JP5247519B2 - Absorber - Google Patents
Absorber Download PDFInfo
- Publication number
- JP5247519B2 JP5247519B2 JP2009033938A JP2009033938A JP5247519B2 JP 5247519 B2 JP5247519 B2 JP 5247519B2 JP 2009033938 A JP2009033938 A JP 2009033938A JP 2009033938 A JP2009033938 A JP 2009033938A JP 5247519 B2 JP5247519 B2 JP 5247519B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- transfer tube
- tube
- absorber
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
本発明は、吸収冷温水機の吸収器に関するものであり、更に詳しくは、冷房などの冷却作用を行う冷水と、暖房などの加熱作用を行う温水とを選択的に供給することができる吸収冷温水機の吸収器に関するものである。 The present invention relates to an absorber of an absorption chiller / heater, and more particularly, an absorption chiller / heater that can selectively supply cold water that performs a cooling operation such as cooling and hot water that performs a heating operation such as heating. It relates to the absorber of a water machine.
図3に、従来の冷水または温水を負荷に循環供給する二重効用吸収冷温水機の例(特許文献1、2参照)を示す。冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用したものである。
FIG. 3 shows an example of a dual-effect absorption chiller / heater that circulates and supplies conventional cold water or hot water to a load (see
図3において、1はガスバーナ1Bを備えた高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8〜11は吸収液管、13は吸収液ポンプ、14〜18は冷媒管、19は冷媒ポンプ、21は図示しない冷/暖房負荷に循環供給する冷水または温水が流れる冷温水管、22は冷温水ポンプ、23は冷却水管、24は濃吸収液管、25は均圧管、26〜29は開閉弁、40は濃吸収液散布装置、41は濃吸収液ポンプなどを備えている。
吸収器5において、蒸発器4で生成して供給される冷媒蒸気を、低温再生器2から冷媒蒸気を分離して濃吸収液ポンプ41の運転により吸収液管10を介して供給される濃吸収液を、濃吸収液散布装置40により冷却水管23に接続されその内部に冷却水が流れる複数の伝熱管(ベア管)23Aから構成される吸収器熱交換器の前記伝熱管23A上に均一に散布して吸収させて、稀吸収液にし、高温再生器1に供給するようになっている。図3中、Cは制御器、30は温度センサを示す。
In FIG. 3, 1 is a high temperature regenerator equipped with a
In the absorber 5, the refrigerant vapor generated and supplied by the evaporator 4 is separated from the refrigerant vapor from the low-
そして、吸収冷温水機の運転を行うと、蒸発器4の内部に配管された伝熱管2(ベア管)1Aにおいて冷媒の気化熱によって冷却された冷水が、冷温水ポンプ22の運転により冷温水管21を介して図示しない冷/暖房負荷に循環供給できるので、冷房運転などが行える。
When the absorption chiller / heater is operated, the chilled water cooled by the heat of vaporization of the refrigerant in the heat transfer tube 2 (bare tube) 1A piped inside the evaporator 4 is cooled by the operation of the chilled /
しかし、従来の、複数の伝熱管(ベア管)23Aから構成される前記吸収器熱交換器は吸収効率が低く、種々の改良が提案されている(特許文献3〜8参照)。
However, the conventional absorber heat exchanger composed of a plurality of heat transfer tubes (bare tubes) 23A has low absorption efficiency, and various improvements have been proposed (see
しかし、これらの従来の吸収器熱交換器は吸収効率が低く、いまだ改良の余地がある。
本発明の目的は、従来の課題を解決し、簡単な新規な構成により吸収器熱交換器の吸収効率を向上するとともに、コストダウンにもなる吸収冷温水機の吸収器を提供することである。
However, these conventional absorber heat exchangers have low absorption efficiency and still have room for improvement.
An object of the present invention is to provide an absorber for an absorption chiller / heater that solves the conventional problems, improves the absorption efficiency of the absorber heat exchanger with a simple new configuration, and also reduces the cost. .
前記課題を解決するために発明者は鋭意研究した結果、伝熱管としてフィンなどの凹凸部を有するフィン伝熱管のみを用いた場合と、伝熱管として平滑表面を有するベア伝熱管のみを用いた場合について、上段側から下段側にわたって後述する式(1)を用いて、上段側から下段側にわたってそれぞれ熱通過率Kを算出し、例えば縦軸を熱通過率Kとし、横軸を[(冷却水の温度)と(濃吸収液の温度)の差](Δt)としてプロットすると、フィン伝熱管の熱通過率KはΔtが小さくなるとともに低下するが、ベア伝熱管の熱通過率KはΔtによってあまり左右されず、Δtに係わらずほぼ一定であるので、両者の熱通過率Kが一致する箇所があることが見いだされた。
そこで、前記箇所より上段側にフィン伝熱管を設置し、前記箇所より下段側にベア伝熱管を連結して設置することによって前記課題を解決できることを見いだし、本発明を成すに至った。
As a result of intensive research conducted by the inventors to solve the above-mentioned problems, the case where only a fin heat transfer tube having an uneven portion such as a fin is used as a heat transfer tube and the case where only a bare heat transfer tube having a smooth surface is used as a heat transfer tube , The heat passage rate K is calculated from the upper side to the lower side using the formula (1) described later from the upper side to the lower side, for example, the vertical axis is the heat passage rate K, and the horizontal axis is [(cooling water Plotting as the difference between (temperature) and (temperature of the concentrated absorbent)] (Δt), the heat transfer rate K of the fin heat transfer tube decreases as Δt decreases, but the heat transfer rate K of the bare heat transfer tube depends on Δt. It has been found that there is a portion where the heat transmission rates K of both coincide with each other since it is not greatly influenced and is almost constant regardless of Δt.
Therefore, the present inventors have found that the above problem can be solved by installing a fin heat transfer tube on the upper side from the above location and connecting and installing the bare heat transfer tube on the lower side from the above location.
前記課題を解決するための本発明の請求項1記載の吸収器は、濃吸収液を散布する濃吸収液散布装置と、この濃吸収液散布装置の下方に設けられた吸収器熱交換器とを備え、この吸収器熱交換器は、下方から上方に冷却水を流通させる冷却水管に接続され、前記濃吸収液散布装置から管外表面に濃吸収液が散布される複数の伝熱管を有し、
前記伝熱管としてフィン伝熱管を用いた場合と、前記伝熱管としてベア伝熱管を用いた場合について、下式(1)により算出されるそれぞれの熱通過率Kが均しくなる箇所を見い出し、前記箇所より上段側にフィン伝熱管を設置し、前記箇所より下段側にベア伝熱管を連結して設置したことを特徴とする。
The absorber according to
For the case where a fin heat transfer tube is used as the heat transfer tube and the case where a bare heat transfer tube is used as the heat transfer tube, find a place where the respective heat transfer rates K calculated by the following equation (1) are equalized, A fin heat transfer tube is installed on the upper side from the location, and a bear heat transfer tube is connected and installed on the lower side from the location.
K=Q/(A×ΔT)(kcal/m2 ・℃・hr)・・・ 式(1)
ただし、式(1)のQは伝熱管内を流れる冷却水の熱交換量、Aは伝熱管の伝熱面積、ΔTは伝熱管内を流れる冷却水の出入口温度と伝熱管外表面に散布される濃吸収液の出入口温度の対数平均温度差であり、それぞれ下式(2)〜(5)により求められるものである。
K = Q / (A × ΔT) (kcal / m 2 · ° C. · hr) Formula (1)
Where Q in Equation (1) is the heat exchange amount of the cooling water flowing in the heat transfer tube, A is the heat transfer area of the heat transfer tube, and ΔT is dispersed on the inlet / outlet temperature of the cooling water flowing in the heat transfer tube and the outer surface of the heat transfer tube. Logarithm average temperature difference of the inlet / outlet temperature of the concentrated absorbent, which is determined by the following equations (2) to (5), respectively.
Q(kcal/hr)=(冷却水の出入口温度差)×比熱×冷却水流量・・・
式(2)
Q (kcal / hr) = (cooling water inlet / outlet temperature difference) × specific heat × cooling water flow rate
Formula (2)
A1(m2)(ベア伝熱管の伝熱面積)=(ベア伝熱管の外径×π)×(ベア伝熱管の長さ)・・・ 式(3) A1 (m 2 ) (Bear heat transfer tube heat transfer area) = (Bear heat transfer tube outer diameter × π) × (Bare heat transfer tube length) Formula (3)
A2(m2)(フィン伝熱管の伝熱面積)=(フィン伝熱管の外径×π)×(ベア伝熱管の長さ)・・・ 式(4)
ただし、式(4)におけるフィン伝熱管の外径は管外面に凹凸を形成する前の平均外径である。
A2 (m 2 ) (heat transfer area of fin heat transfer tube) = (outer diameter of fin heat transfer tube × π) × (length of bear heat transfer tube) Formula (4)
However, the outer diameter of the fin heat transfer tube in Formula (4) is an average outer diameter before forming irregularities on the outer surface of the tube.
ΔT(℃)=[(Ta-ta)-(Tb-tb)]/ln[(Ta-ta)-(Tb-tb)] ・・・・ 式(5)
ただし、Ta、Tbはそれぞれ伝熱管外表面に散布される濃吸収液の入口温度または吸収器の器内圧力での入口側濃度に基づく飽和温度、および、出口温度または吸収器の器内圧力での出口側濃度に基づく飽和温度を示し、ta、tbはそれぞれ伝熱管内を流れる冷却水の入口温度および出口温度を示す。
ΔT (° C.) = [(Ta-ta)-(Tb-tb)] / ln [(Ta-ta)-(Tb-tb)] (5)
However, Ta and Tb are the saturation temperature based on the inlet temperature of the concentrated absorption liquid sprayed on the outer surface of the heat transfer tube or the inlet side concentration at the absorber internal pressure, and the outlet temperature or the internal pressure of the absorber, respectively. Represents the saturation temperature based on the outlet side concentration of the water, and ta and tb respectively represent the inlet temperature and the outlet temperature of the cooling water flowing in the heat transfer tube.
本発明の請求項2記載の吸収器は、請求項1記載の吸収器において、上段側のフィン伝熱管と下段側にベア伝熱管からなる伝熱管の内、前記フィン伝熱管が伝熱管全体の内、50%以上であることを特徴とする。
The absorber according to
吸収器熱交換器の上方に設けられた濃吸収液散布装置から下方の伝熱管の最上段の管外表面に散布される濃吸収液は高濃度で高温を有しており、伝熱管内を下方から上方に流通する冷却水の温度との差は大きいが、冷媒蒸気を吸収しつつ濃度を下げつつ下方に流下すると濃吸収液の温度が低下し、冷却水の温度との差は小さくなるので、前記式(1)により算出される熱通過率Kが均しくなる箇所が出現するものと考えられる。
そこで、本発明の吸収器は、この箇所を見い出し、前記箇所より上段側にフィン伝熱管を設置し、前記箇所より下段側に平滑表面を有するベア伝熱管を設置したので、伝熱管の全体がベア伝熱管である場合あるいは伝熱管の全体がフィン伝熱管である場合に比して吸収器熱交換器の吸収効率が向上するという顕著な効果を奏するとともに、管外面に複雑な形状の凹凸が形成されているフィン伝熱管は高価であり、取り扱い時にこのような複雑なフィンを損傷すると熱通過率が低下してしまうのに対して、ベア伝熱管は安価であり取り扱い時にフィンを損傷することもないので、取り扱い性もよく、組み立てが容易になるなどによって、伝熱管の全体がフィン伝熱管である場合に比してコストダウンにもなるというさらなる顕著な効果を奏する。
The concentrated absorbent sprayed on the outer surface of the uppermost tube of the lower heat transfer tube from the concentrated absorbent sprayer provided above the absorber heat exchanger has a high concentration and high temperature, and the inside of the heat transfer tube Although the difference with the temperature of the cooling water flowing upward from below is large, if the refrigerant flows down while absorbing the refrigerant vapor, the concentration of the concentrated absorbent decreases and the difference with the temperature of the cooling water becomes small. Therefore, it is considered that a portion where the heat passage rate K calculated by the above formula (1) becomes uniform appears.
Therefore, the absorber of the present invention finds this place, installs the fin heat transfer tube on the upper side from the location, and installs the bare heat transfer tube having a smooth surface on the lower side from the location, so that the entire heat transfer tube is Compared to the case where it is a bare heat transfer tube or the case where the entire heat transfer tube is a fin heat transfer tube, the absorption efficiency of the absorber heat exchanger is improved, and the outer surface of the tube has a complicated shape. The formed fin heat transfer tube is expensive, and if such complex fins are damaged during handling, the heat transfer rate decreases, whereas the bare heat transfer tube is inexpensive and damages the fins during handling. As a result, it is easy to handle and easy to assemble. As a result, the heat transfer tube can be reduced in cost compared to the case where the entire heat transfer tube is a finned heat transfer tube.
本発明の請求項2記載の吸収器は、請求項1記載の吸収器において、上段側のフィン伝熱管と下段側にベア伝熱管からなる伝熱管の内、前記フィン伝熱管が伝熱管全体の内、50%以上であることを特徴とするものであり、伝熱管の全体がベア伝熱管である場合と比してより高い吸収効率が得られるというさらなる顕著な効果を奏する。
The absorber according to
以下、本発明を図を用いて詳細に説明する。
図1は、本発明の吸収器を説明する説明図である。
図2は、伝熱管としてフィン伝熱管のみを用いた場合と、伝熱管としてベア伝熱管のみを用いた場合について、それぞれ熱通過率Kを算出した結果(縦軸はベア管の平均熱通過率Kに対する比(%)で示す)と、[(冷却水の温度)と(濃吸収液の温度)の差](Δt)との関係を示すグラフである。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view for explaining an absorber of the present invention.
FIG. 2 shows the results of calculating the heat transfer rate K for the case where only the fin heat transfer tube is used as the heat transfer tube and the case where only the bare heat transfer tube is used as the heat transfer tube (the vertical axis indicates the average heat transfer rate of the bear tube). It is a graph showing the relationship between (the ratio (%) to K) and [difference between (temperature of cooling water) and (temperature of concentrated absorbent)] (Δt).
図3に示した吸収冷温水機の吸収器5を用い、伝熱管23Aとしてフィンなどの凹凸部を有するフィン伝熱管(23A−2)を用いた場合と、前記伝熱管23Aとして平滑表面を有するベア伝熱管(23A−3)を用いた場合について、前式(1)により算出されるそれぞれの熱通過率Kを実験により求め、横軸を[(冷却水の温度)と(濃吸収液の温度)の差](Δt)とし、縦軸にそれぞれの熱通過率K(ベア管の平均熱通過率Kに対する比(%)で示す)をプロットした結果を図2に示す。
When the absorber 5 of the absorption chiller / heater shown in FIG. 3 is used and the fin heat transfer tube (23A-2) having uneven portions such as fins is used as the
図2に示したように、それぞれの熱通過率K(ベア管の平均熱通過率Kに対する比(%)で示す)が交わる箇所が見いだされるので、その箇所に対応する吸収器5の伝熱管23Aの箇所(それぞれの熱通過率Kが均しくなる箇所、すなわち図1中の伝熱管23A−1の箇所)が特定される。
As shown in FIG. 2, a location where the respective heat passage rates K (indicated by a ratio (%) with respect to the average heat passage rate K of the bare tube) intersect is found, so the heat transfer tubes of the absorber 5 corresponding to the locations are found. The location of 23A (the location where the respective heat transfer rates K are equalized, that is, the location of the
図1に示した本発明の吸収器5Aは、前記箇所より上段側に凹凸部を有するフィン伝熱管(伝熱管23A−2)を設置し、前記箇所より下段側に平滑表面を有するベア伝熱管(伝熱管23A−3)をフィン伝熱管(伝熱管23A−2)に連結して設置した以外は、図3に示した吸収冷温水機の吸収器5と同様に構成されている。
図1において、図3と同じ符号の部分は、図3で説明した同一符号の部分と同一機能をもつ部分である。
The
In FIG. 1, the same reference numerals as those in FIG. 3 have the same functions as the same reference numerals described in FIG.
前記実験は、吸収器熱交換器の上方に設けられた濃吸収液散布装置40から下方の伝熱管23Aの管外表面に散布される濃吸収液の散布量を通常使用される平均的散布量である1.0L/min・m)で行った。
図2において、Δtが4を超え10の領域ではフィン伝熱管(23A−2)の熱通過率K(%)がベア管(23A−3)の熱通過率K(100%)より大きいが、Δtが4の近傍で両者は均しくなり、Δtが4未満の領域では逆転して、フィン伝熱管(23A−2)の熱通過率K(%)がベア管(23A−3)の熱通過率K(100%)より小さくなった。これにより両者の熱通過率Kが均しくなる箇所(図1中の伝熱管23A−1の箇所)を見い出すことができた。
In the experiment, an average spraying amount that is normally used is a spraying amount of concentrated absorbent sprayed on the outer surface of the
In FIG. 2, in the region where Δt exceeds 4 and 10, the heat transfer rate K (%) of the fin heat transfer tube (23A-2) is larger than the heat transfer rate K (100%) of the bare tube (23A-3). In the vicinity of Δt of 4, both become uniform, and in the region where Δt is less than 4, the heat transfer rate K (%) of the fin heat transfer tube (23A-2) is the heat transfer of the bare tube (23A-3). It became smaller than rate K (100%). Thereby, the location (location of the
図2に示したような、フィン伝熱管の熱通過率Kとベア管の熱通過率KがΔtによって逆転する結果が得られる理由は明確ではない。
しかし、Δtが大きい時はフィン伝熱管の方が表面積が大きいので熱通過率Kが当然大きくなることは明らかであり、通常、産業界ではフィン伝熱管を用いてΔtを大きくして高い熱交換率を得ている。
このように、Δtが大きいときはフィン伝熱管の液膜内での対流により大きな熱通過率Kが得られるが、Δtが小さくなった時は、前記液膜内での対流が促進されなくなり、液膜が熱伝達の障害となって熱通過率Kが低下するものと考えられる。
The reason why the heat transfer rate K of the fin heat transfer tube and the heat transfer rate K of the bare tube are reversed by Δt as shown in FIG. 2 is not clear.
However, when Δt is large, it is clear that the heat transfer rate K naturally increases because the fin heat transfer tube has a larger surface area. Usually, in the industry, Δt is increased by using the fin heat transfer tube to increase heat exchange. Getting rate.
Thus, when Δt is large, a large heat transfer rate K is obtained by convection in the liquid film of the fin heat transfer tube, but when Δt is small, convection in the liquid film is not promoted, It is considered that the liquid film becomes an obstacle to heat transfer and the heat transfer rate K decreases.
一方、ベア伝熱管の場合は、Δtが小さくなっても、吸収液が重力により引かれて流下するので、表面に吸収液が停滞することが少なく、吸収液が停滞しないと、表面積が小さいこともあって熱通過率Kが低下しないで維持されるものと考えられる。
なお、当然のことながら、フィン伝熱管の熱通過率Kとベア管の熱通過率KがΔtによって逆転するのはこの考え方に限定されるものではない。
On the other hand, in the case of a bare heat transfer tube, even if Δt becomes small, the absorbing liquid is drawn by gravity and flows down, so that the absorbing liquid hardly stagnates on the surface, and if the absorbing liquid does not stagnate, the surface area is small. For this reason, it is considered that the heat transfer rate K is maintained without lowering.
Of course, the heat transfer rate K of the fin heat transfer tube and the heat transfer rate K of the bare tube are reversed by Δt is not limited to this idea.
本発明で用いるフィン伝熱管とは、管外表面に凹凸部を有する伝熱管、管外表面に凹凸形状の加工をした伝熱管、あればよく、具体的には、例えば、管外表面の管長手方向に凹形状が刻まれた伝熱管、管外表面の管周方向にらせん凹形状(ローフィン形状)が刻まれた伝熱管、断面形状が花柄を有する花柄管(市販の花柄管でよく、溝の数などが異なったり、各種のもが多数ある知られている)などを挙げることができる。これらの材質、形状、寸法などは吸収冷温水機の能力、仕様などにマッチさせて適宜選定して使用することができる。 The fin heat transfer tube used in the present invention may be a heat transfer tube having a concavo-convex portion on the outer surface of the tube, a heat transfer tube having a concavo-convex shape processed on the outer surface of the tube, and specifically, for example, the tube length of the outer surface of the tube Heat transfer tube with concave shape engraved in the hand direction, heat transfer tube with spiral concave shape (low fin shape) engraved in the tube circumferential direction on the outer surface of the tube, floral pattern tube with a cross-sectional floral pattern (commercially available floral pattern tube And the number of grooves is different, or there are many various types). These materials, shapes, dimensions, and the like can be appropriately selected and used in accordance with the capacity and specifications of the absorption chiller / heater.
本発明で用いるベア管とは、平滑表面を有するベア管であればよく、具体的には、例えば、管外表面が平滑形状の管(突起などの加工が施されていない管)などを挙げることができる。これらの材質、形状、寸法などは吸収冷温水機の能力、仕様などにマッチさせて適宜選定して使用することができる。 The bare tube used in the present invention may be a bare tube having a smooth surface, and specifically includes, for example, a tube having a smooth outer surface (a tube not subjected to processing such as protrusions). be able to. These materials, shapes, dimensions, and the like can be appropriately selected and used in accordance with the capacity and specifications of the absorption chiller / heater.
本発明においては、前記フィン伝熱管と前記ベア管とがどのような組合わせであっても、両者の熱通過率Kが均しくなる箇所を見い出すことができれば、その組合わせを使用できる。
なお、ベア管およびフィン伝熱管の外径はいずれも平均外径である。そしてフィン伝熱管は通常ベア管をベースとして使用し、その外面に凹凸を形成してフィン伝熱管を製造するので、製造したフィン伝熱管の両端には凹凸が形成されていない部分が存在する。そこで、フィン伝熱管の外径はその両端の部分から平均外径を求めることができる。一方、両端に凹凸が形成されていない部分が存在しないフィン伝熱管の場合は、管外表面に形成された凹凸の凸部の頂点と凹部(谷部)の底との間の距離から計算して平均外径を求める。
In the present invention, any combination of the fin heat transfer tube and the bare tube can be used as long as a portion where the heat transfer rates K of both of them are uniform can be found.
The outer diameters of the bare tube and the fin heat transfer tube are both average outer diameters. And since a fin heat exchanger tube uses a bare pipe as a base and forms an unevenness | corrugation in the outer surface and manufactures a fin heat exchanger tube, the part which the unevenness | corrugation is not formed exists in the both ends of the manufactured fin heat exchanger tube. Therefore, the outer diameter of the fin heat transfer tube can be determined from the average outer diameter from both ends. On the other hand, in the case of a finned heat transfer tube where there is no portion with unevenness at both ends, the calculation is based on the distance between the top of the unevenness and the bottom of the recess (valley) formed on the outer surface of the tube. To find the average outer diameter.
なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。 The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.
以下、実施例および比較例により本発明を説明するが、本発明の主旨を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated by an Example and a comparative example, unless it deviates from the main point of this invention, this invention is not limited to these Examples.
(実施例1)
図1に示した伝熱管の構成を有する吸収器を備えた図3において、吸収器5内に設置される全伝熱管の内上方の70%の伝熱管をフィン伝熱管とし、下方の残り30%の伝熱管をベア伝熱管とし、冷却水管23内を流通する冷却水温度を、吸収器入口温度32℃、凝縮器出口温度37.5℃とし、冷温水ポンプ22により図示しない冷/暖房負荷へ循環供給される冷温水温度を、前記負荷からの戻り口温度12℃、蒸発器4からの出口温度7℃として冷房運転を行った結果、比較例として行った上記吸収器5内に設置される全伝熱管を全てベア伝熱管とした場合、あるいは、上記吸収器5内に設置される全伝熱管を全てフィン管とした場合に比べて、優れた吸収効率を得ることができた。
Example 1
In FIG. 3 provided with the absorber having the configuration of the heat transfer tube shown in FIG. 1, the upper 70% of the heat transfer tubes installed in the absorber 5 are finned heat transfer tubes, and the remaining 30 below. % Of the heat transfer tube is a bear heat transfer tube, the cooling water temperature flowing through the cooling
実施例1においては、吸収器5内に設置される全伝熱管の内上方の70%の伝熱管をフィン伝熱管としたが、この割合は70%に限定されるものではなく、機種および吸収器5の構成等によって変更できるものである。
しかしながら、伝熱管表面での吸収液の流下が順調に行われる場合はフィン伝熱管の方がよく、そして、実際には吸収器内に設置される全伝熱管の内上方の50%以上の範囲では伝熱管表面での吸収液の流下が順調に行われる場合が多いので、全伝熱管の内上方の50%以上については伝熱管をフィン伝熱管とすることが好ましい場合が多い。
In the first embodiment, 70% of the heat transfer tubes in the upper part of all the heat transfer tubes installed in the absorber 5 are finned heat transfer tubes, but this ratio is not limited to 70%. It can be changed depending on the configuration of the device 5 or the like.
However, the finned heat transfer tube is better when the flow of the absorbing liquid on the surface of the heat transfer tube is performed smoothly, and actually, the range of 50% or more in the upper part of all the heat transfer tubes installed in the absorber. In many cases, the flow of the absorbing liquid on the surface of the heat transfer tube is performed smoothly. Therefore, it is often preferable to use the heat transfer tube as a fin heat transfer tube for 50% or more of the upper part of all the heat transfer tubes.
本発明の吸収器は、前記式(1)により算出される熱通過率Kが均しくなる箇所を見い出し、前記箇所より上段側にフィン伝熱管を設置し、前記箇所より下段側に平滑表面を有するベア伝熱管を設置したので、伝熱管の全体がベア伝熱管である場合あるいは伝熱管の全体がフィン伝熱管である場合に比して吸収器熱交換器の吸収効率が向上するとともに、フィン伝熱管は高価であり、取り扱い時にこのような複雑なフィンを損傷すると熱通過率が低下してしまうのに対して、ベア伝熱管は安価であり取り扱い時にフィンを損傷することもないので、取り扱い性もよく、組み立てが容易になるなどによって、コストダウンにもなるというさらなる顕著な効果を奏するので、産業上の利用価値は甚だ大きい。 The absorber of the present invention finds a place where the heat transfer rate K calculated by the equation (1) becomes uniform, installs a fin heat transfer tube on the upper side of the place, and has a smooth surface on the lower side of the place. Since the bare heat transfer tube has been installed, the absorption efficiency of the absorber heat exchanger is improved compared to the case where the entire heat transfer tube is a bare heat transfer tube or the case where the entire heat transfer tube is a fin heat transfer tube, and the fin Heat transfer tubes are expensive, and if such complex fins are damaged during handling, the heat transfer rate decreases, whereas bare heat transfer tubes are inexpensive and do not damage the fins during handling. Since it has good characteristics and is easy to assemble, the cost can be further reduced. Therefore, the industrial utility value is very large.
1 高温再生器
1B ガスバーナ
2 低温再生器
3 凝縮器
4 蒸発器
5、5A 吸収器
6 低温熱交換器
7 高温熱交換器
8〜11 吸収液管
13 吸収液ポンプ
14〜18 冷媒管
19 冷媒ポンプ
21 冷温水管
21A 伝熱管
22 冷温水ポンプ
23 冷却水管
23A 伝熱管
23A−1 熱通過率Kが均しくなる箇所の伝熱管
23A−2 フィン伝熱管
23A−3 ベア伝熱管
24 濃吸収液管
25 均圧管
26〜29 開閉弁
30 温度センサ
C 制御器
40 濃吸収液散布装置
41 濃吸収液ポンプ
DESCRIPTION OF
Claims (2)
前記伝熱管としてフィン伝熱管を用いた場合と、前記伝熱管としてベア伝熱管を用いた場合について、下式(1)により算出されるそれぞれの熱通過率Kが均しくなる箇所を見い出し、前記箇所より上段側にフィン伝熱管を設置し、前記箇所より下段側にベア伝熱管を連結して設置したことを特徴とする吸収器。
K=Q/(A×ΔT)(kcal/m2 ・℃・hr)・・・ 式(1)
ただし、式(1)のQは伝熱管内を流れる冷却水の熱交換量、Aは伝熱管の伝熱面積、ΔTは伝熱管内を流れる冷却水の出入口温度と伝熱管外表面に散布される濃吸収液の出入口温度の対数平均温度差であり、それぞれ下式(2)〜(5)により求められるものである。
Q(kcal/hr)=(冷却水の出入口温度差)×比熱×冷却水流量・・・
式(2)
A1(m2)(ベア伝熱管の伝熱面積)=(ベア伝熱管の外径×π)×(ベア伝熱管の長さ)・・・ 式(3)
A2(m2)(フィン伝熱管の伝熱面積)=(フィン伝熱管の外径×π)×(ベア伝熱管の長さ)・・・ 式(4)
ただし、式(4)におけるフィン伝熱管の外径は管外面に凹凸を形成する前の平均外径である。
ΔT(℃)=[(Ta-ta)-(Tb-tb)]/ln[(Ta-ta)-(Tb-tb)] ・・・・ 式(5)
ただし、Ta、Tbはそれぞれ伝熱管外表面に散布される濃吸収液の入口温度または吸収器の器内圧力での入口側濃度に基づく飽和温度、および、出口温度または吸収器の器内圧力での出口側濃度に基づく飽和温度を示し、ta、tbはそれぞれ伝熱管内を流れる冷却水の入口温度および出口温度を示す。 It is equipped with a concentrated absorbent spraying device that sprays the concentrated absorbent and an absorber heat exchanger provided below the concentrated absorbent spraying device. The absorber heat exchanger circulates cooling water from below to above. A plurality of heat transfer pipes connected to a cooling water pipe to be sprayed on the outer surface of the pipe from the concentrated absorbent spraying device,
For the case where a fin heat transfer tube is used as the heat transfer tube and the case where a bare heat transfer tube is used as the heat transfer tube, find a place where the respective heat transfer rates K calculated by the following equation (1) are equalized, The absorber which installed the fin heat exchanger tube in the upper stage side from the location, and connected the bear heat exchanger tube in the lower step side from the location.
K = Q / (A × ΔT) (kcal / m 2 · ° C. · hr) Formula (1)
Where Q in Equation (1) is the heat exchange amount of the cooling water flowing in the heat transfer tube, A is the heat transfer area of the heat transfer tube, and ΔT is dispersed on the inlet / outlet temperature of the cooling water flowing in the heat transfer tube and the outer surface of the heat transfer tube. Logarithm average temperature difference of the inlet / outlet temperature of the concentrated absorbent, which is determined by the following equations (2) to (5), respectively.
Q (kcal / hr) = (cooling water inlet / outlet temperature difference) × specific heat × cooling water flow rate
Formula (2)
A1 (m 2 ) (Bear heat transfer tube heat transfer area) = (Bear heat transfer tube outer diameter × π) × (Bare heat transfer tube length) Formula (3)
A2 (m 2 ) (heat transfer area of fin heat transfer tube) = (outer diameter of fin heat transfer tube × π) × (length of bear heat transfer tube) Formula (4)
However, the outer diameter of the fin heat transfer tube in Formula (4) is an average outer diameter before forming irregularities on the outer surface of the tube.
ΔT (° C.) = [(Ta-ta)-(Tb-tb)] / ln [(Ta-ta)-(Tb-tb)] (5)
However, Ta and Tb are the saturation temperature based on the inlet temperature of the concentrated absorption liquid sprayed on the outer surface of the heat transfer tube or the inlet side concentration at the absorber internal pressure, and the outlet temperature or the internal pressure of the absorber, respectively. Represents the saturation temperature based on the outlet side concentration of the water, and ta and tb respectively represent the inlet temperature and the outlet temperature of the cooling water flowing in the heat transfer tube.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009033938A JP5247519B2 (en) | 2009-02-17 | 2009-02-17 | Absorber |
CN2010101717085A CN101852518B (en) | 2009-02-17 | 2010-02-10 | Absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009033938A JP5247519B2 (en) | 2009-02-17 | 2009-02-17 | Absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010190470A JP2010190470A (en) | 2010-09-02 |
JP5247519B2 true JP5247519B2 (en) | 2013-07-24 |
Family
ID=42804119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009033938A Expired - Fee Related JP5247519B2 (en) | 2009-02-17 | 2009-02-17 | Absorber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5247519B2 (en) |
CN (1) | CN101852518B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576097B (en) * | 2017-09-14 | 2019-08-23 | 中国科学院理化技术研究所 | Premixing variable temperature cooling absorber and absorption type circulating system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2877420B2 (en) * | 1990-03-06 | 1999-03-31 | 三洋電機株式会社 | Absorption refrigerator |
JPH06159862A (en) * | 1992-11-25 | 1994-06-07 | Sanyo Electric Co Ltd | Absorber for freezer |
JP3575071B2 (en) * | 1994-08-11 | 2004-10-06 | ダイキン工業株式会社 | Heat exchanger for absorption refrigerator |
JPH08247574A (en) * | 1995-03-08 | 1996-09-27 | Hitachi Ltd | Absorber, absorption heat transfer tube and absorption refrigerating machine |
JP3378785B2 (en) * | 1997-03-25 | 2003-02-17 | 三洋電機株式会社 | Absorption chiller absorber |
EP0972999A4 (en) * | 1997-03-25 | 2000-09-13 | Sanyo Electric Co | Absorber of absorption system refrigerator |
-
2009
- 2009-02-17 JP JP2009033938A patent/JP5247519B2/en not_active Expired - Fee Related
-
2010
- 2010-02-10 CN CN2010101717085A patent/CN101852518B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101852518A (en) | 2010-10-06 |
JP2010190470A (en) | 2010-09-02 |
CN101852518B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010060267A (en) | Heat exchanger and heat pump apparatus using the same | |
CN204923968U (en) | Vortex is adverse current double -pipe heat exchanger entirely | |
CN104359242A (en) | Expansion tube type water tank of solar water heater | |
JP2016217669A (en) | Double-pipe heat exchanger and heat-pump type water heater | |
CN104006534A (en) | Water heater | |
JP5247519B2 (en) | Absorber | |
CN105698245A (en) | Water floor heating device characterized by utilizing pulsating heat pipe as radiating coil pipe | |
CN111238265B (en) | Water-cooling plate heat exchanger with pulsating vibration | |
CN103925695A (en) | Heat pump water heater | |
CN107367184A (en) | Expanding spiral bellows tube inside and outside a kind of pipe | |
CN204085248U (en) | A kind of combined evaporative air cooler | |
KR102036292B1 (en) | Evaporative condensation of refrigeration equipment | |
WO2022224554A1 (en) | Absorber unit for absorption refrigerator, heat exchange unit, and absorption refrigerator | |
JP2009109050A (en) | Heat pump device | |
JP5641106B2 (en) | Water heater | |
JP3091071B2 (en) | Heat exchangers and absorption air conditioners | |
CN207501749U (en) | Cooling driers heat exchange tube structure and cooling driers | |
CN206207804U (en) | A kind of air conditioner for automobile evaporator | |
CN201837272U (en) | Inclined-bellows evaporating air cooler | |
CN111238264A (en) | Water-cooling plate heat exchanger capable of distributing flow according to wall surface temperature | |
CN104613804A (en) | Bent pipe and semiconductor refrigeration refrigerator with same | |
CN203824079U (en) | Heat pump water heater | |
JP6565538B2 (en) | Heat pump heat source machine | |
JP3937087B2 (en) | Absorption refrigerator | |
JP2011085314A (en) | Water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130409 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160419 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |