JP5248973B2 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
JP5248973B2
JP5248973B2 JP2008265929A JP2008265929A JP5248973B2 JP 5248973 B2 JP5248973 B2 JP 5248973B2 JP 2008265929 A JP2008265929 A JP 2008265929A JP 2008265929 A JP2008265929 A JP 2008265929A JP 5248973 B2 JP5248973 B2 JP 5248973B2
Authority
JP
Japan
Prior art keywords
temperature
calibration device
temperature sensor
powered
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008265929A
Other languages
Japanese (ja)
Other versions
JP2010096558A (en
Inventor
敏正 森
博美 谷津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2008265929A priority Critical patent/JP5248973B2/en
Publication of JP2010096558A publication Critical patent/JP2010096558A/en
Application granted granted Critical
Publication of JP5248973B2 publication Critical patent/JP5248973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無給電温度センサを用いて被測定物の温度を測定するとともに、前記無給電温度センサに応じて前記温度算出校正装置を校正する温度測定装置に関する。   The present invention relates to a temperature measurement device that measures the temperature of an object to be measured using a non-powered temperature sensor and calibrates the temperature calculation calibration device according to the non-powered temperature sensor.

近年、被測定物の温度を、電力を供給せずに無線で送信することができる無給電温度センサが注目されている。この無給電温度センサとしては一般的には、SAWセンサが用いられている(特許文献1参照)。   In recent years, a non-powered temperature sensor that can wirelessly transmit the temperature of an object to be measured without supplying electric power has attracted attention. In general, a SAW sensor is used as the non-powered temperature sensor (see Patent Document 1).

特許文献1では、遠隔計測する基地局からバースト波が送信され、SAWセンサが備えるアンテナで前記バースト波が受信され、SAWセンサ内の櫛形電極によって弾性表面波が励振され、他の櫛形電極を経て前記アンテナから電磁波として放射される。SAWセンサでは、前記弾性表面波の伝搬速度は温度によって異なるために、前記基地局から送信されたバースト波と、前記基地局で受信する前記電磁波との位相差(時間差)に基づいて被測定物の温度を測定することができる。   In Patent Document 1, a burst wave is transmitted from a base station to be remotely measured, the burst wave is received by an antenna provided in the SAW sensor, a surface acoustic wave is excited by a comb electrode in the SAW sensor, and passes through another comb electrode. Radiated as electromagnetic waves from the antenna. In the SAW sensor, since the propagation speed of the surface acoustic wave varies depending on the temperature, the object to be measured is based on the phase difference (time difference) between the burst wave transmitted from the base station and the electromagnetic wave received by the base station. Temperature can be measured.

特開2004−150860号公報JP 2004-150860 A

しかしながら、SAWセンサを長期間使用していると経時変化により、同じ温度に対しても、前記電磁波の位相差が異なり、被測定物の温度を正確に測定できなくなる場合がある。   However, if the SAW sensor is used for a long time, the phase difference of the electromagnetic wave is different even at the same temperature due to a change with time, and the temperature of the object to be measured may not be measured accurately.

本発明は、上記の課題を考慮してなされたものであって、無給電温度センサに経時変化があっても、被測定物の温度の測定誤差の発生を防ぐことが可能となる温度測定装置を提供することを目的とする。   The present invention has been made in consideration of the above-described problem, and is a temperature measuring device that can prevent the occurrence of a measurement error in the temperature of an object to be measured even when the non-powered temperature sensor changes with time. The purpose is to provide.

本発明に係る温度測定装置は、被測定物の温度に対応した信号を出力する無給電温度センサと、前記無給電温度センサからの出力信号に基づいて自身の温度を校正することにより、前記被測定物の温度を補正するための校正データを求める温度算出校正装置と、を備え、前記無給電温度センサは、前記被測定物の温度に対応した出力信号を前記温度算出校正装置に無線で送信し、前記温度算出校正装置は、前記被測定物の温度に対応した出力信号及び前記校正データに基づいて被測定物の温度を算出し、前記被測定物の温度に対応した出力信号の電界強度が閾値以上の場合に、前記無給電温度センサが前記温度算出校正装置に載置されたと判断し、前記無給電温度センサの出力信号に基づいて前記温度算出校正装置の温度を校正し、前記校正データを求めることを特徴とする。 Temperature measurement apparatus according to the present invention, and the parasitic temperature sensor for outputting a signal corresponding to the temperature of the object to be measured, by calibrating their temperature based on the output signal from the passive temperature sensors, the object and a temperature calculation calibration device asking you to calibration data for correcting the temperature of the measured object, the passive temperature sensor, a wireless output signal corresponding to the temperature of the object to be measured to the temperature calculating calibration device The temperature calculation calibration device calculates the temperature of the measurement object based on the output signal corresponding to the temperature of the measurement object and the calibration data , and the electric field of the output signal corresponding to the temperature of the measurement object When the intensity is greater than or equal to a threshold, it is determined that the non-feed temperature sensor is placed on the temperature calculation calibration device, and the temperature of the temperature calculation calibration device is calibrated based on the output signal of the non-feed temperature sensor , Proofreading And wherein the Rukoto asked for over data.

温度測定装置では、温度算出校正装置が、前記被測定物の温度に対応した出力信号の電界強度が閾値以上の場合に、前記無給電温度センサが前記温度算出校正装置に載置されたと判断し、前記無給電温度センサに応じて校正されることにより、無給電温度センサの経時変化による温度測定の誤差の発生を防ぐことができる。また、無給電温度センサによって被測定物の温度を測定する者は、意識せずに無給電温度センサに応じた温度算出校正装置の校正をすることができる。   In the temperature measurement device, the temperature calculation calibration device determines that the non-powered temperature sensor is placed on the temperature calculation calibration device when the electric field strength of the output signal corresponding to the temperature of the object to be measured is greater than or equal to a threshold value. By calibrating according to the non-powered temperature sensor, it is possible to prevent the temperature measurement error from occurring due to the time-dependent change of the non-powered temperature sensor. Further, a person who measures the temperature of the object to be measured by the non-powered temperature sensor can calibrate the temperature calculation calibration device corresponding to the non-powered temperature sensor without being conscious of it.

また、前記温度算出校正装置の校正は、前記温度算出校正装置に設けられた温度センサによって測定された前記温度算出校正装置の温度と、載置された前記無給電温度センサによって算出された前記温度算出校正装置の温度とに基づいて行ってもよい。   In addition, the calibration of the temperature calculation calibration device is performed by measuring the temperature of the temperature calculation calibration device measured by a temperature sensor provided in the temperature calculation calibration device and the temperature calculated by the non-powered temperature sensor placed on the temperature calculation calibration device. You may perform based on the temperature of a calculation calibration apparatus.

さらに、前記温度算出校正装置は、算出した前記被測定物の温度を記録し、記録した前記被測定物の温度に基づいて前記被測定物の温度変化を表示部に表示してもよい。   Further, the temperature calculation / calibration apparatus may record the calculated temperature of the object to be measured, and display a temperature change of the object to be measured on a display unit based on the recorded temperature of the object to be measured.

さらにまた、前記無給電温度センサは、弾性表面波素子であることが好ましい。   Furthermore, the non-powered temperature sensor is preferably a surface acoustic wave element.

本発明によれば、温度測定装置では、被測定物の温度に対応した出力信号の電界強度が閾値以上の場合に、無給電温度センサが温度算出校正装置に載置されたと判断し、前記無給電温度センサからの出力信号に基づいて前記温度算出校正装置を校正することにより、無給電温度センサの経時変化による温度測定の誤差の発生を防ぐことができる。また、無給電温度センサによって被測定物の温度を測定する者は、意識せずに無給電温度センサに応じた温度算出校正装置の校正をすることができる。   According to the present invention, the temperature measuring device determines that the non-powered temperature sensor is placed on the temperature calculation calibration device when the electric field strength of the output signal corresponding to the temperature of the object to be measured is greater than or equal to the threshold value. By calibrating the temperature calculation / calibration device based on the output signal from the power supply temperature sensor, it is possible to prevent the temperature measurement error from occurring due to the time-dependent change of the non-power supply temperature sensor. Further, a person who measures the temperature of the object to be measured by the non-powered temperature sensor can calibrate the temperature calculation calibration device corresponding to the non-powered temperature sensor without being conscious of it.

以下、本発明の実施形態について図面を参照して説明する。図1Aは、本発明の実施形態に係る温度測定装置10の全体の説明図であり、図1Bは、無給電温度センサ20に基づく温度算出校正装置40の校正の説明図であり、図2は、無給電温度センサ20の構成、温度算出校正装置40の構成の説明図であり、図3は、患者32の温度を算出するために用いる位相差と温度との関係を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is an explanatory diagram of the entire temperature measuring device 10 according to the embodiment of the present invention, FIG. 1B is an explanatory diagram of calibration of a temperature calculation calibration device 40 based on the non-powered temperature sensor 20, and FIG. FIG. 3 is an explanatory diagram of the configuration of the non-powered temperature sensor 20 and the configuration of the temperature calculation / calibration device 40, and FIG. 3 is a diagram illustrating the relationship between the phase difference used to calculate the temperature of the patient 32 and the temperature.

温度測定装置10は、無給電温度センサ20と、温度算出校正装置40とを備え、無給電温度センサ20と温度算出校正装置40間は無線通信される。無給電温度センサ20は、温度算出校正装置40から放射されるバースト波を受信するためのアンテナ22と、弾性表面波素子24とを備える。   The temperature measuring device 10 includes a non-powered temperature sensor 20 and a temperature calculation calibration device 40, and wireless communication is performed between the non-powered temperature sensor 20 and the temperature calculation calibration device 40. The parasitic power temperature sensor 20 includes an antenna 22 for receiving a burst wave radiated from the temperature calculation calibration device 40 and a surface acoustic wave element 24.

弾性表面波素子24は、櫛形電極26と、反射器28とを備え、これらは圧電基板30上に形成される。櫛形電極26は、アンテナ22で受信したバースト波に基づいて、弾性表面波を励振させるため電極である。反射器28は、圧電基板30上に櫛形電極26から出力される弾性表面波の伝搬方向に対して垂直な方向に延在するように金属膜を蒸着して形成した複数の凸部で構成される。圧電基板30は、弾性表面波を伝搬することができれば、特に限られないが、36度Y板X伝搬LiTaO3であることが好ましい。 The surface acoustic wave element 24 includes a comb electrode 26 and a reflector 28, which are formed on the piezoelectric substrate 30. The comb electrode 26 is an electrode for exciting the surface acoustic wave based on the burst wave received by the antenna 22. The reflector 28 includes a plurality of convex portions formed by vapor-depositing a metal film on the piezoelectric substrate 30 so as to extend in a direction perpendicular to the propagation direction of the surface acoustic wave output from the comb electrode 26. The The piezoelectric substrate 30 is not particularly limited as long as it can propagate a surface acoustic wave, but is preferably a 36 ° Y-plate X propagation LiTaO 3 .

温度算出校正装置40は、アンテナ42と、バースト波を無給電温度センサ20に対して送信する送信部44と、無給電温度センサ20からの信号を受信する受信部46と、送信部44からの送信、受信部46での受信の際のアンテナ42を共用するための送受波器48と、送信部44から送信された送信信号と受信部46で受信された受信信号との位相差(時間差)φを検出する位相差検出部50と、前記受信信号の電界強度Eを検出する電界強度検出部52と、患者(被測定物)32の温度の算出や位相差検出部50で検出された位相差の補正等をする制御部54と、患者32の温度を記録するメモリ56と、患者32の温度(体温)を表示する表示器58と、温度算出校正装置40の温度校正のために用いる温度センサ60とを備える。   The temperature calculation calibration device 40 includes an antenna 42, a transmission unit 44 that transmits a burst wave to the parasitic temperature sensor 20, a reception unit 46 that receives a signal from the parasitic power sensor 20, and a transmission unit 44. A transmitter / receiver 48 for sharing the antenna 42 at the time of transmission and reception at the reception unit 46, and a phase difference (time difference) between the transmission signal transmitted from the transmission unit 44 and the reception signal received by the reception unit 46 The phase difference detector 50 for detecting φ, the electric field intensity detector 52 for detecting the electric field intensity E of the received signal, and the temperature detected by the patient (measurement object) 32 and the level detected by the phase difference detector 50. A controller 54 that corrects the phase difference, a memory 56 that records the temperature of the patient 32, a display 58 that displays the temperature (body temperature) of the patient 32, and a temperature used for temperature calibration of the temperature calculation calibration device 40. Sensor 60

アンテナ42は、電界強度のことを考慮して、温度算出校正装置40の筐体の上面中心部に設けられることが好ましく、また、アンテナ42が設けられた位置を中心とした校正領域62に無給電温度センサ20が載置される。   The antenna 42 is preferably provided in the center of the upper surface of the casing of the temperature calculation calibration device 40 in consideration of the electric field strength, and is not provided in the calibration region 62 centered on the position where the antenna 42 is provided. A power supply temperature sensor 20 is placed.

送受波器48は、送信部44からの送信信号が受信部46に回り込むのを防ぐために、信号の送信時と受信時にスイッチで切り換えるように構成されている。   The transmitter / receiver 48 is configured to be switched by a switch at the time of signal transmission and reception in order to prevent the transmission signal from the transmission unit 44 from entering the reception unit 46.

制御部54は、位相差検出部50で検出された送信部44からの送信信号と、受信部46での受信信号との位相差に基づいて患者32の温度を算出する。患者32の温度の算出は、制御部54内に予め用意されている前記位相差と温度との関係を利用して行われる。例えば、図3に示すように位相差と温度との関係を示す図を利用し、検出した前記位相差φに基づいて患者32の温度を求めることができる。また、制御部54は、電界強度検出部52から出力された受信信号の電界強度Eと、予め設定された電界強度の閾値Ethとを比較する。電界強度Eが、閾値Ethよりも大きい場合には無給電温度センサ20が温度算出校正装置40に載置されたと判断して無給電温度センサ20からの出力信号に基づいて温度算出校正装置40の温度の校正を開始する。電界強度Eが、閾値Ethよりも小さい場合には制御部54によって、患者32の温度が算出される。   The control unit 54 calculates the temperature of the patient 32 based on the phase difference between the transmission signal from the transmission unit 44 detected by the phase difference detection unit 50 and the reception signal from the reception unit 46. The temperature of the patient 32 is calculated using the relationship between the phase difference and temperature prepared in advance in the control unit 54. For example, the temperature of the patient 32 can be obtained based on the detected phase difference φ using a diagram showing the relationship between the phase difference and temperature as shown in FIG. Further, the control unit 54 compares the electric field strength E of the reception signal output from the electric field strength detection unit 52 with a preset threshold value Eth of the electric field strength. When the electric field intensity E is larger than the threshold value Eth, it is determined that the non-feed temperature sensor 20 is placed on the temperature calculation calibration device 40 and the temperature calculation calibration device 40 is based on the output signal from the non-feed temperature sensor 20. Start temperature calibration. When the electric field strength E is smaller than the threshold value Eth, the temperature of the patient 32 is calculated by the control unit 54.

なお、閾値Ethは、無給電温度センサ20を温度算出校正装置40の校正領域62に載置した場合に、送信部44からバースト波を送信して、無給電温度センサ20で受信された後に、無給電温度センサ20から温度算出校正装置40に送信された信号の電界強度よりもやや小さい値に設定される。また、無給電温度センサ20で算出された患者32の温度はメモリ56に記録可能であり、記録された患者32の温度を表示器58に表示させたり、統計的な処理をした結果を表示器58に表示することもできる。   Note that the threshold Eth is transmitted after a burst wave is transmitted from the transmission unit 44 and received by the non-powered temperature sensor 20 when the non-powered temperature sensor 20 is placed in the calibration region 62 of the temperature calculation calibration device 40. The value is set to be slightly smaller than the electric field strength of the signal transmitted from the non-powered temperature sensor 20 to the temperature calculation calibration device 40. Further, the temperature of the patient 32 calculated by the non-powered temperature sensor 20 can be recorded in the memory 56, and the recorded temperature of the patient 32 is displayed on the display 58 or the result of statistical processing is displayed on the display. 58 can also be displayed.

温度測定装置10を用いた患者32の温度の測定、無給電温度センサ20からの出力信号に基づく温度算出校正装置40の校正は、以下のように行われる。   Measurement of the temperature of the patient 32 using the temperature measurement device 10 and calibration of the temperature calculation calibration device 40 based on the output signal from the non-powered temperature sensor 20 are performed as follows.

まず、無給電温度センサ20の出力信号に基づいた温度算出校正装置40の温度の校正が行われる。この校正のために、無給電温度センサ20が温度算出校正装置40の校正領域62に載置される(図1B参照)。次いで、送信部44でバースト波が発生され、送受波器48を介してアンテナ42から送信されると同時に、送信部44からは位相差検出部50にもバースト波が送信される。   First, the temperature of the temperature calculation calibration device 40 is calibrated based on the output signal of the non-powered temperature sensor 20. For this calibration, the non-powered temperature sensor 20 is placed in the calibration area 62 of the temperature calculation calibration device 40 (see FIG. 1B). Next, a burst wave is generated in the transmission unit 44 and transmitted from the antenna 42 via the transducer 48, and at the same time, the burst wave is transmitted from the transmission unit 44 to the phase difference detection unit 50.

送信されたバースト波は、無給電温度センサ20のアンテナ22によって受信される。受信されたバースト波は櫛形電極26で励振されて弾性表面波として圧電基板30上を伝搬して、反射器28で反射されて、櫛形電極26に到達する。櫛形電極26に到達した弾性表面波は、アンテナ22で電波に変換されて、検出信号として温度算出校正装置40に対して送信される。前記検出信号は、無給電温度センサ20によって検出され温度算出校正装置40で算出される温度に対応した信号である。   The transmitted burst wave is received by the antenna 22 of the parasitic temperature sensor 20. The received burst wave is excited by the comb electrode 26, propagates as a surface acoustic wave on the piezoelectric substrate 30, is reflected by the reflector 28, and reaches the comb electrode 26. The surface acoustic wave that has reached the comb electrode 26 is converted into a radio wave by the antenna 22 and transmitted to the temperature calculation calibration device 40 as a detection signal. The detection signal is a signal corresponding to the temperature detected by the non-powered temperature sensor 20 and calculated by the temperature calculation calibration device 40.

前記検出信号は、温度算出校正装置40のアンテナ42、送受波器48を経て、受信部46で受信されて、位相差検出部50と電界強度検出部52とに出力される。位相差検出部50では、送信部44から送信されたバースト波と、前記検出信号との位相差φ0が検出されて制御部54に出力される。また、電界強度検出部52では、受信部46から出力された検出信号の電界強度Eが検出されて制御部54に出力される。   The detection signal is received by the receiving unit 46 via the antenna 42 and the transducer 48 of the temperature calculation calibration device 40, and output to the phase difference detection unit 50 and the electric field strength detection unit 52. In the phase difference detection unit 50, the phase difference φ 0 between the burst wave transmitted from the transmission unit 44 and the detection signal is detected and output to the control unit 54. In the electric field strength detection unit 52, the electric field strength E of the detection signal output from the reception unit 46 is detected and output to the control unit 54.

制御部54では、電界強度Eと閾値Ethとが比較され、無給電温度センサ20が温度算出校正装置40に載置されている場合には、電界強度Eは閾値Ethよりも大きいために温度算出校正装置40の温度校正がされる。温度算出校正装置40の温度校正は、温度センサ60によって測定された温度算出校正装置40自身の温度t0が制御部54に出力され、図3に示すような位相差と温度の関係からこの温度t0に対する位相差φt0が読み出される。この位相差φt0と、検出信号の位相差φ0との差分Δφ(=φ0−φt0)が校正データとして制御部54内に記憶される。以後の無給電温度センサ20による患者32の温度の測定では、無給電温度センサ20からの検出信号の位相差φを校正データΔφで補正した位相差に基づいて患者32の温度が制御部54によって算出される。   In the control unit 54, the electric field strength E is compared with the threshold value Eth, and when the non-powered temperature sensor 20 is mounted on the temperature calculation calibration device 40, the electric field strength E is larger than the threshold value Eth, so that the temperature calculation is performed. The temperature of the calibration device 40 is calibrated. In the temperature calibration of the temperature calculation calibration device 40, the temperature t0 of the temperature calculation calibration device 40 itself measured by the temperature sensor 60 is output to the control unit 54, and this temperature t0 is calculated from the relationship between the phase difference and the temperature as shown in FIG. Is read out. A difference Δφ (= φ0−φt0) between the phase difference φt0 and the phase difference φ0 of the detection signal is stored in the control unit 54 as calibration data. In the subsequent measurement of the temperature of the patient 32 by the non-powered temperature sensor 20, the control unit 54 determines the temperature of the patient 32 based on the phase difference obtained by correcting the phase difference φ of the detection signal from the non-powered temperature sensor 20 with the calibration data Δφ. Calculated.

温度算出校正装置40の校正後、患者32に無給電温度センサ20が設置され(図1B参照)、患者32の温度の測定が開始される。患者32の温度の測定は、上述した温度算出校正装置40の温度校正と同様に、送信部44からバースト波が送信され、無給電温度センサ20で受信された後に、櫛形電極26で励振されて弾性表面波として圧電基板30上を伝搬して、反射器28で反射されて、櫛形電極26に到達する。櫛形電極26に到達した弾性表面波は、アンテナ22で電波に変換されて検出信号として温度算出校正装置40に対して送信される。   After calibration of the temperature calculation calibration device 40, the non-powered temperature sensor 20 is installed in the patient 32 (see FIG. 1B), and measurement of the temperature of the patient 32 is started. In the measurement of the temperature of the patient 32, a burst wave is transmitted from the transmitter 44 and received by the non-powered temperature sensor 20 and then excited by the comb electrode 26, as in the temperature calibration of the temperature calculation calibration device 40 described above. It propagates as a surface acoustic wave on the piezoelectric substrate 30, is reflected by the reflector 28, and reaches the comb-shaped electrode 26. The surface acoustic wave that has reached the comb electrode 26 is converted into a radio wave by the antenna 22 and transmitted to the temperature calculation calibration device 40 as a detection signal.

前記検出信号は、アンテナ42、送受波器48を経て、受信部46で受信されて、位相差検出部50と電界強度検出部52とに出力される。位相差検出部50では、送信部44から送信されたバースト波と、前記検出信号との位相差φが検出されて制御部54に出力される。また、電界強度検出部52では、受信部46から出力された検出信号の電界強度Eが検出されて制御部54に出力される。   The detection signal is received by the reception unit 46 via the antenna 42 and the transducer 48 and output to the phase difference detection unit 50 and the electric field strength detection unit 52. In the phase difference detection unit 50, the phase difference φ between the burst wave transmitted from the transmission unit 44 and the detection signal is detected and output to the control unit 54. In the electric field strength detection unit 52, the electric field strength E of the detection signal output from the reception unit 46 is detected and output to the control unit 54.

制御部54では、電界強度Eと閾値Ethが比較され、患者32に無給電温度センサ20が取り付けられている場合には、電界強度Eは閾値Ethよりも小さいために、制御部54による患者32の温度が求められる。患者32の温度は、位相差φを校正データΔφで補正した位相差と、図3に示すような位相差と温度の関係から求められる。   In the control unit 54, the electric field strength E is compared with the threshold value Eth, and when the non-powered temperature sensor 20 is attached to the patient 32, the electric field strength E is smaller than the threshold value Eth. Temperature is required. The temperature of the patient 32 is obtained from the phase difference obtained by correcting the phase difference φ with the calibration data Δφ and the relationship between the phase difference and the temperature as shown in FIG.

求められた温度は、メモリ56に記録されるとともに、表示器58にも出力されて、患者32の温度が表示される。   The obtained temperature is recorded in the memory 56 and also output to the display 58, and the temperature of the patient 32 is displayed.

無給電温度センサ20を使用していると経時変化により、検出信号の特性が変化し、測定温度に誤差が生じる場合があり、この測定誤差の発生を防ぐために温度算出校正装置40の温度校正が必要となる。   When the non-powered temperature sensor 20 is used, the characteristics of the detection signal may change due to changes over time, and an error may occur in the measurement temperature. In order to prevent the measurement error from occurring, the temperature calibration of the temperature calculation calibration device 40 is performed. Necessary.

温度算出校正装置40の温度校正は、上述した患者32の温度の測定前の温度校正と同様に、無給電温度センサ20を温度算出校正装置40の校正領域62に載置することにより行われる。この校正により、患者32の温度の測定前の校正データが更新されて校正データΔφ’となる。以後の無給電温度センサ20による患者32の温度の測定では、無給電温度センサ20からの検出信号の位相差φを校正データΔφ’で補正した位相差に基づいて図3に示すような位相差と温度の関係より患者32の温度が制御部54によって求められる。   The temperature calibration of the temperature calculation calibration device 40 is performed by placing the non-powered temperature sensor 20 in the calibration region 62 of the temperature calculation calibration device 40 in the same manner as the temperature calibration before the measurement of the temperature of the patient 32 described above. By this calibration, the calibration data before the measurement of the temperature of the patient 32 is updated to become calibration data Δφ ′. In the subsequent measurement of the temperature of the patient 32 by the parasitic power temperature sensor 20, the phase difference as shown in FIG. 3 is based on the phase difference obtained by correcting the phase difference φ of the detection signal from the parasitic temperature sensor 20 with the calibration data Δφ ′. The temperature of the patient 32 is obtained by the control unit 54 from the relationship between the temperature and the temperature.

以上説明したように、本発明の実施形態に係る温度測定装置10は、患者32の温度に対応した信号を出力する無給電温度センサ20と、無給電温度センサ20からの出力信号に基づいて校正される温度算出校正装置40とを備え、無給電温度センサ20は、患者32の温度に対応した出力信号を温度算出校正装置40に無線で送信し、温度算出校正装置40は、前記患者32の温度に対応した出力信号に基づいて患者32の温度を算出し、患者32の温度に対応した出力信号の電界強度が閾値以上の場合に、無給電温度センサ20が温度算出校正装置40に載置されたと判断し、無給電温度センサ20の出力信号に基づいて校正される。   As described above, the temperature measuring apparatus 10 according to the embodiment of the present invention is calibrated based on the parasitic power sensor 20 that outputs a signal corresponding to the temperature of the patient 32 and the output signal from the parasitic power sensor 20. The temperature calculation calibration device 40 includes a non-powered temperature sensor 20 that wirelessly transmits an output signal corresponding to the temperature of the patient 32 to the temperature calculation calibration device 40. The temperature of the patient 32 is calculated based on the output signal corresponding to the temperature, and when the electric field strength of the output signal corresponding to the temperature of the patient 32 is equal to or greater than the threshold value, the non-powered temperature sensor 20 is placed on the temperature calculation calibration device 40. It is determined that it has been performed, and calibration is performed based on the output signal of the non-powered temperature sensor 20.

このようにして、温度算出校正装置40が校正されることにより、無給電温度センサ20の経時変化による温度測定の誤差の発生を防ぐことができる。また、無給電温度センサ20によって患者32の温度を測定する者は、意識せずに無給電温度センサ20に応じた温度算出校正装置40の校正をすることができる。   In this way, the temperature calculation calibration device 40 is calibrated, so that it is possible to prevent the temperature measurement error from occurring due to the time-dependent change of the non-powered temperature sensor 20. Further, a person who measures the temperature of the patient 32 by the non-powered temperature sensor 20 can calibrate the temperature calculation calibration device 40 corresponding to the non-powered temperature sensor 20 without being conscious of it.

また、温度算出校正装置40の校正は、温度算出校正装置40に設けられた温度センサ60によって測定された温度算出校正装置40の温度と、載置された無給電温度センサ20によって算出された温度算出校正装置40の温度とに基づいて行われる。   Further, the calibration of the temperature calculation calibration device 40 is performed by measuring the temperature of the temperature calculation calibration device 40 measured by the temperature sensor 60 provided in the temperature calculation calibration device 40 and the temperature calculated by the non-feed temperature sensor 20 mounted. This is performed based on the temperature of the calculation calibration device 40.

さらに、温度測定装置10では、温度算出校正装置40内のメモリ56に算出した患者32の温度を記録することにより、この記録した患者32の温度に基づいて患者32の温度変化を表示器58に表示することにより、体調管理を効率的に行うこともできる。   Further, the temperature measuring device 10 records the calculated temperature of the patient 32 in the memory 56 in the temperature calculation / calibration device 40, and the temperature change of the patient 32 is displayed on the display device 58 based on the recorded temperature of the patient 32. By displaying, physical condition management can also be performed efficiently.

さらにまた、送信部44から周波数の異なるバースト波を送信することにより、患者32に複数の無給電温度センサ20を設置して、多面的に患者32の温度を測定することができる。   Furthermore, by transmitting burst waves having different frequencies from the transmitter 44, a plurality of non-powered temperature sensors 20 can be installed in the patient 32, and the temperature of the patient 32 can be measured in a multifaceted manner.

また、電界強度検出部52で検出された検出信号の電界強度が閾値Ethを超えた場合には、温度算出校正装置40の表示器58に校正中である旨を文字で表示したり、LED等を点灯するようにしてもよい。さらに、制御部54に閾値Ethの他に閾値Ethよりも大きな閾値Exを設定して、前記検出信号の電界強度と比較し、前記検出信号の電界強度が閾値Exよりも大きい場合や、無給電温度センサ20が温度算出校正装置40に載置されているにも拘わらず、検出信号の電界強度が閾値Ethを超えない場合には、無給電温度センサ20が故障している旨を文字で表示したり、文字の表示又はLED等の点灯をさせないことにより無給電温度センサ20が故障していると判断するようにしてもよい。   Further, when the electric field intensity of the detection signal detected by the electric field intensity detection unit 52 exceeds the threshold Eth, the fact that the calibration is being performed is displayed on the display 58 of the temperature calculation calibration device 40, an LED or the like May be lit. Further, in addition to the threshold value Eth, a threshold value Ex larger than the threshold value Eth is set in the control unit 54 and compared with the electric field strength of the detection signal. When the electric field strength of the detection signal is larger than the threshold value Ex, If the electric field strength of the detection signal does not exceed the threshold Eth even though the temperature sensor 20 is mounted on the temperature calculation calibration device 40, the fact that the parasitic power temperature sensor 20 has failed is displayed in characters. Alternatively, it may be determined that the non-powered temperature sensor 20 is out of order by not displaying characters or turning on LEDs or the like.

さらに、図1Aでは、患者32として患者が対象であったが、これに限定されるものではなく、温度を測定することが可能なもののすべてが対象となる。また、図1Bでは、無給電温度センサ20はリストバントに設けられているが、無給電温度センサ20が設けられる対象はこれに限定されるものではなく、患者32に応じて適宜、変更することができる。   Further, in FIG. 1A, the patient is the target as the patient 32, but the present invention is not limited to this, and all of those that can measure the temperature are the target. In FIG. 1B, the non-feed temperature sensor 20 is provided in the wristband. However, the object to which the non-feed temperature sensor 20 is provided is not limited to this, and may be appropriately changed according to the patient 32. Can do.

また、本発明は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   In addition, the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

図1Aは、本発明の実施形態に係る温度測定校正装置の全体の説明図であり、図1Bは、無給電温度センサによる温度算出校正装置の校正の説明図である。FIG. 1A is an explanatory diagram of the entire temperature measurement calibration device according to the embodiment of the present invention, and FIG. 1B is an explanatory diagram of calibration of the temperature calculation calibration device by a non-powered temperature sensor. 無給電温度センサの構成、温度算出校正装置の構成の説明図である。It is explanatory drawing of the structure of a non-power-supply temperature sensor and the structure of a temperature calculation calibration apparatus. 被測定物の温度を算出するために用いる位相差と温度との関係を示す図である。It is a figure which shows the relationship between the phase difference used in order to calculate the temperature of a to-be-measured object, and temperature.

符号の説明Explanation of symbols

10…温度測定装置 20…無給電温度センサ
22、42…アンテナ 24…弾性表面波素子
26…櫛形電極 28…反射器
30…圧電基板 32…患者
40…温度算出校正装置 44…送信部
46…受信部 48…送受波器
50…位相差検出部 52…電界強度検出部
54…制御部 56…メモリ
58…表示器 60…温度センサ
62…校正領域
DESCRIPTION OF SYMBOLS 10 ... Temperature measuring device 20 ... Non-feed temperature sensor 22, 42 ... Antenna 24 ... Surface acoustic wave element 26 ... Comb-shaped electrode 28 ... Reflector 30 ... Piezoelectric substrate 32 ... Patient 40 ... Temperature calculation calibration device 44 ... Transmission part 46 ... Reception Unit 48 ... transducer 50 ... phase difference detection unit 52 ... electric field intensity detection unit 54 ... control unit 56 ... memory 58 ... display 60 ... temperature sensor 62 ... calibration area

Claims (4)

被測定物の温度に対応した信号を出力する無給電温度センサと、
前記無給電温度センサからの出力信号に基づいて自身の温度を校正することにより、前記被測定物の温度を補正するための校正データを求める温度算出校正装置と、
を備え、
前記無給電温度センサは、前記被測定物の温度に対応した出力信号を前記温度算出校正装置に無線で送信し、
前記温度算出校正装置は、前記被測定物の温度に対応した出力信号及び前記校正データに基づいて被測定物の温度を算出し、前記被測定物の温度に対応した出力信号の電界強度が閾値以上の場合に、前記無給電温度センサが前記温度算出校正装置に載置されたと判断し、前記無給電温度センサの出力信号に基づいて前記温度算出校正装置の温度を校正し、前記校正データを求め
ことを特徴とする温度測定装置。
A non-powered temperature sensor that outputs a signal corresponding to the temperature of the object to be measured;
Wherein by calibrating their temperature based on the output signal from the parasitic temperature sensor, and temperature calculation calibration device asking you to calibration data for correcting the temperature of the object to be measured,
With
The non-powered temperature sensor wirelessly transmits an output signal corresponding to the temperature of the object to be measured to the temperature calculation calibration device,
The temperature calculation calibration device calculates the temperature of the measurement object based on the output signal corresponding to the temperature of the measurement object and the calibration data , and the electric field strength of the output signal corresponding to the temperature of the measurement object is a threshold value. In the above case, it is determined that the non-feed temperature sensor is placed on the temperature calculation calibration device, the temperature of the temperature calculation calibration device is calibrated based on the output signal of the non-feed temperature sensor, and the calibration data is temperature measurement apparatus characterized by Ru determined.
請求項1記載の温度測定装置において、
前記温度算出校正装置の校正は、前記温度算出校正装置に設けられた温度センサによって測定された前記温度算出校正装置の温度と、前記温度算出校正装置に載置された前記無給電温度センサによって算出された前記温度算出校正装置の温度とに基づいて行われる
ことを特徴とする温度測定装置。
The temperature measuring device according to claim 1,
The calibration of the temperature calculation calibration device is calculated by the temperature of the temperature calculation calibration device measured by the temperature sensor provided in the temperature calculation calibration device and the non-powered temperature sensor mounted on the temperature calculation calibration device. The temperature measurement device is performed based on the temperature of the temperature calculation calibration device.
請求項1又は2記載の温度測定装置において、
前記温度算出校正装置は、算出した前記被測定物の温度を記録し、記録した前記被測定物の温度に基づいて前記被測定物の温度変化を表示部に表示する
ことを特徴とする温度測定装置。
The temperature measuring device according to claim 1 or 2,
The temperature calculation calibration device records the calculated temperature of the measurement object, and displays a temperature change of the measurement object on a display unit based on the recorded temperature of the measurement object. apparatus.
請求項1〜3のいずれか1項に記載の温度測定装置において、
前記無給電温度センサは、弾性表面波素子から構成される
ことを特徴とする温度測定装置。
In the temperature measuring device according to any one of claims 1 to 3,
The non-power-feeding temperature sensor is composed of a surface acoustic wave element.
JP2008265929A 2008-10-15 2008-10-15 Temperature measuring device Active JP5248973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265929A JP5248973B2 (en) 2008-10-15 2008-10-15 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265929A JP5248973B2 (en) 2008-10-15 2008-10-15 Temperature measuring device

Publications (2)

Publication Number Publication Date
JP2010096558A JP2010096558A (en) 2010-04-30
JP5248973B2 true JP5248973B2 (en) 2013-07-31

Family

ID=42258357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265929A Active JP5248973B2 (en) 2008-10-15 2008-10-15 Temperature measuring device

Country Status (1)

Country Link
JP (1) JP5248973B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786533B2 (en) * 2010-09-24 2015-09-30 株式会社村田製作所 Wireless thermometer and wireless thermometer measurement system
DE102013220035A1 (en) * 2013-10-02 2015-04-02 Meiko Maschinenbau Gmbh & Co. Kg Method for calibrating a cleaning device
CN110196075B (en) * 2018-02-27 2022-02-08 上海市计量测试技术研究院 Remote temperature and humidity testing method for environmental test equipment calibration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046434A (en) * 1983-08-25 1985-03-13 Toshiba Corp Temperature detector
JP2008175678A (en) * 2007-01-18 2008-07-31 Nec Tokin Corp Dynamic quantity sensor system

Also Published As

Publication number Publication date
JP2010096558A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US6547745B1 (en) Fever alarm system
US7810992B2 (en) Non-contact temperature-measuring device and the method thereof
US20180032161A1 (en) Pen, distance measurement method and distance measurement device
EP2045590B1 (en) Method and apparatus for non-contact temperature measurement
US20090299682A1 (en) Surface temperature profile
JP5248973B2 (en) Temperature measuring device
JP5730008B2 (en) Underwater position detection system, ship-side receiver, and underwater position detection method
US20140046199A1 (en) Method for measuring human vital signs and portable terminal adopting the same
JP2013195211A (en) Ultrasonic sensor and calibration method of the same
US20040122609A1 (en) Gravity corrected scale, gravity correction indicator and gravity corrected scale system
JP6832152B2 (en) Gas concentration measuring device and its calibration method
JP2011087841A (en) Ultrasonic diagnosis device
US11294051B2 (en) Ultrasonic measurement device
EP1785701A1 (en) Apparatus and method for determining a temperature of a volume of gas
JP2013195112A (en) Acoustic wave sensor
JP2011179900A (en) Electronic clinical thermometer
KR20090040699A (en) Extension apparatus for measurement range of ultrasonic thickness gage
JP2020046257A (en) Wireless temperature measuring system
EP4227202A1 (en) Draft information generating device and draft information generating method
JPH08334321A (en) Ultrasonic distance-measuring apparatus
WO2018131361A1 (en) Measurement device, measurement method, and program
US20100087751A1 (en) Acoustic reflectometry instrument and method
JP2004309144A (en) Measuring instrument and measuring system
KR20220163178A (en) Temperature Detecting System for a Feeding Bottle and Human Body
JPH1144759A (en) Ultrasonic distance measuring device and distance measuring method using ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Ref document number: 5248973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3