JP5250692B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP5250692B2
JP5250692B2 JP2011501350A JP2011501350A JP5250692B2 JP 5250692 B2 JP5250692 B2 JP 5250692B2 JP 2011501350 A JP2011501350 A JP 2011501350A JP 2011501350 A JP2011501350 A JP 2011501350A JP 5250692 B2 JP5250692 B2 JP 5250692B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic pole
rotor
rotating electrical
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011501350A
Other languages
Japanese (ja)
Other versions
JPWO2010097838A1 (en
Inventor
雅寛 堀
大祐 郡
昭義 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2010097838A1 publication Critical patent/JPWO2010097838A1/en
Application granted granted Critical
Publication of JP5250692B2 publication Critical patent/JP5250692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、永久磁石式回転電機に係り、特に、回転方向が常時一方向に限定される発電機や電動機に好適な永久磁石式回転電機に関する。   The present invention relates to a permanent magnet type rotating electrical machine, and more particularly to a permanent magnet type rotating electrical machine suitable for a generator or an electric motor whose rotational direction is always limited to one direction.

近年、回転電機の各分野に永久磁石式回転電機の採用が飛躍的に増加している。そして、永久磁石式回転電機の単機容量増加による経済性の向上のために、小型で大容量の永久磁石式回転電機の需要が高まっている。しかしながら、永久磁石式発電機を小型で大容量化しようとすると、発熱量が増加するので、特許文献1の図1に示すように、各磁極間に冷却用通風路を形成した永久磁石式回転電機が提案されている。   In recent years, the adoption of permanent magnet type rotating electrical machines has increased dramatically in each field of rotating electrical machines. In order to improve economy by increasing the single machine capacity of the permanent magnet type rotating electric machine, demand for a small and large capacity permanent magnet type rotating electric machine is increasing. However, if the permanent magnet generator is reduced in size and increased in capacity, the amount of heat generation increases. Therefore, as shown in FIG. 1 of Patent Document 1, the permanent magnet rotation in which a cooling air passage is formed between the magnetic poles. Electrics have been proposed.

各磁極間に冷却用通風路を形成することで、発熱量は抑制でき、その分、永久磁石式回転電機を小型化することができる。しかしながら、各磁極間に冷却用通風路を形成することで、各磁極への磁束の集中が顕著になり、これがトルク脈動を増加させ、振動や騒音の増加させることになる。   By forming a cooling air passage between the magnetic poles, the amount of heat generated can be suppressed, and the permanent magnet type rotating electrical machine can be reduced in size accordingly. However, by forming a cooling ventilation path between the magnetic poles, the magnetic flux concentrates on the magnetic poles, which increases torque pulsation and increases vibration and noise.

この磁極への磁束の集中を低減させるためには、特許文献1の図14及び図15に示すように、磁極の外周面と固定子との空隙を、磁極の中心部に比べて周方向両端部側で大きくすることで、磁束の集中を緩和し、トルク脈動減少させている。   In order to reduce the concentration of the magnetic flux on the magnetic pole, as shown in FIGS. 14 and 15 of Patent Document 1, the gap between the outer peripheral surface of the magnetic pole and the stator is set at both ends in the circumferential direction compared to the central portion of the magnetic pole. By enlarging on the part side, the concentration of magnetic flux is alleviated and torque pulsation is reduced.

特開2008−131813号公報JP 2008-131814 A

上記特許文献1による永久磁石式回転電機においては、トルク脈動減少させることは可能である。   In the permanent magnet type rotating electric machine according to Patent Document 1, it is possible to reduce torque pulsation.

一方、常に一方向にのみ回転する永久磁石式回転電機においては、両方向回転する回転電機に比べて磁極への磁束の集中が、回転方向の一方側に限定される。   On the other hand, in a permanent magnet type rotating electrical machine that always rotates in only one direction, the concentration of magnetic flux on the magnetic pole is limited to one side in the rotational direction as compared with a rotating electrical machine that rotates in both directions.

しかしながら、常に一方向にのみ回転する永久磁石式回転電機において、永久磁石を有する(永久磁石が埋設されている)側の磁極周面の回転方向の一方側に集中する磁束を低減させる技術は存在しない。その理由は、永久磁石式回転電機においては、磁極の周面近傍に永久磁石を埋設しているために、磁極周面の形状を変化さて固定子との空隙を広くしようとすると、永久磁石の埋設位置周りの回転子鉄心が薄くなり、運転時の遠心力や電磁力に対して永久磁石を保持する機械的強度の確保が難しくなる可能性があるからである。   However, in a permanent magnet type rotating electrical machine that always rotates in only one direction, there is a technique for reducing the magnetic flux concentrated on one side in the rotational direction of the magnetic pole peripheral surface having the permanent magnet (with the permanent magnet embedded). do not do. The reason for this is that in a permanent magnet type rotating electrical machine, a permanent magnet is embedded in the vicinity of the peripheral surface of the magnetic pole. Therefore, if an attempt is made to widen the gap with the stator by changing the shape of the peripheral surface of the magnetic pole, This is because the rotor core around the buried position becomes thin, and it may be difficult to ensure the mechanical strength for holding the permanent magnet against the centrifugal force and electromagnetic force during operation.

本発明の目的は、トルク脈動の原因となる磁極周面の回転方向の一方側に集中する磁束を低減させることができると共に、機械的強度の確保が行える永久磁石式回転電機を提供することである。   An object of the present invention is to provide a permanent magnet type rotating electrical machine that can reduce magnetic flux concentrated on one side in the rotation direction of a magnetic pole peripheral surface that causes torque pulsation and can ensure mechanical strength. is there.

上述の目的を達成するために、本発明では、各磁極の外周を同じ曲率を有する円弧で形成すると共に、各磁極の磁極中心軸を回転子の回転中心に対して変位させて固定子と各磁極外周との空隙を回転方向の一方側を他方側に比べて広くしたのである。   In order to achieve the above object, in the present invention, the outer periphery of each magnetic pole is formed by an arc having the same curvature, and the magnetic pole central axis of each magnetic pole is displaced with respect to the rotation center of the rotor to The gap with the outer periphery of the magnetic pole is made wider on one side in the rotational direction than on the other side.

このように、各磁極の外周を同じ曲率を有する円弧とし、各磁極の磁極中心軸を回転子の回転中心に対して変位させて形成することで、永久磁石の埋設位置周りの回転子鉄心を薄くする必要がなくなるので、運転時の遠心力や電磁力に対して永久磁石を保持する機械的強度を確保できると共に、固定子と各磁極外周との空隙を回転方向の一方側を他方側に比べて広くしたので、磁束の集中を緩和することができる。   In this way, the outer periphery of each magnetic pole is formed into an arc having the same curvature, and the magnetic pole central axis of each magnetic pole is displaced with respect to the rotation center of the rotor, thereby forming the rotor core around the permanent magnet embedded position. Since there is no need to reduce the thickness, the mechanical strength for holding the permanent magnet against centrifugal force and electromagnetic force during operation can be secured, and the gap between the stator and the outer periphery of each magnetic pole can be turned from one side to the other. Since it is wider than that, the concentration of magnetic flux can be relaxed.

以上説明したように本発明によれば、トルク脈動の原因となる磁極周面の回転方向の一方側に集中する磁束を低減させることができると共に、機械的強度の確保が行える永久磁石式回転電機を得ることができる。   As described above, according to the present invention, the permanent magnet type rotating electrical machine that can reduce the magnetic flux concentrated on one side in the rotation direction of the magnetic pole peripheral surface that causes torque pulsation and can ensure the mechanical strength. Can be obtained.

本発明による永久磁石式回転電機の第1の実施の形態を示す永久磁石式発電機の概略縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic longitudinal cross-sectional view of the permanent-magnet-type generator which shows 1st Embodiment of the permanent-magnet-type rotary electric machine by this invention. 図1のA−A線に沿う回転子の縦断拡大図。FIG. 2 is a longitudinal enlarged view of a rotor taken along line AA in FIG. 1. 図2に示す回転子の磁極の拡大図。The enlarged view of the magnetic pole of the rotor shown in FIG. 第1の実施の形態による永久磁石式発電機のトルク波形図。The torque waveform figure of the permanent magnet type generator by 1st Embodiment. 第1の実施の形態の変形例を示す回転子の一部正面図。The partial front view of the rotor which shows the modification of 1st Embodiment. 第1の実施の形態の変形例による永久磁石式発電機のトルク波形図。The torque waveform figure of the permanent magnet type generator by the modification of 1st Embodiment. 本発明による永久磁石式回転電機の第2の実施の形態を示す図2相当図。FIG. 2 is a view corresponding to FIG. 2 showing a second embodiment of the permanent magnet type rotating electric machine according to the present invention. 図7に示す回転子の磁極の拡大図。The enlarged view of the magnetic pole of the rotor shown in FIG. 本発明による永久磁石式回転電機の第3の実施の形態を示す図2相当図。FIG. 2 is a view corresponding to FIG. 2 showing a third embodiment of the permanent magnet type rotating electric machine according to the present invention. 第3の実施の形態の第1の変形例を示す回転子の正面図。The front view of the rotor which shows the 1st modification of 3rd Embodiment. 第3の実施の形態の第2の変形例を示す回転子の正面図。The front view of the rotor which shows the 2nd modification of 3rd Embodiment. 本発明による永久磁石式回転電機の第4の実施の形態を示す図2相当FIG. 2 shows a fourth embodiment of the permanent magnet type rotating electric machine according to the present invention. 本発明による永久磁石式回転電機の第5の実施の形態を示す図2相当FIG. 2 shows a fifth embodiment of the permanent magnet type rotating electric machine according to the present invention. 本発明による永久磁石式回転電機の第6の実施の形態を示す図1相当図。FIG. 1 is a view corresponding to FIG. 1 showing a sixth embodiment of a permanent magnet type rotating electric machine according to the present invention. 本発明による永久磁石発電機を適用した風力発電システムを示す概略図。Schematic which shows the wind power generation system to which the permanent magnet generator by this invention is applied.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下本発明による永久磁石式回転電機の第1の実施の形態を、図1〜図3に示す永久磁石式発電機に基づいて説明する。   A first embodiment of a permanent magnet type rotating electrical machine according to the present invention will be described below based on the permanent magnet type generator shown in FIGS.

永久磁石式発電機1は、原動機に連結され回転自在に軸支された回転軸2と、この回転軸2に固定された回転子3と、その外周に空隙を介して配置された固定子4とを備えている。   The permanent magnet generator 1 includes a rotating shaft 2 that is connected to a prime mover and is rotatably supported, a rotor 3 that is fixed to the rotating shaft 2, and a stator 4 that is disposed on the outer periphery of the rotating shaft 2 via a gap. And.

前記回転子3は、電磁鋼板を軸方向に積層して構成された回転子鉄心5と、この回転子鉄心5の外周側に埋設した永久磁石6と、この回転子鉄心5に軸方向に延在し周方向に間隔をあけて偶数形成した冷却用通風溝7とを備えている。前記永久磁石6は、周方向に隣接する前記冷却用通風溝7間の回転子鉄心5の外周側に埋設されて偶数の磁極8を構成している。   The rotor 3 includes a rotor core 5 formed by laminating electromagnetic steel plates in the axial direction, a permanent magnet 6 embedded on the outer peripheral side of the rotor core 5, and an axial extension to the rotor core 5. And cooling ventilation grooves 7 formed at even intervals with intervals in the circumferential direction. The permanent magnet 6 is embedded on the outer peripheral side of the rotor core 5 between the cooling ventilation grooves 7 adjacent in the circumferential direction to form an even number of magnetic poles 8.

一方、固定子4は、前記回転子鉄心5と空隙を介して設置され電磁鋼板を軸方向に積層して構成された固定子鉄心9と、この固定子鉄心9の内径側に形成した軸方向の巻線溝(図示せず)に装着された固定子巻線10とを有している。   On the other hand, the stator 4 includes a stator core 9 that is installed via the rotor core 5 and a gap and is constructed by laminating electromagnetic steel plates in the axial direction, and an axial direction formed on the inner diameter side of the stator core 9. And a stator winding 10 mounted in a winding groove (not shown).

そして、前記磁極8は、図3に破線で示すように、回転子3の回転中心11を中心とする曲率(半径)で、固定子4との空隙が等しい外周8sを有する磁極8Aの磁極中心軸12Aを、回転子鉄心5の内径側を中心として回転方向Rとは逆方向RAに傾斜変位させた位置に、云い代えれば、磁極中心軸12Aを回転子3の回転中心11に対して変位させた位置に磁極中心軸12を移動させた磁極8を形成している。   The magnetic pole 8 has a curvature (radius) centered on the rotation center 11 of the rotor 3 and a magnetic pole center of a magnetic pole 8A having an outer periphery 8s having the same gap with the stator 4 as shown by a broken line in FIG. The shaft 12A is displaced in a tilted direction RA in the direction opposite to the rotation direction R around the inner diameter side of the rotor core 5, in other words, the magnetic pole center shaft 12A is displaced with respect to the rotation center 11 of the rotor 3. The magnetic pole 8 is formed by moving the magnetic pole central shaft 12 to the position.

このように磁極8を形成することで、その外周8Sは、固定子4との空隙が、回転方向Rとは反対側は広くなり、回転方向R側に行くにしたがい漸減するようになる。   By forming the magnetic pole 8 in this manner, the outer periphery 8S of the outer periphery 8S becomes wider on the opposite side to the rotation direction R and gradually decreases as it goes to the rotation direction R side.

したがって、各磁極8の回転方向Rとは反対側に集中する磁束の集中を広くなった空隙によって緩和することができ、その結果、磁束集中によるトルクの脈動を減少させることができる。   Therefore, the concentration of the magnetic flux concentrated on the opposite side to the rotation direction R of each magnetic pole 8 can be relaxed by the widened gap, and as a result, the torque pulsation due to the magnetic flux concentration can be reduced.

因みに、図3の破線で示す磁極8Aの形状(従来例)と、図3の実践で示す変位させて形成した本実施の形態により磁極8の形状とのトルク脈動を計測したところ、図4のトルク波形に示すように、本実施の形態によるトルク脈動は従来例に比べて約3割減少していることが確認された。   Incidentally, when the torque pulsation between the shape of the magnetic pole 8A shown in the broken line in FIG. 3 (conventional example) and the shape of the magnetic pole 8 formed by the displacement shown in the practice of FIG. As shown in the torque waveform, it was confirmed that the torque pulsation according to the present embodiment is reduced by about 30% compared to the conventional example.

さらに、磁極中心軸12を変位させた磁極8の構成としても、回転子3の永久磁石6の埋設位置周辺の回転子鉄心5の厚さには変化がなく、したがって、永久磁石6を保持する回転子鉄心5の強度低下はなく、安定して永久磁石6を保持することができる。   Furthermore, even if the magnetic pole 8 is configured by displacing the magnetic pole central axis 12, the thickness of the rotor core 5 around the embedded position of the permanent magnet 6 of the rotor 3 is not changed, and thus the permanent magnet 6 is held. The strength of the rotor core 5 is not reduced, and the permanent magnet 6 can be stably held.

このほか、隣接する磁極8の間には、冷却用通風溝7が形成されているので、運転時に、この冷却用通風溝7に冷却媒体(機内を循環する空気や、機外から導入する外気等)を流通させることで、永久磁石式発電機1の発熱量を抑制でき、その分、永久磁石式発電機1を小型化することができる。   In addition, since a cooling ventilation groove 7 is formed between the adjacent magnetic poles 8, a cooling medium (air circulating inside the machine or outside air introduced from outside the machine) is inserted into the cooling ventilation groove 7 during operation. Etc.) can be distributed, so that the amount of heat generated by the permanent magnet generator 1 can be suppressed, and the permanent magnet generator 1 can be reduced in size accordingly.

ところで、本実施の形態においては、磁極中心軸12を傾斜して変位させて、磁極8の外周8Sと固定子4との空隙を変化させたものであるが、図5に示す変形例のように、磁極8の外周8Sの半径中心13を回転子3の磁極中心軸12からずらして前記空隙を変化させるようにしてもよい。   By the way, in the present embodiment, the magnetic pole central axis 12 is inclined and displaced to change the gap between the outer periphery 8S of the magnetic pole 8 and the stator 4, but as in the modification shown in FIG. Alternatively, the gap may be changed by shifting the radius center 13 of the outer periphery 8S of the magnetic pole 8 from the magnetic pole central axis 12 of the rotor 3.

このように回転子3の磁極8の外周8Sの半径中心13をずらすことで、反回転方向側の固定子4との空隙をさらに拡大することができ、磁束の集中を効率的に低減することができる。その結果、図6に示すように、従来例に比べてトルク脈動を約6割減少させることができた。   By shifting the radius center 13 of the outer periphery 8S of the magnetic pole 8 of the rotor 3 in this way, the gap with the stator 4 on the counter-rotation direction side can be further enlarged, and the concentration of magnetic flux can be efficiently reduced. Can do. As a result, as shown in FIG. 6, the torque pulsation could be reduced by about 60% compared to the conventional example.

次に、本発明による第2の実施の形態を図7及び図8に基づいて説明する。尚、図1〜図3及び図5と同一符号は同一構成部材を示すので、再度の詳細な説明は省略する。   Next, a second embodiment according to the present invention will be described with reference to FIGS. The same reference numerals as those in FIGS. 1 to 3 and FIG.

本実施の形態において、図1に示す第1の実施の形態と異なる構成は、磁極8の磁極中心軸12Bの変位の方法である。即ち、本実施の形態においては、図8に破線で示すように、回転中心11を半径中心とする外周8sを有する磁極8Aにおいて、その回転中心11を通る磁極中心軸12を回転方向R側に平行移動させて変位させ、磁極中心軸12Bとなる位置に同じ形状の磁極8を形成したのである。   In the present embodiment, a configuration different from the first embodiment shown in FIG. 1 is a method of displacing the magnetic pole central axis 12B of the magnetic pole 8. That is, in the present embodiment, as shown by a broken line in FIG. 8, in the magnetic pole 8A having the outer periphery 8s with the rotation center 11 as the radius center, the magnetic pole center axis 12 passing through the rotation center 11 is directed to the rotation direction R side. The magnetic pole 8 having the same shape is formed at the position that becomes the magnetic pole central axis 12B by being translated and displaced.

このように構成することで、第1の実施の形態と同等の効果を奏することができる。   By configuring in this way, it is possible to achieve the same effect as that of the first embodiment.

さらに、本実施の形態においても、第1の実施の形態の変形例(図5)に示すように、磁極8の外周8Sの半径中心13をずらすことで、更なるトルク脈動の低減を行うことができる。   Furthermore, also in the present embodiment, as shown in the modification of the first embodiment (FIG. 5), the torque pulsation can be further reduced by shifting the radius center 13 of the outer periphery 8S of the magnetic pole 8. Can do.

ところで、上記第1及び第2の実施の形態においては、回転子3の磁極8の数を8極としているが、他の極数でもよく、また、固定子4の巻線溝数や巻線方式(集中巻や分布巻)が変わった場合でも、上記実施の形態による回転子3を適用することで、同様な効果を奏することができる。   By the way, in the first and second embodiments, the number of the magnetic poles 8 of the rotor 3 is eight. However, other numbers of poles may be used. Even when the method (concentrated winding or distributed winding) is changed, the same effect can be obtained by applying the rotor 3 according to the above embodiment.

図9は、本発明による第3の実施の形態を示すもので、永久磁石6の回転子鉄心5への埋設位置が異なるほかは、第1及び第2の実施の形態と同じ構成である。   FIG. 9 shows a third embodiment according to the present invention, which has the same configuration as that of the first and second embodiments, except that the embedded position of the permanent magnet 6 in the rotor core 5 is different.

即ち、第1及び第2の実施の形態において、永久磁石6は、断面矩形型の平板の永久磁石6を2つ用い、一つの磁極8に対してV字状に埋設したものである。しかしながら、本実施の形態においては、2つの平板の永久磁石6を板面が同一になるように平行に埋設したものである。   That is, in the first and second embodiments, the permanent magnet 6 uses two flat magnets 6 having a rectangular cross section and is embedded in one magnetic pole 8 in a V shape. However, in the present embodiment, two flat permanent magnets 6 are embedded in parallel so that the plate surfaces are the same.

本実施の形態においても、上述の実施の形態と同等の効果を奏することができる。   Also in this embodiment, the same effect as the above-described embodiment can be obtained.

さらに、図10は、第3の実施の形態における第1の変形例で、2つの平板の永久磁石6を用い、一つの磁極8に対して「ハ」の字状に埋設したものである。   Further, FIG. 10 shows a first modification of the third embodiment, in which two flat permanent magnets 6 are used and one magnetic pole 8 is embedded in a “C” shape.

図11は、第3の実施の形態における第2の変形例を示すもので、断面が円弧状に形成された2つの永久磁石6Aを用い、一つの磁極8に対して円弧が外周8Sに沿うように埋設したものである。   FIG. 11 shows a second modification example of the third embodiment, in which two permanent magnets 6A having a circular cross section are used, and a single magnetic pole 8 has an arc along the outer periphery 8S. It is buried like this.

以上の第3の実施の形態及びそれに基づく2つの変形例に示すように、磁極8の外周8Sの形成状態によって、永久磁石6,6Aの埋設法を選択することで、永久磁石6,6Aの近傍の回転子鉄心5の厚さを確保することができ、機械的強度の確保を行うことができる。
図12は、本発明による第4の実施の形態を示すもので、回転子鉄心5に埋設される永久磁石6を、その幅方向に複数に分割した永久磁石片6a,6b,6c,6dで構成したのである。
As shown in the third embodiment and the two modifications based thereon, by selecting the embedding method of the permanent magnets 6 and 6A according to the formation state of the outer periphery 8S of the magnetic pole 8, the permanent magnets 6 and 6A can be selected. The thickness of the rotor core 5 in the vicinity can be ensured, and the mechanical strength can be ensured.
FIG. 12 shows a fourth embodiment according to the present invention. The permanent magnet 6 embedded in the rotor core 5 is divided into a plurality of permanent magnet pieces 6a, 6b, 6c, 6d in the width direction. It was configured.

このように、永久磁石6を永久磁石片6a,6b,6c,6dで構成することで、渦電流損による永久磁石6の発熱を低く抑えることができ、永久磁石式発電機の小型化や大容量化に寄与することができる。   In this way, by configuring the permanent magnet 6 with the permanent magnet pieces 6a, 6b, 6c, and 6d, heat generation of the permanent magnet 6 due to eddy current loss can be suppressed low, and the permanent magnet generator can be reduced in size and size. It can contribute to capacity increase.

尚、永久磁石6の小分割化は、本実施の形態に限らず、他の実施の形態及び変形例で示す永久磁石6,6Aに適用できるのは云うまでもない。   Needless to say, the subdivision of the permanent magnet 6 is not limited to the present embodiment, but can be applied to the permanent magnets 6 and 6A shown in other embodiments and modifications.

以上の各説明は、磁極8を形成するように、夫々冷却用通風溝7を設けて回転子3の冷却を行っているが、更なる回転子3の冷却が要求される場合がある。そのようなときには、図13に示す本発明による第5の実施の形態のように、各磁極8ごとに、永久磁石6の埋設位置よりも内径側に軸方向に貫通する穴14を設けて軸方向冷却通路とし、ここに冷却媒体を流通させることで、冷却能力を向上させることができる。   In each of the above explanations, the cooling grooves 7 are provided to cool the rotor 3 so that the magnetic poles 8 are formed. However, further cooling of the rotor 3 may be required. In such a case, as in the fifth embodiment according to the present invention shown in FIG. 13, for each magnetic pole 8, a hole 14 penetrating in the axial direction is provided on the inner diameter side of the embedded position of the permanent magnet 6. The cooling capacity can be improved by forming a directional cooling passage and circulating the cooling medium therethrough.

次に、本発明による第6の実施の形態を図14に基づいて説明する。第1の実施の形態と同一符号は同一構成部材を示すので、再度の詳細な説明は省略する。   Next, a sixth embodiment according to the present invention will be described with reference to FIG. Since the same reference numerals as those in the first embodiment indicate the same constituent members, detailed description thereof is omitted.

第1の実施の形態と異なる構成は、回転子鉄心5の内径側に、図13で示す穴14を設けて軸方向冷却通路を形成した点と、回転子鉄心5の軸方向複数箇所に電磁鋼板を積層する際に径方向の通風ダクト15を形成した点と、固定子鉄心9にも同様な通風ダクト16を形成した点と、回転子3の軸方向両側に位置する回転軸2に軸流ファン17A,17Bを設けた点である。   The configuration different from that of the first embodiment is that the hole 14 shown in FIG. 13 is provided on the inner diameter side of the rotor core 5 to form an axial cooling passage, and electromagnetic waves are provided at a plurality of locations in the axial direction of the rotor core 5. A point in which a radial ventilation duct 15 is formed when laminating steel plates, a point in which a similar ventilation duct 16 is formed in the stator core 9, and a rotation shaft 2 positioned on both axial sides of the rotor 3. This is the point that the flow fans 17A and 17B are provided.

このように構成することで、軸流ファン17A,17Bによって冷却媒体が、回転子鉄心5の冷却用通風溝(図示せず)7や穴14に押し込まれ、そこから通風ダクト15を通って半径方向に流れ、そこから固定子4の通風ダクト16を通って軸流ファン17A,17Bに戻るので、回転子3や固定子4の冷却効率を高めることができ、永久磁石式発電機1の小型化や大容量化にさらに寄与することができる
ところで、図示は省略しているが、軸流ファン17A,17Bによって循環される冷却媒体の流路の途中、例えば固定子4の外周側に熱交換器を設置すれば、更なる冷却効率の向上に寄与することができる。
With this configuration, the cooling medium is pushed into the cooling ventilation groove (not shown) 7 and the hole 14 of the rotor core 5 by the axial fans 17A and 17B, and then passes through the ventilation duct 15 to have a radius. Since it flows in the direction and then returns to the axial fans 17A and 17B through the ventilation duct 16 of the stator 4, the cooling efficiency of the rotor 3 and the stator 4 can be increased, and the permanent magnet generator 1 can be reduced in size. Although not shown, heat exchange is performed in the middle of the flow path of the cooling medium circulated by the axial fans 17A and 17B, for example, on the outer peripheral side of the stator 4. If a vessel is installed, it can contribute to further improvement in cooling efficiency.

さらに、図15は、各実施の形態による永久磁石式発電機1を、風力発電システムに適用した例を示す。   Further, FIG. 15 shows an example in which the permanent magnet generator 1 according to each embodiment is applied to a wind power generation system.

永久磁石式発電機1は、原動機である風車18に減速手段19を介して回転的に接続されている。永久磁石式発電機1と減速手段19とは風車ナセル20内に設置されている。そして、永久磁石式発電機1は、負荷21に対し、電力変換機22を介して電気的に接続され、発電運転を行う。   The permanent magnet generator 1 is rotationally connected to a windmill 18 that is a prime mover via a speed reduction means 19. The permanent magnet generator 1 and the speed reduction means 19 are installed in a windmill nacelle 20. The permanent magnet generator 1 is electrically connected to the load 21 via the power converter 22 and performs a power generation operation.

尚、永久磁石式発電機1は、風車18に減速手段19を介して回転的に接続されたものであるが、風車18に対して直結してもよい。   The permanent magnet generator 1 is rotationally connected to the windmill 18 via the speed reduction means 19, but may be directly connected to the windmill 18.

このように、風力発電システムに、本発明による小型で大容量の永久磁石式発電機1を適用することで、風車ナセル20全体を小型化することができる。   Thus, the windmill nacelle 20 whole can be reduced in size by applying the small-sized and large-capacity permanent magnet generator 1 according to the present invention to the wind power generation system.

ところで、以上の説明は、磁極の外周の回転方向の先端側となる位置の固定子との空隙を、磁極の外周の反回転方向側となる位置の固定子との空隙に対して、磁極の外周の円弧に沿って漸減させたものであるので、磁極の下が側への磁束の集中が、緩やかに分散されて低減できるのである。しかしながら、磁極の外周を直線的に傾斜させて固定子との空隙を変化させた場合、逆に、固定子との空隙が最も接近する部分に磁束が集中し易くなり、磁束の集中の低減効果が発揮できなくなる。したがって、固定子との空隙は、磁極の外周の円弧に沿って漸減させる必要がある。   By the way, in the above explanation, the gap between the outer periphery of the magnetic pole and the stator at the position on the tip side in the rotational direction is set to the gap between the outer periphery of the magnetic pole and the stator at the position on the counter-rotation direction. Since it is gradually reduced along the outer peripheral arc, the concentration of the magnetic flux toward the lower side of the magnetic pole can be gently dispersed and reduced. However, when the gap between the stator and the stator is changed by linearly tilting the outer circumference of the magnetic pole, conversely, the magnetic flux tends to concentrate on the part where the gap between the stator and the stator is closest, and the effect of reducing the concentration of the magnetic flux is reduced. Cannot be demonstrated. Therefore, the gap with the stator needs to be gradually reduced along the arc on the outer periphery of the magnetic pole.

さらに、磁極外周の円弧を形成するに際し、単一の半径中心による円弧を形成した例を示したが、永久磁石式発電機の用途や特性によっては、磁極の外周を複数の半径中心を有する円弧によって形成してもよい。   In addition, when forming an arc around the magnetic pole, an example was shown in which an arc with a single radius center was formed. However, depending on the application and characteristics of the permanent magnet generator, the arc having an outer periphery with a plurality of radius centers May be formed.

このほか、永久磁石は組立性等を考慮して、軸方向に複数に分割されたものを用いてもよい。   In addition, the permanent magnet may be divided into a plurality of parts in the axial direction in consideration of assemblability and the like.

上記各実施の形態は、風力発電システムに適用できる永久磁石式発電機について説明したが、原動機として水車、エンジン、タービン等に連結して用いることも可能である。   Although each said embodiment demonstrated the permanent-magnet-type generator applicable to a wind power generation system, it can also be connected and used for a turbine, an engine, a turbine, etc. as a motor.

さらに、本発明による永久磁石式回転電機は永久磁石式電動機にも適用することができる。尚、永久磁石式回転電機を永久磁石式電動機とした場合には、磁極の外周の回転方向の先端側となる位置の固定子との空隙を、磁極の外周の反回転方向側となる位置の固定子との空隙よりも広くなるようにすることが重要である。   Furthermore, the permanent magnet type rotating electrical machine according to the present invention can be applied to a permanent magnet type electric motor. When the permanent magnet type rotating electrical machine is a permanent magnet type electric motor, the gap between the outer periphery of the magnetic pole and the stator at the position on the front end side in the rotational direction is the position of the outer periphery of the magnetic pole in the position on the opposite side of the rotational direction. It is important to make it wider than the gap with the stator.

Claims (11)

固定子と、この固定子と空隙を介して回転自在に軸支された回転子とを備え、この回転子の回転子鉄心に軸方向に延在する冷却用通風溝を周方向に間隔をあけて偶数形成し、周方向に隣接する冷却用通風溝間の回転子鉄心に永久磁石を埋設して偶数の磁極を構成した永久磁石式回転電機において、前記偶数の各磁極の外周を同じ曲率を有する円弧に形成すると共に、各磁極の磁極中心軸を回転子の回転中心に対して変位させて前記固定子と各磁極外周との空隙を回転方向の一方側を他方側に比べて広くしたことを特徴とする永久磁石式回転電機。   A stator, and a rotor rotatably supported by a stator through a gap, and a cooling ventilation groove extending in an axial direction in the rotor iron core of the rotor is circumferentially spaced; In the permanent magnet type rotating electrical machine in which an even number of magnetic poles are formed by embedding a permanent magnet in a rotor core between adjacent cooling ventilation grooves in the circumferential direction, the outer periphery of each of the even numbered magnetic poles has the same curvature. The magnetic pole central axis of each magnetic pole is displaced with respect to the rotation center of the rotor, and the gap between the stator and each magnetic pole outer periphery is made wider on one side in the rotation direction than on the other side. Permanent magnet type rotating electrical machine characterized by 前記各磁極の外周に形成された円弧は、夫々同一半径の円弧に形成されていることを特徴とする請求項1記載の永久磁石式回転電機。   2. The permanent magnet type rotating electrical machine according to claim 1, wherein the arcs formed on the outer periphery of each of the magnetic poles are each formed into an arc having the same radius. 前記各磁極の外周に形成された円弧は、夫々同一半径の円弧に形成されており、各磁極は磁極中心軸を回転方向の一方側に傾斜させて形成されていることを特徴とする請求項1記載の永久磁石式回転電機。   The arcs formed on the outer periphery of each of the magnetic poles are each formed into an arc of the same radius, and each of the magnetic poles is formed by inclining the central axis of the magnetic pole to one side in the rotation direction. 1. A permanent magnet type rotating electrical machine according to 1. 前記各磁極の外周に形成された円弧は、夫々同一半径の円弧に形成されており、各磁極は磁極中心軸を回転子の回転中心を通る中心直線に対して回転方向の一方側に平行移動させて形成されていることを特徴とする請求項1記載の永久磁石式発電機。   The arcs formed on the outer peripheries of the respective magnetic poles are formed into arcs having the same radius, and each magnetic pole moves in parallel with the central axis of the magnetic pole to one side in the rotation direction with respect to a central straight line passing through the rotation center of the rotor. The permanent magnet generator according to claim 1, wherein the permanent magnet generator is formed. 前記回転子鉄心の永久磁石の埋設位置よりも内径側に、前記冷却用通風溝と平行に軸方向冷却通路が形成されていることを特徴とする請求項1〜のいずれかに記載の永久磁石式回転電機。 The permanent cooling system according to any one of claims 1 to 4 , wherein an axial cooling passage is formed in an inner diameter side of the permanent magnet of the rotor iron core in parallel with the cooling ventilation groove. Magnet rotating electric machine. 前記回転子鉄心の軸方向の複数箇所に、径方向の通風ダクトが形成されていることを特徴とする請求項1〜のいずれかに記載の永久磁石式回転電機。 The permanent magnet type rotating electrical machine according to any one of claims 1 to 4 , wherein a radial ventilation duct is formed at a plurality of axial positions of the rotor core. 前記回転子鉄心の永久磁石の埋設位置よりも内径側に、前記冷却用通風溝と平行に軸方向冷却通路が形成されていると共に、前記回転子鉄心の軸方向の複数箇所に、前記軸方向通風路に連通する径方向の通風ダクトが形成されていることを特徴とする請求項1〜のいずれかに記載の永久磁石式回転電機。 An axial cooling passage is formed in parallel to the cooling ventilation groove on the inner diameter side of the embedded position of the permanent magnet of the rotor core, and the axial direction is provided at a plurality of locations in the axial direction of the rotor core. permanent magnet rotating electrical machine according to any one of claims 1 to 4, characterized in that the radial ventilation ducts communicating with the air passage is formed. 前記回転子は、各磁極ごとに、2つの断面矩形状の平板永久磁石が周方向に間隔をおいて並設されていることを特徴とする請求項1〜のいずれかに記載の永久磁石式回転電機。 The permanent magnet according to any one of claims 1 to 7 , wherein the rotor has two flat plate permanent magnets each having a rectangular cross section arranged at intervals in the circumferential direction for each magnetic pole. Rotary electric machine. 前記回転子は、各磁極ごとに、2つの断面円弧状に形成した永久磁石が周方向に間隔をおいて並設されていることを特徴とする請求項1〜のいずれかに記載の永久磁石式回転電機。 The permanent magnet according to any one of claims 1 to 7 , wherein the rotor has permanent magnets formed in two arcs in cross section for each magnetic pole and arranged in parallel at intervals in the circumferential direction. Magnet rotating electric machine. 前記平板永久磁石は、軸方向に分割されていることを特徴とする請求項又は記載の永久磁石式回転電機。 The permanent magnet rotating electric machine according to claim 8 or 9 , wherein the flat permanent magnet is divided in an axial direction. 請求項1〜10のいずれかに記載の永久磁石式回転電機を、発電機として用いたことを特徴とする風力発電システム。 A wind power generation system using the permanent magnet type rotating electrical machine according to any one of claims 1 to 10 as a generator.
JP2011501350A 2009-02-27 2009-02-27 Permanent magnet rotating electric machine Active JP5250692B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000883 WO2010097838A1 (en) 2009-02-27 2009-02-27 Permanent magnet type rotary machine

Publications (2)

Publication Number Publication Date
JPWO2010097838A1 JPWO2010097838A1 (en) 2012-08-30
JP5250692B2 true JP5250692B2 (en) 2013-07-31

Family

ID=42665068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011501350A Active JP5250692B2 (en) 2009-02-27 2009-02-27 Permanent magnet rotating electric machine

Country Status (4)

Country Link
US (1) US8350434B2 (en)
EP (1) EP2403107B1 (en)
JP (1) JP5250692B2 (en)
WO (1) WO2010097838A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2403107B1 (en) 2009-02-27 2019-05-01 Hitachi, Ltd. Permanent magnet type rotary machine
JP5550525B2 (en) * 2010-10-29 2014-07-16 ビアメカニクス株式会社 Galvano scanner and laser processing machine
KR101474180B1 (en) 2010-11-04 2014-12-18 보벤 프로퍼티즈 게엠베하 Wind energy installation having a synchronous generator, and slowly rotating synchronous generator
US8928197B2 (en) * 2012-04-17 2015-01-06 GM Global Technology Operations LLC Pole-to-pole asymmetry in interior permanent magnet machines with arc-shaped slots
JP2014147254A (en) * 2013-01-30 2014-08-14 Toyota Industries Corp Rotor of permanent magnet dynamo-electric machine, and permanent magnet dynamo-electric machine
WO2014122947A1 (en) * 2013-02-08 2014-08-14 富士電機株式会社 Permanent-magnet-embedded-type rotary electric machine
JP6210161B2 (en) * 2014-08-11 2017-10-11 富士電機株式会社 Rotating electric machine
JP6231534B2 (en) * 2015-11-17 2017-11-15 ファナック株式会社 Electric motor with optimized rotor shape
GB2568441B (en) 2016-09-14 2022-11-23 Mts System Corp Electric machine with stator cooling channels
CN106953442A (en) * 2017-03-27 2017-07-14 广东美芝精密制造有限公司 Rotor, motor and its compressor of permagnetic synchronous motor
JP6671553B1 (en) * 2018-07-19 2020-03-25 三菱電機株式会社 Rotating electric machine
JP6803889B2 (en) * 2018-10-23 2020-12-23 本田技研工業株式会社 Vehicles equipped with rotary electric machines and rotary electric machines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166140A (en) * 1998-11-20 2000-06-16 Mitsubishi Electric Corp Permanent magnet motor
JP2008131813A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166141A (en) * 1998-11-25 2000-06-16 Hitachi Ltd Brushless motor
JP2001238417A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Electrical machine
EP2403107B1 (en) 2009-02-27 2019-05-01 Hitachi, Ltd. Permanent magnet type rotary machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166140A (en) * 1998-11-20 2000-06-16 Mitsubishi Electric Corp Permanent magnet motor
JP2008131813A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet

Also Published As

Publication number Publication date
WO2010097838A1 (en) 2010-09-02
EP2403107A4 (en) 2016-11-16
EP2403107A1 (en) 2012-01-04
US8350434B2 (en) 2013-01-08
EP2403107B1 (en) 2019-05-01
US20110260466A1 (en) 2011-10-27
JPWO2010097838A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5250692B2 (en) Permanent magnet rotating electric machine
JP5331761B2 (en) Permanent magnet rotating electric machine
JP5288724B2 (en) Rotating electric machine rotor and rotating electric machine
US9071118B2 (en) Axial motor
JP5260563B2 (en) Permanent magnet generator or motor
JP5288698B2 (en) Permanent magnet type reluctance type rotating electrical machine
US7411330B2 (en) Rotating electric machine
JP2008131813A (en) Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet
JP2007104888A (en) Rotary electric machine
JP2008236890A (en) Magnetic steel sheet formed body, magnetic steel sheet laminated body, rotor for permanent-magnet synchronous rotating electrical machines equipped therewith, permanent-magnet synchronous rotating electrical machine, and vehicle, elevator, fluid machine, and processing machine using the rotating electrical machine
JP5088587B2 (en) Permanent magnet type synchronous rotating electric machine, vehicle equipped therewith, elevator, fluid machine and processing machine
JP2009022089A (en) Permanent magnet type rotary electric machine and permanent magnet type rotary electric machine system
JP2016010176A (en) Motor
JP2009273304A (en) Rotor of rotating electric machine, and rotating electric machine
JP5248048B2 (en) Rotating electric machine rotor and rotating electric machine
JP2009077525A (en) Rotor for dynamo-electric machine and dynamo-electric machine
JP4704883B2 (en) Permanent magnet rotating electrical machine and cylindrical linear motor
JP2019146388A (en) Cooling structure of rotary electric machine and rotary electric machine
US11146128B1 (en) Squirrel-cage rotor and rotating electric machine
JP2011193627A (en) Rotor core and rotary electric machine
JP2010284034A (en) Permanent magnet rotary electric machine
JP2006014565A (en) Disc type rotary electric machine
WO2023042587A1 (en) Magnetic geared rotary machine, power generation system, and drive system
JP2014082836A (en) Rotor and rotary electric machine having the same
JP2008220143A (en) Rotor of rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5250692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3