JP5252985B2 - Elasticity measurement method inside skin - Google Patents

Elasticity measurement method inside skin Download PDF

Info

Publication number
JP5252985B2
JP5252985B2 JP2008120609A JP2008120609A JP5252985B2 JP 5252985 B2 JP5252985 B2 JP 5252985B2 JP 2008120609 A JP2008120609 A JP 2008120609A JP 2008120609 A JP2008120609 A JP 2008120609A JP 5252985 B2 JP5252985 B2 JP 5252985B2
Authority
JP
Japan
Prior art keywords
skin
ultrasonic
elasticity
phantom
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008120609A
Other languages
Japanese (ja)
Other versions
JP2009268640A (en
Inventor
真由美 佐藤
宰 小山内
稔 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008120609A priority Critical patent/JP5252985B2/en
Publication of JP2009268640A publication Critical patent/JP2009268640A/en
Application granted granted Critical
Publication of JP5252985B2 publication Critical patent/JP5252985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0055Detecting, measuring or recording by applying mechanical forces or stimuli by applying suction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、皮膚各部位の内部弾性を非侵襲で計測する方法に関する。   The present invention relates to a method for non-invasively measuring the internal elasticity of each part of the skin.

皮膚の柔軟性を非侵襲で測定する方法は、従来色々な方法が考案されている。例えば、皮膚を減圧で吸引して皮膚の変形を計測する吸引法、皮膚を機械的に持ち上げたり押し込んだりして、皮膚の変形を計測する牽引・圧搾法、皮膚表面に垂直に重りのついた物を落とし、その落ちたときの振動の減衰を計測するバリスト法、超音波振動子を利用し、皮膚に垂直に振動を与え、その振動の帰りを測定する超音波振動法、皮膚に1つあるいは2つの金属接触子を密着させ伸縮させその応力等を測定する伸展法、皮膚に円盤状のDiskを皮膚に当て回転トルクをかけてその応力や位相のずれを測定する捻れ法、ある周波数の波動を皮膚に水平に伝搬させ、その振動の速さや振動の位相のズレを測定する波動伝搬法等が知られている。このうち、吸引法は、皮膚のはり・たるみを測定する一般的な評価法としてその地位を確立しており、一定の吸引圧及び時間で変形する皮膚の変位を解析した場合に、戻り弾性比率(Ur/Uf)には加齢に伴いその戻り比率が減少することが報告されている(非特許文献1及び2)。
しかしながら、皮膚は多層構造を有することから、それぞれの層(表皮・真皮・皮下組織)の寄与が互いに影響し、いずれ方法を用いてもこれらが合成されて検出されるために、皮膚のどこの部分がどのように寄与し検出されるかどうかは不明であり、また、皮膚の内部弾性を非侵襲で表皮・真皮・皮下組織といった層別に算出することは不可能である。
Various methods have been devised for non-invasive measurement of skin flexibility. For example, a suction method that measures skin deformation by sucking the skin under reduced pressure, a traction / squeeze method that measures skin deformation by mechanically lifting or pushing the skin, and a weight perpendicular to the skin surface. The ballist method that measures the attenuation of vibration when dropping an object, the ultrasonic vibration method that uses an ultrasonic transducer to apply vibration to the skin vertically and measures the return of the vibration, one on the skin Alternatively, an extension method in which two metal contacts are brought into close contact with each other and stretched to measure the stress, a twisting method in which a disk-shaped disk is applied to the skin and a rotational torque is applied to measure the stress or phase shift, A wave propagation method is known in which a wave is propagated horizontally to the skin and the speed of vibration and the phase shift of the vibration are measured. Among these, the suction method has established its position as a general evaluation method for measuring skin tension and sagging, and when the displacement of the skin deformed with a constant suction pressure and time is analyzed, the return elastic ratio In (Ur / Uf), it is reported that the return ratio decreases with aging (Non-Patent Documents 1 and 2).
However, since the skin has a multi-layer structure, the contribution of each layer (epidermis, dermis, subcutaneous tissue) affects each other, and they are synthesized and detected by any method. It is unclear how the part contributes and is detected, and it is impossible to calculate the internal elasticity of the skin in a non-invasive manner according to layers such as epidermis, dermis, and subcutaneous tissue.

一方、超音波診断装置は、生体内部の構造を表示する診断装置として医療機関で一般的に使用されているが、最近ではその静的な生体内部情報(構造)だけではなく生体内部の動的情報(心臓の弁膜の柔軟性・乳癌等の腫瘍の診断)を捉える組織弾性イメージング法(例えばTSI:Tissue Strain Imaging)という技術が開発されてきている(特許文献1、2及び3)。   On the other hand, an ultrasonic diagnostic apparatus is generally used in a medical institution as a diagnostic apparatus for displaying a structure inside a living body. Recently, not only the static in-vivo information (structure) but also dynamics inside the living body. A technique called tissue elasticity imaging method (for example, TSI: Tissue Strain Imaging) that captures information (flexibility of heart valve membrane, diagnosis of tumor such as breast cancer) has been developed (Patent Documents 1, 2, and 3).

組織弾性イメージング法は、超音波画像利用し、生体内部が自己振動することあるいは、外部から振動等で生体内部に力を加えることにより、その歪みを追跡し局所の弾性を可視化及び数値化する方法であり、これによれば、組織の歪みや弾性率データを基にした弾性画像を生成することにより、生体組織の硬さや柔らかさを計測して表示できる。
しかし、これらの方法は、たとえば、外部から振動等で生体内部に力を加える際に力の加え方により、再現性や精度を著しく欠くことがあり、熟練を必要とする計測方法である。またこれらの方法では、生体内部でも比較的浅い部位である皮膚内部の弾力性を正確に測定し、可視化することが困難であるという問題があった。
特開2007−105400号公報 特開2004−57652号公報 特開2005−144155号公報 Takema Y,Yoritomo Y,Kawai M,Imokawa G. Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol1994;131;641-8. Takema Y,Yoritomo Y,Kawai M. The relationship between age-related changes in the physical properties and development of wrinkles in humanfacial skin. J Soc Cosmet Chem 1995;46:163-73.
Tissue elasticity imaging method is a method of visualizing and quantifying local elasticity by using ultrasonic images and tracking the distortion by applying internal force to the inside of the living body by vibration or the like. According to this, it is possible to measure and display the hardness and softness of the living tissue by generating an elastic image based on the strain and elastic modulus data of the tissue.
However, these methods are measurement methods that require skill because reproducibility and accuracy may be significantly lost depending on how the force is applied to the inside of the living body by vibration or the like from the outside. Further, these methods have a problem that it is difficult to accurately measure and visualize the elasticity inside the skin, which is a relatively shallow part even inside the living body.
JP 2007-105400 A JP 2004-57652 A JP 2005-144155 A Takema Y, Yoritomo Y, Kawai M, Imokawa G. Age-related changes in the elastic properties and thickness of human facial skin.Br J Dermatol 1994; 131; 641-8. Takema Y, Yoritomo Y, Kawai M. The relationship between age-related changes in the physical properties and development of wrinkles in humanfacial skin.J Soc Cosmet Chem 1995; 46: 163-73.

本発明は、皮膚内部局所の弾力性を正確に測定し、可視化するための方法に関する。   The present invention relates to a method for accurately measuring and visualizing the elasticity of local areas inside the skin.

本発明者らは、超音波を利用した、皮膚組織の弾性イメージング法について検討したところ、被検体の皮膚と超音波プローブの間に特定の音響特性を有する介在物を挟み、皮膚内部を一定周期で加圧することにより、高精度で且つ再現性良く皮膚内部局所の弾性を可視化及び数値化できることを見出した。   The present inventors examined an elastic imaging method for skin tissue using ultrasonic waves. As a result, an inclusion having specific acoustic characteristics was sandwiched between the skin of the subject and the ultrasonic probe, and the inside of the skin was fixed at a certain period. It was found that the elasticity of the local area inside the skin can be visualized and digitized with high accuracy and good reproducibility.

すなわち、本発明は、以下の1)〜3)に係るものである。
1)被検体内部の歪みを画像化可能な超音波診断装置を用いた皮膚内部の弾性計測方法であって、超音波プローブに設けた加圧・加振手段により、音速1500〜1600m/sの介在物を介して被検体を一定周期で加圧し、被検体内部の弾性率を測定することを特徴とする皮膚内部の弾性計測方法。
2)介在物が厚さ5mm〜30mmの超音波ファントムである1)の方法。
3)被検体を、1mm〜10mm、1〜30秒/1回で押し込むように加圧する1)又は2)の方法。
That is, the present invention relates to the following 1) to 3).
1) A method for measuring elasticity inside a skin using an ultrasonic diagnostic apparatus capable of imaging distortion inside a subject, and having a sound speed of 1500 to 1600 m / s by a pressurizing / vibrating means provided on the ultrasonic probe. A method for measuring elasticity inside a skin, comprising pressurizing a subject with a certain period through an inclusion and measuring an elastic modulus inside the subject.
2) The method according to 1), wherein the inclusion is an ultrasonic phantom having a thickness of 5 to 30 mm.
3) The method of 1) or 2) in which the subject is pressurized so as to be pushed in at 1 mm to 10 mm for 1 to 30 seconds / once.

本発明の方法によれば、高精度度で且つ再現性良く、皮膚内部局所(表皮・真皮、皮下組織、筋層)の絶対的な弾性を可視化及び数値化できる。   According to the method of the present invention, it is possible to visualize and quantify the absolute elasticity of the skin internal region (epidermis / dermis, subcutaneous tissue, muscle layer) with high accuracy and good reproducibility.

本発明の弾性計測方法は、被検体内部の歪みを画像化可能な超音波診断装置であって、超音波プローブに加圧・加振手段を設けた装置を用いて行うことができる。
超音波診断装置としては、被検体表面に超音波プローブを接触させながら超音波ビームを照射し、その反射エコー信号から得られる超音波画像の各画素の移動を超音波の通過速度で追跡し、被検体内部の歪みデータから弾性特性を算出できる超音波診断装置であれば特に限定されるものではなく、例えば、市販の、「Real Time Elastography」(日立メディコ)、「アプリオ」(東芝メディカルシステムズ)等が挙げられる。これらは、いずれも体表から静的な圧力を加えて組織を圧縮変形させ、その際生じる組織内部の歪みを超音波により計測し、歪みから組織の弾性特性を算出するものである。
The elasticity measurement method of the present invention can be performed using an ultrasonic diagnostic apparatus capable of imaging strain inside a subject, and having an ultrasonic probe provided with a pressurizing / vibrating means.
As an ultrasonic diagnostic apparatus, an ultrasonic beam is irradiated while contacting an ultrasonic probe on the surface of a subject, and the movement of each pixel of an ultrasonic image obtained from the reflected echo signal is tracked at the passing speed of the ultrasonic wave. There is no particular limitation as long as it is an ultrasonic diagnostic apparatus capable of calculating elastic properties from strain data inside the subject. For example, commercially available “Real Time Elastography” (Hitachi Medical), “Aprio” (Toshiba Medical Systems) Etc. In any of these methods, a static pressure is applied from the body surface to compressively deform the tissue, and a strain inside the tissue generated at that time is measured by ultrasonic waves, and an elastic characteristic of the tissue is calculated from the strain.

当該超音波診断装置の一般的な構成例を図1に示す。
すなわち、超音波プローブ1は超音波プローブ1内にある超音波送信部2、超音波受信部3から構成され、この超音波プローブ1から得られる超音波信号を処理する信号処理部4から歪み及び弾性率演算部5にて歪み及び弾性率を表示する画像表示器6にて結果が表示される。また、介在物を通して加圧・加振するための加圧・加振装置7には、変位計測部(図示せず)が含まれる。この加圧・加振装置7をパーソナルコンピュータ等から制御する装置制御インターフェース部9から構成される。
この構成により、応力の増分と歪みの増分に対する比である弾性率のデータを取得することができる。
A general configuration example of the ultrasonic diagnostic apparatus is shown in FIG.
That is, the ultrasonic probe 1 is composed of an ultrasonic transmission unit 2 and an ultrasonic reception unit 3 in the ultrasonic probe 1, and distortion and distortion are generated from a signal processing unit 4 that processes an ultrasonic signal obtained from the ultrasonic probe 1. The result is displayed on the image display 6 which displays the strain and elastic modulus in the elastic modulus calculator 5. Further, the pressure / vibration device 7 for applying pressure / vibration through the inclusions includes a displacement measuring unit (not shown). The pressurizing / vibrating device 7 is composed of a device control interface unit 9 that controls the personal computer or the like.
With this configuration, it is possible to acquire elastic modulus data that is a ratio of the stress increment to the strain increment.

超音波プローブ1は、多数の振動子をアレイ状に配列して形成されており、機械式または電子的にビーム走査を行って被検体に超音波を送信及び受信する。   The ultrasonic probe 1 is formed by arranging a large number of transducers in an array, and transmits and receives ultrasonic waves to a subject by performing beam scanning mechanically or electronically.

本発明おいて、加圧・加振手段は、皮膚内部を一定周期で加圧できるものであれば良く、具体的には、電磁式、超音波モーター等で駆動する加振器が挙げられ、超音波プローブの上部又は側面に設けるのが好ましい(図2)。
加圧は、皮膚、皮下組織及び筋層に変形を与えることができる程度であればよく、具体的には、被検体の皮膚表面を10cm以下、好ましくは1mm〜10mm押し込むことができる程度の圧力が好ましい。
また、加圧速度は、10Hz以下が好ましく、粘性を無視できる点で、1Hz以下がより好ましく、0.08〜0.25Hzがさらに好ましい。
一定周期で繰り返し加圧することにより、再現性のある安定した加圧をすることができる。
In the present invention, the pressurizing / vibrating means may be any means that can pressurize the inside of the skin at a constant cycle, and specifically, an electromagnetic type, an exciter driven by an ultrasonic motor, etc. It is preferably provided on the top or side of the ultrasonic probe (FIG. 2).
The pressurization may be of a level that can deform the skin, subcutaneous tissue, and muscle layer. Specifically, the pressure is such that the skin surface of the subject can be pushed into 10 cm or less, preferably 1 mm to 10 mm. Is preferred.
Further, the pressing speed is preferably 10 Hz or less, more preferably 1 Hz or less, and further preferably 0.08 to 0.25 Hz in terms of negligible viscosity.
By repeatedly applying pressure at a constant period, stable and reproducible pressurization can be performed.

本発明の方法は、超音波プローブと被検体の間に厚さ5mm〜30mm、音速1500〜1600m/sの介在物を介して行われる。これにより、超音波プローブで超音波送受信を行いながら、被検体の皮膚又は皮膚組織内部に効果的に応力分布を与えることができ、表皮・真皮が良好に計測できる(実施例1及び2)。
当該介在物としては、人体軟組織と等価な音響特性をもつ基材が挙げられ、いわゆる超音波ファントムが好適である。介在物は、音速の伝播速度を調整すること(生体組織に近づける)が容易である点で、低減衰ゴム基材より、ゼラチン、アガロース、寒天等の含水系ハイドロゲル基材を用いるのが好ましい。
The method of the present invention is performed via an inclusion having a thickness of 5 mm to 30 mm and a sound velocity of 1500 to 1600 m / s between the ultrasonic probe and the subject. Thereby, while performing ultrasonic transmission / reception with an ultrasonic probe, stress distribution can be effectively applied to the skin or skin tissue of the subject, and the epidermis / dermis can be measured well (Examples 1 and 2).
Examples of the inclusion include a base material having acoustic characteristics equivalent to human soft tissue, and a so-called ultrasonic phantom is preferable. It is preferable to use a hydrous hydrogel base material such as gelatin, agarose, agar, etc., rather than a low-damping rubber base material because the inclusion is easy to adjust the propagation speed of sound velocity (close to living tissue). .

介在物は、音速が1500〜1600m/sであるものが用いられるが、1525〜1545m/sが生体組織の音速に近いのでより好ましい。
介在物の音速の計測方法は、生体用超音波周波数である1〜100MHz周波数音波を超音波プローブから介在物に入射させ、その介在物内を通過し支持体との境界面で反射した超音波を超音波プローブで検出し、その介在物内を往復する所要時間と介在物内で超音波を通過した距離(介在物の厚さの2倍)で算出できる(図3)。
Inclusions having an acoustic velocity of 1500 to 1600 m / s are used, but more preferably 1525 to 1545 m / s is close to the acoustic velocity of living tissue.
The measurement method of the sound speed of inclusions is that ultrasonic waves reflected from the boundary surface with the support through the inclusions are incident on the inclusions from the ultrasonic probe, which is a 1 to 100 MHz frequency sound wave that is an ultrasonic frequency for living bodies. Can be calculated by the time required to reciprocate within the inclusion and the distance that the ultrasonic wave has passed through the inclusion (twice the thickness of the inclusion) (FIG. 3).

また、介在物は、焦点距離の確保及び皮膚及び皮下組織の移動追跡の精度の点から、5〜30mmの範囲が好ましく、6〜20mmがより好ましく、6〜10mmがさらに好ましい。   In addition, the inclusion is preferably in the range of 5 to 30 mm, more preferably 6 to 20 mm, and even more preferably 6 to 10 mm from the viewpoint of securing the focal length and the accuracy of tracking movement of the skin and subcutaneous tissue.

上記介在物として好適に使用される超音波ファントムは、人体の皮膚や筋肉組織と同じ音速を持つ親水性のウレタンゴムやゲル基材中に、基材と音響インピーダンスの異なる様々なターゲットを配置したもので、超音波画像システムの品質管理や、医師・医療技術者のトレーニングに使われることが多い。例えば、粉体を懸濁した高分子ゲル(ポリビニールアルコール)を用いた超音波ファントム(特開平11−155856号公報)、堅く弾力性のある例えばABSプラスッチック製のケース内に水ベースポリマー等の組織模倣材料を充填した超音波ファントム(特開2003−180591号公報)、等が知られている。これらの超音波ファントムは、図4に示す一般的な皮膚弾性計測装置Courage and Khazaka社製(ドイツ)Cutometer SEM474にて吸引径6ミリで300mbの吸引圧を5秒間吸引し、その後開放したときの変形する皮膚の変位を解析し、戻り弾性比率(Ur/Uf)で皮膚と同じ弾性率を示す0.05〜0.095に調整してある。   In the ultrasonic phantom preferably used as the inclusion, various targets having different acoustic impedances from the base material are arranged in a hydrophilic urethane rubber or gel base material having the same sound speed as the human skin or muscle tissue. It is often used for quality control of ultrasound imaging systems and training of doctors and medical technicians. For example, an ultrasonic phantom (Japanese Patent Laid-Open No. 11-155856) using a polymer gel (polyvinyl alcohol) in which powder is suspended, a water-based polymer or the like in a case made of hard and elastic material such as ABS Plastic An ultrasonic phantom (Japanese Unexamined Patent Publication No. 2003-180591) filled with a tissue mimicking material is known. These ultrasonic phantoms are obtained when a general skin elasticity measuring device shown in FIG. 4 made by Courage and Khazaka (Germany) Cutometer SEM474 is suctioned with a suction diameter of 6 mm and 300 mb for 5 seconds and then released. The deformation of the deformed skin is analyzed, and the return elastic ratio (Ur / Uf) is adjusted to 0.05 to 0.095 which shows the same elastic modulus as the skin.

皮膚の弾性値計測は、一般的に皮膚上に中空アタッチメントをのせ、アタッチメントの中を減圧吸引し、吸引圧や時間を変えながら皮膚の変形を計測する方法が用いられる。市販されている代表的な機器としてはCourage and Khazaka社製(ドイツ)Cutometer SEM474が挙げられ、このCutometerの皮膚の弾性値の測定パラメーターとして、一定の吸引圧及び時間で変形する皮膚の変位を解析して求められる戻り弾性比率(Ur/Uf)が一般的に用いられている。標準的には、吸引径6ミリで300mbの吸引圧を5秒間吸引し、その後開放したときの変形する皮膚の変位を解析して求められる戻り弾性比率(Ur/Uf)が用いられ、皮膚では0.05〜0.095である。また、加齢によりその値は減少する。従って、本発明において使用する超音波ファントムは、戻り弾性比率(Ur/Uf)が、皮膚と同じ0.05〜0.095であるものが好ましく、10代皮膚の値とされている0.95〜0.60であるものがより好ましい。   The skin elasticity is generally measured by placing a hollow attachment on the skin, sucking the inside of the attachment under reduced pressure, and measuring the deformation of the skin while changing the suction pressure and time. A typical instrument available on the market is the Courage and Khazaka (Germany) Cutometer SEM474, which measures the skin's elastic deformation as a measurement parameter for the skin elasticity of this Cutometer. Thus, the return elastic ratio (Ur / Uf) obtained in this way is generally used. Typically, the return elastic ratio (Ur / Uf) obtained by analyzing the displacement of the deforming skin when the suction diameter is 6 mm and the suction pressure of 300 mb is sucked for 5 seconds and then released is used. 0.05 to 0.095. Moreover, the value decreases with aging. Therefore, the ultrasonic phantom used in the present invention preferably has a return elastic ratio (Ur / Uf) of 0.05 to 0.095, which is the same as that of skin, and is 0.95 which is a value of teenage skin. What is -0.60 is more preferable.

上記介在物は、超音波プローブの超音波送受信面と被検体の間に介在していればよいが、皮膚に対して図1のように並行に設置されるのが好ましい。   The inclusions may be interposed between the ultrasonic transmission / reception surface of the ultrasonic probe and the subject, but are preferably installed in parallel to the skin as shown in FIG.

超音波プローブ1を皮膚上に接触させて配置した介在物8の上から加圧・加振装置7を通して皮膚に対して垂直に一定周期で加圧・加振させる。加圧・加振はあらかじめパーソナルコンピュータ等からその加圧・加振速度と距離を入力し、装置制御インターフェース部9から制御しておくことが望ましい。加圧・加振させながら超音波プローブ1に内在する超音波送信部2から超音波を介在物を通して皮膚に送信する。超音波送信部2からの超音波信号は、皮膚及び介在物からの超音波反射信号を超音波プローブ1に内在する超音波受信部3にて検出される。この超音波信号は、信号処理部4でデジタル処理を行い、その2次元の超音波信号の計時変化を歪み及び弾性率演算部5にて演算処理し、歪み率を画像表示器で表示するようになっている。そして、同時に計測した介在物と皮膚内部の歪み率から皮膚内部の、介在物の弾性率に対する相対的な弾性率を求めることができる。   The ultrasonic probe 1 is pressurized and vibrated at a constant cycle perpendicularly to the skin through the pressurizing / vibrating device 7 from above the inclusion 8 placed in contact with the skin. It is desirable that the pressurization / vibration is previously controlled by inputting the pressurization / vibration speed and distance from a personal computer or the like and controlling from the apparatus control interface unit 9. While applying pressure and vibration, ultrasonic waves are transmitted from the ultrasonic transmission unit 2 inherent in the ultrasonic probe 1 to the skin through the inclusions. The ultrasonic signal from the ultrasonic transmission unit 2 is detected by the ultrasonic reception unit 3 included in the ultrasonic probe 1 as an ultrasonic reflection signal from the skin and inclusions. The ultrasonic signal is digitally processed by the signal processing unit 4, the time variation of the two-dimensional ultrasonic signal is calculated by the strain and elastic modulus calculation unit 5, and the distortion rate is displayed on the image display. It has become. And the relative elasticity modulus with respect to the elasticity modulus of the inclusion inside skin can be calculated | required from the inclusion measured simultaneously and the distortion rate inside skin.

実施例1
東芝メディカルシステムズ株式会社製の超音波診断装置アプリオ80XVにリニア式電子スキャンプローブ(超音波プローブ)PLT-1202Sを装着し、弾性解析ソフトTDI-Qを使用した。加振装置には、ケーエスエス株式会社製の2軸ステージコントローラKUMICONとミニチュアアクチュエータKUMIを使用した。超音波ファントムは図4に示す一般的な皮膚弾性計測装置Courage and Khazaka社製(ドイツ)Cutometer SEM474にて吸引径6ミリで300mbの吸引圧を5秒間吸引し、その後開放したときの変位を解析し、戻り弾性比率(Ur/Uf)で皮膚と同じ弾性率を示す0.05〜0.095のものをOST株式会社より入手した。
当該超音波ファントムの音速は、図3に示す方法、すなわち生体用超音波周波数である1〜100MHz周波数音波を超音波プローブから介在物に入射させ、その介在物内を通過し支持体との境界面で反射した超音波を超音波プローブで検出し、その介在物内を往復する所要時間と介在物内で超音波を通過した距離(ファントムの厚さの2倍)から算出したところ、1540m/sであった。
14MHzのリニア式電子スキャンプローブ(超音波プローブ)PLT-1202Sを皮膚とプローブの間にある弾性値(既知)のファントム7mm厚を挟み込み4mmの移動距離を3.7秒/1回で押し込み(約2秒間)、超音波画像取得した(図5)。その超音波画像から東芝メディカルシステム株式会社製の組織ドップラー画像法TDI(Tissue Strain Imaging)を利用しそのファントム・皮膚・皮下脂肪・筋肉の各部位の領域を指定し、その歪み値(ストレイン値)の時間変化を図5(右)に示した。
Example 1
A linear electronic scan probe (ultrasound probe) PLT-1202S was attached to an ultrasonic diagnostic apparatus Aprio 80XV manufactured by Toshiba Medical Systems Co., Ltd., and elasticity analysis software TDI-Q was used. As the vibration device, a 2-axis stage controller KUMICON and a miniature actuator KUMI manufactured by KS Corporation were used. The ultrasonic phantom is a general skin elasticity measuring device shown in Fig. 4 (Courage and Khazaka (Germany)) Cutometer SEM474, sucking 300mm suction pressure for 6 seconds with 6mm suction diameter, and then analyzing the displacement when released. And the thing of 0.05-0.095 which shows the same elasticity modulus as skin with a return elastic ratio (Ur / Uf) was obtained from OST Corporation.
The speed of sound of the ultrasonic phantom is the method shown in FIG. 3, that is, a 1 to 100 MHz frequency sound wave, which is an ultrasonic frequency for living body, is incident on an inclusion from an ultrasonic probe and passes through the inclusion to the boundary with the support. The ultrasonic wave reflected on the surface was detected by an ultrasonic probe, and calculated from the time required to reciprocate within the inclusion and the distance that the ultrasonic wave passed through the inclusion (twice the thickness of the phantom), 1540 m / s.
14MHz linear electronic scanning probe (ultrasonic probe) PLT-1202S is inserted between the skin and the probe with a known phantom thickness of 7mm, and the moving distance of 4mm is pushed in for 3.7 seconds / once (about 2 seconds) ), An ultrasonic image was acquired (FIG. 5). Using the tissue Doppler imaging TDI (Tissue Strain Imaging) manufactured by Toshiba Medical System Co., Ltd., the phantom, skin, subcutaneous fat, and muscle regions are specified from the ultrasonic image, and the strain value (strain value). The change with time is shown in FIG. 5 (right).

また、この方法で、20〜60代の女性の頬部を測定し、そのファントムで補正した歪み相対値(ストレイン相対値)を算出したところ、加齢に伴い歪み相対値は減少しており、皮膚内部の弾性が低下していることが、計測できた。また、皮膚内部では脂肪>筋肉>皮膚の順番で弾性が大きいことが判明した(図6)。   In addition, with this method, measuring the cheeks of women in their 20s and 60s and calculating the relative strain value (strain relative value) corrected with the phantom, the relative strain value decreased with age, It was possible to measure that the elasticity inside the skin was lowered. Further, it was found that the elasticity was large in the order of fat> muscle> skin in the skin (FIG. 6).

実施例2
ファントムを用いることの有用性を、ファントムを挟む場合(ファントム有り)と挟まない場合(ファントム無し)とで比較検討を行った。14MHzの超音波プローブと前腕内側皮膚の間に、20代の女性の頬部の肌感触をもつ7mm厚ファントムを挟む場合と挟まない場合とで検討を行った。押し込みの条件は、4mmの移動距離を3.7秒/1回のストロークでの押し込みとした。図7に組織ドップラー画像法TDI(Tissue Strain Imaging)を利用した組織の変形の度合いを示した。その結果、ファントムを挟まない場合(無しの場合)は表皮がプローブ面に接するため、表皮,真皮層がBモード画像でクリアに見えず、かつ表皮,真皮層の変形度合いが(−)に表示され正しく捉えられないことが判明した。従って、ファントムを挟むことによる有用性を確認することができた。
Example 2
We compared the usefulness of using a phantom with and without a phantom (with phantom) and without a phantom (without phantom). We examined whether or not a 7mm thick phantom with a cheek skin feel of a 20's female was sandwiched between the 14MHz ultrasonic probe and the inner skin of the forearm. The pushing condition was a pushing distance of 3.7 seconds / 1 stroke over a moving distance of 4 mm. FIG. 7 shows the degree of tissue deformation using tissue Doppler imaging TDI (Tissue Strain Imaging). As a result, when the phantom is not sandwiched (when none), the epidermis touches the probe surface, so the epidermis and dermis layers do not appear clear in the B-mode image, and the deformation degree of the epidermis and dermis layers is displayed in (-) It turned out that it was not caught correctly. Therefore, the usefulness by pinching a phantom was able to be confirmed.

実施例3
機械押しした場合と手押しした場合の精度の比較検討を行った。
実施例に従い、14MHzの超音波プローブと皮膚の間に7mm厚ファントムを挟み込み、比較した。手押しは、同一者が適当に押し込み、機器使用では4mmの移動距離を3.7秒/1回で押し込む方法でそれぞれ5回繰返し計測を行った。図8にそれぞれ5回取得した超音波画像より描かれた歪み値(ストレイン値)のグラフを示し、ファントムの歪み値(ストレイン値)を求め変動係数(CV値:標準偏差/平均値×100)を算出した結果を表1に示す。その結果、機器で押す方法の方はCV値が小さいことが明らかとなり、精度が上がることが確認された。
Example 3
We compared the accuracy of mechanical pressing and manual pressing.
According to the example, a 7 mm thick phantom was sandwiched between a 14 MHz ultrasonic probe and the skin for comparison. For the manual push, the same person pushed in appropriately, and when using the device, the measurement was repeated 5 times by pushing the 4 mm moving distance in 3.7 seconds / once. FIG. 8 shows a graph of strain values (strain values) drawn from ultrasonic images acquired five times each, and the phantom strain values (strain values) are obtained and the coefficient of variation (CV value: standard deviation / average value × 100). The results of calculating are shown in Table 1. As a result, it was clarified that the CV value was smaller in the method of pressing with the device, and it was confirmed that the accuracy increased.

超音波診断装置の構成図Configuration diagram of ultrasonic diagnostic equipment 加圧・加振手段を備えた超音波プローブの構成図Configuration diagram of ultrasonic probe with pressurizing / vibrating means ファントム音速測定方法を示す図Diagram showing phantom sound velocity measurement method 吸引方法の測定原理と測定パラメーターの算出を示す図Diagram showing the measurement principle of the suction method and calculation of measurement parameters 介在物ファントムを介して加圧した場合の皮膚組織の超音波画像及び歪み値(ストレイン値)の時間変化を示すチャートChart showing temporal change of ultrasonic image and strain value (strain value) of skin tissue when pressurized through inclusion phantom 顔面頬のファントムで補正した皮膚の内部弾性値の測定結果を示す図The figure which shows the measurement result of the internal elasticity value of the skin corrected with the phantom of the face cheek 介在物ファントムの有無による皮膚組織の超音波画像及び内部弾性値の変形度合いを示すチャートUltrasonic image of skin tissue with and without inclusion phantom and chart showing degree of deformation of internal elasticity 一定圧加振器有無による内部弾性値の安定性を示すチャートChart showing the stability of the internal elasticity with and without constant pressure exciter

符号の説明Explanation of symbols

1 超音波プローブ
2 超音波送信部
3 超音波受信部
4 信号処理部
5 歪み及び弾性率演算部
6 画像表示器
7 加圧・加振装置
8 介在物
9 装置制御インターフェース部
DESCRIPTION OF SYMBOLS 1 Ultrasonic probe 2 Ultrasonic transmitter 3 Ultrasonic receiver 4 Signal processor 5 Strain and elastic modulus calculator 6 Image display 7 Pressurizing / vibrating device 8 Inclusion 9 Device control interface unit

Claims (1)

被検体内部の歪みを画像化可能な超音波診断装置を用いた皮膚内部局所の弾性計測方法であって、超音波プローブに設けた加圧・加振手段により、音速1500〜1600m/sであって、厚さが5mm〜30mmであり、戻り弾性比率(Ur/Uf)が0.05〜0.095である超音波ファントムを介して被検体を1〜30秒/1回の一定周期で1mm〜10mm押し込むように加圧し、被検体内部の弾性率を測定することを特徴とする表皮・真皮、皮下組織及び筋層に至る皮膚内部局所の弾性計測方法。 An elastic measuring method of the skin internal local using imageable ultrasonic diagnostic apparatus distortions in the subject, by pressure-vibration means provided in the ultrasonic probe, the acoustic velocity 1500~1600m / s met Thus, the subject is 1 mm in a fixed cycle of 1 to 30 seconds / time through an ultrasonic phantom having a thickness of 5 to 30 mm and a return elastic ratio (Ur / Uf) of 0.05 to 0.095. A method for measuring the elasticity of a local area inside the skin that reaches the epidermis / dermis, subcutaneous tissue, and muscle layer, characterized by measuring the elastic modulus inside the subject by pressurizing to push 10 mm .
JP2008120609A 2008-05-02 2008-05-02 Elasticity measurement method inside skin Expired - Fee Related JP5252985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120609A JP5252985B2 (en) 2008-05-02 2008-05-02 Elasticity measurement method inside skin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120609A JP5252985B2 (en) 2008-05-02 2008-05-02 Elasticity measurement method inside skin

Publications (2)

Publication Number Publication Date
JP2009268640A JP2009268640A (en) 2009-11-19
JP5252985B2 true JP5252985B2 (en) 2013-07-31

Family

ID=41435721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120609A Expired - Fee Related JP5252985B2 (en) 2008-05-02 2008-05-02 Elasticity measurement method inside skin

Country Status (1)

Country Link
JP (1) JP5252985B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888229B2 (en) * 2010-09-27 2016-03-16 コニカミノルタ株式会社 Ultrasonic diagnostic adapter, ultrasonic diagnostic apparatus, and ultrasonic measurement method
WO2012137983A1 (en) * 2011-04-08 2012-10-11 Canon Kabushiki Kaisha Subject information acquisition apparatus
JP2013094223A (en) * 2011-10-28 2013-05-20 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus
JP6033546B2 (en) * 2012-01-10 2016-11-30 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic apparatus and control program therefor
JP2015012923A (en) * 2013-07-03 2015-01-22 株式会社東芝 Elastic modulus measuring device and elastic modulus measuring method
JP6245590B1 (en) 2016-06-20 2017-12-13 公立大学法人大阪市立大学 Skin diagnostic device, skin condition output method, program, and recording medium
JP2019111330A (en) * 2017-12-22 2019-07-11 株式会社デントロケミカル Acoustic coupling material
CN108354588B (en) * 2018-01-15 2020-12-15 南京邮电大学 Mechanical structure of micro robot for exploring mechanical characteristics of human skin
JP6587195B2 (en) 2018-01-16 2019-10-09 株式会社Preferred Networks Tactile information estimation device, tactile information estimation method, program, and non-transitory computer-readable medium
CN113784753A (en) * 2019-04-19 2021-12-10 株式会社资生堂 Method and device for preventing and/or ameliorating photoaging and/or dermal pigmentation, photoaging-resistant and/or dermal pigmentation inhibitor, screening method for photoaging-resistant and/or dermal pigmentation inhibitor, evaluation method for photoaging-resistant and/or dermal pigmentation-inhibiting cosmetic treatment, and evaluation method for photoaging-resistant and/or dermal pigmentation degree

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843290B1 (en) * 2002-08-08 2005-06-24 Echosens DEVICE AND METHOD FOR MEASURING THE ELASTICITY OF A HUMAN OR ANIMAL ORGAN
FR2850265B1 (en) * 2003-01-23 2005-11-18 Oreal SKIN ANALYSIS DEVICE HAVING AN ULTRASONIC PROBE
JP2005013283A (en) * 2003-06-23 2005-01-20 Takeshi Shiina Ultrasonic probe and ultrasonic diagnostic apparatus
JP2005066041A (en) * 2003-08-25 2005-03-17 Hitachi Medical Corp Ultrasonic probe and ultrasonic diagnostic equipment
US9060737B2 (en) * 2005-05-09 2015-06-23 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic image display method
JP4981023B2 (en) * 2006-03-02 2012-07-18 株式会社日立メディコ Automatic compression apparatus and ultrasonic diagnostic apparatus using the same
JP5028416B2 (en) * 2006-05-25 2012-09-19 株式会社日立メディコ Ultrasonic diagnostic equipment

Also Published As

Publication number Publication date
JP2009268640A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5252985B2 (en) Elasticity measurement method inside skin
AU647443B2 (en) Method and apparatus for measurement and imaging of tissue compressibility or compliance
US5922018A (en) Method for using a transrectal probe to mechanically image the prostate gland
US5836894A (en) Apparatus for measuring mechanical parameters of the prostate and for imaging the prostate using such parameters
US5785663A (en) Method and device for mechanical imaging of prostate
US5474070A (en) Method and apparatus for elastographic measurement and imaging
US5860934A (en) Method and device for mechanical imaging of breast
JP5485508B2 (en) Method and apparatus for improved ultrasonic distortion measurement of soft tissue
WO2006065615A1 (en) Method and apparatus for elasticity imaging
WO1994005993A2 (en) Elastographic measurement and imaging apparatus and method
JP4221555B2 (en) Ultrasonic diagnostic system, strain distribution display method, and elastic modulus distribution display method
US20230044531A1 (en) Ultrasonic method and system for estimating the nonlinear shear wave elasticity of a medium
JP5075830B2 (en) Ultrasonic diagnostic equipment
JP5787286B2 (en) Ultrasound biological tissue measuring device
Lu et al. A novel method to obtain modulus image of soft tissues using ultrasound water jet indentation: a phantom study
JP2022517640A (en) Methods and systems for investigating vascular properties
Aglyamov et al. Breast elasticity imaging
JP5354599B2 (en) Tissue hardness evaluation device
Fukuda et al. Impedance estimation of soft tissue using ultrasound signal
Jeong et al. Tissue stiffness imaging method using temporal variation of ultrasound speckle pattern
Jeong et al. Tissue stiffness measurement using temporal variation of ultrasound speckle pattern
Patil et al. Session POS: Posters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R151 Written notification of patent or utility model registration

Ref document number: 5252985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees