発泡径が1.0μm以上であれば、容易に発泡セルを形成でき、500μm以下であれば、無機物・ポリマーコンポジット成形体の機械的強度を充分なものとすることができる。
In the inorganic / polymer composite molded body, the expansion ratio is preferably 2 to 50 times, and more preferably 3 to 30 times. If the expansion ratio is 2 times or more, the characteristics as a foam can be sufficiently exhibited, and if it is 50 times or less, the mechanical strength of the inorganic / polymer composite molded body can be made sufficient.
The average foam diameter of the foam cell is preferably 1.0 to 500 μm, and more preferably 1.0 to 200 μm. If the foamed cell has an average foam diameter of 1.0 μm or more, the foamed cell can be easily formed, and if it is 500 μm or less, the mechanical strength of the inorganic / polymer composite molded article can be made sufficient.

<無機物・ポリマーコンポジット成形体の製造方法>
本実施形態例の製造方法は、複合材調製工程と発泡剤添加工程と成形工程とを有する。
<Method for producing inorganic / polymer composite molded body>
The manufacturing method of the present embodiment includes a composite material preparation step, a foaming agent addition step, and a molding step.

(複合材調製工程)
本実施形態例における複合材調製工程では、まず、ホッパーよりペレット状のポリマーを押出機に供給して溶融させる。その際に使用する押出機としては、単軸押出機、二軸押出機のいずれであってもよい。また、スクリューを直列に配置したタンデム型の押出機も使用できる。
(Composite preparation process)
In the composite material preparation step in the present embodiment, first, a pellet-like polymer is supplied from an hopper to an extruder and melted. The extruder used at that time may be either a single screw extruder or a twin screw extruder. A tandem type extruder in which screws are arranged in series can also be used.

次いで、押出機内で溶融させたポリマーに流動性金属化合物と触媒放出化合物とを添加する。
流動性金属化合物および触媒放出化合物の添加方法としては、例えば、押出機内の溶融状態のポリマーに液体状態または気体状態でポンプ等を使用して添加する方法、流動性金属化合物を後述する発泡剤に溶解させて発泡剤と共に添加する方法等が挙げられる。
流動性金属化合物と触媒放出化合物とは、同時に添加してもよいし、流動性金属化合物添加後に触媒放出化合物を添加してもよい。
Next, the fluid metal compound and the catalyst releasing compound are added to the polymer melted in the extruder.
As a method for adding the fluid metal compound and the catalyst releasing compound, for example, a method of adding the fluid metal compound to the molten polymer in the extruder using a pump or the like in a liquid state or a gas state; For example, a method of dissolving and adding together with a foaming agent can be used.
The fluid metal compound and the catalyst releasing compound may be added simultaneously, or the catalyst releasing compound may be added after the addition of the fluid metal compound.

流動性金属化合物は、溶融状態のポリマーと均一相を形成し得る金属化合物である。溶融状態のポリマーと均一相を形成し得る金属化合物とは、液体状の金属化合物、気体状の金属化合物、または、溶融状態のポリマーと混合する前は固体状であるが、溶融状態のポリマーに混合した際には溶融する金属化合物のことである。また、流動性金属化合物は、分解して固体状金属化合物になる。
このような流動性金属化合物の中でも、容易に固体状金属化合物が得られることから、金属のアルコキシド、金属のβ−ジケトナート錯体、金属の酢酸塩よりなる群から選ばれる少なくとも1種が好ましい。
また、金属としては、容易に固体状金属化合物が得られることから、ケイ素、チタン、カルシウム、亜鉛、スズおよびインジウムよりなる群から選ばれる少なくとも1種が好ましい。
特に、流動性金属化合物の中でも、より容易に固体状金属化合物が得られることから、テトラメトキシシランがより好ましい。
A flowable metal compound is a metal compound that can form a homogeneous phase with a polymer in a molten state. A metal compound capable of forming a homogeneous phase with a polymer in a molten state is a liquid metal compound, a gaseous metal compound, or a solid before mixing with a polymer in a molten state. It is a metal compound that melts when mixed. In addition, the fluid metal compound is decomposed into a solid metal compound.
Among such fluid metal compounds, at least one selected from the group consisting of metal alkoxides, metal β-diketonate complexes, and metal acetates is preferable because a solid metal compound can be easily obtained.
The metal is preferably at least one selected from the group consisting of silicon, titanium, calcium, zinc, tin and indium because a solid metal compound can be easily obtained.
Particularly, among the fluid metal compounds, tetramethoxysilane is more preferable because a solid metal compound can be obtained more easily.

触媒放出化合物は、酸触媒または塩基触媒を放出するものである。また、触媒放出化合物は、ポリマー、流動性金属化合物、発泡剤との親和性が高い化合物が好ましい。さらに、分解生成物が無機物・ポリマーコンポジット成形体に影響を及ぼさないことが好ましい。
具体的には、触媒放出化合物は、酸または塩基を生成するタイプのシランカップリング剤、シラザン類、クロロシラン類が好ましい。これらの化合物は、加水分解によりアンモニア等の塩基や塩酸等の酸を生成し、流動性金属化合物の加水分解を促進する。
触媒放出化合物の中でも、代表的な発泡剤である二酸化炭素に対する親和性が高いことから、ジシラザン類および/またはクロロシラン類がより好ましい。また、ジシラザン類、クロロシラン類は分解によりシリカを形成するため、流動性金属化合物がケイ素化合物である場合には、その加水分解物のシリカと同一になり、不純物が生じないという利点も有する。
さらに、触媒放出化合物は、二酸化炭素と完全に相溶することから、トリメチルクロロシラン、ヘキサメチルジシラザンが特に好ましい。
The catalyst releasing compound is one that releases an acid catalyst or a base catalyst. Further, the catalyst releasing compound is preferably a polymer, a fluid metal compound, or a compound having high affinity with the foaming agent. Furthermore, it is preferable that the decomposition product does not affect the inorganic / polymer composite molded body.
Specifically, the catalyst releasing compound is preferably a silane coupling agent that generates an acid or a base, silazanes, and chlorosilanes. These compounds generate bases such as ammonia and acids such as hydrochloric acid by hydrolysis and promote hydrolysis of the fluid metal compound.
Among the catalyst releasing compounds, disilazanes and / or chlorosilanes are more preferable because of their high affinity for carbon dioxide, which is a typical blowing agent. Further, since disilazanes and chlorosilanes form silica by decomposition, when the fluid metal compound is a silicon compound, it is the same as the hydrolyzate silica and has the advantage that no impurities are generated.
Furthermore, since the catalyst releasing compound is completely compatible with carbon dioxide, trimethylchlorosilane and hexamethyldisilazane are particularly preferable.

複合材調製工程では、流動性金属化合物および触媒放出化合物を添加した後、溶融状態のポリマーと流動性金属化合物および触媒放出化合物とを混合して相溶状態の溶融体を調製する。
また、触媒放出化合物を分解して触媒を放出させ、その触媒の存在下で流動性金属化合物の分解を促進させて、固体状金属化合物を得る。これにより、ポリマーおよび固体状金属化合物を含む複合材を調製する。
流動性金属化合物の分解ではポリマーに含まれる水、熱などが利用される。また、加水分解を促進するためには、溶融体に水を添加することが好ましい。
In the composite material preparation step, the flowable metal compound and the catalyst releasing compound are added, and then the molten polymer, the flowable metal compound and the catalyst releasing compound are mixed to prepare a compatible melt.
In addition, the catalyst releasing compound is decomposed to release the catalyst, and the decomposition of the fluid metal compound is promoted in the presence of the catalyst to obtain a solid metal compound. Thereby, the composite material containing a polymer and a solid metal compound is prepared.
In the decomposition of the fluid metal compound, water, heat, etc. contained in the polymer are used. In order to promote hydrolysis, it is preferable to add water to the melt.

(発泡剤添加工程)
本実施形態における発泡剤添加工程では、押出機内の溶融体に発泡剤を添加する。
発泡剤の添加方法としては、例えば、液体状態の発泡剤をプランジャーポンプ等で供給する方法、気体状態の発泡剤を直接あるいは加圧した状態で供給する方法、超臨界状態で直接あるいは加圧した状態で供給する方法等が挙げられる。
(Foaming agent addition process)
In the foaming agent addition step in the present embodiment, the foaming agent is added to the melt in the extruder.
Examples of the method of adding the foaming agent include a method of supplying a foaming agent in a liquid state with a plunger pump, a method of supplying a foaming agent in a gas state directly or under pressure, and a direct or pressurization in a supercritical state. The method of supplying in the state which carried out is mentioned.

発泡剤としては、ポリマーおよび流動性金属化合物と均一相を形成しうるものが使用され、例えば、窒素、二酸化炭素、各種フロンガスが使用される。発泡剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
発泡剤の中でも、ポリマーへの親和性、流動性金属化合物との相溶性の観点から、二酸化炭素および/または窒素が好ましく、二酸化炭素がより好ましい。二酸化炭素は、溶解性の高い高圧の液体状態、亜臨界状態、超臨界状態が好ましく、超臨界状態の二酸化炭素がより好ましい。
As the foaming agent, those capable of forming a homogeneous phase with the polymer and the fluid metal compound are used, and for example, nitrogen, carbon dioxide, and various chlorofluorocarbon gases are used. A foaming agent may be used individually by 1 type, and may use 2 or more types together.
Among the foaming agents, carbon dioxide and / or nitrogen are preferable, and carbon dioxide is more preferable from the viewpoint of affinity for the polymer and compatibility with the fluid metal compound. Carbon dioxide is preferably in a highly soluble high-pressure liquid state, subcritical state, or supercritical state, and more preferably in the supercritical state.

発泡剤を添加する前、最中、後のいずれかにて、発泡核剤を添加することができる。発泡核剤としては、タルク、炭酸カルシウム、クレー、酸化マグネシウム、ガラスパウダー、酸化チタン、無水シリカ等の無機粒子が挙げられる。発泡核剤は1種を単独で使用してもよいし、2種以上を併用してもよい。   The foam nucleating agent can be added either before, during or after adding the foaming agent. Examples of the foam nucleating agent include inorganic particles such as talc, calcium carbonate, clay, magnesium oxide, glass powder, titanium oxide, and anhydrous silica. A foam nucleating agent may be used individually by 1 type, and may use 2 or more types together.

(成形工程)
成形工程では、複合材調製工程で得た複合材をダイスから吐出させて押出成形する。
複合材をダイスから吐出させて大気圧に開放した際には、複合材の圧力が急激に低下する。発泡剤を添加した本実施形態例では、圧力の低下により発泡するため、得られる成形体は発泡体となる。
また、この成形工程では、ポリマー外に発泡剤および未反応の流動性金属化合物が充分に拡散する時間がないまま、発泡剤および流動性金属化合物の溶解度が急激に低下するため、発泡セルの内部に金属化合物が析出する。
(Molding process)
In the molding step, the composite material obtained in the composite material preparation step is discharged from a die and extruded.
When the composite material is discharged from the die and released to atmospheric pressure, the pressure of the composite material rapidly decreases. In the present embodiment example in which a foaming agent is added, foaming occurs due to a decrease in pressure, so that the obtained molded body becomes a foamed body.
In this molding process, the solubility of the foaming agent and the flowable metal compound rapidly decreases without sufficient time for the foaming agent and the unreacted flowable metal compound to diffuse out of the polymer. A metal compound precipitates on the surface.

上記複合材調製工程、発泡剤添加工程および成形工程は連続的に、かつ、各々並行に行われ、無機物・ポリマーコンポジット成形体は連続的に製造される。   The composite material preparation step, the foaming agent addition step, and the molding step are performed continuously and in parallel, and the inorganic / polymer composite molded body is continuously manufactured.

以上説明した無機物・ポリマーコンポジット成形体の製造方法では、流動性金属化合物と共に添加した触媒放出化合物から放出された触媒によって流動性金属化合物の分解を促進させることができる。そのため、流動性金属化合物を固体状金属化合物にする分解反応の転化率を向上させることができるので、流動性金属化合物の添加量を少なくしても、押出機内で充分な量の固体状金属化合物を得ることができる。したがって、流動性金属化合物を多量に添加するために流動性金属化合物を繰り返しポリマーに混合する必要がない。
また、触媒によって流動性金属化合物を固体状金属化合物にするため、成形後に流動性金属化合物を固体状金属化合物にする工程を別途行う必要がない。
よって、上記製造方法によれば、押出機を用いて無機粉末を充分量含有する無機物・ポリマーコンポジット成形体を高い生産性で製造できる。
In the method for producing an inorganic / polymer composite molded body described above, decomposition of the fluid metal compound can be promoted by the catalyst released from the catalyst releasing compound added together with the fluid metal compound. Therefore, since the conversion rate of the decomposition reaction in which the fluid metal compound is converted into a solid metal compound can be improved, a sufficient amount of the solid metal compound can be obtained in the extruder even if the amount of the fluid metal compound is reduced. Can be obtained. Therefore, it is not necessary to repeatedly mix the fluid metal compound with the polymer in order to add a large amount of the fluid metal compound.
In addition, since the fluid metal compound is converted into a solid metal compound by the catalyst, there is no need to separately perform a step of converting the fluid metal compound into a solid metal compound after molding.
Therefore, according to the said manufacturing method, the inorganic substance and polymer composite molded object which contains a sufficient quantity of inorganic powder using an extruder can be manufactured with high productivity.

なお、本発明は、上記実施形態例に限定されない。例えば、複合材調製工程において、触媒放出化合物を添加せず、その代わりに、流動性金属化合物を固体状金属化合物にする酸触媒または塩基触媒を添加してもよい。
また、発泡剤添加工程において、発泡剤を複合材に添加してもよい。
また、発泡剤添加工程を省略して、発泡していない無機物・ポリマーコンポジット成形体を得てもよい。
Note that the present invention is not limited to the above embodiment. For example, in the composite preparation step, the catalyst releasing compound may not be added, and instead, an acid catalyst or a base catalyst that converts the fluid metal compound into a solid metal compound may be added.
In the foaming agent addition step, a foaming agent may be added to the composite material.
Alternatively, the foaming agent addition step may be omitted to obtain a non-foamed inorganic / polymer composite molded body.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。
[実施例1]
アクリル樹脂(三菱レイヨン(株)製、アクリペット IR K304)のペレットをホッパーより押出機((株)東洋精機製作所製、二軸セグメント押出機2D30W2)に供給し、シリンダー温度240℃の条件で加熱溶融させた。
また、液化炭酸ガスボンベから供給された二酸化炭素を昇圧ポンプで12MPaに昇圧させ、これを発泡剤として、押出機内で完全に溶融させたアクリル樹脂(7g/分)に対し、2.0ml/分の割合で供給した。
これと同時に、テトラメトキシシランとヘキサメチルジシラザンの混合物を、二酸化炭素100質量%に対して100質量%の割合になるように、押出機内で完全に溶融させたアクリル樹脂に供給した。その際、混合物はテトラメトキシシラン4mlに対してヘキサメチルジシラザン1mlの比率とした。
240℃のまま、アクリル樹脂、二酸化炭素、テトラメトキシシランとヘキサメチルジシラザンとを押出機内で混合して溶融体を調製すると共に、テトラメトキシシランを分解させてシリカを得た。これにより、アクリル樹脂およびシリカを含む複合材を得た。
また、ダイスの設定温度を140℃とし、ダイスで降温させ、そのダイスから複合材を吐出させて減圧させることにより、発泡成形して、発泡したシリカ・アクリル樹脂コンポジット成形体を得た。
得られたシリカ・アクリル樹脂コンポジット成形体について、シリカ以外のケイ素化合物とシリカの合計含有量、シリカの含有量を以下の方法により測定した。その結果を表1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these.
[Example 1]
Acrylic resin (Mitsubishi Rayon Co., Ltd., Acrypet IR K304) pellets are supplied from a hopper to an extruder (Toyo Seiki Seisakusho Co., Ltd., twin screw segment extruder 2D30W2) and heated at a cylinder temperature of 240 ° C. Melted.
Further, carbon dioxide supplied from a liquefied carbon dioxide gas cylinder is pressurized to 12 MPa by a pressure pump, and this is used as a foaming agent to 2.0 ml / min with respect to an acrylic resin (7 g / min) completely melted in an extruder. Supplied in proportion.
At the same time, a mixture of tetramethoxysilane and hexamethyldisilazane was supplied to the acrylic resin completely melted in the extruder so as to have a ratio of 100% by mass with respect to 100% by mass of carbon dioxide. At that time, the mixture had a ratio of 1 ml of hexamethyldisilazane to 4 ml of tetramethoxysilane.
While maintaining at 240 ° C., acrylic resin, carbon dioxide, tetramethoxysilane and hexamethyldisilazane were mixed in an extruder to prepare a melt, and tetramethoxysilane was decomposed to obtain silica. Thereby, the composite material containing an acrylic resin and silica was obtained.
Further, the temperature of the die was set to 140 ° C., the temperature was lowered with the die, the composite material was discharged from the die and the pressure was reduced, and foam molding was performed to obtain a foamed silica / acrylic resin composite molded body.
About the obtained silica-acrylic resin composite molded article, the total content of silicon compounds other than silica and silica, and the content of silica were measured by the following methods. The results are shown in Table 1.

・ケイ素化合物とシリカとの合計含有量
熱分析装置(SIIナノテクノロジー(株)製、TG/DTA6200)を用い、窒素雰囲気下、シリカ・アクリル樹脂コンポジット成形体の試料を500℃まで加熱しながら質量を測定し、式(1)により、ケイ素化合物とシリカとの合計含有量を求めた。
-Total content of silicon compound and silica Mass using a thermal analyzer (TG / DTA6200, manufactured by SII Nanotechnology Co., Ltd.) in a nitrogen atmosphere while heating a sample of a silica / acrylic resin composite molded body to 500 ° C Was measured, and the total content of the silicon compound and silica was determined by the formula (1).

Figure 0005257944
Figure 0005257944

・シリカの含有量
熱分析装置を用い、ケイ素化合物とシリカの合計含有量の測定と同様の方法で加熱しながら質量を測定し、下記式により、シリカの含有量を求めた。
[シリカの含有量(質量%)]={[500℃残留成分の質量]/[無機物・ポリマーコンポジットの25℃での質量]}×100
-Silica content Using a thermal analyzer, the mass was measured while heating in the same manner as the measurement of the total content of the silicon compound and silica, and the silica content was determined by the following formula.
[Silica content (mass%)] = {[mass of residual component at 500 ° C.] / [Mass of inorganic substance / polymer composite at 25 ° C.}} × 100

Figure 0005257944
Figure 0005257944

[実施例2]
ポリ乳酸(ネイチャーワークス(Nature Works)製、PLA Polymer 4060)のペレットをホッパーより押出機に供給し、シリンダー温度190℃の条件で加熱溶融させた。
また、液化炭酸ガスボンベから供給された二酸化炭素を昇圧ポンプ12MPaに昇圧させ、これを発泡剤として、押出機内で完全に溶融させたポリ乳酸(8g/分)に対し、2.0ml/分の割合で供給した。
これと同時に、テトラメトキシシランとヘキサメチルジシラザンの混合物を、二酸化炭素100質量%に対して100質量%の割合になるように、押出機内で完全に溶融させたポリ乳酸に供給した。その際、混合物はテトラメトキシシラン4mlに対してヘキサメチルジシラザン1mlの比率とした。
190℃のまま、ポリ乳酸、二酸化炭素、テトラメトキシシランとヘキサメチルジシラザンとを押出機内で混合して溶融体を調製すると共に、テトラメトキシシランを分解させてシリカを得た。これにより、ポリ乳酸とシリカを含む複合材を得た。
また、ダイスの設定温度を120℃とし、ダイスで降温させ、そのダイスから複合材を吐出させて減圧させることにより、発泡成形して、発泡したシリカ・ポリ乳酸コンポジット成形体を得た。
このシリカ・ポリ乳酸コンポジット成形体について、ケイ素化合物とシリカの合計含有量、シリカの含有量を測定した結果について表1に示す。
[Example 2]
Pellets of polylactic acid (manufactured by Nature Works, PLA Polymer 4060) were supplied from the hopper to the extruder, and heated and melted at a cylinder temperature of 190 ° C.
Further, the pressure of carbon dioxide supplied from the liquefied carbon dioxide gas cylinder is increased to 12 MPa, and the ratio is 2.0 ml / min with respect to polylactic acid (8 g / min) completely melted in the extruder as a foaming agent. Supplied with.
At the same time, a mixture of tetramethoxysilane and hexamethyldisilazane was supplied to polylactic acid completely melted in the extruder so as to have a ratio of 100% by mass with respect to 100% by mass of carbon dioxide. At that time, the mixture had a ratio of 1 ml of hexamethyldisilazane to 4 ml of tetramethoxysilane.
While maintaining the temperature at 190 ° C., polylactic acid, carbon dioxide, tetramethoxysilane and hexamethyldisilazane were mixed in an extruder to prepare a melt, and tetramethoxysilane was decomposed to obtain silica. Thereby, a composite material containing polylactic acid and silica was obtained.
Further, the set temperature of the die was set to 120 ° C., the temperature was lowered with the die, the composite material was discharged from the die and the pressure was reduced, and foam molding was performed to obtain a foamed silica / polylactic acid composite molded body.
Table 1 shows the results of measuring the total content of silicon compound and silica and the content of silica for this silica-polylactic acid composite molded article.

[比較例1]
実施例1においてテトラメトキシシランとヘキサメチルジシラザンの混合物を供給せず、テトラメトキシシランのみを供給した以外は、実施例1と同様にしてシリカ・アクリル樹脂コンポジット成形体を得た。得られたシリカ・アクリル樹脂コンポジット成形体に含まれるケイ素化合物とシリカとの合計含有量、シリカの含有量の測定結果を表1に示す。
[Comparative Example 1]
A silica / acrylic resin composite molded body was obtained in the same manner as in Example 1 except that only the tetramethoxysilane was supplied without supplying the mixture of tetramethoxysilane and hexamethyldisilazane in Example 1. Table 1 shows the total content of the silicon compound and silica contained in the obtained silica / acrylic resin composite molded article, and the measurement results of the silica content.

[比較例2]
実施例2においてテトラメトキシシランとヘキサメチルジシラザンの混合物を供給せず、テトラメトキシシランのみ供給した以外は、実施例2と同様にしてシリカ・ポリ乳酸コンポジット成形体を得た。得られたシリカ・アクリル樹脂コンポジット成形体に含まれるケイ素化合物とシリカとの合計含有量、シリカの含有量の測定結果を表1に示す。
[Comparative Example 2]
A silica / polylactic acid composite molded body was obtained in the same manner as in Example 2 except that only the tetramethoxysilane was supplied without supplying the mixture of tetramethoxysilane and hexamethyldisilazane in Example 2. Table 1 shows the total content of the silicon compound and silica contained in the obtained silica / acrylic resin composite molded article, and the measurement results of the silica content.

テトラメトキシシランと共にヘキサメチルジシラザンを供給した実施例1,2では、成形後にテトラメトキシシランを分解してシリカにする工程を有さないにもかかわらず、無機物・ポリマーコンポジット成形体に充分な量のシリカが含まれていた。
これに対し、ヘキサメチルジシラザンを供給しなかった比較例1,2では、無機物・ポリマーコンポジット成形体に含まれるシリカの量が少なかった。
In Examples 1 and 2 in which hexamethyldisilazane was supplied together with tetramethoxysilane, a sufficient amount for the inorganic / polymer composite molded body was obtained even though there was no step of decomposing tetramethoxysilane into silica after molding. Of silica.
On the other hand, in Comparative Examples 1 and 2 in which hexamethyldisilazane was not supplied, the amount of silica contained in the inorganic / polymer composite molded body was small.

本発明の無機物・ポリマーコンポジット成形体の製造方法で得られる無機物・ポリマーコンポジット成形体は、シュリンクフィルム等の包装用フィルム、電池用セパレータ、断熱材等に利用可能である。   The inorganic / polymer composite molded body obtained by the method for producing an inorganic / polymer composite molded body of the present invention can be used for packaging films such as shrink films, battery separators, and heat insulating materials.

Claims (6)

溶融状態のポリマーと、該溶融状態のポリマーと均一相を形成し得る流動性金属化合物とを混合して相溶状態の溶融体を調製し、前記流動性金属化合物から固体状金属化合物を生成させる反応の触媒の存在下で、前記溶融体に含まれる流動性金属化合物を反応させて固体状金属化合物にして、ポリマーおよび固体状金属化合物を含む複合材を調製する複合材調製工程と、
前記複合材を押出成形する成形工程とを有する無機物・ポリマーコンポジット成形体の製造方法であって、
成形工程前に、前記溶融体または前記複合材に発泡剤を添加する発泡剤添加工程を有し、成形工程にて前記複合材を押出成形すると共に発泡させる、無機物・ポリマーコンポジット成形体の製造方法。
A molten polymer and a flowable metal compound capable of forming a homogeneous phase with the molten polymer are mixed to prepare a compatible melt, and a solid metal compound is generated from the flowable metal compound. A composite material preparation step of preparing a composite material containing a polymer and a solid metal compound by reacting a fluid metal compound contained in the melt into a solid metal compound in the presence of a reaction catalyst;
A method for producing an inorganic / polymer composite molded body having a molding step of extruding the composite material ,
A method for producing an inorganic / polymer composite molded body, comprising a foaming agent addition step of adding a foaming agent to the melt or the composite material before the molding step, and extruding and foaming the composite material in the molding step. .
前記発泡剤が二酸化炭素および/または窒素である、請求項に記載の無機物・ポリマーコンポジット成形体の製造方法。 The method for producing an inorganic / polymer composite molded article according to claim 1 , wherein the foaming agent is carbon dioxide and / or nitrogen. 前記流動性金属化合物が金属のアルコキシド、金属のβ−ジケトナート錯体、金属の酢酸塩よりなる群から選ばれる少なくとも1種であり、前記流動性金属化合物に含まれる金属が、ケイ素、チタン、カルシウム、亜鉛、スズおよびインジウムよりなる群から選ばれる少なくとも1種である、請求項1又は2に記載の無機物・ポリマーコンポジット成形体の製造方法。 The fluid metal compound is at least one selected from the group consisting of a metal alkoxide, a metal β-diketonate complex, and a metal acetate, and the metal contained in the fluid metal compound is silicon, titanium, calcium, The method for producing an inorganic / polymer composite molded article according to claim 1 or 2 , which is at least one selected from the group consisting of zinc, tin and indium. 前記複合材調製工程では、酸触媒または塩基触媒を放出する触媒放出化合物をポリマーに添加し、該触媒放出化合物から放出された触媒の存在下で、前記溶融体に含まれる流動性金属化合物を反応させる、請求項1〜のいずれかに記載の無機物・ポリマーコンポジット成形体の製造方法。 In the composite material preparation step, a catalyst releasing compound that releases an acid catalyst or a base catalyst is added to the polymer, and the fluid metal compound contained in the melt is reacted in the presence of the catalyst released from the catalyst releasing compound. The manufacturing method of the inorganic substance and polymer composite molded object in any one of Claims 1-3 . 前記触媒放出化合物がジシラザン類および/またはクロロシラン類である、請求項に記載の無機物・ポリマーコンポジット成形体の製造方法。 The method for producing an inorganic / polymer composite molded article according to claim 4 , wherein the catalyst releasing compound is a disilazane and / or a chlorosilane. 前記複合材調製工程にて、溶融体に水分を添加する、請求項1〜のいずれかに記載の無機物・ポリマーコンポジット成形体の製造方法。 Wherein at composite preparation step, adding water to the melt method for producing inorganic-polymer composite molded article according to any one of claims 1-5.
JP2009133988A 2009-06-03 2009-06-03 Manufacturing method of inorganic / polymer composite molded body Expired - Fee Related JP5257944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133988A JP5257944B2 (en) 2009-06-03 2009-06-03 Manufacturing method of inorganic / polymer composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133988A JP5257944B2 (en) 2009-06-03 2009-06-03 Manufacturing method of inorganic / polymer composite molded body

Publications (2)

Publication Number Publication Date
JP2010280779A JP2010280779A (en) 2010-12-16
JP5257944B2 true JP5257944B2 (en) 2013-08-07

Family

ID=43537815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133988A Expired - Fee Related JP5257944B2 (en) 2009-06-03 2009-06-03 Manufacturing method of inorganic / polymer composite molded body

Country Status (1)

Country Link
JP (1) JP5257944B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287758A (en) * 1997-01-07 1998-10-27 Tokuyama Corp Microporous polyolefin film and its production
US6172138B1 (en) * 1998-11-12 2001-01-09 The Goodyear Tire & Rubber Company Reinforced elastomer preparation, elastomer composite and tire having component thereof
JP2002371186A (en) * 2001-06-15 2002-12-26 Orient Chem Ind Ltd Polymeric material, molded product and method for producing the same

Also Published As

Publication number Publication date
JP2010280779A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2138535B1 (en) Carbon nanotube containing rubber compositions
KR101802545B1 (en) Thermoplastic and/or elastomeric composite material containing carbon nanotubes and graphenes
US20110201731A1 (en) Method for preparing a thermoplastic composite material containing nanotubes particularly carbon nanotubes
EP2631270B1 (en) Film comprising a poly-4-methyl-1-pentene based resin composition and laminated article
WO2007117007A1 (en) Method for producing polyamide masterbatch
JP2008530325A (en) Transparent molding material
JP2008045013A (en) Light-transmitting flexible heat insulating material and method for producing the same
KR100789245B1 (en) Nanocomposite composition having barrier property and product using the same
JP2007119669A (en) Polyamide resin composition
JP5263930B2 (en) Method for producing inorganic / polymer composite by molding machine and inorganic / polymer composite molding machine
JP4915845B2 (en) Method for producing inorganic / polymer composite and inorganic / polymer composite
JP2006225593A (en) Polyamide resin composition and manufacturing method thereof
JP2007297607A (en) Method for producing polyamide resin composition containing inorganic particle and film-forming resin composition using the polyamide resin composition
JP5257944B2 (en) Manufacturing method of inorganic / polymer composite molded body
JP2010280780A (en) Method for manufacturing expansion-molded body of inorganic substance-polymer composite
JP2005145028A (en) Molding production method and molding
JP2000007842A (en) Polyamide-fiber reinforced polyolefin resin composition and its production
Vahedi et al. Polymer nanocomposites reinforced by halloysite nanotubes: a review
JP2001151887A (en) Polyamide-based resin and manufacturing method and composition thereof, and packaging film made of the same composition
JP4716592B2 (en) Polyamide resin composition with improved toughness
JP2015048382A (en) Polyamide resin composition and formed article
JP2005105167A (en) Polyamide resin composition
FR2736920A1 (en) THERMOPLASTIC COMPOSITIONS WITH IMPROVED FIRE RESISTANCE
JPS6324620B2 (en)
CA2496087C (en) Elastomer modified polyamides for improving the breaking resistance of films and hollow elements

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees