JP5252596B2 - 文字認識装置、文字認識方法及びプログラム - Google Patents
文字認識装置、文字認識方法及びプログラム Download PDFInfo
- Publication number
- JP5252596B2 JP5252596B2 JP2010245882A JP2010245882A JP5252596B2 JP 5252596 B2 JP5252596 B2 JP 5252596B2 JP 2010245882 A JP2010245882 A JP 2010245882A JP 2010245882 A JP2010245882 A JP 2010245882A JP 5252596 B2 JP5252596 B2 JP 5252596B2
- Authority
- JP
- Japan
- Prior art keywords
- character
- pattern candidate
- character pattern
- recognition
- characters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Character Discrimination (AREA)
Description
また、このような特定語句認識方式に関しては、予め作成したトライ(trie)辞書の中でビームサーチによりサーチスペースを展開する文字同期方式を適用することで各文字パターン候補の認識字種を限定し、認識精度と認識速度の向上を図る方法も提案されている(例えば、非特許文献1参照)。
例えば、図19に示すように、「A型肝炎」の手書き文字列に対し汎用の手書き文字列認識方式により文字認識を行った場合、「A」の文字の類似字種である「八」と誤認識することがあった。これにより、「A型肝炎」の手書き文字列を特定語句の語彙集合に含まれない「八型肝炎」と誤認識する場合があるという問題点があった。
また、特定語句を1つの単語と見なし英語などの単語認識方式を適用することもできるが、文字認識の対象となる特定語句を全ての単語と比較する必要があるため、多くの処理時間を要するという問題点があった。
手書き入力された文字列を取得する文字列取得手段と、
前記文字列取得手段により取得した前記文字列を複数個のユニットに仮切出しする仮切出手段と、
前記仮切出手段により切り出された各ユニット毎に複数の文字パターン候補を構成する文字パターン候補構成手段と、
前記文字パターン候補構成手段により構成された各文字パターン候補を連結する文字パターン候補連結手段と、
前記文字パターン候補連結手段により連結された前記各文字パターン候補における終端までの文字数の長さを算出する文字数算出手段と、
前記文字パターン候補構成手段により構成された文字パターン候補を、前記特定語句記憶手段に記憶された前記特定語句と、前記文字数算出手段により文字パターン候補毎に算出された終端までの文字数の長さと、に基づき限定する文字パターン候補限定手段と、
前記文字パターン候補限定手段により限定された前記文字パターン候補に基づいて文字の認識を行う文字認識手段と、
を備える文字認識装置。
これにより、手書き入力した文字を認識する際において、類似する字種が手書き入力された場合であっても、予め記憶された特定語句のみに基づき限定されるため、他の字種と誤認識するという問題を解消することができる。また、文字の認識に際し、予め記憶された特定語句の中から、文字の認識が行われるため、認識速度を著しく向上させることができる。
前記文字数算出手段により文字パターン候補毎に算出された終端までの文字数の長さと同一の終端までの文字数の長さを有する特定語句を、前記特定語句記憶手段に記憶された前記特定語句から選別し、
選別した前記特定語句を構成する各文字を、前記文字パターン候補構成手段により構成された文字パターン候補の認識字種として限定する(1)に記載の文字認識装置。
特定語句と、前記特定語句の文字数の長さとの関係を記憶する特定語句記憶ステップと、
手書き入力された文字列を取得する文字列取得ステップと、
前記文字列取得ステップにより取得した前記文字列を複数個のユニットに仮切出しする仮切出ステップと、
前記仮切出ステップにより切り出された各ユニット毎に複数の文字パターン候補を構成する文字パターン候補構成ステップと、
前記文字パターン候補構成ステップにより構成された各文字パターン候補を連結する文字パターン候補連結ステップと、
前記文字パターン候補連結ステップにより連結された前記各文字パターン候補における終端までの文字数の長さを算出する文字数算出ステップと、
前記文字パターン候補構成ステップにより構成された文字パターン候補を、前記特定語句記憶ステップに記憶された前記特定語句と、前記文字数算出ステップにより文字パターン候補毎に算出された終端までの文字数の長さと、に基づき限定する文字パターン候補限定ステップと、
前記文字パターン候補限定ステップにより限定された前記文字パターン候補に基づいて文字の認識を行う文字認識ステップと、
を含む文字認識方法。
これにより、手書き入力した文字を認識する際において、類似する字種が手書きされた場合であっても、予め記憶された特定語句のみに基づき限定されるため、他の字種と誤認識するという問題を解消することができる。また、文字の認識に際し、予め記憶された特定語句の中から、文字の認識が行われるため、認識速度を著しく向上させることができる。
特定語句と、前記特定語句の文字数の長さとの関係を記憶する特定語句記憶機能と、
手書き入力された文字列を取得する文字列取得機能と、
前記文字列取得機能により取得した前記文字列を複数個のユニットに仮切出しする仮切出機能と、
前記仮切出機能により切り出された各ユニット毎に複数の文字パターン候補を構成する文字パターン候補構成機能と、
前記文字パターン候補構成機能により構成された各文字パターン候補を連結する文字パターン候補連結機能と、
前記文字パターン候補連結機能により連結された前記各文字パターン候補における終端までの文字数の長さを算出する文字数算出機能と、
前記文字パターン候補構成機能により構成された文字パターン候補を、前記特定語句記憶機能に記憶された前記特定語句と、前記文字数算出機能により文字パターン候補毎に算出された終端までの文字数の長さと、に基づき限定する文字パターン候補限定機能と、
前記文字パターン候補限定機能により限定された前記文字パターン候補に基づいて文字の認識を行う文字認識機能と、
を実現させるプログラム。
これにより、手書き入力した文字を認識する際において、類似する字種が手書きされた場合であっても、予め記憶された特定語句のみに基づき限定されるため、他の字種と誤認識するという問題を解消することができる。また、文字の認識に際し、予め記憶された特定語句の中から、文字の認識が行われるため、認識速度を著しく向上させることができる。
はじめに、本発明の実施の形態に係る文字認識装置を用いた文字認識方法の手法の概要について説明する。
はじめに、第1実施形態に係る文字認識装置を用いた文字認識方法の手法の概要について説明する。
図1を参照して、本発明の一実施形態に係る文字認識装置1の機能的構成について説明する。
文字認識装置1は、取得した手書きの文字列に対し、文字認識処理を実行することができる。
文字認識処理とは、取得した文字列を複数個のユニットに切出して、各ユニット毎に文字パターン候補を構成し、各文字パターン候補における終端までの文字数の長さに基づき、文字パターン候補を限定して文字認識を行う処理をいう。
図1に示す文字認識装置1は、CPU(Central Processing Unit)10と、記憶部20と、を備えている。
文字認識装置1のCPU10は、このような文字認識処理を実行すべく、文字列取得部31と、仮切出部32と、文字パターン候補構成部33と、文字パターン候補連結部34と、文字数算出部35と、文字パターン候補限定部36と、文字認識部37と、を備えている。
また、文字認識装置1の記憶部20は、RAM(Random Access Memory)やハードディスクドライブ(Hard disk drive)により構成され、特定語句を構成する各文字と、各文字における終端までの文字数の長さとの関係を記憶する特定語句記憶部41を備えている。
更に、CPU10は、特定語句記憶部41に記憶されている後述のトライ辞書を構築するための辞書構築部51を備えている。
切出し候補ラティスにおいては、各ノードND(後述の図6乃至図13において丸数字1〜丸数字7と表記する(以下、それぞれ「ノードND(1)」〜「ノードND(7)」と呼ぶ))は、文字パターン候補構成部により構成された1つの文字パターン候補を示す。
具体的には、文字パターン候補限定部36は、文字数算出部35により文字パターン候補毎に算出された可能長と同一の可能長を有する特定語句を、特定語句記憶部41に記憶された特定語句から選別する。
そして、文字パターン候補限定部36は、特定語句記憶部41の中から選別した特定語句を構成する各文字を、文字パターン候補構成部33により構成された文字パターン候補の認識字種として限定する。前記文字パターン候補限定部36による文字パターン候補の限定は、前記仮切出部32により切出したユニットの順番で行う。文字パターン候補限定部36は、限定した文字パターン候補の認識字種を文字認識部37に供給する。
具体的には、文字認識部37は、次に述べる評価尺度により切出し候補とその対応の文字列候補の尤度とに基づき、文字パターン候補限定部36により限定された文字パターン候補に至る文字列候補の経路(文字列候補経路、以下簡略して経路と呼ぶ)の評価を行う。
経路の評価尺度は、重みパラメータを持つ文字認識と幾何的な特徴(文字パターンサイズ、文字パターン内分割、シングル文字パターン位置、ペア文字パターン位置、文字切出しポイント)の確からしさからなるスコアを結合する。遺伝的アルゴリズムにより学習パターンを利用し重みパラメータを学習する。
そして、文字認識部37は、評価した経路を評価順にソートして上位M個の経路だけを選択し、それ以外の経路を削除する。
即ち、文字認識部37は、経路評価尺度に基づいて文字列候補を削除することで、文字パターン候補連結部34により構築された切出し候補ラティスのサーチ経路を限定して文字の認識を行うことができる。即ち、本実施形態では、特定語句記憶部41に記憶されている特定語句の語彙集合、即ち後述の図3のトライ辞書に基づいて、最適な語句を選び文字の認識を行うことができる。
順番に切り出された切出しポイントS0〜SLがあり、最初から最後への順で各切出しポイントについてその後の文字パターン候補を文字パターン候補限定部36により処理し、そして、それに至る全ての文字列候補経路を文字認識部37により評価を行う。
図2乃至図4を参照して、特定語句を構成する各文字と、各文字における終端までの文字数の長さとの関係を示すトライ辞書の構築について説明する。
トライ辞書は、特定語句と、特定語句の文字数の長さとの関係が記述され、特定語句を構成する各文字をキーとして下位の各文字を子ノードNDに分岐して構成されている。トライ辞書において、特定語句を構成する各文字は、子ノードNDの数に応じて段数毎に構成されている。
次に、図4を参照して、図2の特定語句の語彙集合を含むリストからトライ辞書を構築するトライ辞書構築処理の詳細な流れについて説明する。
これに対して、N個目の文字がトライ辞書のposの子ノードに存在していないと判定した場合には、処理はステップS15に進む。
次に、図5を参照して、図4のトライ辞書構築処理において構築したトライ辞書を用いて、文字認識を行う文字認識処理の詳細な流れについて説明する。
具体的には、文字パターン候補限定部36は、ステップS38で選択した上位M個の経路へ続くトライ辞書の特定語句について、文字数算出部35によりノードND毎に算出された可能長と同一の可能長を有する特定語句を構成する各文字を、特定語句記憶部41に記憶されたトライ辞書の特定語句から選別する。
そして、文字パターン候補限定部36は、トライ辞書の中から選別した特定語句を構成する各文字を、文字パターン候補構成部33により構成されたノードNDの認識字種として限定する。文字パターン候補限定部36は、限定したノードNDの認識字種を文字認識部37に供給する。
従って、ノードNDの可能長に基づきサーチ経路を限定することにより、認識精度と文字認識の速度を向上することができる。この限定は、病名に限らず特定語彙集合の特殊性に依存しない。つまり、どのような種類の語彙集合にも適応できる。
更に、図6乃至図13を参照して、文字認識処理について具体的に説明する。
図6乃至図13は、文字認識処理の具体的な処理結果を説明する図である。
文字列の上方には、仮切出部32により切り出された各切出しポイントS0〜S5が示されている。
文字列の下方には、各切出しポイントS0〜S5において分割する場合と結合する場合の両方を想定した文字パターン候補が示されている。そして、考えられる全ての文字パターン候補を連結して切出し候補ラティスが構築される。切出し候補ラティスにおいては、各ノードNDは1つの文字パターン候補を示す。図6乃至図13の図においては、各ノードND(1)〜(7)が示されている。図8〜図13には、それぞれ切出しポイントS0〜S5おいて認識字種を設定する場合の例が示されている。
図7には、ノード(1)、(2)、(3)・・・(7)で示される7個のノードNDを持つ切出し候補ラティスが示されている。
切出し候補ラティスの各ノードNDについて終端までの文字数の可能な長さ(可能長)の算出の概略について図7を参照して説明する。
各ノードNDのボックスに示される数字はそのノードNDの終端までの可能長を示す。
ノード(7)は、文字数は「1」しかあり得ない。ノード(6)では、それ自身とノード(7)の分を含めて文字数は「2」である。ノード(5)も同様に「2」である。ノード(4)では、それ自身とノード(6),ノード(7)の分を含めて文字数は「3」である。ノード(3)では、その分とノード(5),ノード(7)の分を含めて文字数が「3」になる場合と、それ自身とノード(4),ノード(6),ノード(7)の分を含めて文字数が「4」になる場合がある。従って可能長は{3,4}である。一般に、あるノードに後続するノードの可能長の集合に「1」を加えればよい。同様にして、ノード(2)の可能性は{3,4}、ノード(1)の可能長は{4,5}になる。このように、可能長は切出し候補らティスの終端から反対方向に求められる。
図3のトライ辞書に基づき、トライ辞書の先頭位置でサーチを開始すると、図3のトライ辞書の先頭の子ノードは、「腰」、「耳」「日」であり、それらをノード(1)(2)の認識字種に設定する。
これに対し、図3のトライ辞書を参照すると、認識字種「耳」と「日」に続く語句は、その終端までの文字の長さが「3」であるからノードND(1)おける可能長には合わないため削除し、終端までの文字の長さが「4」を取り得る認識字種「腰」のみを保留し、「腰」に対する認識スコアを文字認識エンジンから得る。
これに対し、図3のトライ辞書を参照すると、認識字種「腰」に続く語句は、その終端までの文字の長さは「3」又は「4」であり、認識字種「耳」と「日」に続く語句は、その終端までの文字の長さが「3」である。
従って、「腰」、「耳」「日」の全ての認識字種において可能長を満たすため、3つの認識字種「腰」「耳」「日」を保留し、各認識字種に対する認識スコアを文字認識エンジンより得る。
各切出しポイントに至るすべての経路について経路評価尺度に従って評価し、そしてそれらをソートし、上位M個の経路だけ選択し、その以外の経路を削除する。個数Mをビームバンドと呼ぶ。ここでの例においてはビームバンドが2であり、S1においては[腰]を保留している1つの経路しかない。
従って、保留している経路と同一の文字列に続く経路に続く字種は、図3のトライ辞書においては、「椎」「痛」「部」「腹」であり、それらをノード(3)の認識字種に設定する。
これに対し、図3のトライ辞書を参照すると、認識字種「痛」と「腹」に続く語句は、その終端までの文字の長さが「2」であるからノードND(3)おける可能長には合わないため削除し、終端までの文字長さが「3」を取り得る認識字種「椎」と「部」のみを保留し、「椎」と「部」に対する認識スコアを文字認識エンジンから得る。
図14及び図15を参照して、文字認識処理において取り扱う特定語句の特徴について説明する。
図14は、図2のリストに含まれる特定語句(病名)の語長(文字数の長さ)と、その比率と、の関係を示す図である。
図14の図において、横軸は特定語句の文字数の長さを示し、縦軸は、該当する文字数の長さを有する特定語句の比率を示す。
本実施形態において特定語句の平均長は「6.9」である。
図15に示すように、図3のトライ辞書を参照して可能長に基づきサーチ経路上の認識字種を限定することにより、本来数千個の認識字種から候補を大幅に削減することができ、類似字種への誤認識を防ぐとともに、認識速度の著しい向上を期待することができる。
図16乃至図18を参照して、文字認識処理を適用した実施例について説明する。
これらの学習後、総文字数3,803からなる1,112のオンライン手書き病名を用いて、本実施形態における文字認識装置1を利用した文字認識方法の評価を行った。実験環境はGenuine Intel(R) CPU U1400 1.20 GHz with 1.49 GBメモリである。
本実施形態に係る文字認識装置1を利用した文字認識方法と汎用の手書き日本語文字列認識方式(非特許文献2参照)を利用した文字認識方法との性能を比較した。公平に比較するために2つの方式とも同じ文字認識と幾何的な特徴の評価関数を使用した。本実施形態に係る文字認識方法では図2で示した病名リストにより図3のトライ辞書を構築した。非特許文献1に記載の汎用の手書き日本語文字列認識方式を利用した文字認識方法の経路評価では、図3のトライ辞書の代わりにtri-gramによる言語の文脈確からしさのスコアを使用した。このtri-gram表は,1993年の朝日新聞と2002年の日経新聞の記事から作成した。
図17及び図18は手書き入力された文字例である。
認識率について検討すると、図17に示すような手書き入力された文字列を本実施形態に係る文字認識方法により認識すると、「うっ血肝」と正しく認識できたのに対し、汎用認識方式により認識した場合には、「う。血肝」と誤認識された。従って、「うっ血肝」のような汎用認識方式で誤認識しやすい病名の文字列であっても、本実施形態の文字認識方法においては認識字種の限定を行うことで,類似字種間の誤認識を削減し認識率を向上することができる。
また、図18に示すような手書き入力された文字列を本実施形態に係る文字認識方法により認識すると、「18常染色体異常」と正しく認識されたのに対し、汎用認識方式により認識した場合には、認識ができなかった。従って、正しく語句を手書き入力できていない場合であっても、図3のトライ辞書に基づき可能長から認識字種を選択し、一番類似している認識字種を選択することで認識率を向上することができる。
また,正しく記入されていない特定語句に対しても,本方式はトライ辞書の中から一番類似しているものを選択するために正しく認識することができる。
10 CPU
20 記憶部
31 文字列取得部
32 仮切出部
33 文字パターン候補構成部
34 文字パターン候補連結部
35 文字数算出部
36 文字パターン候補限定部
37 文字認識部
41 特定語句記憶部
51 辞書構築部
Claims (4)
- 特定語句と、前記特定語句の文字数の長さとの関係を記憶する特定語句記憶手段と、
手書き入力された文字列を取得する文字列取得手段と、
前記文字列取得手段により取得した前記文字列を複数個のユニットに仮切出しする仮切出手段と、
前記仮切出手段により切り出された各ユニット毎に複数の文字パターン候補を構成する文字パターン候補構成手段と、
前記文字パターン候補構成手段により構成された各文字パターン候補を連結する文字パターン候補連結手段と、
前記文字パターン候補連結手段により連結された前記各文字パターン候補における終端までの文字数の長さを算出する文字数算出手段と、
前記文字数算出手段により文字パターン候補毎に算出された終端までの文字数の長さと同一の終端までの文字数の長さを有する特定語句を、前記特定語句記憶手段に記憶された前記特定語句から選別し、選別した前記特定語句を構成する各文字を、前記文字パターン候補構成手段により構成された文字パターン候補の認識字種として限定する文字パターン候補限定手段と、
前記文字パターン候補限定手段により限定された前記文字パターン候補の認識字種に基づいて文字の認識を行う文字認識手段と、
を備える文字認識装置。 - 前記文字パターン候補限定手段による文字パターン候補の認識字種としての限定は、前記仮切出手段により切出したユニットの順番で行う請求項1に記載の文字認識装置。
- 文字の認識を行う制御を実行する文字認識装置の文字認識方法であって、
特定語句と、前記特定語句の文字数の長さとの関係を記憶する特定語句記憶ステップと、
手書き入力された文字列を取得する文字列取得ステップと、
前記文字列取得ステップにおいて取得された前記文字列を複数個のユニットに仮切出しする仮切出ステップと、
前記仮切出ステップにおいて切り出された各ユニット毎に複数の文字パターン候補を構成する文字パターン候補構成ステップと、
前記文字パターン候補構成ステップにおいて構成された各文字パターン候補を連結する文字パターン候補連結ステップと、
前記文字パターン候補連結ステップにおいて連結された前記各文字パターン候補における終端までの文字数の長さを算出する文字数算出ステップと、
前記文字数算出ステップにおいて文字パターン候補毎に算出された終端までの文字数の長さと同一の終端までの文字数の長さを有する特定語句を、前記特定語句記憶ステップにおいて記憶された前記特定語句から選別し、選別した前記特定語句を構成する各文字を、前記文字パターン候補構成ステップにより構成された文字パターン候補の認識字種として限定する文字パターン候補限定ステップと、
前記文字パターン候補限定ステップにおいて限定された前記文字パターン候補の認識字種に基づいて文字の認識を行う文字認識ステップと、
を含む文字認識方法。 - 文字の認識を行う制御を実行する文字認識手段を備える文字認識装置を制御するコンピュータに、
特定語句と、前記特定語句の文字数の長さとの関係を記憶する特定語句記憶機能と、
手書き入力された文字列を取得する文字列取得機能と、
前記文字列取得機能により取得した前記文字列を複数個のユニットに仮切出しする仮切出機能と、
前記仮切出機能により切り出された各ユニット毎に複数の文字パターン候補を構成する文字パターン候補構成機能と、
前記文字パターン候補構成機能により構成された各文字パターン候補を連結する文字パターン候補連結機能と、
前記文字パターン候補連結機能により連結された前記各文字パターン候補における終端までの文字数の長さを算出する文字数算出機能と、
前記文字数算出機能により文字パターン候補毎に算出された終端までの文字数の長さと同一の終端までの文字数の長さを有する特定語句を、前記特定語句記憶機能に記憶された前記特定語句から選別し、選別した前記特定語句を構成する各文字を、前記文字パターン候補構成機能により構成された文字パターン候補の認識字種として限定する文字パターン候補限定機能と、
前記文字パターン候補限定機能により限定された前記文字パターン候補の認識字種に基づいて文字の認識を行う文字認識機能と、
を実現させるプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010245882A JP5252596B2 (ja) | 2010-11-02 | 2010-11-02 | 文字認識装置、文字認識方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010245882A JP5252596B2 (ja) | 2010-11-02 | 2010-11-02 | 文字認識装置、文字認識方法及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012098905A JP2012098905A (ja) | 2012-05-24 |
JP5252596B2 true JP5252596B2 (ja) | 2013-07-31 |
Family
ID=46390740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010245882A Active JP5252596B2 (ja) | 2010-11-02 | 2010-11-02 | 文字認識装置、文字認識方法及びプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5252596B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2912139T3 (es) | 2014-08-13 | 2022-05-24 | Rakuten Group Inc | Sistema de entrada de operación, método de entrada de operación y programa |
CN104268603B (zh) | 2014-09-16 | 2017-04-12 | 科大讯飞股份有限公司 | 用于文字性客观题的智能阅卷方法及系统 |
DE102015108429B4 (de) * | 2015-05-28 | 2019-03-14 | Bundesdruckerei Gmbh | Verfahren zur Fälschungserkennung von Identifikationsdokumenten, die Datenfelder mit IR-absorbierenden personalisierten Daten enthalten |
US9928436B2 (en) * | 2015-07-08 | 2018-03-27 | Conduent Business Services, Llc | Lexicon-free, matching-based word-image recognition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10302025A (ja) * | 1997-04-25 | 1998-11-13 | Casio Comput Co Ltd | 手書き文字認識装置およびそのプログラム記録媒体 |
JP2002236876A (ja) * | 2001-02-09 | 2002-08-23 | Canon Inc | 解析方法及び解析装置 |
JP2005275510A (ja) * | 2004-03-23 | 2005-10-06 | Oki Electric Ind Co Ltd | 文字認識処理方法、診療報酬明細書の内容認識処理方法及び装置 |
-
2010
- 2010-11-02 JP JP2010245882A patent/JP5252596B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012098905A (ja) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5366169B2 (ja) | 音声認識システム及び音声認識システム用プログラム | |
US5528701A (en) | Trie based method for indexing handwritten databases | |
JP2667951B2 (ja) | 筆跡認識装置及び方法 | |
TWI321294B (en) | Method and device for determining at least one recognition candidate for a handwritten pattern | |
CN111159990B (zh) | 一种基于模式拓展的通用特殊词识别方法及系统 | |
US20080294982A1 (en) | Providing relevant text auto-completions | |
JP6506770B2 (ja) | 音楽記号を認識するための方法および装置 | |
JP2011018330A (ja) | 統計的な方法を用いて漢字を自国語の発音列に変換するシステムおよび方法 | |
US5553284A (en) | Method for indexing and searching handwritten documents in a database | |
EP2093700A2 (en) | Pattern recognition method, and storage medium which stores pattern recognition program | |
KR101379128B1 (ko) | 사전 생성 장치, 사전 생성 방법 및 사전 생성 프로그램을 기억하는 컴퓨터 판독 가능 기록 매체 | |
JP5252596B2 (ja) | 文字認識装置、文字認識方法及びプログラム | |
CN111506726A (zh) | 基于词性编码的短文本聚类方法、装置及计算机设备 | |
JP2007156545A (ja) | 記号列変換方法、単語翻訳方法、その装置およびそのプログラム並びに記録媒体 | |
CN111814781B (zh) | 用于对图像块识别结果进行校正的方法、设备和存储介质 | |
CN112651590B (zh) | 一种指令处理流程推荐的方法 | |
Zhu et al. | Online handwritten cursive word recognition by combining segmentation-free and segmentation-based methods | |
CN114579763A (zh) | 一种针对中文文本分类任务的字符级对抗样本生成方法 | |
JP2008059389A (ja) | 語彙候補出力システム、語彙候補出力方法及び語彙候補出力プログラム | |
WO2014049998A1 (ja) | 情報検索システム、情報検索方法およびプログラム | |
JP5990124B2 (ja) | 略語生成装置、略語生成方法、及びプログラム | |
JP2003331214A (ja) | 文字認識誤り訂正方法、装置及びプログラム | |
CN107203512B (zh) | 用于从用户的自然语言输入中提取关键元素的方法 | |
JP2002259912A (ja) | オンライン文字列認識装置及びオンライン文字列認識方法 | |
Zhu et al. | Online handwritten cursive word recognition using segmentation-free and segmentation-based methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5252596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |