JP5248201B2 - Apparatus and method for regenerating lead acid battery - Google Patents

Apparatus and method for regenerating lead acid battery Download PDF

Info

Publication number
JP5248201B2
JP5248201B2 JP2008140316A JP2008140316A JP5248201B2 JP 5248201 B2 JP5248201 B2 JP 5248201B2 JP 2008140316 A JP2008140316 A JP 2008140316A JP 2008140316 A JP2008140316 A JP 2008140316A JP 5248201 B2 JP5248201 B2 JP 5248201B2
Authority
JP
Japan
Prior art keywords
storage battery
lead storage
lead
resonance
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008140316A
Other languages
Japanese (ja)
Other versions
JP2009176705A (en
Inventor
重雄 宗像
彰 西村
賢次 鈴木
和宏 長原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008140316A priority Critical patent/JP5248201B2/en
Publication of JP2009176705A publication Critical patent/JP2009176705A/en
Application granted granted Critical
Publication of JP5248201B2 publication Critical patent/JP5248201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、鉛蓄電池の容量を回復させるとともに、回復させた鉛蓄電池の容量低下を防止するための装置及び方法に関する。特に、本発明は、鉛蓄電池の電極上に生成したサルフェーションを除去するとともに、電極にサルフェーションが再生成するのを防止するための装置及び方法に関する。   The present invention relates to an apparatus and a method for recovering the capacity of a lead storage battery and preventing a decrease in the capacity of the recovered lead storage battery. In particular, the present invention relates to an apparatus and method for removing sulfation generated on an electrode of a lead-acid battery and preventing sulfation from being regenerated on the electrode.

二次電池の一種である鉛蓄電池は、他の二次電池と比較して安価で、比較的高い電圧を取り出すことができることから、自動車及び二輪車のバッテリ、商用電源のバックアップ電源、バッテリ駆動のフォークリフトなどの電動自動車用電源、小型飛行機のバッテリ、無停電電源装置の電源などとして広く用いられている。鉛蓄電池は、充電及び放電が繰り返されたり、使用されないまま放置されたりすると、電気容量が大幅に低下する場合がある。その主な要因は、サルフェーションである。   Lead-acid batteries, which are a type of secondary battery, are cheaper than other secondary batteries and can extract a relatively high voltage, so automobile and motorcycle batteries, commercial power backup power supplies, battery-driven forklifts It is widely used as a power source for electric vehicles such as batteries for small airplanes and power sources for uninterruptible power supplies. When a lead-acid battery is repeatedly charged and discharged or left unused, the electric capacity may be significantly reduced. The main factor is sulfation.

通常、鉛蓄電池は、負電極の活物質として鉛(Pb)を、正電極の活物質として二酸化鉛(PbO)を用い、電解液として希硫酸(HSO)を用いている。放電時には正電極及び負電極に硫酸鉛(PbSO)が生成するが、生成された硫酸鉛は、充電時に鉛、二酸化鉛、及び硫酸としてそれぞれ負電極、正電極、及び電解液に戻る。したがって、理想的な化学反応が進行すれば、鉛蓄電池は永久に使用することができる。しかしながら、実際には理想的な化学反応が進行するような方法及び環境で鉛蓄電池が使用されることは希であるため、多くの場合、使用に伴って電極板上に生成された硫酸鉛が次第に成長し、硬い結晶被膜が生成されることになる。これが、サルフェーションといわれる現象である。 In general, lead-acid batteries use lead (Pb) as the active material for the negative electrode, lead dioxide (PbO 2 ) as the active material for the positive electrode, and dilute sulfuric acid (H 2 SO 4 ) as the electrolyte. At the time of discharging, lead sulfate (PbSO 4 ) is generated on the positive electrode and the negative electrode, but the generated lead sulfate returns to the negative electrode, the positive electrode, and the electrolytic solution as lead, lead dioxide, and sulfuric acid, respectively, at the time of charging. Therefore, if an ideal chemical reaction proceeds, the lead-acid battery can be used permanently. However, since lead storage batteries are rarely used in a method and environment where an ideal chemical reaction proceeds, in many cases, the lead sulfate produced on the electrode plate with use is often Gradually it will grow and a hard crystalline film will be produced. This is a phenomenon called sulfation.

一般に鉛蓄電池の電極板は、その表面積を大きくして鉛蓄電池の電気容量を高めるために、表面に多数の細孔を有する海綿状電極として形成される。この細孔がサルフェーションによって電極反応に寄与しない不活性な硫酸鉛で塞がれ電極板の表面積が小さくなるとともに、絶縁物質である硫酸鉛の存在によって鉛蓄電池の内部抵抗が高くなるため、鉛蓄電池の容量が大幅に低下することになる。   In general, an electrode plate of a lead storage battery is formed as a spongy electrode having a large number of pores on the surface in order to increase the surface area and increase the electric capacity of the lead storage battery. This pore is blocked by inert lead sulfate that does not contribute to the electrode reaction due to sulfation, and the surface area of the electrode plate is reduced, and the internal resistance of the lead storage battery is increased due to the presence of lead sulfate as an insulating material. The capacity of will be greatly reduced.

サルフェーションによって堆積した硫酸鉛の被膜を除去するための従来技術として以下のものが提案されている。例えば特許文献1〜特許文献3においては、高周波パルス電流を鉛蓄電池に流し、その物理的な衝撃によって、電極板に堆積した硫酸鉛の被膜を除去する技術が開示されている。このようなパルス電流をベースとする技術は、特許文献1〜3以外の特許文献にも多数存在する。また、特許文献4においては、レール電圧(電源からの交流電圧を全波整流器によって変換した後の直流電圧)をバッテリの自然共振周波数に一致する周波数の変調信号で変調し、変調後のレール電圧によってバッテリを充電する技術が開示されている。本技術によってバッテリが回復する具体的な作用は明細書中に明記されていないが、バッテリの自然共振周波数に一致する周波数の変調信号によってバッテリ全体が共振し、その物理的な衝撃によってサルフェーションを解消するものと思われる。さらに、特許文献5においては、鉛蓄電池の放置期間中に、その固有周波数未満の周波数の音波を電池に加えることによって、電解液の成層化現象が防止され、電極板への硫酸鉛の生成及び蓄積を抑制する保守方法が開示されている。   The following has been proposed as a conventional technique for removing the lead sulfate film deposited by sulfation. For example, Patent Documents 1 to 3 disclose a technique in which a high-frequency pulse current is passed through a lead storage battery, and the lead sulfate film deposited on the electrode plate is removed by physical impact. There are many techniques based on such a pulse current in patent documents other than patent documents 1 to 3. In Patent Document 4, a rail voltage (a DC voltage obtained by converting an AC voltage from a power supply by a full-wave rectifier) is modulated with a modulation signal having a frequency that matches the natural resonance frequency of the battery, and the rail voltage after modulation is modulated. Discloses a technique for charging a battery. Although the specific effect of the battery recovery by this technology is not specified in the specification, the entire battery resonates with a modulation signal having a frequency that matches the natural resonance frequency of the battery, and sulfation is eliminated by its physical shock. It seems to do. Furthermore, in Patent Document 5, the stratification phenomenon of the electrolyte is prevented by applying a sound wave having a frequency lower than its natural frequency to the battery during the lead-acid battery leaving period, and the generation of lead sulfate on the electrode plate and A maintenance method for suppressing accumulation is disclosed.

特許第3902212号明細書Japanese Patent No. 3902212 特許第3564458号明細書Japanese Patent No. 3564458 特許第3510795号明細書Japanese Patent No. 3510895 特表2001−517419号明細書Special table 2001-517419 specification 特開2002−56897号明細書Japanese Patent Application Laid-Open No. 2002-56897

上述の先行技術には、以下のような課題がある。まず、パルス電流(パルス電圧)をベースとする技術の場合には、鉛蓄電池にパルス電流が流れる時間(又は、パルス電圧が印加される時間)が短時間であるため、電極のサルフェーションが十分に除去できない可能性がある。また、従来技術の多くは、鉛蓄電池を車両から取り外して再生させるものである。したがって、このような技術によって鉛蓄電池を再生させることができたとしても、再生させた鉛蓄電池を再び車両に搭載して使用を続ける間にサルフェーションが電極に発生することになるため、鉛蓄電池を長期間にわたって良好な状態に維持するのが困難である。さらに、いずれの技術も、鉛蓄電池の再生装置の作動には別途電源が必要である。鉛蓄電池を車載のまま再生させる技術の場合は再生対象の鉛蓄電池を電源とするため、エンジンが作動していない状態のときにも暗電流が発生することになる。さらに、パルスをベースとする技術の場合、短いパルス幅のパルス電流を出力する必要があるため、装置の回路構成が複雑になり、装置が高価なものとなる。   The above prior art has the following problems. First, in the case of a technology based on pulse current (pulse voltage), the time required for the pulse current to flow through the lead-acid battery (or the time during which the pulse voltage is applied) is short, so that the electrode sulfation is sufficient. It may not be possible to remove it. Also, most of the prior art is to remove the lead storage battery from the vehicle and regenerate it. Therefore, even if the lead storage battery can be regenerated by such a technique, sulfation will occur at the electrode while the regenerated lead storage battery is mounted on the vehicle again and continued to be used. It is difficult to maintain a good state for a long time. In addition, both technologies require a separate power source for the operation of the lead-acid battery regenerator. In the case of a technology for regenerating a lead storage battery while being mounted on a vehicle, the lead storage battery to be regenerated is used as a power source, and therefore a dark current is generated even when the engine is not operating. Furthermore, in the case of a pulse-based technique, since it is necessary to output a pulse current having a short pulse width, the circuit configuration of the apparatus becomes complicated and the apparatus becomes expensive.

本発明の1つの態様によれば、本発明は、鉛蓄電池の容量を回復させるとともに、回復させた鉛蓄電池の容量低下を防止するための鉛蓄電池再生維持装置であって、少なくとも1つの共振用コイルと少なくとも1つの共振用コンデンサとを含み、鉛蓄電池に並列に接続される、直列共振回路を備え、少なくとも1つの共振用コイルのインダクタンスと少なくとも1つの共振用コンデンサのキャパシタンスとが、鉛蓄電池を充電するための充電用電源から発生する減衰波の周波数と概ね同調する周波数の電流が直列共振回路と鉛蓄電池とによって構成される回路の内部に流れるように調整された、ことを特徴とする鉛蓄電池再生維持装置を提供する。   According to one aspect of the present invention, the present invention is a lead-acid battery regeneration maintaining device for recovering the capacity of a lead-acid battery and preventing the capacity of the recovered lead-acid battery from decreasing. A series resonance circuit including a coil and at least one resonance capacitor and connected in parallel to the lead acid battery, wherein the inductance of the at least one resonance coil and the capacitance of the at least one resonance capacitor comprise the lead acid battery. A lead characterized in that a current having a frequency substantially tuned to the frequency of an attenuation wave generated from a charging power source for charging is adjusted to flow inside a circuit constituted by a series resonance circuit and a lead-acid battery. A storage battery regeneration maintaining device is provided.

本発明の別の態様によれば、本発明は、鉛蓄電池の容量を回復させるとともに、回復させた鉛蓄電池の容量低下を防止するための鉛蓄電池再生維持方法であって、鉛蓄電池を充電するための充電用電源から発生する減衰波の周波数を測定し、鉛蓄電池に並列に接続される直列共振回路と鉛蓄電池とによって構成される回路の内部に減衰波の周波数と概ね同調する周波数の電流が流れるように、直列共振回路に含まれる少なくとも1つの共振用コイルのインダクタンスと少なくとも1つの共振用コンデンサのキャパシタンスとを調整し、直列共振回路を鉛蓄電池に並列に接続し、充電用電源の交流電圧を直流電圧に変換して鉛蓄電池に印加する、ことを特徴とする方法を提供する。   According to another aspect of the present invention, the present invention is a lead storage battery regeneration maintaining method for recovering the capacity of a lead storage battery and preventing a decrease in the capacity of the recovered lead storage battery, wherein the lead storage battery is charged. The frequency of the attenuation wave generated from the charging power supply for the current is measured, and the current of the frequency approximately tuned to the frequency of the attenuation wave in the circuit constituted by the series resonance circuit and the lead storage battery connected in parallel to the lead storage battery So that the inductance of at least one resonance coil included in the series resonance circuit and the capacitance of at least one resonance capacitor are adjusted, the series resonance circuit is connected in parallel to the lead storage battery, and the AC of the charging power supply A method is provided that converts a voltage to a DC voltage and applies it to a lead acid battery.

本発明によれば、コイルとコンデンサとを有する直列共振回路を含む鉛蓄電池再生維持装置を、充電用電源(オルタネータ)から発生する減衰波の周波数と概ね同調するように共振周波数を調整した直列共振回路と鉛蓄電池とが並列接続となるように鉛蓄電池に接続することによって、減衰波の振幅が増幅された大きな振幅の共振電流が、直列共振回路と鉛蓄電池とによって構成される回路(この回路は、直列共振回路と鉛蓄電池のインダクタンス成分とを考慮すると、並列共振回路と考えることができる)に流れる。本発明においては、鉛蓄電池再生維持装置に使用する部品、特にコイル及びコンデンサを適切に選択することによって、すなわち、コイルの巻線抵抗とコンデンサのESR(等価直列抵抗)とを適切に選択した部品を使用することによって、所定の範囲のQ値を有する直列共振回路を構成するようにする。所定の範囲のQ値を有する直列共振回路を鉛蓄電池と並列接続すると、直列共振回路と鉛蓄電池のインダクタンス成分とで構成される並列共振回路の並列共振点と、直列共振回路の直列共振点との差を小さくすることができる(すなわち、共振点において幅の狭いピークが得られるため、直列共振回路の共振周波数と並列共振回路の共振周波数とが近接する)。したがって、直列共振回路の共振周波数を減衰波の周波数に近づけるように調整する(すなわち、概ね同調させる)ことによって、減衰波の周波数と並列共振回路の共振周波数とが概ね同調することになる。その結果、直列共振回路によって生成された共振電流が並列共振回路内部に流れ、この共振電流によって鉛蓄電池の電極が振動し、サルフェーションが除去される。さらに、並列共振回路内部において共振電流が持続し、この持続する共振電流により、鉛蓄電池の電極板が常時振動してサルフェーションの発生を防止することができる。   According to the present invention, a series-resonant device in which a resonance frequency is adjusted so that a lead-acid battery regeneration maintaining device including a series resonance circuit having a coil and a capacitor is substantially tuned to the frequency of an attenuation wave generated from a charging power supply (alternator). By connecting to the lead storage battery so that the circuit and the lead storage battery are connected in parallel, a resonance current having a large amplitude obtained by amplifying the amplitude of the attenuation wave is constituted by the series resonance circuit and the lead storage battery (this circuit). Can be thought of as a parallel resonant circuit considering the series resonant circuit and the inductance component of the lead acid battery. In the present invention, the parts used in the lead-acid battery regeneration maintaining device, particularly, the parts in which the coil winding resistance and the capacitor ESR (equivalent series resistance) are properly selected by appropriately selecting the coil and the capacitor. By using this, a series resonant circuit having a Q value in a predetermined range is configured. When a series resonance circuit having a Q value in a predetermined range is connected in parallel with a lead storage battery, a parallel resonance point of the parallel resonance circuit composed of the series resonance circuit and the inductance component of the lead storage battery, and a series resonance point of the series resonance circuit, (That is, since a narrow peak is obtained at the resonance point, the resonance frequency of the series resonance circuit and the resonance frequency of the parallel resonance circuit are close to each other). Therefore, by adjusting the resonance frequency of the series resonance circuit so as to be close to the frequency of the attenuation wave (that is, approximately tuned), the frequency of the attenuation wave and the resonance frequency of the parallel resonance circuit are approximately tuned. As a result, the resonance current generated by the series resonance circuit flows into the parallel resonance circuit, and the electrode of the lead storage battery vibrates by this resonance current, and sulfation is removed. Furthermore, a resonance current is maintained inside the parallel resonance circuit, and the electrode plate of the lead storage battery can constantly vibrate due to the sustained resonance current, thereby preventing the occurrence of sulfation.

本発明に係る鉛蓄電池再生維持装置及び方法は、作動している充電用電源から発生する減衰波と共振して共振電流を発生させるものであるため、本発明に係る鉛蓄電池再生維持装置及び方法を作動させる当たっては電源が不要であり、したがって、充電用電源が作動していない時には電力が消費されない(すなわち、暗電流が発生しない)。本発明に係る装置及び方法によれば、鉛蓄電池を使用しながら再生するとともに、鉛蓄電池の状態を極めて良好に維持することが可能である。本発明に係る鉛蓄電池再生維持装置は、コイルとコンデンサとを有する直列共振回路を含む簡単な構成であるため、安価である。   Since the lead storage battery regeneration maintaining device and method according to the present invention resonates with the decay wave generated from the operating charging power source and generates a resonance current, the lead storage battery regeneration maintenance device and method according to the present invention No power is required to operate the battery, and therefore no power is consumed when the charging power supply is not operating (that is, no dark current is generated). According to the apparatus and method concerning this invention, while reproducing | regenerating using a lead storage battery, it is possible to maintain the state of a lead storage battery very favorably. Since the lead storage battery regeneration maintaining device according to the present invention has a simple configuration including a series resonance circuit having a coil and a capacitor, the lead storage battery regeneration maintaining device is inexpensive.

以下、本発明の最良の実施形態について、図面を参照して説明する。
図1は、本発明の一実施形態に係る鉛蓄電池再生維持装置3の斜視図である。図1(a)は、装置3の蓋を開けて内部の樹脂又は断熱材を露出させた状態を表しており、図1(b)は、さらに樹脂又は断熱材を除去して装置内部の部品が見えるようにした状態を表している。図2及び図3は、本発明の一実施形態に係る鉛蓄電池再生維持装置3を、自動車等の車両に搭載されている鉛蓄電池(バッテリとも言う)4に接続した状態を表すブロック図である。図1に示されるように、鉛蓄電池再生維持装置3は、少なくとも1つの共振用コイル31と少なくとも1つの共振用コンデンサ32とを直列に接続した直列共振回路35を備える。鉛蓄電池再生維持装置3は、さらに、直列共振回路を収容するケース(筐体)33と、直列共振回路35を鉛蓄電池4に接続するための配線34と、直列共振回路35をケース33内部で保持するとともに、直列共振回路35をエンジンルーム内部の熱から保護するための樹脂又は断熱材36と、を含む。ケース33の材質は、金属又はプラスチックとすることができるが、これらに限定されるものではなく、直列共振回路35を保護することができ、かつ、エンジンルーム内の熱に耐えうる材質であればよい。配線34の長さは、鉛蓄電池再生維持装置3の抵抗を小さくしてQ値(後述される)を高くするようになるべく短いことが好ましく、約1m以内であることがより好ましい。樹脂又は断熱材36の材質は特に限定されず、直列共振回路35をエンジンルーム内部の熱から保護することができるものであればよい。なお、鉛蓄電池再生維持装置3を構成するこれらの部品は、耐熱性が高いこと、直流抵抗が低くQ値が大きいことといった品質を満たすものであることが好ましい。共振用コイル31及び共振用コンデンサ32の詳細については、後述する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a lead storage battery regeneration maintaining device 3 according to an embodiment of the present invention. 1A shows a state in which the lid of the apparatus 3 is opened to expose the internal resin or heat insulating material, and FIG. 1B further shows the components inside the apparatus by removing the resin or the heat insulating material. It shows the state that can be seen. 2 and 3 are block diagrams showing a state in which the lead storage battery regeneration maintaining device 3 according to one embodiment of the present invention is connected to a lead storage battery (also referred to as a battery) 4 mounted on a vehicle such as an automobile. . As shown in FIG. 1, the lead-acid battery regeneration maintaining device 3 includes a series resonance circuit 35 in which at least one resonance coil 31 and at least one resonance capacitor 32 are connected in series. The lead storage battery regeneration maintaining device 3 further includes a case (housing) 33 that houses the series resonance circuit, a wiring 34 for connecting the series resonance circuit 35 to the lead storage battery 4, and the series resonance circuit 35 inside the case 33. And a resin or heat insulating material 36 for protecting the series resonant circuit 35 from the heat inside the engine room. The material of the case 33 can be metal or plastic, but is not limited thereto, as long as it can protect the series resonance circuit 35 and can withstand the heat in the engine room. Good. The length of the wiring 34 is preferably as short as possible so as to increase the Q value (described later) by decreasing the resistance of the lead storage battery regeneration maintaining device 3, and more preferably within about 1 m. The material of the resin or the heat insulating material 36 is not particularly limited as long as it can protect the series resonance circuit 35 from the heat inside the engine room. In addition, it is preferable that these components which comprise the lead storage battery reproduction | regeneration maintenance apparatus 3 satisfy | fill quality that heat resistance is high, DC resistance is low, and Q value is large. Details of the resonance coil 31 and the resonance capacitor 32 will be described later.

図2及び図3に示されるように、鉛蓄電池再生維持装置3は、直列共振回路35と鉛蓄電池4とが並列接続となるように、鉛蓄電池4に接続される。鉛蓄電池再生維持装置3と鉛蓄電池4との接続は、当業者に周知の方法で行うことができるが、鉛蓄電池再生維持装置3の配線の両端を鉛蓄電池4の端子に直接接続することが好ましい。本発明に係る鉛蓄電池再生維持装置によって再生可能な鉛蓄電池は、ベント形鉛蓄電池、制御弁式鉛蓄電池など、あらゆる種類の鉛蓄電池である。なお、本発明に係る鉛蓄電池再生維持装置及び方法によっても、劣化が著しい鉛蓄電池、例えば、(1)電極が破損変形したもの、(2)電極の正極と負極との間の内部短絡が生じているもの、など、物理的な損傷が著しいものは再生できない場合があることに留意されたい。電極が破損変形した鉛蓄電池とは、充電時に負極における鉛の析出がサルフェーションにより阻害され、電極の均一な成長を阻むことによって変形を生じたものである。電極の内部短絡は、内部の部品上に堆積した硫酸鉛の堆積物によって正負極間に短絡が生じたものである。また、本発明に係る装置及び方法によれば、電解液の比重が大きく低下した鉛蓄電池であっても回復可能であるが、上記のような電極の破損変形や内部短絡が要因となって比重が低下したものについては回復できない場合がある。   As shown in FIGS. 2 and 3, the lead storage battery regeneration maintaining device 3 is connected to the lead storage battery 4 so that the series resonance circuit 35 and the lead storage battery 4 are connected in parallel. The lead storage battery regeneration maintaining device 3 and the lead storage battery 4 can be connected by a method known to those skilled in the art, but both ends of the lead storage battery regeneration maintaining device 3 can be directly connected to the terminals of the lead storage battery 4. preferable. Lead-acid batteries that can be regenerated by the lead-acid battery regeneration maintaining device according to the present invention are all types of lead-acid batteries such as bent-type lead-acid batteries and control valve-type lead-acid batteries. It should be noted that the lead storage battery regeneration maintaining device and method according to the present invention also lead to significant deterioration of the lead storage battery, for example, (1) the electrode is damaged or deformed, and (2) an internal short circuit between the positive electrode and the negative electrode of the electrode. It should be noted that things that are physically damaged, such as those that are, may not be reproducible. A lead-acid battery in which an electrode is damaged and deformed is a battery that is deformed by preventing the precipitation of lead at the negative electrode during sulfation and preventing uniform growth of the electrode. The internal short circuit of the electrode is a short circuit between the positive and negative electrodes caused by the deposit of lead sulfate deposited on the internal components. Further, according to the apparatus and method of the present invention, even a lead storage battery in which the specific gravity of the electrolytic solution is greatly reduced can be recovered, but the specific gravity is caused by the above-described electrode breakage deformation and internal short circuit. It may not be possible to recover for those with reduced

直列共振回路35の共振用コイル31のインダクタンスLと共振用コンデンサ32のキャパシタンスCは、直列共振回路35の共振周波数が、充電用電源(「オルタネータ」とも言う)1によって生成される減衰波(多くの場合、減衰正弦波である)の周波数と概ね同調するように調整される。充電用電源1は、エンジンの回転に伴って伝達される機械エネルギーを電気エネルギー(交流電力)に変換するための装置であり、充電用電源1によって発生した交流電力は、整流器2によって直流電力に変換された後、鉛蓄電池4に蓄えられる。充電用電源1と整流器2をまとめて、充電用電源ということもあり、この場合は、用いられる減衰波は厳密には整流器2によって生成されるものである。減衰波の詳細については、後述する。   The inductance L of the resonance coil 31 of the series resonance circuit 35 and the capacitance C of the resonance capacitor 32 indicate that the resonance frequency of the series resonance circuit 35 is an attenuation wave generated by the charging power source (also referred to as “alternator”) 1 (many In this case, the frequency is adjusted so as to be substantially synchronized with the frequency of the sine wave. The charging power source 1 is a device for converting mechanical energy transmitted along with the rotation of the engine into electric energy (AC power). The AC power generated by the charging power source 1 is converted into DC power by the rectifier 2. After the conversion, it is stored in the lead storage battery 4. The charging power source 1 and the rectifier 2 may be collectively referred to as a charging power source. In this case, the attenuation wave to be used is strictly generated by the rectifier 2. Details of the attenuation wave will be described later.

本発明に係る鉛蓄電池再生維持装置によって鉛蓄電池が再生され、再生された状態が維持される作用機序は、現時点では詳細には明らかとなっていないが、本発明の発明者らは概ね以下のとおりと推定している。図4は、エンジンが作動している自動車において、鉛蓄電池4の正極と負極との間の電圧をオシロスコープによって測定したときに検出される波形の模式図である。鉛蓄電池4の電極間においては、主に、(1)充電用電源1の作動に伴って発生する波(図4のA)、(2)プラグ点火に伴う電圧降下の波(図4のB)、(3)充電用電源1のベルトの回転に伴って発生する波長の大きな波(図4のC)、の3種類の波が検出される。このうち、(1)の波(図4のA)は、プラグ点火に伴う電圧降下(図4のB)の直後に検出される波であり、点火コイルの逆起電力をトリガとして発生する。減衰波が発生する前兆として、鉛蓄電池の電極間電圧が低下するが、これは、点火コイルの充電に大きな電流が消費されるためであり、上述の減衰波を特定する1つの指標となる。(1)の波は、図4の横軸(時間)スケール(単位時間20ms)ではパルス状に見えるが、スケールを拡大すると、例えば単位時間を20μsとした図5の下段に示されるような高周波減衰波であることが分かる。充電用電源1によって生成されるこの高周波が、本発明において利用される減衰波である。図4に示されるように、充電用電源1からは、充電用電源1の作動すなわち発電に伴ってこのような減衰波が周期的に発生する。   The mechanism of action in which the lead storage battery is regenerated by the lead storage battery regeneration maintaining device according to the present invention and the regenerated state is maintained has not been clarified in detail at present, but the inventors of the present invention generally have the following: It is estimated that FIG. 4 is a schematic diagram of waveforms detected when the voltage between the positive electrode and the negative electrode of the lead storage battery 4 is measured with an oscilloscope in an automobile in which the engine is operating. Between the electrodes of the lead-acid battery 4, mainly (1) a wave generated by the operation of the charging power source 1 (A in FIG. 4), (2) a wave of a voltage drop accompanying plug ignition (B in FIG. 4) ), (3) Three types of waves, a wave having a large wavelength (C in FIG. 4) generated as the belt of the charging power source 1 rotates, are detected. Among them, the wave (1) (A in FIG. 4) is a wave detected immediately after the voltage drop (B in FIG. 4) caused by the plug ignition, and is generated using the counter electromotive force of the ignition coil as a trigger. As a precursor to the occurrence of the attenuation wave, the voltage between the electrodes of the lead storage battery decreases because a large amount of current is consumed for charging the ignition coil, which is one index for identifying the above-described attenuation wave. The wave of (1) looks like a pulse on the horizontal axis (time) scale (unit time 20 ms) in FIG. 4, but when the scale is enlarged, the high frequency as shown in the lower part of FIG. It turns out that it is an attenuation wave. This high frequency generated by the charging power source 1 is an attenuation wave used in the present invention. As shown in FIG. 4, such a decaying wave is periodically generated from the charging power source 1 as the charging power source 1 operates, that is, generates power.

図6は、本発明の一実施形態に係る鉛蓄電池再生維持装置3における直列共振回路35の回路図(a)及び当該回路のインピーダンス周波数特性(b)を示す。図6の例によれば、250kHz付近に直列共振点fを示す|Z|の低い部分が現れていることが分かる。直列共振点fは、共振用コイル31のインダクタンスをLとし、共振用コンデンサ32のキャパシタンスをCとすると、以下の式(1)によって与えられる。 FIG. 6 shows a circuit diagram (a) of the series resonant circuit 35 in the lead-acid battery regeneration maintaining device 3 according to one embodiment of the present invention, and an impedance frequency characteristic (b) of the circuit. According to the example of FIG. 6, it can be seen that a portion of | Z | indicating the series resonance point f s appears in the vicinity of 250 kHz. The series resonance point f s is given by the following equation (1), where L is the inductance of the resonance coil 31 and C is the capacitance of the resonance capacitor 32.

Figure 0005248201
図6に示される回路構成の直列共振回路35を含む鉛蓄電池再生維持装置3を、図2及び図3に示されるように自動車の鉛蓄電池4に接続してエンジンを作動させる(すなわち、充電用電源1を作動させる)と、充電用電源1から発生する減衰波(図4の(1)の波)と概ね同調する周波数の電流が流れるようにインダクタンスLとキャパシタンスCとが設定された直列共振回路35内部に電流が発生する。この電流を、「共振電流」という。図5の上段の波形は、充電用電源1から発生する減衰波(図5の下段の波)と共振して直列共振回路35の内部に流れる共振電流の波形である。
Figure 0005248201
The lead storage battery regeneration maintaining device 3 including the series resonance circuit 35 having the circuit configuration shown in FIG. 6 is connected to the automobile lead storage battery 4 as shown in FIGS. 2 and 3 to operate the engine (that is, for charging). Series resonance in which an inductance L and a capacitance C are set so that a current having a frequency substantially synchronized with a decay wave (wave of (1) in FIG. 4) generated from the power supply 1 for charging flows. A current is generated inside the circuit 35. This current is called “resonance current”. The upper waveform of FIG. 5 is a waveform of the resonance current that resonates with the decay wave (lower wave of FIG. 5) generated from the charging power supply 1 and flows inside the series resonance circuit 35.

一方、図7は、充電用電源1側からみた鉛蓄電池4の等価回路図(a)及び当該回路のインピーダンス周波数特性(b)を示す。図7(b)に示されるように、鉛蓄電池4のインピーダンスは、低周波領域では一定の低い値を示すが、高周波領域では周波数の上昇とともに増大する。したがって、鉛蓄電池4の等価回路は、図7(a)に示されるように、抵抗成分rとインダクタンス成分Lを有する回路として形成される。ここで、鉛蓄電池4のインダクタンス成分と直列共振回路35とによって形成される回路は、充電用電源1側からみると並列共振回路を形成していると考えられる。図8は、本発明の一実施形態に係る鉛蓄電池再生維持装置3と鉛蓄電池4とを並列接続した場合の、充電用電源1側からみた等価並列共振回路図(a)及びインピーダンス周波数特性(b)である。図8(a)に示される並列共振回路は、直列共振回路35のC及びLと鉛蓄電池4のLとによって形成される並列共振回路36である。並列共振回路36の共振周波数fは、r≪ωLと考えてrを省略すると、 On the other hand, FIG. 7 shows an equivalent circuit diagram (a) of the lead storage battery 4 as viewed from the charging power source 1 side and an impedance frequency characteristic (b) of the circuit. As shown in FIG. 7B, the impedance of the lead storage battery 4 shows a constant low value in the low frequency region, but increases as the frequency increases in the high frequency region. Accordingly, the equivalent circuit of the lead storage battery 4, as shown in FIG. 7 (a), is formed as a circuit having a resistance component r b and an inductance component L b. Here, it is considered that the circuit formed by the inductance component of the lead storage battery 4 and the series resonance circuit 35 forms a parallel resonance circuit when viewed from the charging power source 1 side. FIG. 8 shows an equivalent parallel resonance circuit diagram (a) and impedance frequency characteristics (as viewed from the charging power source 1 side) when the lead storage battery regeneration maintaining device 3 and the lead storage battery 4 according to an embodiment of the present invention are connected in parallel. b). Parallel resonance circuit shown in FIG. 8 (a) is a parallel resonant circuit 36 formed by the L b of C and L and lead-acid battery 4 of the series resonant circuit 35. The resonance frequency f b of the parallel resonant circuit 36 is omitted r b believe r b «ωL b,

Figure 0005248201
となる。
Figure 0005248201
It becomes.

ここで、直列共振回路35の共振周波数fと、直列共振回路35及び鉛蓄電池4のインダクタンス成分によって構成される並列共振回路36の共振周波数fとの関係をみると、fとfは近接しており(これは、Q値を後述するような範囲に設定することによって達成される)、直列共振点を示す|Z|の低い部分が250kHz付近に現れているとともに、並列共振点を示す|Z|の高い部分が200kHz付近に現れている。直列共振回路35のインダクタンスL及びキャパシタンスCを、減衰波の周波数と概ね同調する周波数の電流が直列共振回路35内部に流れるように調整すると、直列共振回路35の共振周波数fと近い共振周波数fをもつ並列共振回路36内に大きな共振電流が流れる。 Here, when the relationship between the resonance frequency f s of the series resonance circuit 35 and the resonance frequency f b of the parallel resonance circuit 36 constituted by the inductance components of the series resonance circuit 35 and the lead storage battery 4 is seen, f b and f s. Are close to each other (this is achieved by setting the Q value in a range as will be described later). A low | Z | part indicating a series resonance point appears near 250 kHz, and a parallel resonance point. A portion having a high | Z | When the inductance L and the capacitance C of the series resonance circuit 35 are adjusted so that a current having a frequency approximately tuned to the frequency of the attenuation wave flows in the series resonance circuit 35, the resonance frequency f close to the resonance frequency f s of the series resonance circuit 35. A large resonance current flows in the parallel resonance circuit 36 having b .

このようにして、充電用電源1から減衰波が発生する度に、鉛蓄電池再生維持装置3の直列共振回路35内部に発生した共振電流が鉛蓄電池4に流れることになる。共振電流の振幅は、充電用電源1から発生する減衰波の振幅より大きく、約1.5倍〜約20倍程度となる。さらに、充電用電源1からは減衰波が周期的に発生するため、発生した共振電流が減衰して完全に消滅する前に次の共振電流が発生する。すなわち、共振電流は、常に鉛蓄電池4に流れていることになる。したがって、鉛蓄電池4の電極板が共振電流によって振動することにより物理的衝撃が電極板に与えられ、その結果、電極板に生成された硫酸鉛の被膜が分解されることによって鉛蓄電池のサルフェーションが分解される。それとともに、共振電流による高周波振動が電極板に常時与え続けられるため、一旦サルフェーションが分解した鉛蓄電池4の電極板には硫酸鉛の被膜が再度生成されることがなく、再生した鉛蓄電池4の電気容量が維持される。   In this way, every time a decay wave is generated from the charging power source 1, the resonance current generated in the series resonance circuit 35 of the lead storage battery regeneration maintaining device 3 flows into the lead storage battery 4. The amplitude of the resonance current is larger than the amplitude of the attenuation wave generated from the charging power source 1 and is about 1.5 times to about 20 times. Further, since a decay wave is periodically generated from the charging power source 1, the next resonance current is generated before the generated resonance current is attenuated and completely disappears. That is, the resonance current always flows through the lead storage battery 4. Therefore, a physical shock is given to the electrode plate when the electrode plate of the lead storage battery 4 is vibrated by the resonance current. Disassembled. At the same time, since high-frequency vibration due to the resonance current is continuously applied to the electrode plate, the lead sulfate battery film is not generated again on the electrode plate of the lead storage battery 4 once the sulfation is decomposed. Electric capacity is maintained.

充電用電源1から発生する減衰波は、充電用電源1の種類(充電用電源1のメーカーによって異なる)、温度環境、回転数によって異なるが、その周波数は約50kHz〜約350kHz、振幅は約30mV〜約450mVである。減衰波は、充電用電源1の作動に伴って、エンジンのプラグが点火した直後に発生し、その周期は(エンジンの回転数×エンジンの気筒数÷60)回/秒である。充電用電源1から発生する減衰波は、例えば、上述した図4のA及び図5下段に示すような波形の波である。減衰波の周波数は、同一の充電用電源では、エンジンの回転数に応じて若干変化するものの、実施例において示されるようにほぼ一定であると考えてよい。   The attenuation wave generated from the charging power source 1 varies depending on the type of the charging power source 1 (depending on the manufacturer of the charging power source 1), the temperature environment, and the rotation speed, but the frequency is about 50 kHz to about 350 kHz, and the amplitude is about 30 mV. ~ 450 mV. The attenuation wave is generated immediately after the plug of the engine is ignited in accordance with the operation of the power supply 1 for charging, and the cycle is (engine speed × engine cylinder number ÷ 60) times / second. The attenuation wave generated from the charging power supply 1 is, for example, a wave having a waveform as shown in A of FIG. 4 and the lower part of FIG. The frequency of the attenuation wave may be considered to be substantially constant as shown in the embodiment, although it slightly changes depending on the engine speed in the same charging power source.

本発明の一実施形態に係る直列共振回路35に用いられる共振用コイル31及び共振用コンデンサ32は、共振周波数においてより大きな共振電流を直列共振回路35内部に発生させるために、共振周波数fにおける直列共振回路35のインピーダンス|Z|ができるだけ低くなるように選択されることが好ましく、具体的にはインピーダンス|Z|が約0.1Ω以下となるように選択されることが好ましい。そのために、コイル31は巻線抵抗が小さいものを用い、コンデンサ32はESRが小さいものを用いることが好ましい。巻線抵抗の小さいコイル31とESRの小さいコンデンサ32とを選択することによって、Q値の高い直列共振回路35、すなわち共振のピーク(例えば図6(b)に示されるインピーダンス周波数特性図においてみられるピーク)の鋭い直列共振回路35を構成することできる。Q値は、共振回路の共振のピークの鋭さを表す無次元数であり、共振回路の抵抗をR、インダクタンスをL、共振周波数をfとすると、以下の(3)式によって表される。 Series resonant circuit resonance coil 31 and the resonance capacitor 32 used 35 according to an embodiment of the present invention, in order to generate a larger resonant current within the series resonant circuit 35 at the resonance frequency, the resonance frequency f s The impedance | Z | of the series resonance circuit 35 is preferably selected to be as low as possible, and specifically, the impedance | Z | is preferably selected to be about 0.1Ω or less. Therefore, it is preferable to use a coil 31 having a small winding resistance and a capacitor 32 having a small ESR. By selecting the coil 31 having a small winding resistance and the capacitor 32 having a low ESR, a series resonance circuit 35 having a high Q value, that is, a resonance peak (for example, an impedance frequency characteristic diagram shown in FIG. 6B) can be seen. A series resonance circuit 35 having a sharp peak can be configured. The Q value is a dimensionless number representing the sharpness of the resonance peak of the resonance circuit, and is represented by the following equation (3), where R is the resistance of the resonance circuit, L is the inductance, and f s is the resonance frequency.

Figure 0005248201
本発明に係る直列共振回路35のQ値は、約10より大きいことが好ましく、約450より小さいことが好ましい。直列共振回路35のQ値が約10より大きくなるように鉛蓄電池再生維持装置3の部品を選択することによって、共振点において鋭いピークを得ることができるとともに、直列共振点fと並列共振点fとをより近接させることが可能となる。したがって、コイル31及びコンデンサ32を減衰波の周波数と概ね同調する周波数の電流が流れるように選択すれば、並列共振回路内部において安定的に大きな共振電流が流れるようになる。しかしながら、Q値を約450以上にすると、fとfとが近接し過ぎて使用できる周波数帯域が狭くなるため、減衰波の周波数の変動に伴って機能しなくなる(すなわち、減衰波の周波数が共振周波数f又はfの範囲から外れるため、共振電流が流れなくなる)おそれがある。なお、本発明に係る鉛蓄電池再生維持装置3の直列共振回路は、複数の直列共振回路35を並列に接続することによって形成してもよい。こうすると、鉛蓄電池再生維持装置3の共振周波数におけるインピーダンスをより低減させることができるため、さらに効果的である。
Figure 0005248201
The Q value of the series resonant circuit 35 according to the present invention is preferably greater than about 10 and preferably less than about 450. By Q value of the series resonance circuit 35 selects the lead-acid battery reproducing maintainer 3 parts to be greater than about 10, it is possible to obtain a sharp peak at the resonance point, the series resonance point f a parallel resonance point It becomes possible to make f b closer. Therefore, if the coil 31 and the capacitor 32 are selected so that a current having a frequency substantially tuned to the frequency of the attenuation wave flows, a large resonance current stably flows in the parallel resonance circuit. However, if the Q value is about 450 or more, the frequency band that can be used becomes narrow because f a and f b are too close to each other, so that the function does not function as the frequency of the attenuation wave changes (that is, the frequency of the attenuation wave). Is out of the range of the resonance frequency f a or f b , the resonance current may not flow). The series resonance circuit of the lead storage battery regeneration maintaining device 3 according to the present invention may be formed by connecting a plurality of series resonance circuits 35 in parallel. This is more effective because the impedance at the resonance frequency of the lead storage battery regeneration maintaining device 3 can be further reduced.

本発明の実施形態に係る鉛蓄電池再生維持装置3の直列共振回路35に用いられる共振用コイル31は、充電用電源1の種類、すなわち発生する減衰波の周波数に応じて、インダクタンスが約3μH〜約20μH、巻線の巻数が約5〜約10ターンのものが用いられる。コイル31の巻線抵抗は、直列共振回路35のQ値が大きくなるように、約10mΩより小さいことが好ましく、約5mΩより小さいことがより好ましい。共振用コイル31は、再生維持装置が車載されることによって被る熱の影響が小さくなるように、熱による透磁率の変化が少ないものであることが好ましい。また、直列共振回路35と鉛蓄電池4とで構成される回路の内部に流れる電流は時間によって大きく変化するため、共振用コイル31は、電流によるインダクタンスの大きさが変わらないように、電流による透磁率の変化が少ないものであることが好ましい。共振用コイル31は、温度による物性値の変化が少ないアモルファスチョークコイルを用いることが好ましい。また、コイルの抵抗成分を小さくするために、巻線の径は約1mmより大きいことが好ましい。   The resonance coil 31 used in the series resonance circuit 35 of the lead-acid battery regeneration maintaining device 3 according to the embodiment of the present invention has an inductance of about 3 μH to the type of the charging power source 1, that is, the frequency of the attenuation wave generated. The one having about 20 μH and the number of windings of about 5 to about 10 turns is used. The winding resistance of the coil 31 is preferably smaller than about 10 mΩ and more preferably smaller than about 5 mΩ so that the Q value of the series resonant circuit 35 is increased. It is preferable that the resonance coil 31 has a small change in magnetic permeability due to heat so that the influence of heat received by mounting the reproduction maintaining device is reduced. In addition, since the current flowing in the circuit constituted by the series resonance circuit 35 and the lead storage battery 4 varies greatly with time, the resonance coil 31 is not transparent by current so that the magnitude of inductance due to current does not change. It is preferable that the change in magnetic susceptibility is small. As the resonance coil 31, it is preferable to use an amorphous choke coil in which a change in physical property value due to temperature is small. In order to reduce the resistance component of the coil, the diameter of the winding is preferably larger than about 1 mm.

本発明の実施形態に係る鉛蓄電池再生維持装置3の直列共振回路35に用いられる共振用コンデンサ32は、上述のようにESRを小さくするという観点から、フィルムコンデンサが好ましく、メタライズドフィルムコンデンサがより好ましい。共振用コンデンサ32は、充電用電源1の種類、すなわち発生する減衰波の周波数に応じて、キャパシタンスが0.01μF〜10μFのものが用いられる。コンデンサ32のESRは、直列共振回路35のQ値が大きくなるように、約50mΩより小さいことが好ましく、約15mΩより小さいことがより好ましい。また、回路には大きな共振電流が流れるため、コンデンサ32はリップル電流が約1Aより大きいものを用いることが好ましい。   The resonance capacitor 32 used in the series resonance circuit 35 of the lead-acid battery regeneration maintaining device 3 according to the embodiment of the present invention is preferably a film capacitor and more preferably a metallized film capacitor from the viewpoint of reducing ESR as described above. . The resonance capacitor 32 has a capacitance of 0.01 μF to 10 μF depending on the type of the charging power source 1, that is, the frequency of the generated attenuation wave. The ESR of the capacitor 32 is preferably smaller than about 50 mΩ, and more preferably smaller than about 15 mΩ so that the Q value of the series resonant circuit 35 is increased. Further, since a large resonance current flows in the circuit, it is preferable to use a capacitor 32 having a ripple current larger than about 1A.

本発明の一実施形態においては、性能が劣化した鉛蓄電池4の再生及び維持は、以下のように行われる。まず、エンジンが作動している車両の鉛蓄電池4の電極に、例えばオシロスコープを当業者に周知の方法で接続することなどによって、観測される波形のうちの減衰波の周波数を測定する。上述のように、この減衰波は、充電用電源1によって生成される波であり、充電用電源1の種類によって異なる。次いで、測定した減衰波の周波数と概ね近い周波数fで直列共振回路35が共振するように、直列共振回路35の共振用コイル31のインダクタンスLと共振用コンデンサ32のキャパシタンスCとを設定する。設定に当たっては、まず、既に述べたような特性を有する共振用コイル31を選択する。ここで、インダクタンスLの大きな共振用コイル31を選択すれば、(3)式から分かるようにQ値を大きくすることができるが、インダクタンスLを大きくするためには巻線の巻数を多くする必要がある。しかしながら、巻数の多いコイルは抵抗Rが大きくなるため、結果として必要なQ値が得られなくなる可能性がある。したがって、インダクタンスLの範囲は上述のように、約3μH〜約20μHであることが好ましい。次いで、選択された共振用コイル31のインダクタンスLと適正な(すなわち、発生する減衰波によって直列共振回路が共振するような)共振周波数fとから、(1)式によってキャパシタンスCを決定し、そのようなCを有する共振用コンデンサ32を選択する。 In one embodiment of the present invention, regeneration and maintenance of the lead storage battery 4 with degraded performance is performed as follows. First, the frequency of the attenuation wave in the observed waveform is measured by connecting an oscilloscope to the electrode of the lead storage battery 4 of the vehicle in which the engine is operating, for example, by a method well known to those skilled in the art. As described above, this attenuation wave is a wave generated by the charging power source 1 and varies depending on the type of the charging power source 1. Next, the inductance L of the resonance coil 31 of the series resonance circuit 35 and the capacitance C of the resonance capacitor 32 are set so that the series resonance circuit 35 resonates at a frequency f s that is approximately close to the frequency of the measured attenuation wave. In setting, first, the resonance coil 31 having the characteristics already described is selected. Here, if the resonance coil 31 having a large inductance L is selected, the Q value can be increased as can be seen from the equation (3). However, in order to increase the inductance L, it is necessary to increase the number of windings. There is. However, a coil having a large number of turns has a large resistance R, and as a result, a necessary Q value may not be obtained. Therefore, the range of the inductance L is preferably about 3 μH to about 20 μH as described above. Next, the capacitance C is determined by the equation (1) from the inductance L of the selected resonance coil 31 and the appropriate resonance frequency f s (that is, the series resonance circuit resonates due to the generated damped wave). The resonance capacitor 32 having such C is selected.

なお、共振用コイル31と共振用コンデンサ32とを選択する順序は逆でもよい。すなわち、既に述べたような特性を有する共振用コンデンサ32を選択し、次いで、共振用コンデンサ32のキャパシタンスCと共振周波数fとからインダクタンスLを決定し、そのようなLを有する共振用コイル31を選択するようにしてもよい。 Note that the order of selecting the resonance coil 31 and the resonance capacitor 32 may be reversed. That is, the resonance capacitor 32 having the characteristics as described above is selected, then the inductance L is determined from the capacitance C of the resonance capacitor 32 and the resonance frequency f s, and the resonance coil 31 having such L is selected. May be selected.

このようにして選択した共振用コイル31及び共振用コンデンサ32を直列接続することにより、インダクタンスLとキャパシタンスCとが適切に調整された直列共振回路35を形成することができる。この直列共振回路35をケース33に収容して樹脂又は断熱材36で固める。こうして作成された鉛蓄電池再生維持装置3(すなわち、直列共振回路35)を鉛蓄電池4と並列接続する。次に、車両のエンジンを始動させて充電用電源1を作動させることによって、充電用電源1から発生する減衰波により直列共振回路35及び鉛蓄電池4の内部に共振電流が流れ、概ね上述したような作用機序によって、鉛蓄電池4の再生及び維持が可能となる。   By connecting the resonance coil 31 and the resonance capacitor 32 selected in this way in series, a series resonance circuit 35 in which the inductance L and the capacitance C are appropriately adjusted can be formed. The series resonance circuit 35 is accommodated in a case 33 and is solidified by a resin or a heat insulating material 36. The lead storage battery regeneration maintaining device 3 (that is, the series resonance circuit 35) thus created is connected in parallel with the lead storage battery 4. Next, when the vehicle engine is started and the charging power source 1 is operated, the resonance current flows in the series resonance circuit 35 and the lead storage battery 4 due to the decay wave generated from the charging power source 1, and generally as described above. The regenerative and maintenance of the lead storage battery 4 can be achieved by this mechanism of action.

以上のような共振用コイル31と共振用コンデンサ32とによって構成される直列共振回路内35内部で発生し、直列共振回路と鉛蓄電池とによって構成される並列共振回路内部に流れる共振電流は、周波数が減衰波と概ね同じ約50kHz〜約350kHz、振幅が減衰波の約1.5〜約20倍である。例えば、上述の図5の下段に示されるような減衰波によって発生する共振電流は、図5の上段に示されるような波である。   The resonance current generated inside the series resonance circuit 35 constituted by the resonance coil 31 and the resonance capacitor 32 as described above and flowing inside the parallel resonance circuit constituted by the series resonance circuit and the lead storage battery is expressed as Is about 50 kHz to about 350 kHz which is substantially the same as the attenuation wave, and the amplitude is about 1.5 to about 20 times the attenuation wave. For example, the resonance current generated by the attenuation wave as shown in the lower part of FIG. 5 is a wave as shown in the upper part of FIG.

(実施例1)
1つのアモルファスチョークコイル(日本ケミコン株式会社製、品番:LBBM0403R4X7−VoE)と、1つのメタライズドポリプロピレンフィルムコンデンサ(日本ケミコン株式会社製、品番:FTACD102V474 ELHZ0)とを直列に接続し、直列共振回路を形成した。この直列共振回路をケースに入れて樹脂で封入した鉛蓄電池再生維持装置を、乗用車(トヨタ ファンカーゴ、平成12年式、型式NCP−20)に搭載されている性能が劣化した鉛蓄電池(G&Yu製、75D23L)に並列接続した。次いで、乗用車のエンジンを始動させた。
Example 1
One amorphous choke coil (manufactured by Nippon Chemi-Con Corporation, part number: LBBM0403R4X7-VoE) and one metallized polypropylene film capacitor (manufactured by Nippon Chemi-Con Corporation, part number: FTACD102V474 ELHZ0) are connected in series to form a series resonance circuit. did. A lead storage battery regeneration maintenance device in which this series resonance circuit is enclosed in a resin and enclosed in a case is installed in a passenger car (Toyota Fun Cargo, 2000, model NCP-20). 75D23L) in parallel. The passenger car engine was then started.

エンジン作動時に乗用車の鉛蓄電池の電極間において検出された波形を、図9(アイドリング時の波形)及び図10(エンジン回転数3,000回転時の波形)に示す。本発明において利用される減衰波は、アイドリング時には約40msに1回の周期で発生し、エンジン回転数3,000回転時には約10msに1回の周期で発生した。図9及び図10の減衰波の1つ(Aの波)を拡大した波を、それぞれ図11及び図12の下段に示す。乗用車に搭載されている充電用電源(オルタネータ、品番;27060−21030)からアイドリング時に発生する減衰波(図11の下段)は、周波数が約83kH、最大振幅が約400mVであった。なお、3,000回転時に発生する減衰波(図12の下段)も、周波数が約83kH、最大振幅が約400mVであった。これらの減衰波と共振して本発明に係る鉛蓄電池再生維持装置及び鉛蓄電池に流れる共振電流は、アイドリング時及びエンジン回転数3,000回転時のいずれも、図11及び図12の上段に示されるように、周波数が約83kH、最大振幅が約800mAであった。なお、図9及び図10においては、減衰波が図面の上部(例えば、図9の(A)の減衰波の場合)又は下部(例えば図9の右から2つめの減衰波の場合)のみに現れ、例えば図9及び図10のAの波のピークの大きさは、それぞれ対応する図11及び図12の下段の減衰波の振幅より小さくなっているように見える。これは、図9及び図10においては、ゆっくりとした全体の鉛蓄電池端子間電圧を測定するために時間軸を広くした結果、オシロスコープのサンプリング周波数が低くなり、画面上で減衰波を完全には再現できないためであると考えられる。実際には、減衰波は図4の模式図に示されるように上下に振動しており、このことは、図9及び図10に対応する図11及び図12の下段の波形をみれば明らかである。   Waveforms detected between the electrodes of the lead-acid battery of the passenger car when the engine is operating are shown in FIG. 9 (waveform at idling) and FIG. 10 (waveform at 3,000 engine revolutions). The attenuation wave used in the present invention was generated at a cycle of about 40 ms at idling, and was generated at a cycle of about 10 ms at 3,000 rpm. Waves obtained by enlarging one of the attenuation waves (A wave) in FIGS. 9 and 10 are shown in the lower part of FIGS. 11 and 12, respectively. The attenuation wave (lower stage in FIG. 11) generated during idling from the charging power source (alternator, product number: 27060-21030) mounted on the passenger car had a frequency of about 83 kH and a maximum amplitude of about 400 mV. In addition, the attenuation wave generated at 3,000 revolutions (the lower part of FIG. 12) also had a frequency of about 83 kHz and a maximum amplitude of about 400 mV. The resonance current flowing through the lead-acid battery regeneration maintaining device and the lead-acid battery according to the present invention in resonance with these attenuation waves is shown in the upper part of FIGS. 11 and 12 both at idling and at 3,000 engine revolutions. As shown, the frequency was about 83 kHz and the maximum amplitude was about 800 mA. In FIGS. 9 and 10, the attenuation wave is only in the upper part of the drawing (for example, in the case of the attenuation wave in FIG. 9A) or the lower part (for example, in the case of the second attenuation wave from the right in FIG. 9). For example, the magnitude of the peak of the wave in FIG. 9 and FIG. 10A appears to be smaller than the amplitude of the corresponding attenuation wave in the lower part of FIG. 11 and FIG. In FIG. 9 and FIG. 10, as a result of widening the time axis in order to slowly measure the overall lead-acid battery terminal voltage, the sampling frequency of the oscilloscope is lowered, and the attenuation wave is completely eliminated on the screen. This is probably because it cannot be reproduced. Actually, the damped wave vibrates up and down as shown in the schematic diagram of FIG. 4, which is apparent from the lower waveforms of FIGS. 11 and 12 corresponding to FIGS. is there.

図13は、上述のように構成された鉛蓄電池再生維持装置を劣化した鉛蓄電池に接続して乗用車を走行させることによって、鉛蓄電池が回復したことを示す結果である。図中の実走行距離は、鉛蓄電池再生維持装置を鉛蓄電池に接続した時点を0kmとし、その時点から実際に走行した距離(単位km)を表す。電圧は、鉛蓄電池の端子間電圧(単位V)であり、比重は、鉛蓄電池の6つのセルの各々の電解液の比重である。実走行距離0kmの時点、すなわち再生前の鉛蓄電池の比重は、最も高いセルでも1.2であり、最も低いセルでは1.12まで低下していた。鉛蓄電池再生維持装置の搭載後は、すべてのセルで比重が上昇し、約900km走行時の鉛蓄電池の比重は、最も高いセルで1.26となり、再生前には1.12であったセルでも1.17となった。また、電圧についても、12.01Vであったものが、約900km走行時には12.50Vまで上昇した。   FIG. 13 is a result showing that the lead storage battery has been recovered by connecting the lead storage battery regeneration maintaining device configured as described above to the deteriorated lead storage battery and running the passenger car. The actual travel distance in the figure represents a distance (unit: km) actually traveled from the time when the lead storage battery regeneration maintaining device is connected to the lead storage battery as 0 km. The voltage is the voltage (unit V) between the terminals of the lead storage battery, and the specific gravity is the specific gravity of each electrolyte of the six cells of the lead storage battery. The specific gravity of the lead storage battery at the time of the actual travel distance of 0 km, that is, before regeneration, was 1.2 even at the highest cell and decreased to 1.12 at the lowest cell. After installing the lead-acid battery regeneration maintenance device, the specific gravity of all cells increased, and the specific gravity of the lead-acid battery when traveling about 900 km was 1.26 at the highest cell, and the cell that was 1.12 before regeneration But it was 1.17. Also, the voltage was 12.01 V, but increased to 12.50 V when traveling about 900 km.

(実施例2)
乗用車(トヨタ ファンカーゴ、平成12年式、型式NCP−20)に新品の鉛蓄電池(古河電池製、46B24R、SUPER NOVA)を搭載し、1,932km走行した。走行後、バッテリーテスター(MIDTRONICS製、MDX−P300)を用いて鉛蓄電池の電圧を測定すると同時に、電解液の比重及び内部インピーダンスを測定した。次いで、実施例1に記載のとおり形成した本発明に係る鉛蓄電池再生維持装置を、乗用車に搭載した鉛蓄電池に並列接続して走行し、1,200km、2652.7km、及び3,220kmの各時点で、鉛蓄電池の電圧、比重、及び内部インピーダンスを測定した。測定は、乗用車から鉛蓄電池を取り外し、室温20〜25℃の室内で8〜24時間安静状態に保った後に行った。
(Example 2)
A new lead-acid battery (Furukawa Battery, 46B24R, SUPER NOVA) was mounted on a passenger car (Toyota Fun Cargo, 2000 model, model NCP-20), and the vehicle traveled 1,932 km. After running, the voltage of the lead storage battery was measured using a battery tester (MDX-P300, manufactured by MIDTRONICS), and simultaneously the specific gravity and internal impedance of the electrolyte were measured. Next, the lead storage battery regeneration and maintenance device according to the present invention formed as described in Example 1 is connected in parallel to a lead storage battery mounted on a passenger car and travels at 1,200 km, 2652.7 km, and 3,220 km. At that time, the voltage, specific gravity, and internal impedance of the lead acid battery were measured. The measurement was performed after the lead-acid battery was removed from the passenger car and kept in a resting state at room temperature of 20 to 25 ° C. for 8 to 24 hours.

図14〜図16は、走行距離による鉛蓄電池の電圧、比重、及び内部インピーダンスの変化を示す図である。これらの図においては、走行距離0kmの時点が本発明に係る鉛蓄電池再生維持装置を鉛蓄電池に接続した時点を示し、接続前の走行距離は負の距離で示され、接続後の走行距離は正の距離で示されている。鉛蓄電池が車両に搭載されて使用される前、すなわち鉛蓄電池が新品の状態における電圧、比重、及び内部インピーダンスの値は、走行距離が−1,932kmの点で示される。   FIGS. 14-16 is a figure which shows the change of the voltage of a lead acid battery, specific gravity, and an internal impedance by traveling distance. In these figures, the time when the travel distance is 0 km indicates the time when the lead storage battery regeneration maintaining device according to the present invention is connected to the lead storage battery, the travel distance before connection is shown as a negative distance, and the travel distance after connection is Shown in positive distance. The values of the voltage, specific gravity, and internal impedance before the lead storage battery is mounted on a vehicle and used, that is, when the lead storage battery is new, are indicated by points where the travel distance is -1,932 km.

図14は、走行距離による鉛蓄電池の電圧の変化を示す図である。横軸は走行距離を示し、縦軸は電圧を示す。鉛蓄電池が車両に搭載され使用される前においては、鉛蓄電池の電圧は12.84Vであった。本発明に係る鉛蓄電池再生維持装置を鉛蓄電池に接続した状態で3,220km走行した後においても、鉛蓄電池の電圧は、当初の電圧を維持していることが分かる。   FIG. 14 is a diagram illustrating a change in the voltage of the lead storage battery according to the travel distance. The horizontal axis indicates the travel distance, and the vertical axis indicates the voltage. Before the lead storage battery was mounted on a vehicle and used, the voltage of the lead storage battery was 12.84V. It can be seen that the voltage of the lead storage battery maintains the original voltage even after traveling 3,220 km with the lead storage battery regeneration maintaining device according to the present invention connected to the lead storage battery.

図15は、走行距離による鉛蓄電池の電解液の比重の変化を示す図である。横軸は走行距離を示し、縦軸は比重を示す。セル番号は、正極側のセルから負極側のセルに向かって、セル1〜セル6とした。鉛蓄電池が車両に搭載され使用される前においては、いずれのセルの比重も1.27〜1.28の値を示しており、セルによる比重のばらつきは小さかった。鉛蓄電池を車両に搭載し、本発明に係る鉛蓄電池再生維持装置を鉛蓄電池に接続しない状態で走行すると、いずれのセルにおいても比重が低下し、セルによる比重のばらつきが大きくなった。その後、鉛蓄電池再生維持装置を鉛蓄電池に接続した状態で走行すると、走行距離が長くなるにつれて、各セルの比重が再び上昇し、セルによる比重のばらつきが小さくなった。   FIG. 15 is a diagram showing a change in the specific gravity of the electrolyte of the lead storage battery according to the travel distance. The horizontal axis indicates the travel distance, and the vertical axis indicates the specific gravity. The cell numbers were Cell 1 to Cell 6 from the positive electrode side cell toward the negative electrode side cell. Before the lead storage battery was installed in a vehicle and used, the specific gravity of any cell showed a value of 1.27 to 1.28, and the variation in specific gravity among the cells was small. When a lead storage battery was mounted on a vehicle and the lead storage battery regeneration maintaining device according to the present invention was run without being connected to the lead storage battery, the specific gravity decreased in any cell, and the variation in specific gravity among the cells increased. After that, when traveling with the lead storage battery regeneration maintaining device connected to the lead storage battery, as the travel distance increased, the specific gravity of each cell increased again, and the variation in specific gravity among cells decreased.

図16は、走行距離による鉛蓄電池の内部インピーダンス周波数特性の変化を示す図である。横軸は周波数を示し、縦軸は内部インピーダンスを示す。鉛蓄電池の内部インピーダンスは、鉛蓄電池が車両に搭載され使用される前においては小さい値を示していたが、本発明に係る鉛蓄電池再生維持装置を鉛蓄電池に接続しない状態で1,932km走行した時点(図16において□で示されるデータ)では、全周波数帯域において大幅に上昇していた。その後、鉛蓄電池再生維持装置を鉛蓄電池に接続した状態で2652.7km走行すると、内部インピーダンスは、使用前の値と同程度にまで低下し、3,220km走行した時点においても小さい値がほぼ維持されていることが分かる。   FIG. 16 is a diagram showing a change in the internal impedance frequency characteristic of the lead storage battery according to the travel distance. The horizontal axis represents frequency, and the vertical axis represents internal impedance. The internal impedance of the lead storage battery showed a small value before the lead storage battery was mounted and used in a vehicle, but the lead storage battery regeneration maintaining device according to the present invention traveled 1,932 km without being connected to the lead storage battery. At the time (data indicated by □ in FIG. 16), the frequency was significantly increased in all frequency bands. After that, when the lead-acid battery regeneration maintaining device is connected to the lead-acid battery and travels 2652.7 km, the internal impedance decreases to the same level as before use, and a small value is almost maintained even when the vehicle travels 3,220 km. You can see that.

以上の結果から、本発明に係る装置及び方法を用いることによって、劣化した鉛蓄電池を車両に搭載したまま再生させることができるとともに、良好な状態を維持できることが分かる。   From the above results, it can be seen that by using the apparatus and method according to the present invention, a deteriorated lead storage battery can be regenerated while being mounted on a vehicle, and a good state can be maintained.

本発明の一実施形態に係る鉛蓄電池再生維持装置を示す図であり、(a)装置の蓋を開けて内部の樹脂又は断熱材を露出させた状態、(b)さらに樹脂又は断熱材を除去して装置内部の部品が見えるようにした状態、を表す。It is a figure which shows the lead storage battery reproduction | regeneration maintenance apparatus which concerns on one Embodiment of this invention, (a) The state which opened the cover of the apparatus and exposed internal resin or heat insulating material, (b) Furthermore, resin or heat insulating material is removed. In this state, the parts inside the device are visible. 本発明の一実施形態に係る鉛蓄電池再生維持装置を、自動車等に搭載されている鉛蓄電池に接続した状態を表すブロック図である。It is a block diagram showing the state which connected the lead storage battery reproduction | regeneration maintenance apparatus which concerns on one Embodiment of this invention to the lead storage battery mounted in the motor vehicle. 本発明の一実施形態に係る鉛蓄電池再生維持装置を、自動車等に搭載されている鉛蓄電池に接続した状態を表すブロック図である。It is a block diagram showing the state which connected the lead storage battery reproduction | regeneration maintenance apparatus which concerns on one Embodiment of this invention to the lead storage battery mounted in the motor vehicle. エンジンが作動している自動車において、鉛蓄電池の正極と負極との間の電圧をオシロスコープによって測定したときに検出される波形の模式図である。It is a schematic diagram of the waveform detected when the voltage between the positive electrode and negative electrode of a lead storage battery is measured with an oscilloscope in an automobile in which an engine is operating. 本発明において利用される減衰波(下段)及び共振電流(上段)の模式図である。It is a schematic diagram of the damped wave (lower stage) and the resonance current (upper stage) used in the present invention. 本発明の一実施形態に係る鉛蓄電池再生維持装置における直列共振回路の回路図(a)及び当該回路のインピーダンス周波数特性図(b)である。It is the circuit diagram (a) of the series resonance circuit in the lead storage battery reproduction | regeneration maintenance apparatus which concerns on one Embodiment of this invention, and the impedance frequency characteristic figure (b) of the said circuit. 充電用電源側からみた鉛蓄電池の等価回路図(a)及び当該回路のインピーダンス周波数特性図(b)である。It is the equivalent circuit figure (a) of the lead storage battery seen from the power supply side for charge, and the impedance frequency characteristic figure (b) of the said circuit. 本発明の一実施形態に係る鉛蓄電池再生維持装置と鉛蓄電池とを並列接続した場合の、充電用電源側からみた等価並列共振回路図(a)及びインピーダンス周波数特性図(b)である。It is the equivalent parallel resonant circuit figure (a) and impedance frequency characteristic figure (b) seen from the power supply side for charge at the time of connecting the lead storage battery reproduction | regeneration maintenance apparatus which concerns on one Embodiment of this invention, and a lead storage battery in parallel. エンジン作動時(アイドリング時)に乗用車の鉛蓄電池の電極間において検出された波形を示す。The waveform detected between the electrodes of the lead acid battery of a passenger car at the time of engine operation (during idling) is shown. エンジン作動時(3,000回転時)に乗用車の鉛蓄電池の電極間において検出された波形を示す。The waveform detected between the electrodes of the lead acid battery of a passenger car at the time of engine operation (3,000 rotations) is shown. エンジン作動時(アイドリング時)に充電用電源から発生した減衰波(下段)と、鉛蓄電池再生維持装置及び鉛蓄電池に流れた共振電流(上段)とを示す。The decay wave (lower stage) which generate | occur | produced from the power supply for charge at the time of engine operation (at the time of idling), and the resonance current (upper stage) which flowed to the lead storage battery reproduction | regeneration maintenance apparatus and a lead storage battery are shown. エンジン作動時(3,000回転時)に充電用電源から発生した減衰波(下段)と、鉛蓄電池再生維持装置及び鉛蓄電池に流れた共振電流(上段)とを示す。The decay wave (lower stage) which generate | occur | produced from the power supply for charge at the time of engine operation (at the time of 3,000 rotation), and the resonance current (upper stage) which flowed to the lead storage battery reproduction | regeneration maintenance apparatus and a lead storage battery are shown. 鉛蓄電池再生維持装置を鉛蓄電池に接続した状態で乗用車を走行させたときの鉛蓄電池の電圧及び比重の変化を示す図である。It is a figure which shows the change of the voltage and specific gravity of a lead storage battery when a passenger car is drive | worked in the state which connected the lead storage battery reproduction | regeneration maintenance apparatus to the lead storage battery. 走行距離による鉛蓄電池の電圧の変化を示す図である。It is a figure which shows the change of the voltage of a lead storage battery with a travel distance. 走行距離による鉛蓄電池の電解液の比重の変化を示す図である。It is a figure which shows the change of the specific gravity of the electrolyte solution of a lead storage battery with a travel distance. 走行距離による鉛蓄電池の内部インピーダンスの変化を示す図である。It is a figure which shows the change of the internal impedance of a lead storage battery by a travel distance.

符号の説明Explanation of symbols

1 充電用電源
2 整流器
3 鉛蓄電池再生維持装置
31 共振用コイル
32 共振用コンデンサ
33 ケース
34 配線
35 直列共振回路
36 樹脂又は断熱材
4 鉛蓄電池
DESCRIPTION OF SYMBOLS 1 Charging power supply 2 Rectifier 3 Lead storage battery regeneration maintenance device 31 Resonance coil 32 Resonance capacitor 33 Case 34 Wiring 35 Series resonance circuit 36 Resin or heat insulating material 4 Lead storage battery

Claims (8)

鉛蓄電池の容量を回復させるとともに、回復させた鉛蓄電池の容量低下を防止するための装置であって、
少なくとも1つの共振用コイルと少なくとも1つの共振用コンデンサとを含み、鉛蓄電池に並列に接続される、直列共振回路を備え、
前記少なくとも1つの共振用コイルのインダクタンスと前記少なくとも1つの共振用コンデンサのキャパシタンスとが、前記鉛蓄電池を充電するための充電用電源から発生する減衰波の周波数と概ね同調する周波数の電流が前記直列共振回路と前記鉛蓄電池とによって構成される回路の内部に流れるように調整された、
ことを特徴とする装置。
A device for recovering the capacity of a lead storage battery and preventing a decrease in the capacity of the recovered lead storage battery,
A series resonant circuit including at least one resonant coil and at least one resonant capacitor and connected in parallel to the lead acid battery;
A current having a frequency at which the inductance of the at least one resonance coil and the capacitance of the at least one resonance capacitor are approximately synchronized with the frequency of an attenuation wave generated from a charging power source for charging the lead acid battery is the series. Adjusted to flow inside a circuit constituted by a resonant circuit and the lead acid battery,
A device characterized by that.
前記共振用コンデンサは、フィルムコンデンサ又はメタライズドフィルムコンデンサであることを特徴とする、請求項1に記載の装置。   The apparatus according to claim 1, wherein the resonance capacitor is a film capacitor or a metallized film capacitor. 前記直列共振回路のQ値が10〜450であることを特徴とする、請求項1に記載の装置。   The device according to claim 1, wherein a Q value of the series resonant circuit is 10 to 450. 前記減衰波の前記周波数は50kH〜350kHであることを特徴とする、請求項1に記載の装置。   The apparatus according to claim 1, wherein the frequency of the attenuation wave is 50 kH to 350 kH. 鉛蓄電池の容量を回復させるとともに、回復させた鉛蓄電池の容量低下を防止するための方法であって、
鉛蓄電池を充電するための充電用電源から発生する減衰波の周波数を測定し、
前記鉛蓄電池に並列に接続される直列共振回路と前記鉛蓄電池とによって構成される回路の内部に前記減衰波の前記周波数と概ね同調する周波数の電流が流れるように、前記直列共振回路に含まれる少なくとも1つの共振用コイルのインダクタンスと少なくとも1つの共振用コンデンサのキャパシタンスとを調整し、
前記直列共振回路を前記鉛蓄電池に並列に接続し、
前記充電用電源を作動させる、
ことを特徴とする方法。
A method for recovering the capacity of a lead storage battery and preventing a decrease in capacity of the recovered lead storage battery,
Measure the frequency of the attenuation wave generated from the power supply for charging the lead acid battery,
The series resonant circuit includes a series resonant circuit connected in parallel to the lead acid battery and a current composed of a frequency that substantially tunes to the frequency of the attenuation wave in a circuit constituted by the lead acid battery. Adjusting the inductance of at least one resonance coil and the capacitance of at least one resonance capacitor;
Connecting the series resonant circuit to the lead acid battery in parallel;
Activating the charging power source;
A method characterized by that.
前記共振用コンデンサは、フィルムコンデンサ又はメタライズドフィルムコンデンサであることを特徴とする、請求項6に記載の方法。   The method according to claim 6, wherein the resonance capacitor is a film capacitor or a metallized film capacitor. 前記直列共振回路のQ値が10〜450であることを特徴とする、請求項6に記載の方法。   The method according to claim 6, wherein a Q value of the series resonant circuit is 10 to 450. 前記減衰波の前記周波数は50kH〜350kHであることを特徴とする、請求項6に記載の方法。   The method according to claim 6, wherein the frequency of the attenuation wave is 50 kH to 350 kH.
JP2008140316A 2007-12-27 2008-05-29 Apparatus and method for regenerating lead acid battery Expired - Fee Related JP5248201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140316A JP5248201B2 (en) 2007-12-27 2008-05-29 Apparatus and method for regenerating lead acid battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007335454 2007-12-27
JP2007335454 2007-12-27
JP2008140316A JP5248201B2 (en) 2007-12-27 2008-05-29 Apparatus and method for regenerating lead acid battery

Publications (2)

Publication Number Publication Date
JP2009176705A JP2009176705A (en) 2009-08-06
JP5248201B2 true JP5248201B2 (en) 2013-07-31

Family

ID=41031569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140316A Expired - Fee Related JP5248201B2 (en) 2007-12-27 2008-05-29 Apparatus and method for regenerating lead acid battery

Country Status (1)

Country Link
JP (1) JP5248201B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341398B2 (en) * 2008-06-03 2013-11-13 エレクトロンスプリング株式会社 Device for improving engine torque and power
JP4565362B1 (en) 2010-02-16 2010-10-20 株式会社Jsv Prevention and regeneration device for storage capacity deterioration due to electrical treatment of lead acid battery
JP5289595B2 (en) * 2011-03-17 2013-09-11 株式会社Jsv Regenerative charging device for removing electrode insulator deactivation film based on charge / discharge
JP2013257277A (en) * 2012-06-14 2013-12-26 Furukawa Battery Co Ltd:The Storage battery monitoring device
KR101389129B1 (en) 2013-07-04 2014-04-25 주식회사 이비오테크 Life continuation apparatus for storage battery cell using fine oscillation
CN116169384B (en) * 2023-04-22 2023-08-18 飞杨电源技术(深圳)有限公司 Repairing circuit and method for lead-acid storage battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783929A (en) * 1997-03-27 1998-07-21 Taricco; Todd Apparatus and method for recharging a battery
JP2002334723A (en) * 2001-05-07 2002-11-22 Yoshio Kitamura Method for regenerating lead-acid battery
KR20050057543A (en) * 2002-09-24 2005-06-16 가부시키가이샤 에루마 Method for removing lead sulfate film formed in lead-acid battery
JP2004119363A (en) * 2002-09-27 2004-04-15 Kazuo Tagawa Charging method
JP2004342567A (en) * 2003-05-12 2004-12-02 Shigeo Okuno Removing device of lead sulfide deposited on electrode surface of lead-acid battery due to application shock of voltage having needlelike projection in negative direction from positive voltage value e (v)
GB2403609A (en) * 2003-07-01 2005-01-05 Univ Leicester Pulse charging an electrochemical device
JP3974644B2 (en) * 2004-02-27 2007-09-12 株式会社アイ・ピー・ビー Lead sulfate film removal method for lead battery electrode, lead sulfate film removal pulse generator
US7106200B2 (en) * 2004-06-10 2006-09-12 Sensormatic Electronics Corporation Deactivator using resonant recharge
JP2006164540A (en) * 2004-12-02 2006-06-22 Nittetsu Elex Co Ltd Device and method for reproducing lead battery
JP3115359U (en) * 2005-08-02 2005-11-04 株式会社アイ・ピー・ビー Lead acid battery

Also Published As

Publication number Publication date
JP2009176705A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5248201B2 (en) Apparatus and method for regenerating lead acid battery
JP7234140B2 (en) Secondary battery abnormality detection device, abnormality detection method, program, secondary battery state estimation method, and secondary battery charge state estimation device
JP6239611B2 (en) Charge control device and charge control method
CN106025399B (en) A kind of automobile storage battery monitoring method and system
JP2002358966A (en) Lithium secondary battery positive electrode plate and lithium secondary battery
US9958508B2 (en) Degraded performance recovery method for lithium ion secondary battery
JP2010218900A (en) Battery system and hybrid automobile
CN103085678A (en) Battery management system and method of vehicle
JP2010049882A (en) Vehicle
WO2017086400A1 (en) Storage battery system, and storage battery device and method
JP6316081B2 (en) Secondary battery identification device and secondary battery identification method
JP2018025500A (en) Battery system
JP2021082426A (en) Method and system for charging battery
CN113036834B (en) Battery system and control method of lithium ion battery
KR20140031376A (en) Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity
JP5341398B2 (en) Device for improving engine torque and power
US9419309B2 (en) Apparatus for preventing deterioration of storage capacity of rechargeable battery, regenerating the same, and measuring storage quantity
JP3182284U (en) Capacitor lead assembled battery and its coupling device
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
Mahadevan et al. Battery Technologies
JP2018021837A (en) Device and method for determining deterioration of secondary battery, and device for controlling secondary battery
JP6747333B2 (en) Secondary battery system
JP2020113369A (en) Manufacturing method of battery
JP2022067494A (en) Battery cell control device and battery cell control method
JP4042000B2 (en) Regeneration method of nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees