JP5254672B2 - Chemical supply method and chemical supply device - Google Patents

Chemical supply method and chemical supply device Download PDF

Info

Publication number
JP5254672B2
JP5254672B2 JP2008155216A JP2008155216A JP5254672B2 JP 5254672 B2 JP5254672 B2 JP 5254672B2 JP 2008155216 A JP2008155216 A JP 2008155216A JP 2008155216 A JP2008155216 A JP 2008155216A JP 5254672 B2 JP5254672 B2 JP 5254672B2
Authority
JP
Japan
Prior art keywords
ammonium persulfate
solution
conductivity
concentration
δen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008155216A
Other languages
Japanese (ja)
Other versions
JP2009302293A (en
Inventor
聡 爾見
真弓 辻
Original Assignee
アプリシアテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アプリシアテクノロジー株式会社 filed Critical アプリシアテクノロジー株式会社
Priority to JP2008155216A priority Critical patent/JP5254672B2/en
Publication of JP2009302293A publication Critical patent/JP2009302293A/en
Application granted granted Critical
Publication of JP5254672B2 publication Critical patent/JP5254672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体製造工程のうち、スラリーを使用する化学機械的研磨工程(CMP:Chemical Mechanical Polishing)(以下、CMPと称す)に薬液を供給する薬液供給方法及び薬液供給装置に関する。   The present invention relates to a chemical supply method and a chemical supply apparatus for supplying a chemical to a chemical mechanical polishing (CMP) process (hereinafter referred to as CMP) using a slurry in a semiconductor manufacturing process.

半導体デバイスや液晶の駆動デバイスなどの集積回路を製造するに際して、CMPは層間絶縁膜、シャロー・トレンチ分離用絶縁膜、導電性金属膜等の複数の膜に対して平坦化の目的で用いられているが、特に導電性金属膜の平坦化を目的とする場合は酸化力を有する成分を必須としている。特に最近では、ダマシン法により銅配線を形成する際のCMP工程では、二酸化ケイ素、酸化アルミニウム、酸化セリウム、窒化ケイ素、酸化ジルコニウムなどの砥粒を含むスラリーに、酸化剤として過硫酸アンモニウム、過硫酸カリウム、過酸化水素水、硝酸第二鉄、硝酸第二アンモニウムセリウムなどのいずれかを混合させるが、なかでも、過硫酸塩は過酸化水素よりも酸化電位が高いため、その酸化力が高く、配線材料である銅やバリア膜であるタンタルやタンタル化合物を研磨する際の研磨特性がすぐれており最も有力な候補と言える。その反応式の一例は、以下の通りである。   In manufacturing integrated circuits such as semiconductor devices and liquid crystal drive devices, CMP is used for planarization of a plurality of films such as an interlayer insulating film, an insulating film for shallow trench isolation, and a conductive metal film. However, a component having an oxidizing power is indispensable particularly for the purpose of planarizing the conductive metal film. Particularly recently, in the CMP process when forming a copper wiring by the damascene method, a slurry containing abrasive grains such as silicon dioxide, aluminum oxide, cerium oxide, silicon nitride, zirconium oxide, and ammonium persulfate and potassium persulfate as oxidants. , Hydrogen peroxide solution, ferric nitrate, cerium nitrate cerium nitrate, etc., but persulfate has a higher oxidation potential than hydrogen peroxide, so its oxidizing power is high. It has excellent polishing characteristics when polishing copper, which is a material, and tantalum, which is a barrier film, and tantalum compounds. An example of the reaction formula is as follows.

2H2O→H22+2H++2e−E0=1.78V 2H 2 O → H 2 O 2 + 2H + +2 e −E 0 = 1.78V

2SO4 2-→S28 2-+2e−E0=2.01V 2SO 4 2- → S 2 O 8 2- +2 e -E 0 = 2.01 V

しかしながら、過硫酸塩を含む溶液は他の酸化剤と比べて分解が早く、溶液で輸送する場合は10度以下に保冷して輸送しなければならない制約があるため、通常は粉末または固体として輸送し半導体製造工場内で溶解している。   However, a solution containing a persulfate salt decomposes faster than other oxidizing agents, and when transported in solution, there is a restriction that it must be transported while being kept at a temperature of 10 degrees or less. It is dissolved in the semiconductor manufacturing factory.

半導体製造工場内で粉末または固体を溶解して所望の濃度に調合して供給する場合も経時的な分解を起こすため、溶解後に過硫酸の酸化力が保たれている一定時間内でできるだけ使い切るような運用を行いながら、一定時間を経過した場合は破棄することが多い。しかしながらこの方法だけでは、その過硫酸塩の溶解後の溶液の保管条件や環境変化の影響による分解速度の変化をとらえることができず、保管条件や環境変化の影響に対するマージンをおかなければならず破棄する量が多い。また半導体工場の生産量は常に一定ではないため、生産量が低下した場合は残液の量が更に多くなる傾向にある。   Even when powder or solid is dissolved and mixed to the desired concentration in a semiconductor manufacturing factory, it will decompose over time, so that it will be used up as much as possible within a certain time when the oxidizing power of persulfuric acid is maintained after dissolution. When a certain period of time has elapsed while performing a simple operation, the data is often discarded. However, this method alone cannot capture changes in the decomposition rate due to the storage conditions and environmental changes of the solution after dissolution of the persulfate, and a margin for the effects of storage conditions and environmental changes must be kept. A lot to discard. In addition, since the production volume of the semiconductor factory is not always constant, when the production volume decreases, the amount of residual liquid tends to increase further.

上記の問題に対し、従来はこれを防ぐためには一定量のサンプリングを行い、酸化還元滴定法分析またはイオンクロマト法などを行うことにより濃度を確認しながら使用可能か破棄するかどうかを判断している。
酸化還元滴定法については、JIS K8252に記載のペルオキソ二硫酸の純度を確認する試験方法が紹介されている(非特許文献1参照)。
In order to prevent this problem, a certain amount of sampling has been performed in the past, and by using redox titration analysis or ion chromatography, etc., it is determined whether it can be used or discarded while checking the concentration. Yes.
As for the oxidation-reduction titration method, a test method for confirming the purity of peroxodisulfuric acid described in JIS K8252 has been introduced (see Non-Patent Document 1).

然るに、酸化還元滴定法やイオンクロマト法はいずれもサンプリングを必要とするオフラインの分析であり、酸化還元滴定法では滴定にて終点を求めるための時間が必要であり、イオンクロマト法ではカラムでの反応時間であるリテンションタイムを必要とするため、いずれも長時間を要し、また分析操作が複雑である。   However, both the redox titration method and the ion chromatographic method are off-line analyzes that require sampling. The redox titration method requires time for determining the end point by titration. Since a retention time, which is a reaction time, is required, both require a long time and the analysis operation is complicated.

また、従来の他の方法としては、N,N−ジエチル−p−フェニレンジアミン硫酸塩とヨウ化カリウムとを添加して反応させ、反応液の発色度合を比色法により排水中のペルオキソ二硫酸を短時間で測定する方法が公開されているが、やはりこれも自動化には適するもののオフラインの分析であり、発色までの化学反応時間が必要であり時間的なロスという課題が残ると同時に、試薬の準備や発色反応後の廃液の処理といった追加コストを生じることになる(特許文献1参照)。   Further, as another conventional method, N, N-diethyl-p-phenylenediamine sulfate and potassium iodide are added and reacted, and the degree of coloration of the reaction solution is determined by a colorimetric method. Although a method for measuring urine in a short time has been published, this is also suitable for automation, but it is an off-line analysis, requiring a chemical reaction time until color development, and the problem of time loss remains. Additional costs such as the preparation of the liquid and the treatment of the waste liquid after the color reaction (see Patent Document 1).

このように、従来の測定方法では、いずれの方法においても、オフラインによる分析であり、操作が複雑となり且つ時間的なロスがあり、また試薬や廃液の処理コストを追加的に発生させるという課題がある。   As described above, the conventional measurement method is an off-line analysis in any of the methods, and there are problems that the operation is complicated and there is a time loss, and the processing cost of reagents and waste liquid is additionally generated. is there.

特開平7−333153号公報JP 7-333153 A 高木誠司「定量分析の実験と計算第2巻」(共立出版社 昭和60年,5月再訂版)“容量分析法”PP378/431参照Seiji Takagi "Experiments and Calculations in Quantitative Analysis, Volume 2" (Kyoritsu Publishing Co., Ltd., 1985, revised edition) See "Capacity Analysis" PP 378/431

本発明が解決しようとする課題は、上記従来の問題点を解決し、薬液の供給装置において過硫酸塩溶液の初期濃度における導電率と薬液供給時における導電率を測定することにより、過硫酸塩溶液の濃度を管理する方法を提供するとともに、この方法を用いて管理された薬液を供給することによりCMP工程における不良の発生を未然に防止して歩留まりを向上できるようにせしめることにある。   The problem to be solved by the present invention is to solve the above-mentioned conventional problems, by measuring the conductivity at the initial concentration of the persulfate solution and the conductivity at the time of supplying the chemical solution in the chemical solution supply apparatus, In addition to providing a method for managing the concentration of the solution, it is intended to prevent the occurrence of defects in the CMP process and improve the yield by supplying a chemical solution managed using this method.

本発明は、上記課題を解決するため、化学機械的研磨工程に過硫酸塩を含む薬液を供給する薬液供給方法において、
粉末または固形物の過硫酸塩に溶媒を加えて溶解して低濃度から高濃度に亘る各種濃度の過硫酸塩溶液を作成し、任意の温度における溶解直後の各種濃度の過硫酸塩溶液の初期濃度(Cn)の導電率(En)を測定する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の導電率(En)と前記任意の温度における溶解直後の過硫酸塩溶液の初期濃度(Cn)との関係を示す関数である式(1)を予め作成する工程と、
式(1)より前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の導電率(En)における過硫酸塩溶液の初期濃度(Cn)を算出する工程と、
前記任意の温度における薬液供給時の過硫酸塩溶液の導電率(en)を測定する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の初期濃度(Cn)と薬液供給時の分解変化率(ΔCn)/(ΔEn)との関係を示す関数である式(2)を予め作成する工程と、
式(2)より、前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の初期濃度(Cn)における薬液供給時の分解変化率
(ΔCn)/(ΔEn)を算出する工程と、
前記工程により測定及び算出した、前記溶解直後の過硫酸塩溶液の初期濃度(Cn)と、薬液供給時の過硫酸塩溶液の分解変化率
(ΔCn)/(ΔEn)と、前記薬液供給時の過硫酸塩溶液の導電率の変化量(ΔEn)とを式(3)に代入し、薬液供給時の過硫酸塩溶液の濃度(残存する過硫酸塩の濃度)(C)を求める工程とよりなる、
化学機械的研磨工程に供給する過硫酸塩を含む薬液の濃度を管理することを特徴とする薬液供給方法を構成したことにある。
(Cn)=α(En) (1)
(ΔCn)/(ΔEn)=β(Cn) (2)
(C)=(Cn)−{(ΔCn)/(ΔEn)}×(ΔEn) (3)
(ただし、本明細書において、(ΔCn)は、溶解直後における過硫酸塩溶液の初期濃度と薬液供給時の濃度との変化量であり、(ΔEn)は、溶解直後における過硫酸塩溶液の導電率と薬液供給時の導電率との変化量を意味する。)
In order to solve the above problems, the present invention provides a chemical solution supplying method for supplying a chemical solution containing a persulfate to a chemical mechanical polishing step.
A persulfate solution of various concentrations ranging from low to high is prepared by adding a solvent to powder or solid persulfate to dissolve, and the initial concentration of the persulfate solution immediately after dissolution at any temperature Measuring the conductivity (En) of concentration (Cn);
An expression that is a function showing the relationship between the conductivity (En) of the persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature and the initial concentration (Cn) of the persulfate solution immediately after dissolution at the arbitrary temperature ( 1) creating in advance;
Calculating the initial concentration (Cn) of the persulfate solution in the conductivity (En) of the persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature from the equation (1);
Measuring the conductivity (en) of the persulfate solution when supplying the chemical solution at the arbitrary temperature;
Formula (2), which is a function showing the relationship between the initial concentration (Cn) of the persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature and the degradation change rate (ΔCn) / (ΔEn) at the time of supplying the chemical solution, Creating a process;
From the equation (2), calculating a decomposition change rate (ΔCn) / (ΔEn) at the time of supplying a chemical solution at an initial concentration (Cn) of a persulfate solution having various concentrations immediately after dissolution at the arbitrary temperature;
The initial concentration (Cn) of the persulfate solution immediately after dissolution, measured and calculated by the above step, the rate of change in decomposition of the persulfate solution at the time of supplying the chemical solution (ΔCn) / (ΔEn), and the value at the time of supplying the chemical solution Substituting the amount of change in electrical conductivity of the persulfate solution (ΔEn) into equation (3) to obtain the concentration of the persulfate solution (concentration of the remaining persulfate) (C) when supplying the chemical solution Become,
A chemical solution supply method is characterized in that the concentration of a chemical solution containing persulfate supplied to the chemical mechanical polishing step is controlled.
(Cn) = α (En) (1)
(ΔCn) / (ΔEn) = β (Cn) (2)
(C) = (Cn) − {(ΔCn) / (ΔEn)} × (ΔEn) (3)
(However, in this specification, (ΔCn) is the amount of change between the initial concentration of the persulfate solution immediately after dissolution and the concentration at the time of chemical supply, and (ΔEn) is the conductivity of the persulfate solution immediately after dissolution.) It means the amount of change between the rate and the conductivity when supplying chemicals.)

また、第2の解決課題は、前記の過硫酸塩が過硫酸アンモニウムである薬液供給方法を構成したことにある。   A second problem to be solved is that a chemical supply method in which the persulfate is ammonium persulfate is configured.

また、第3の解決課題は、前記の過硫酸塩を含む薬液が化学機械的研磨工程用の砥粒含むスラリーを混合した薬液である薬液供給方法を構成したことにある。   A third problem to be solved is that a chemical solution supplying method is provided in which the chemical solution containing the persulfate is a chemical solution obtained by mixing slurry containing abrasive grains for the chemical mechanical polishing process.

また、第4の解決課題は、化学機械的研磨工程に過硫酸塩を含む薬液を供給する薬液供給装置において、
粉末または固形物の過硫酸塩に溶媒を加えて溶解して低濃度から高濃度に亘る各種濃度の過硫酸塩溶液を作成し、任意の温度における溶解直後の各種濃度の過硫酸塩溶液の初期濃度(Cn)の導電率(En)を測定する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の導電率(En)と前記任意の温度における溶解直後の過硫酸塩溶液の初期濃度(Cn)との関係を示す関数である式(1)を予め作成する工程と、
式(1)より前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の導電率(En)における過硫酸塩溶液の初期濃度(Cn)を算出する工程と、
前記任意の温度における薬液供給時の過硫酸塩溶液の導電率(en)を測定する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の初期濃度(Cn)と薬液供給時の分解変化率(ΔCn)/(ΔEn)との関係を示す関数である式(2)を予め作成する工程と、
式(2)より、前記任意の温度における溶解直後の各種濃度の過硫酸塩溶液の初期濃度(Cn)における薬液供給時の分解変化率
(ΔCn)/(ΔEn)を算出する工程と、
前記工程により測定及び算出した、前記溶解直後の過硫酸塩溶液の初期濃度(Cn)と、薬液供給時の過硫酸塩溶液の分解変化率
(ΔCn)/(ΔEn)と、前記薬液供給時の過硫酸塩溶液の導電率の変化量(ΔEn)とを式(3)に代入し、薬液供給時の過硫酸塩溶液の濃度(残存する過硫酸塩の濃度)(C)を求める工程とよりなる、
化学機械的研磨工程に供給する過硫酸塩を含む薬液の濃度を管理する機能を備えた薬液供給装置を構成したことにある。
(Cn)=α(En) (1)
(ΔCn)/(ΔEn)=β(Cn) (2)
(C)=(Cn)−{(ΔCn)/(ΔEn)}×(ΔEn) (3)
A fourth problem to be solved is a chemical supply apparatus for supplying a chemical containing persulfate to the chemical mechanical polishing process.
A persulfate solution of various concentrations ranging from low to high is prepared by adding a solvent to powder or solid persulfate to dissolve, and the initial concentration of the persulfate solution immediately after dissolution at any temperature Measuring the conductivity (En) of concentration (Cn);
An expression that is a function showing the relationship between the conductivity (En) of the persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature and the initial concentration (Cn) of the persulfate solution immediately after dissolution at the arbitrary temperature ( 1) creating in advance;
Calculating the initial concentration (Cn) of the persulfate solution in the conductivity (En) of the persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature from the equation (1);
Measuring the conductivity (en) of the persulfate solution when supplying the chemical solution at the arbitrary temperature;
Formula (2), which is a function showing the relationship between the initial concentration (Cn) of the persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature and the degradation change rate (ΔCn) / (ΔEn) at the time of supplying the chemical solution, Creating a process;
From the equation (2), calculating a decomposition change rate (ΔCn) / (ΔEn) at the time of supplying a chemical solution at an initial concentration (Cn) of a persulfate solution having various concentrations immediately after dissolution at the arbitrary temperature;
The initial concentration (Cn) of the persulfate solution immediately after dissolution, measured and calculated by the above step, the rate of change in decomposition of the persulfate solution at the time of supplying the chemical solution (ΔCn) / (ΔEn), and the value at the time of supplying the chemical solution Substituting the amount of change in electrical conductivity of the persulfate solution (ΔEn) into equation (3) to obtain the concentration of the persulfate solution (concentration of the remaining persulfate) (C) when supplying the chemical solution Become,
A chemical solution supply apparatus having a function of managing the concentration of a chemical solution containing persulfate supplied to the chemical mechanical polishing process is provided.
(Cn) = α (En) (1)
(ΔCn) / (ΔEn) = β (Cn) (2)
(C) = (Cn) − {(ΔCn) / (ΔEn)} × (ΔEn) (3)

本発明による薬液供給方法及び薬液供給装置によれば、薬液の供給装置において過硫酸塩溶液の初期濃度における導電率と薬液供給時における導電率を測定するだけで、過硫酸塩溶液の濃度を管理する方法を提供するとともに、管理された薬液を供給することによりCMP工程における不良の発生を未然に防止して、歩留まりを向上できる。即ち、本発明によれば、粉末または固形物の過硫酸塩を溶媒に溶解して所望濃度の過硫酸溶液とし、溶解後に導電率を測定することによって過硫酸塩の成分濃度を求め、その後導電率の変化を計測することによって過硫酸塩の分解率を捉えることにより、分解後の有効過硫酸塩成分の濃度を計算して、酸化力の低下を管理することができる。   According to the chemical solution supply method and the chemical solution supply apparatus according to the present invention, the concentration of the persulfate solution can be managed only by measuring the conductivity at the initial concentration of the persulfate solution and the conductivity at the time of supplying the chemical solution in the chemical solution supply apparatus. In addition, by providing a controlled chemical solution, it is possible to prevent the occurrence of defects in the CMP process and improve the yield. That is, according to the present invention, powder or solid persulfate is dissolved in a solvent to obtain a persulfate solution having a desired concentration, and the concentration of the persulfate component is determined by measuring the conductivity after dissolution, and then the conductivity is measured. By measuring the rate of change of the persulfate by measuring the change in rate, the concentration of the effective persulfate component after the decomposition can be calculated to manage the reduction in oxidizing power.

以下に本発明の詳細を説明する。
CMP工程に薬液を供給するにあたり、一定量の粉末または固形物の過硫酸塩を溶媒に溶解して所望濃度の過硫酸溶液に調合するが、任意の温度における溶解直後の過硫酸塩の初期濃度(Cn)と導電率(En)との間の関係は、次の関数で表すことが出来る。
(Cn)=α(En) (1)
Details of the present invention will be described below.
In supplying a chemical solution to the CMP process, a certain amount of powder or solid persulfate is dissolved in a solvent to prepare a persulfate solution having a desired concentration, but the initial concentration of persulfate immediately after dissolution at an arbitrary temperature. The relationship between (Cn) and conductivity (En) can be expressed by the following function.
(Cn) = α (En) (1)

半導体や液晶のCMP工程では塩としてアルカリ金属は好ましくないため通常はアンモニウム塩などアルカリ金属ではない塩が用いられる。例えば過硫酸アンモニウムの粉末または固形物を水に溶解すると下記の化学式のように、イオン化をともなって解離する。   In the CMP process of semiconductors and liquid crystals, alkali metals are not preferred as salts, and therefore salts that are not alkali metals such as ammonium salts are usually used. For example, when ammonium persulfate powder or solid is dissolved in water, it dissociates with ionization as shown in the following chemical formula.

(NH4228+2(H2O)→2(NH4++S28 2-+2OH-+2H+ (NH 4 ) 2 S 2 O 8 +2 (H 2 O) → 2 (NH 4 ) + + S 2 O 8 2− + 2OH + 2H +

過硫酸アンモニウムは溶解するとアンモニウムイオンと過硫酸イオンを生じ、この系内には水酸イオンや水素イオンが存在する。溶解直後は分解が進んでいないため、これらのイオンの総量と相関する導電率から濃度を計測できる。溶液の導電率は溶かし込む過硫酸アンモニウムの量との関係を示す関数である式(1)は、以下に示す実験の結果、通常、比例関係となることが判明した。
本発明では、あらかじめ、任意の温度における、上記の導電率と過硫酸塩の初期濃度の関係を求めた検量線を得ることによって、溶解直後の導電率値から過硫酸塩の初期濃度を求める。つづいて過硫酸塩は、下記の化学式のように時間経過とともに硫酸イオンと過酸化水素に分解していく。
When ammonium persulfate is dissolved, ammonium ions and persulfate ions are produced, and hydroxide ions and hydrogen ions are present in this system. Since decomposition does not proceed immediately after dissolution, the concentration can be measured from the electrical conductivity that correlates with the total amount of these ions. As a result of the following experiment, it has been found that the equation (1), which is a function indicating the relationship between the conductivity of the solution and the amount of ammonium persulfate to be dissolved, is generally proportional.
In the present invention, the initial concentration of persulfate is obtained from the conductivity value immediately after dissolution by obtaining a calibration curve for the relationship between the conductivity and the initial concentration of persulfate at an arbitrary temperature. Subsequently, persulfate is decomposed into sulfate ions and hydrogen peroxide over time as shown in the chemical formula below.

2(NH4)++S2O8 2-+2OH-+2H+→2(NH4)++2SO4 2-+2H++H2O2 2 (NH 4) + + S 2 O 8 2- + 2OH - + 2H + → 2 (NH 4) + + 2SO 4 2- + 2H + + H 2 O 2

過酸化水素から更に分解が進めば、下記の式に示す通り、酸素を生じて系外へ出て行くことになる。   If further decomposition proceeds from hydrogen peroxide, oxygen is generated and goes out of the system as shown in the following formula.

2(NH4)++2SO4 2-+2H++H2O2→2(NH4)++2SO4 2-+2H++H2O+1/2O2 2 (NH 4 ) + + 2SO 4 2- + 2H + + H 2 O 2 → 2 (NH 4 ) + + 2SO 4 2- + 2H + + H 2 O + 1 / 2O 2

過硫酸塩は、時間経過や周囲の環境変化により硫酸イオンと過酸化水素に分解するが、ここで過硫酸イオンと水酸イオンの存在量に変化を伴い、それらが減少し、かつ硫酸イオンが増加するため、導電率計にてその変化を迅速且つ簡便に捉えることができる。1モルの過硫酸が分解して2モルの硫酸イオンになるとき1モルの過酸化水素が生じると同時に系内には導電率を高くするイオンの存在比が多くなり、導電率が敏感に上昇変化する。ここの変化率から分解した量を計算することができる。   Persulfate is decomposed into sulfate ions and hydrogen peroxide with the passage of time and the surrounding environment, but here the amount of persulfate ions and hydroxide ions is changed, they are decreased, and sulfate ions are reduced. Since it increases, the change can be quickly and easily grasped by the conductivity meter. When 1 mol of persulfuric acid is decomposed to 2 mol of sulfate ion, 1 mol of hydrogen peroxide is generated. At the same time, the abundance ratio of ions that increase the conductivity in the system increases, and the conductivity increases sensitively. Change. The decomposed amount can be calculated from the rate of change here.

本発明者による実験の結果、後述するように、任意の温度における、過硫酸塩の初期濃度(Cn)は、その分解変化率(ΔCn)/(ΔEn)と非常に相関関係が高い。したがって、任意の温度における、各過硫酸塩濃度において予め過硫酸塩溶液の初期濃度(Cn)と過硫酸塩の分解率(ΔCn)/(ΔEn)との関係を求めた検量線を得ることによって、導電率変化率から過硫酸塩の分解率を求めることができることが判明した。任意の温度における、各過硫酸塩の初期濃度(C1・・・Cn)における過硫酸塩溶液の分解変化率(ΔCn)/(ΔEn)と初期濃度(Cn)の関係を示す関数は、式(2)で表すことが出来る。
(ΔCn)/(ΔEn)=β(Cn) (2)
上記式(1)式と(2)と初期と薬液供給時の任意の温度における、導電率の変化(ΔE)を組み合わせることにより、分解が進んだあとも過硫酸塩の濃度をモニタリングすることができる。
前記工程により求められた、前記溶解直後の過硫酸塩溶液の初期濃度(Cn)における導電率(En)と薬液供給時の過硫酸塩溶液の導電率(en)の変化量(ΔEn)=(en)−(En)と、初期濃度(Cn)、過硫酸塩溶液の分解変化率(ΔCn)/(ΔEn)との関係から、薬液供給時の濃度(C)(残存する過硫酸塩の濃度)を示す関数は、式(3)で表すことができる。
(C)=(Cn)−{(ΔCn)/(ΔEn)}×(ΔEn) (3)
すなわち、任意の温度における、初期の過硫酸塩の濃度を導電率からもとめると共に、導電率を計測しておき、その後、任意の温度における、初期濃度に対する導電率の差分から分解した過硫酸塩の濃度を求めて、初期濃度より減ずることにより、残存する過硫酸塩の濃度を求めることができる。
As a result of experiments by the present inventor, as will be described later, the initial concentration (Cn) of persulfate at an arbitrary temperature has a very high correlation with the decomposition change rate (ΔCn) / (ΔEn). Therefore, by obtaining a calibration curve that previously obtained the relationship between the initial concentration (Cn) of the persulfate solution and the decomposition rate (ΔCn) / (ΔEn) of the persulfate solution at each temperature at each persulfate concentration. It was found that the decomposition rate of persulfate can be obtained from the rate of change in conductivity. The function indicating the relationship between the persulfate solution decomposition change rate (ΔCn) / (ΔEn) and the initial concentration (Cn) at the initial concentration (C1... Cn) of each persulfate at an arbitrary temperature is expressed by the equation ( 2).
(ΔCn) / (ΔEn) = β (Cn) (2)
By combining the above formulas (1) and (2) with the change in electrical conductivity (ΔE) at an initial temperature and at any temperature during chemical supply, the concentration of persulfate can be monitored even after decomposition has progressed. it can.
The amount of change (ΔEn) = (conductivity (En) in the initial concentration (Cn) of the persulfate solution immediately after dissolution, and the conductivity (en) of the persulfate solution at the time of supplying the chemical solution, determined by the above step) en)-(En), the initial concentration (Cn), and the rate of change in decomposition of the persulfate solution (ΔCn) / (ΔEn), the concentration at the time of supplying the chemical solution (C) (the concentration of the remaining persulfate) ) Can be expressed by equation (3).
(C) = (Cn) − {(ΔCn) / (ΔEn)} × (ΔEn) (3)
That is, the initial persulfate concentration at an arbitrary temperature is obtained from the conductivity, and the conductivity is measured, and then the persulfate decomposed from the difference in the conductivity with respect to the initial concentration at an arbitrary temperature. By determining the concentration and reducing it from the initial concentration, the concentration of the remaining persulfate can be determined.

本発明では、CMPに必要な過硫酸塩の有効成分濃度をインラインで即時に正確に測定できる点から、導電率測定部及び温度測定部の検出器が比較的小型であることが好ましい。
過硫酸塩溶液の導電率は、濃度が同じ場合は温度によって変わり、一般的には温度が高くなるほど、導電率は高くなる傾向にあるため、温度測定もあわせて行い基準温度へ換算すべく補正をする必要がある。装置には、導電率、および温度測定値を濃度に変換表示できるソフトプログラム機能を付与することが好ましい。
In the present invention, it is preferable that the detectors of the conductivity measuring unit and the temperature measuring unit are relatively small because the active ingredient concentration of persulfate necessary for CMP can be accurately measured immediately in-line.
The conductivity of the persulfate solution varies depending on the temperature when the concentration is the same. Generally, the higher the temperature is, the higher the conductivity tends to increase. It is necessary to do. The apparatus is preferably provided with a soft program function capable of converting and displaying the conductivity and temperature measurement values as concentrations.

本発明において、導電率測定装置、温度測定装置自体に特に制限はなく、市販のものでよいが、測定感度の高いもの且つ測定装置からのパーティクルや構成成分の溶出のないものが好ましい。   In the present invention, the conductivity measuring device and the temperature measuring device are not particularly limited and may be commercially available, but those having high measurement sensitivity and free from elution of particles and components from the measuring device are preferable.

以下、本発明の具体的な実施の一例を示す。以下の実施例はあくまで一つの例であり、本発明を何ら限定するものではない。   Hereinafter, an example of specific implementation of the present invention will be shown. The following examples are merely examples, and do not limit the present invention.

<実施例1>
未知資料1の過硫酸アンモニウム(APS)を超純水に溶解し、溶解直後の導電率を測定し、分解放置後再度導電率を測定した。
ここでの初期濃度、導電率の変化は全て液温20℃での換算値を用いることとする。
過硫酸アンモニウムとしては粉末の過硫酸アンモニウム(ペルオキソ二硫酸アンモニウム)JIS試薬特級を用いた。本発明と比較する分析としてJIS K8252に記載のペルオキソ二硫酸の純度を確認する電位差滴定による方法に則った。
<Example 1>
The ammonium persulfate (APS) of Unknown Document 1 was dissolved in ultrapure water, the conductivity immediately after dissolution was measured, and the conductivity was measured again after being left for decomposition.
Here, the initial concentration and the change in conductivity are all converted values at a liquid temperature of 20 ° C.
As ammonium persulfate, powdery ammonium persulfate (ammonium peroxodisulfate) JIS reagent special grade was used. As an analysis for comparison with the present invention, a method by potentiometric titration for confirming the purity of peroxodisulfuric acid described in JIS K8252 was used.

Figure 0005254672
Figure 0005254672

先ず、未知資料1の過硫酸アンモニウムの溶解直後の導電率を測定したところ、液温30℃に於いて6.982(S/m)であった。   First, the electrical conductivity immediately after dissolution of ammonium persulfate in Unknown Document 1 was measured and found to be 6.982 (S / m) at a liquid temperature of 30 ° C.

次いで、既知量過硫酸アンモニウムを超純水に溶解させ、液温10〜35℃における導電率を計測し、濃度と液温と導電率の関係を予め求めた。その結果を表2及び図1に示した。
Next, a known amount of ammonium persulfate was dissolved in ultrapure water, the conductivity at a liquid temperature of 10 to 35 ° C. was measured, and the relationship between the concentration, the liquid temperature, and the conductivity was obtained in advance. The results are shown in Table 2 and FIG.

Figure 0005254672
Figure 0005254672

その結果、過硫酸アンモニウムの初期濃度(Cn)における導電率(En)(y軸)と液温(℃)(x軸)との関係を示す関数である式は、1次関数となり、次式(4−1)〜(4−7)となった。
y=0.0788x+2.715(5質量%) (4−1)
y=0.1500x+5.057(10質量%) (4−2)
y=0.2096x+7.423(15質量%) (4−3)
y=0.2673x+9.743(20質量%) (4−4)
y=0.3027x+12.22(25質量%) (4−5)
y=0.3696x+13.77(30質量%) (4−6)
y=0.3925x+15.63(35質量%) (4−7)
この式の傾きを用いて、未知の濃度の過硫酸アンモニウムの液温と導電率を測定し、近接する式の傾きを採用することによりその濃度を求めた。
As a result, an equation which is a function indicating the relationship between the conductivity (En) (y axis) and the liquid temperature (° C.) (x axis) at the initial concentration (Cn) of ammonium persulfate is a linear function. 4-1) to (4-7).
y = 0.0788x + 2.715 (5 mass%) (4-1)
y = 0.1500x + 5.057 (10 mass%) (4-2)
y = 0.2096x + 7.423 (15 mass%) (4-3)
y = 0.2673x + 9.743 (20 mass%) (4-4)
y = 0.3027x + 12.22 (25 mass%) (4-5)
y = 0.3696x + 13.77 (30 mass%) (4-6)
y = 0.3925x + 15.63 (35 mass%) (4-7)
Using the slope of this equation, the liquid temperature and conductivity of ammonium persulfate of unknown concentration were measured, and the concentration was determined by adopting the slope of the adjacent equation.

図1を用いて、測定ポイントに最も近い式の傾きを採用し、(4−1)式より、y=ax+b式のa(傾き)に0.0788を代入し、更に、上記導電率(En)(y)に6.982S/mと、液温(℃)(x)に液温30℃の値を代入すると、
6.982=0.0788×30+bとなり、切片bは、4.618
となり、測定サンプルの液温と導電率(En)の関係を表す式(4−1)は、
y=0.0788x+4.618
となることが計算された。
上式を用いて、測定したサンプルの20℃における初期過硫酸アンモニウムの導電率(En)(y)を求めると、
y=0.0788×20+4.618=6.164となり、
20℃における初期過硫酸アンモニウムの導電率(En)は、
6.194(S/m)であると計算された。
Using FIG. 1, the slope of the equation closest to the measurement point is adopted, and 0.0788 is substituted into a (slope) of the equation y = ax + b from the equation (4-1), and the conductivity (En ) Substituting the value of 6.982 S / m for (y) and the liquid temperature (° C.) (x) for the liquid temperature of 30 ° C.
6.982 = 0.0788 × 30 + b, and the intercept b is 4.618.
Equation (4-1) representing the relationship between the liquid temperature of the measurement sample and the conductivity (En) is
y = 0.0788x + 4.618
It was calculated to be.
Using the above equation, the electrical conductivity (En) (y) of the initial ammonium persulfate at 20 ° C. of the measured sample was determined.
y = 0.0788 × 20 + 4.618 = 6.164,
The initial ammonium persulfate conductivity (En) at 20 ° C. is
It was calculated to be 6.194 (S / m).

また、表2より、液温20℃の時の溶解時における過硫酸アンモニウムの初期濃度(Cn)(質量%)(y)と導電率(En)(S/m)(x)との関係は、次式(1)となり、これをグラフにプロットすると、図2が得られ、これを式にあらわすと、1次時関数となり、次の一次関数(1−1)が得られた。
Cn=α(En) (1)
y=1.544x−2.477 (1−1)
式(1−1)のxに、20℃における過硫酸アンモニウムの初期濃度(Cn)における導電率(En)(S/m)6.194を代入すると、20℃における過硫酸アンモニウムの初期濃度(Cn)(質量%)は、7.087質量%であると計算された。
From Table 2, the relationship between the initial concentration of ammonium persulfate (Cn) (mass%) (y) and the conductivity (En) (S / m) (x) during dissolution at a liquid temperature of 20 ° C. is When the following equation (1) is obtained and this is plotted on a graph, FIG. 2 is obtained. When this is expressed in the equation, a linear function is obtained, and the following linear function (1-1) is obtained.
Cn = α (En) (1)
y = 1.544x-2.477 (1-1)
When the electric conductivity (En) (S / m) 6.194 at the initial concentration (Cn) of ammonium persulfate at 20 ° C. is substituted for x in the formula (1-1), the initial concentration (Cn) of ammonium persulfate at 20 ° C. (Mass%) was calculated to be 7.087 mass%.

次に、上記過硫酸アンモニウム溶液を50℃にて数十時間放置し、液温20℃における放置後の濃度(cn)と導電率(en)の測定を、滴定により測定した。その結果を表3に示した。その結果、時間経過とともに過硫酸アンモニウムが分解して濃度が低下するに伴い、導電率が上昇する傾向のデータを得た。また、溶液によってその分解に対する導電率の変化が異なることが分かった。これは、同濃度の過硫酸アンモニウム溶液であっても、それと未分解の過硫酸アンモニウムと分解後の硫酸アンモニウムイオンとの共存溶液とでは、導電率の値が異なることを意味している。これはつまり、初期濃度によって、過硫酸アンモニウムの分解変化率(単一導電率変化当りの分解濃度の割合)が異なることを示している。
Next, the ammonium persulfate solution was allowed to stand at 50 ° C. for several tens of hours, and the concentration (cn) and conductivity (en) after standing at a liquid temperature of 20 ° C. were measured by titration. The results are shown in Table 3. As a result, data on the tendency of the conductivity to increase as ammonium persulfate decomposes over time and the concentration decreases was obtained. Moreover, it turned out that the change of the electric conductivity with respect to the decomposition | disassembly differs with solutions. This means that even in the case of an ammonium persulfate solution having the same concentration, the conductivity value is different between it and the coexisting solution of undecomposed ammonium persulfate and ammonium sulfate ions after decomposition. This indicates that the decomposition change rate of ammonium persulfate (the ratio of the decomposition concentration per single conductivity change) differs depending on the initial concentration.

Figure 0005254672
Figure 0005254672

表3より、液温20℃における初期濃度の過硫酸アンモニウムの導電率(En)と放置後の過硫酸アンモニウムの導電率(en)の変化量
(ΔEn)と、初期濃度の過硫酸アンモニウム濃度(Cn)と放置後の過硫酸アンモニウムの濃度(cn)の変化量(ΔCn)を計算し、これを表4に示した。図3は、表4のデータをプロットしたものである。即ち、図3における縦軸は、初期濃度の過硫酸アンモニウム濃度(Cn)と放置後の過硫酸アンモニウムの濃度(C)の変化量(ΔCn)を表し、横軸は、液温20℃における初期濃度の過硫酸アンモニウムの導電率(En)と放置後の過硫酸アンモニウムの導電率(en)の変化量(ΔEn)を表したものである。例えば、表4中の初期過硫酸アンモニウムの濃度が5質量%のときの放置後の濃度の変化量(低下APS濃度)(質量%)(ΔCn)の0.1468は、表3中の5.000−4.8532=0.1468から求めたものであり、導電率の変化量(上昇導電率)(S/m)(ΔEn)の0.44は、表3中の4.760−4.320=0.4400から求めたものである。同様にして、表4中のその他の値も表3から計算したものである。
その結果、導電率が上昇した場合、初期濃度が低いほど、分解する過硫酸アンモニウム濃度が低くなることが判明した。
From Table 3, the conductivity (En) of the initial concentration of ammonium persulfate at a liquid temperature of 20 ° C., the amount of change (ΔEn) in the conductivity (en) of the ammonium persulfate after standing, and the initial concentration of ammonium persulfate concentration (Cn) The amount of change (ΔCn) in the ammonium persulfate concentration (cn) after being allowed to stand was calculated and is shown in Table 4. FIG. 3 is a plot of the data in Table 4. That is, the vertical axis in FIG. 3 represents the initial concentration of ammonium persulfate (Cn) and the amount of change (ΔCn) in the ammonium persulfate concentration (C) after standing, and the horizontal axis represents the initial concentration at a liquid temperature of 20 ° C. It represents the amount of change (ΔEn) in the conductivity (En) of ammonium persulfate and the conductivity (en) of ammonium persulfate after standing. For example, when the initial ammonium persulfate concentration in Table 4 is 5% by mass, 0.1468 of the concentration change (decreased APS concentration) (% by mass) (ΔCn) after standing is 5.000 in Table 3. -4,532 = 0.1468, and the change amount of conductivity (increased conductivity) (S / m) (ΔEn) of 0.44 is 4.760-4.320 in Table 3. = 0.4400. Similarly, other values in Table 4 are also calculated from Table 3.
As a result, it was found that when the conductivity increased, the lower the initial concentration, the lower the ammonium persulfate concentration that decomposed.

Figure 0005254672
Figure 0005254672

以上の結果から、各濃度において導電率の上昇と過硫酸アンモニウム濃度の低下との関係は初期過硫酸アンモニウム25質量%に於いて、相関係数R2=0.9995以上の一次関数で示すことできる式であることが分かる。また、その単位導電率上昇変化あたりの過硫酸アンモニウム低下量の変化は、初期過硫酸アンモニウム濃度が高いほど大きいことが分かる。即ち初期濃度が低いほど単位導電率上昇あたりの過硫酸アンモニウムの分解も小さい。
図3から得られるグラフの各直線の近似式を求めると、表5となった。
From the above results, the relationship between the increase in conductivity and the decrease in ammonium persulfate concentration at each concentration is an equation that can be expressed by a linear function with a correlation coefficient R2 = 0.9995 or more at an initial ammonium persulfate concentration of 25% by mass. I understand that there is. Moreover, it turns out that the change of the ammonium persulfate fall amount per unit conductivity rise change is so large that an initial stage ammonium persulfate density | concentration is high. That is, the lower the initial concentration, the smaller the decomposition of ammonium persulfate per unit conductivity increase.
Table 5 shows the approximate expression of each straight line of the graph obtained from FIG.

Figure 0005254672
Figure 0005254672

表5の直線の傾きは、(Δ濃度)/(Δ導電率)、(ΔCn)/(ΔEn)であるので、この傾きである(Δ濃度)/(Δ導電率)、(ΔCn)/(ΔEn)と初期過硫酸アンモニウム濃度(Cn)をそれぞれピックアップしたものが表6の値となり、表6をグラフに表したものが図4となる。
Since the slopes of the straight lines in Table 5 are (Δconcentration) / (Δconductivity), (ΔCn) / (ΔEn), these slopes are (Δconcentration) / (Δconductivity), (ΔCn) / ( The values picked up for ΔEn) and the initial ammonium persulfate concentration (Cn) are the values in Table 6, and FIG. 4 is a graph showing Table 6 in FIG.

Figure 0005254672
Figure 0005254672

その結果、表6及び図4の関係式より、各濃度における単位導電率上昇あたりの濃度低下である、過硫酸塩溶液の分解変化率
(ΔCn)/Δ(En)((Δ濃度)/(Δ導電率))と初期濃度(Cn)との関係を示す関数である式
(ΔCn)/(ΔEn)=β(Cn) (2)
は、次の指数関数である式(2−1)で表すことが出来ることが判明した。この式は、R2=0.9285以上と良好な相関係数を得た。
y=0.2804x0.3497 (2−1)
この導電率の上昇は、下記の化学式に示す通り、過硫酸塩が時間経過とともに硫酸イオンと水素イオンに分解していることを示唆していると考えられる。
2(NH4)++S2O8 2-+2OH-+2H+→2(NH4)++2SO4 2-+2H++H2O2
次に、式(2−1)のxに、過硫酸アンモニウムの初期濃度(Cn)(質量%)である、7.087質量%を代入すると、
y=0.2804×7.0870.3497=0.5561
となり、サンプルの分解変化率(ΔCn)/(ΔEn)は、0.5561であることが計算された。
As a result, from the relational expressions in Table 6 and FIG. 4, the degradation change rate of the persulfate solution (ΔCn) / Δ (En) ((Δ concentration) / ( [Delta] conductivity)) and the function indicating the relationship between the initial concentration (Cn) (ΔCn) / (ΔEn) = β (Cn) (2)
Can be expressed by the following exponential function (2-1). This equation obtained a good correlation coefficient of R2 = 0.9285 or more.
y = 0.2804x 0.3497 (2-1)
This increase in conductivity is considered to suggest that persulfate is decomposed into sulfate ions and hydrogen ions over time as shown in the following chemical formula.
2 (NH 4) + + S 2 O 8 2- + 2OH - + 2H + → 2 (NH 4) + + 2SO 4 2- + 2H + + H 2 O 2
Next, when substituting 7.087 mass%, which is the initial concentration (Cn) (mass%) of ammonium persulfate, in x of the formula (2-1),
y = 0.2804 × 7.087 0.3497 = 0.5561
Thus, the decomposition change rate (ΔCn) / (ΔEn) of the sample was calculated to be 0.5561.

次に、放置した未知資料1の液温28℃における導電率を測定したところ、7.979(S/m)であり、図1を用いて、測定ポイントに最も近い式の傾きを採用し、(4−2)式よりy=ax+b式のa(傾き)に0.1500を代入し、上記導電率(y)と液温(x)の値とを代入し、測定サンプルの液温と導電率の関係を表す式が、
7.979=0.1500×28+b、b=3.779となり、
y=0.1500x+3.779となることが計算された。
上式を用いて、x=20を代入すると、
y=0.1500×20+3.779となり、測定したサンプルの20℃における導電率が6.779(S/m)であると計算された。
Next, when the conductivity of the left unknown material 1 at a liquid temperature of 28 ° C. was measured, it was 7.979 (S / m). Using FIG. 1, the slope of the equation closest to the measurement point was adopted, Substituting 0.1500 into a (slope) of y = ax + b equation from equation (4-2), substituting the above conductivity (y) and liquid temperature (x) values, and measuring the liquid temperature and conductivity of the measurement sample. The expression that expresses the relationship between rates is
7.979 = 0.1500 × 28 + b, b = 3.779,
It was calculated that y = 0.1500x + 3.779.
Using the above equation, substituting x = 20,
y = 0.1500 × 20 + 3.779, and the measured conductivity of the sample at 20 ° C. was calculated to be 6.779 (S / m).

前記工程により求められた、前記溶解直後の過硫酸塩溶液の初期濃度(Cn)における導電率(En)と薬液供給時の過硫酸塩溶液の導電率(en)の導電率変化(ΔEn)は、
(ΔEn)=(en)−(En) (5)
と、初期濃度(Cn)、過硫酸塩溶液の分解変化率(ΔCn)/(ΔEn)との関係から、薬液供給時の濃度C(残存する過硫酸塩の濃度)を示す関数は、残存する過硫酸塩の濃度=(初期濃度)−(分解変化率)×(導電率変化)となる。ここで、過硫酸塩溶液の分解変化率とは、単位導電率変化当たりの過硫酸アンモニウムの分解変化率(ΔCn)/(ΔEn)であり、導電率変化(ΔEn)とは、ΔEn=(en)−(En)となり、薬液供給時の濃度C(残存する過硫酸塩の濃度)を示す上記関数は、式(3)で表すことができる。
(C)=(Cn)−{(ΔCn)/(ΔEn)}×(ΔEn) (3)
また、式(3)に、初期濃度、(Cn)=7.087、分解変化率、
(ΔCn)/(ΔEn)=0.5561、(ΔEn)=(en)−(En)=6.779−6.194を代入すると、
y=7.087−0.5561×(6.779−6.194)=6.765となり、20℃における初期導電率6.779(S/m)となる過硫酸アンモニウムの濃度は、6.765質量%であることが計算された。
実際に滴定により、濃度を測定したところ6.737質量%であり、計算値と実測値との差異は0.02800質量%であった。
The electrical conductivity change (ΔEn) of the electrical conductivity (En) at the initial concentration (Cn) of the persulfate solution immediately after dissolution and the electrical conductivity (en) of the persulfate solution at the time of supplying the chemical solution obtained by the above step is ,
(ΔEn) = (en) − (En) (5)
From the relationship between the initial concentration (Cn) and the decomposition change rate of the persulfate solution (ΔCn) / (ΔEn), a function indicating the concentration C (concentration of the remaining persulfate) at the time of supplying the chemical solution remains. Persulfate concentration = (initial concentration) − (decomposition change rate) × (conductivity change). Here, the decomposition change rate of the persulfate solution is the decomposition change rate (ΔCn) / (ΔEn) of ammonium persulfate per unit conductivity change, and the conductivity change (ΔEn) is ΔEn = (en) -(En), and the above function indicating the concentration C (concentration of the remaining persulfate) at the time of supplying the chemical solution can be expressed by the equation (3).
(C) = (Cn) − {(ΔCn) / (ΔEn)} × (ΔEn) (3)
In addition, the initial concentration, (Cn) = 7.087, the decomposition change rate,
Substituting (ΔCn) / (ΔEn) = 0.5561, (ΔEn) = (en) − (En) = 6.779-6.194,
y = 7.087−0.5561 × (6.779−6.194) = 6.765, and the concentration of ammonium persulfate at which the initial conductivity at 20 ° C. is 6.779 (S / m) is 6.765. It was calculated to be mass%.
When the concentration was actually measured by titration, it was 6.737% by mass, and the difference between the calculated value and the actually measured value was 0.02800% by mass.

<実施例2−3>
同様に未知資料2、3の、溶解直後の導電率の測定後、放置後の導電率から求めた値と実測値を比較した。
<Example 2-3>
Similarly, after measuring the electrical conductivity of the unknown materials 2 and 3 immediately after dissolution, the value obtained from the electrical conductivity after standing was compared with the actual measurement value.

Figure 0005254672
Figure 0005254672

その結果、式(3)から求めた、過硫酸アンモニウムの劣化濃度、即ち、液供給時の過硫酸アンモニウムの濃度は、表7に示すとおり、
y=16.42質量%であり、計算値と実測値との差異は0.2500質量%であった。
As a result, the deterioration concentration of ammonium persulfate obtained from the formula (3), that is, the concentration of ammonium persulfate at the time of supplying the liquid, as shown in Table 7,
y = 16.42% by mass, and the difference between the calculated value and the actually measured value was 0.2500% by mass.

Figure 0005254672
Figure 0005254672

その結果、式(3)から求めた、過硫酸アンモニウムの劣化濃度、即ち、液供給時の過硫酸アンモニウムの濃度は、表8に示すとおり、
y=25.06質量%であり、計算値と実測値との差異は0.1600質量%であった。
As a result, the deterioration concentration of ammonium persulfate obtained from the formula (3), that is, the concentration of ammonium persulfate at the time of supplying the liquid, as shown in Table 8,
y = 25.06 mass%, and the difference between the calculated value and the actually measured value was 0.1600 mass%.

以上のように3種類の未知資料においての式1)、式2)、式3)および式4)から求めた値と滴定にて求めたそれぞれの実測値は、ほぼ同等の値であり、本方法による過硫酸アンモニウム濃度のモニタリングは可能且つ良好であることが実証された。   As described above, the values obtained from Equation 1), Equation 2), Equation 3) and Equation 4) for the three types of unknown materials and the actual values obtained by titration are almost equivalent values. Monitoring of ammonium persulfate concentration by the method has proven to be possible and good.

本発明は、粉末または固形物の過硫酸塩を溶媒に溶解して所望濃度の過硫酸溶液として、スラリーを使用する化学機械的研磨工程に供給する薬液供給装置であって、溶解後に導電率を測定することによって過硫酸塩の成分分濃度を求め、その後導電率変化を計測することによって過硫酸塩の分解率を捉えることにより、分解後の有効過硫酸塩成分の濃度を計算して、酸化力の低下を管理することができる。   The present invention relates to a chemical supply apparatus for dissolving a powder or solid persulfate in a solvent and supplying it to a chemical mechanical polishing process using a slurry as a persulfuric acid solution having a desired concentration. The concentration of persulfate component is obtained by measuring, and then the persulfate decomposition rate is measured by measuring the change in conductivity. Can manage power decline.

過硫酸アンモニウム溶液の濃度/液温/導電率との関係を示す図。The figure which shows the relationship of the density | concentration / liquid temperature / electric conductivity of an ammonium persulfate solution. 液温20℃における過硫酸アンモニウム導電率と濃度との関係を示す図。The figure which shows the relationship between ammonium persulfate electrical conductivity in liquid temperature 20 degreeC, and a density | concentration. 導電率変化量(ΔEn)と過硫酸アンモニウム濃度変化量(ΔCn)との関係を示す図。The figure which shows the relationship between electrical conductivity change amount ((DELTA) En) and ammonium persulfate density | concentration variation ((DELTA) Cn). 初期過硫酸アンモニウム濃度(Cn)と過硫酸アンモニウム分解変化率(ΔCn)/(ΔEn)との関係を示す図。The figure which shows the relationship between initial stage ammonium persulfate density | concentration (Cn) and ammonium persulfate decomposition | disassembly change rate ((DELTA) Cn) / ((DELTA) En).

Claims (3)

化学機械的研磨工程に過硫酸アンモニウムを含む薬液を供給する薬液供給方法において、
粉末または固形物の過硫酸アンモニウムに溶媒を加えて溶解して、5質量%以下毎の幅で低濃度から高濃度に亘り各種濃度の過硫酸アンモニウム溶液を作成し、任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の初期濃度(Cn)の導電率(En)を測定する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の導電率(En)と前記任意の温度における溶解直後の過硫酸アンモニウム溶液の初期濃度(Cn)との関係を示す一次関数である式(1−1)を予め作成する工程と、
式(1−1)より、前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の導電率(En)における過硫酸アンモニウム溶液の初期濃度(Cn)を算出する工程と、
前記任意の温度における薬液供給時の過硫酸アンモニウム溶液の導電率(en)を測定する工程と、
式(5)より、前記溶解直後における過硫酸アンモニウム溶液の初期濃度(Cn)における導電率(En)と薬液供給時の過硫酸アンモニウム溶液の導電率(en)との導電率変化量である(ΔEn)を算出する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の初期濃度(Cn)と薬液供給時の分解変化率(ΔCn)/(ΔEn)との関係を示す指数関数である式(2−1)を予め作成する工程(ただし、(ΔCn)は、溶解直後における過硫酸塩溶液の初期濃度と薬液供給時の濃度との変化量である)と、
式(2−1)より、前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の初期濃度(Cn)における薬液供給時の分解変化率(ΔCn)/(ΔEn)を算出する工程と、
前記工程により測定及び算出した、前記溶解直後の過硫酸アンモニウム溶液の初期濃度(Cn)と、薬液供給時の過硫酸アンモニウム溶液の分解変化率(ΔCn)/(ΔEn)と、前記薬液供給時の過硫酸アンモニウム溶液の導電率の変化量(ΔEn)とを式(3)に代入し、薬液供給時の過硫酸アンモニウム溶液の濃度(残存する過硫酸塩の濃度)(C)を求める工程とよりなることを特徴とする薬液供給方法。
(Cn)=a(En)+b (1−1)
(式(1−1)は、一次関数であり、a、bは、実験により求めた定数である)
(ΔEn)=(en)−(En) (5)
(ΔCn)/(ΔEn)=c(Cn)d (2−1)
(式(2−1)は、指数関数であり、c、dは、実験により求めた定数である)
(C)=(Cn)−{(ΔCn)/(ΔEn)}×(ΔEn) (3)
In the chemical solution supplying method for supplying the chemical solution containing ammonium persulfate to the chemical mechanical polishing step,
Was dissolved in ammonium persulfate by addition of solvent of powders or solids, 5% by mass of ammonium persulfate solutions of various concentrations were prepared over a high concentration from a low concentration range of each following, immediately after dissolution at any temperature various Measuring the conductivity (En) of the initial concentration (Cn) of the ammonium persulfate solution at a concentration;
Equation (1) which is a linear function showing the relationship between the conductivity (En) of the ammonium persulfate solution at various concentrations immediately after dissolution at the arbitrary temperature and the initial concentration (Cn) of the ammonium persulfate solution immediately after dissolution at the arbitrary temperature. -1) in advance,
From the equation (1-1), calculating the initial concentration (Cn) of the ammonium persulfate solution in the conductivity (En) of the ammonium persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature;
Measuring the conductivity (en) of the ammonium persulfate solution when supplying the chemical solution at the arbitrary temperature;
From Equation (5), the change in conductivity between the conductivity (En) at the initial concentration (Cn) of the ammonium persulfate solution immediately after dissolution and the conductivity (en) of the ammonium persulfate solution at the time of supplying the chemical solution (ΔEn) Calculating
Formula (2-1) which is an exponential function showing the relationship between the initial concentration (Cn) of ammonium persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature and the rate of change in decomposition (ΔCn) / (ΔEn) during chemical supply (Where (ΔCn) is the amount of change between the initial concentration of the persulfate solution immediately after dissolution and the concentration at the time of supplying the chemical solution),
From the equation (2-1), a step of calculating a decomposition change rate (ΔCn) / (ΔEn) at the time of supplying a chemical solution at an initial concentration (Cn) of an ammonium persulfate solution having various concentrations immediately after dissolution at the arbitrary temperature;
The initial concentration (Cn) of the ammonium persulfate solution immediately after dissolution, the decomposition change rate (ΔCn) / (ΔEn) of the ammonium persulfate solution at the time of supplying the chemical solution, and the ammonium persulfate at the time of supplying the chemical solution, which are measured and calculated by the above steps Substituting the amount of change in electrical conductivity of the solution (ΔEn) into the equation (3) to obtain the concentration of ammonium persulfate solution (concentration of remaining persulfate) (C) when supplying the chemical solution. The chemical solution supply method.
(Cn) = a (En) + b (1-1)
(Formula (1-1) is a linear function, and a and b are constants obtained by experiments)
(ΔEn) = (en) − (En) (5)
(ΔCn) / (ΔEn) = c (Cn) d (2-1)
(Formula (2-1) is an exponential function, and c and d are constants obtained by experiments)
(C) = (Cn) − {(ΔCn) / (ΔEn)} × (ΔEn) (3)
前記の過硫酸アンモニウムを含む薬液が化学機械的研磨工程用の砥粒を含むスラリーを混合した薬液である請求項1に記載の薬液供給方法。   The chemical solution supply method according to claim 1, wherein the chemical solution containing ammonium persulfate is a chemical solution in which a slurry containing abrasive grains for chemical mechanical polishing is mixed. 化学機械的研磨工程に過硫酸アンモニウムを含む薬液を供給する薬液供給装置において、
粉末または固形物の過硫酸アンモニウムに溶媒を加えて溶解して、5質量%以下毎の幅で低濃度から高濃度に亘り作成された各種濃度の過硫酸アンモニウム溶液を用いて、任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の初期濃度(Cn)の導電率(En)を測定する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の導電率(En)と前記任意の温度における溶解直後の過硫酸アンモニウム溶液の初期濃度(Cn)との関係を示す一次関数である式(1−1)を予め作成する工程と、
式(1−1)より、前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の導電率(En)における過硫酸アンモニウム溶液の初期濃度(Cn)を算出する工程と、
前記任意の温度における薬液供給時の過硫酸アンモニウム溶液の導電率(en)を測定する工程と、
式(2−1)より、前記溶解直後における過硫酸アンモニウム溶液の初期濃度(Cn)における導電率(En)と薬液供給時の過硫酸アンモニウム溶液の導電率(en)との導電率変化量である(ΔEn)を算出する工程と、
前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の初期濃度(Cn)と薬液供給時の分解変化率(ΔCn)/(ΔEn)との関係を示す指数関数である式(2−1)を予め作成する工程(ただし、(ΔCn)は、溶解直後における過硫酸アンモニウム溶液の初期濃度と薬液供給時の濃度との変化量である)と、
式(3)より、前記任意の温度における溶解直後の各種濃度の過硫酸アンモニウム溶液の初期濃度(Cn)における薬液供給時の分解変化率(ΔCn)/(ΔEn)を算出する工程と、
前記工程により測定及び算出した、前記溶解直後の過硫酸アンモニウム溶液の初期濃度(Cn)と、薬液供給時の過硫酸アンモニウム溶液の分解変化率
(ΔCn)/(ΔEn)と、前記薬液供給時の過硫酸アンモニウム溶液の導電率の変化量(ΔEn)とを式(3)に代入し、薬液供給時の過硫酸アンモニウム溶液の濃度(残存する過硫酸アンモニウムの濃度)(C)を求める工程とよりなる機構を備えたことを特徴とする薬液供給装置。
(Cn)=a(En)+b (1−1)
(式(1−1)は、一次関数であり、a、bは、実験により求めた定数である)
(ΔEn)=(en)−(En) (5)
(ΔCn)/(ΔEn)=c(Cn)d (2−1)
(式(2−1)は、指数関数であり、c、dは、実験により求めた定数である)
(C)=(Cn)−{(ΔCn)/(ΔEn)}×(ΔEn) (3)
In the chemical solution supply apparatus for supplying a chemical solution containing ammonium persulfate to the chemical mechanical polishing process,
It was dissolved in ammonium persulfate by addition of solvent of powder or solid, with ammonium persulfate solution created various concentrations over the high concentration from a low concentration range of each under 5% by mass or, dissolution at any temperature Measuring the conductivity (En) of the initial concentration (Cn) of the ammonium persulfate solution of various concentrations immediately after;
Equation (1) which is a linear function showing the relationship between the conductivity (En) of the ammonium persulfate solution at various concentrations immediately after dissolution at the arbitrary temperature and the initial concentration (Cn) of the ammonium persulfate solution immediately after dissolution at the arbitrary temperature. -1) in advance,
From the equation (1-1), calculating the initial concentration (Cn) of the ammonium persulfate solution in the conductivity (En) of the ammonium persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature;
Measuring the conductivity (en) of the ammonium persulfate solution when supplying the chemical solution at the arbitrary temperature;
From the formula (2-1), the change in conductivity between the conductivity (En) at the initial concentration (Cn) of the ammonium persulfate solution immediately after the dissolution and the conductivity (en) of the ammonium persulfate solution at the time of supplying the chemical solution ( Calculating ΔEn);
Formula (2-1) which is an exponential function showing the relationship between the initial concentration (Cn) of ammonium persulfate solution of various concentrations immediately after dissolution at the arbitrary temperature and the rate of change in decomposition (ΔCn) / (ΔEn) during chemical supply (Where (ΔCn) is the amount of change between the initial concentration of the ammonium persulfate solution immediately after dissolution and the concentration at the time of supplying the chemical solution),
From Equation (3), a step of calculating a decomposition change rate (ΔCn) / (ΔEn) at the time of supplying a chemical solution at an initial concentration (Cn) of an ammonium persulfate solution having various concentrations immediately after dissolution at the arbitrary temperature;
The initial concentration (Cn) of the ammonium persulfate solution immediately after dissolution, the decomposition change rate (ΔCn) / (ΔEn) of the ammonium persulfate solution at the time of supplying the chemical solution, and the ammonium persulfate at the time of supplying the chemical solution, which are measured and calculated by the above steps Substituting the amount of change in electrical conductivity of the solution (ΔEn) into equation (3) to obtain the concentration of ammonium persulfate solution (concentration of remaining ammonium persulfate) (C) when supplying the chemical solution, and a mechanism comprising A chemical supply apparatus characterized by the above.
(Cn) = a (En) + b (1-1)
(Formula (1-1) is a linear function, and a and b are constants obtained by experiments)
(ΔEn) = (en) − (En) (5)
(ΔCn) / (ΔEn) = c (Cn) d (2-1)
(Formula (2-1) is an exponential function, and c and d are constants obtained by experiments)
(C) = (Cn) − {(ΔCn) / (ΔEn)} × (ΔEn) (3)
JP2008155216A 2008-06-13 2008-06-13 Chemical supply method and chemical supply device Expired - Fee Related JP5254672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155216A JP5254672B2 (en) 2008-06-13 2008-06-13 Chemical supply method and chemical supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155216A JP5254672B2 (en) 2008-06-13 2008-06-13 Chemical supply method and chemical supply device

Publications (2)

Publication Number Publication Date
JP2009302293A JP2009302293A (en) 2009-12-24
JP5254672B2 true JP5254672B2 (en) 2013-08-07

Family

ID=41548892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155216A Expired - Fee Related JP5254672B2 (en) 2008-06-13 2008-06-13 Chemical supply method and chemical supply device

Country Status (1)

Country Link
JP (1) JP5254672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457858B2 (en) * 2010-01-27 2014-04-02 アプリシアテクノロジー株式会社 Chemical supply method and chemical supply device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172745B2 (en) * 1994-06-08 2001-06-04 栗田工業株式会社 Method for measuring peroxodisulfuric acid in wastewater
JP2001260006A (en) * 2000-03-23 2001-09-25 Matsushita Electric Ind Co Ltd Abrasive adjusting device and abrasive adjusting method
JP2002237478A (en) * 2001-02-08 2002-08-23 Hitachi Chem Co Ltd Method of polishing cmp
JP2004137519A (en) * 2002-10-15 2004-05-13 Nagase & Co Ltd Method for controlling etching liquid, and apparatus for controlling etching liquid
JP2008078577A (en) * 2006-09-25 2008-04-03 Jsr Corp Substrate processing method
JP2008277601A (en) * 2007-05-01 2008-11-13 Apprecia Technology Inc Chemical supply method and chemical supply device

Also Published As

Publication number Publication date
JP2009302293A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
Pate et al. Chemical metrology methods for CMP quality
US5846398A (en) CMP slurry measurement and control technique
Noszticzius et al. Use of ion-selective electrodes for monitoring oscillating reactions. 2. Potential response of bromide-iodide-selective electrodes in slow corrosive processes. Disproportionation of bromous and iodous acids. A Lotka-Volterra model for the halate driven oscillators
Allen et al. Characterisation of aqueous ferric chloride etchants used in industrial photochemical machining
US20220325205A1 (en) Treatment Liquid for Semiconductor Wafers, Which Contains Hypochlorite Ions
TWI396224B (en) Method and apparatus for measuring and detecting optical emission and determining relative concentrations of atoms of gas
JP5254672B2 (en) Chemical supply method and chemical supply device
JP2008277601A (en) Chemical supply method and chemical supply device
Bigman et al. Monitoring of chemicals and water
KR20210125997A (en) Treatment liquid for semiconductor wafers containing hypochlorite ions and a pH buffer
WO2009113994A1 (en) Analysis of fluoride at low concentrations in acidic processing solutions
Johnston et al. The Solubility of Gold Hydroxide in Alkali and Equilibria in the Saturated Solutions1
KR20220136262A (en) Semiconductor treatment liquid
Prasanna Venkatesh et al. Electrochemical characterization of Cu dissolution and chemical mechanical polishing in ammonium hydroxide–hydrogen peroxide based slurries
JP6028977B2 (en) Method for measuring component concentration of etching solution and method for managing etching solution
TW202206647A (en) Semiconductor wafer processing liquid containing hypobromite ions and ph buffering agent
JP3688593B2 (en) Method for analyzing impurities in silicon materials
Phatak et al. Sensor-based modeling of slurry chemistry effects on the material removal rate (MRR) in copper-CMP process
US9658203B2 (en) Metal collection solution and method of analyzing substrate contamination
McGhee et al. Chemomechanical polishing of gallium arsenide and cadmium telluride to subnanometre surface finish. Evaluation of the action and effectiveness of hydrogen peroxide, sodium hypochlorite and dibromine as reagents
Lu et al. Evaluation of cleaning efficiency with a radioactive tracer and development of a microwave digestion method for semiconductor processes
JP2022123278A (en) Quantification method of halogen oxygen acid ion
TWI716826B (en) Additive, additive dispersion, etching raw material unit, additive supply device, etching device, and etching method
WO1999012026A1 (en) Quantitative analysis method, quantitative analyzer, and etching controlling method for mixed acid fluid in etching process, and process for producing said mixed acid fluid
JP4008309B2 (en) Acid concentration analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees