JP5247511B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP5247511B2
JP5247511B2 JP2009028941A JP2009028941A JP5247511B2 JP 5247511 B2 JP5247511 B2 JP 5247511B2 JP 2009028941 A JP2009028941 A JP 2009028941A JP 2009028941 A JP2009028941 A JP 2009028941A JP 5247511 B2 JP5247511 B2 JP 5247511B2
Authority
JP
Japan
Prior art keywords
hot water
bath
water
circulation
microbubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009028941A
Other languages
Japanese (ja)
Other versions
JP2010185600A (en
Inventor
文子 本間
真彦 丸山
貴昭 赤石
利幸 佐久間
真行 須藤
高橋  健
尚希 渡邉
章志 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009028941A priority Critical patent/JP5247511B2/en
Publication of JP2010185600A publication Critical patent/JP2010185600A/en
Application granted granted Critical
Publication of JP5247511B2 publication Critical patent/JP5247511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Control For Baths (AREA)

Description

本発明は、貯湯タンクに貯留された湯を浴槽への給湯、および前記浴槽内の浴水を追い焚きするための追焚き用熱交換器での熱源に供することができる貯湯式給湯機に関する。   The present invention relates to a hot water storage type hot water heater capable of supplying hot water stored in a hot water storage tank to a hot water supply to a bathtub and a heat source in a reheating heat exchanger for reheating the bath water in the bathtub.

熱源機で沸き上げた湯を貯湯タンクに一旦貯留し、該貯湯タンクに接続された給湯管路の端部に設けた給湯栓をユーザが開けたときに貯湯タンク内の湯がそのまま、または水でうめられて出湯するように構成された貯湯式給湯機では、貯湯タンク内の湯を熱源として用いる追焚き用熱交換器により浴槽内の浴水を追い焚きする追焚き機能が付加されたものも開発されている。   Hot water boiled by the heat source machine is temporarily stored in a hot water storage tank, and when the user opens the hot water tap provided at the end of the hot water supply pipe connected to the hot water storage tank, the hot water in the hot water storage tank remains as it is or water In the hot water storage water heater that is configured to be discharged in the hot water, a reheating function that replenishes the bath water in the bathtub is added by a reheating heat exchanger that uses the hot water in the hot water storage tank as a heat source. Has also been developed.

給湯機に上記の追焚き機能を付加する場合には、例えば、貯湯タンクの上部から湯を取水して該貯湯タンクの下部に戻すタンク側循環管路、浴槽から取水した浴水を浴槽に戻す風呂側循環管路、および上記の追焚き用熱交換器が給湯機に付加される。追焚き用熱交換器は、タンク側循環路を流れる湯と風呂側循環管路を流れる浴水との間で熱交換を行って浴水を加温する。   When adding the above-described replenishment function to the water heater, for example, a tank-side circulation pipe that takes hot water from the upper part of the hot water storage tank and returns it to the lower part of the hot water storage tank, and returns the bath water taken from the bathtub to the bathtub. A bath-side circulation line and the above-described heat exchanger for reheating are added to the water heater. The reheating heat exchanger performs heat exchange between hot water flowing through the tank-side circulation path and bath water flowing through the bath-side circulation pipe to heat the bath water.

このような貯湯式給湯機では、人体から浴水中に洗い流された皮脂や角質等の汚れが風呂側循環管路を循環して該循環管路の配管内面や追焚き用熱交換器内に不可避的に付着する。そして、上記の汚れがある程度以上堆積すると、追焚き運転時に当該汚れが浴槽に再循環して浴槽や浴水を汚したり、追焚き用熱交換器の熱交換効率を低下させたりする。このため、風呂側循環管路や追焚き用熱交換器については、内部に付着し、堆積した汚れを強制的に取り去る配管洗浄が推奨される。   In such a hot water storage type water heater, dirt such as sebum and keratin washed away from the human body in the bath water circulates in the circulation line on the bath side and is unavoidable in the inner surface of the circulation line and in the heat exchanger for reheating. Adheres. If the above-mentioned dirt accumulates to some extent, the dirt recirculates to the bathtub during the chasing operation and stains the bathtub and bath water, or reduces the heat exchange efficiency of the chasing heat exchanger. For this reason, it is recommended that the bath-side circulation line and the reheating heat exchanger be cleaned by piping that adheres to the inside and forcibly removes accumulated dirt.

上記の追焚き用熱交換器に代えて保温ヒータを用いる給湯機に適用されるものではあるが、特許文献1に記載された給湯機の洗浄装置では、浴水を循環させて該浴水を保温ヒータで加熱する循環用配管が設けられ、浴水の排水時に当該循環用配管に水を流して循環用配管内の汚れを洗い流している。   Although applied to a water heater using a heat retaining heater instead of the above heat exchanger for reheating, in the water heater cleaning device described in Patent Document 1, the bath water is circulated by circulating the bath water. A circulation pipe that is heated by a heat retaining heater is provided, and water is passed through the circulation pipe when the bath water is drained to wash away dirt in the circulation pipe.

ただし、水を流す洗浄だけでは上記循環用配管内の汚れを十分に除去することが困難である。同様のことが、前述の風呂側循環管路内や追焚き用熱交換器内の汚れの除去についてもいえる。多くのユーザは、市販の発泡性洗浄剤を購入し、この洗浄剤を用いた配管洗浄を自主的に行っている。   However, it is difficult to sufficiently remove the dirt in the circulation pipe only by washing with water. The same can be said for the removal of dirt in the above-mentioned bath-side circulation line and the heat exchanger for reheating. Many users purchase a commercially available foaming cleaning agent, and voluntarily perform piping cleaning using this cleaning agent.

特許第3821926号公報Japanese Patent No. 3821926

しかしながら、発泡性洗浄剤による強制洗浄は半年に1回程度とその頻度が比較的低く、洗浄対象の汚れも目に付かない所にあることから、強制洗浄をし忘れる場合も多い。このため、従来の貯湯式給湯機では、知らないうちに追焚き用熱交換器での熱交換効率が低下していたり、風呂側循環管路内や追焚き用熱交換器内に付着した汚れに起因する浴水の汚染の増加を招いたりしている。市場調査によると、作業負荷軽減の観点からも、簡便な操作により配管を清浄に保つことができる仕組みが欲しいとの要望がある。   However, forced cleaning with an effervescent cleaning agent is relatively infrequent, about once every six months, and since the dirt to be cleaned is invisible, there are many cases where forced cleaning is forgotten. For this reason, in conventional hot water storage hot water heaters, the heat exchange efficiency of the reheating heat exchanger is unknowingly reduced, or dirt adhered to the inside of the bath-side circulation line or reheating heat exchanger. It causes an increase in the contamination of the bath water caused by. According to market research, there is a demand for a mechanism that can keep pipes clean by simple operations, from the viewpoint of reducing workload.

本発明は上記の事情に鑑みてなされたものであり、風呂側循環管路内および追焚き用熱交換器内を清浄に保ち易い貯湯式給湯機を得ることを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a hot water storage type hot water heater that can easily keep the inside of the bath-side circulation line and the inside of the reheating heat exchanger clean.

本発明の貯湯式給湯機は、貯湯タンクに貯留された湯を浴槽に供給し、浴槽内の浴水が温度低下したときには、貯湯タンクと追焚き用熱交換器とに接続されたタンク側循環管路に貯湯タンク内の湯を流すと共に、浴槽と追焚き用熱交換器とに接続された風呂側循環管路に浴水を流し、タンク側循環管路を流れる湯と風呂側循環管路を流れる浴水との間で追焚き用熱交換器により熱交換して浴水を追焚きすることができる貯湯式給湯機であって、風呂側循環管路に浴槽内の浴水を循環させる風呂側送水ポンプと、風呂側循環管路での追焚き用熱交換器よりも上流側で風呂側循環管路内の浴水中に微小泡を生じさせる循環用微小泡発生装置と、貯湯タンクに貯留された湯を湯水混合弁に導き、湯水混合弁で水と混合して風呂側循環管路に注水することができる風呂用給湯管路と、風呂用給湯管路での湯水混合弁の下流側で風呂用給湯管路を開閉する注水電磁弁と、風呂用給湯管路での注水電磁弁よりも下流側で風呂用給湯管路内の湯水中に微小泡を生じさせる注水用微小泡発生装置と、風呂側送水ポンプおよび循環用微小泡発生装置の動作を制御して、風呂側循環管路に前記浴水が流れているときに循環用微小泡発生装置に微小泡発生動作を間欠的に行わせることができると共に、注水電磁弁および注水用微小泡発生装置の動作を制御して、風呂用給湯管路から風呂側循環管路に湯水が流れているときに注水用微小泡発生装置に微小泡発生動作を間欠的に行わせることができる洗浄制御部とを有することを特徴とする。   The hot water storage type hot water supply apparatus of the present invention supplies hot water stored in a hot water storage tank to the bathtub, and when the temperature of the bath water in the bathtub drops, the tank side circulation connected to the hot water storage tank and the reheating heat exchanger The hot water in the hot water storage tank flows through the pipe, and the bath water flows through the bath-side circulation pipe connected to the bathtub and the heat exchanger for reheating, and the hot water flowing through the tank-side circulation pipe and the bath-side circulation pipe This is a hot water storage type hot water supply machine that can exchange heat with the bath water flowing through the bath using a heat exchanger for chasing, and circulates the bath water in the bathtub through the bath-side circulation line. To the bath-side water supply pump, the micro-bubble generator for circulation that generates micro-bubbles in the bath water in the bath-side circulation pipe upstream from the heat exchanger for reheating in the bath-side circulation pipe, and the hot water storage tank The stored hot water is guided to the hot water mixing valve, mixed with water using the hot water mixing valve, and poured into the bath-side circulation pipe. A hot water supply pipe for the bath, a water injection solenoid valve for opening and closing the hot water supply pipe on the downstream side of the hot water mixing valve in the hot water supply pipe for the bath, and a downstream of the water injection electromagnetic valve in the hot water supply pipe for the bath Control the operation of the water injection microbubble generating device for generating microbubbles in the hot water in the bath hot water supply line, the bath water pump and the circulation microbubble generating device, and When the bath water is flowing, the microbubble generator for circulation can intermittently perform the microbubble generation operation, and the operation of the water injection solenoid valve and water injection microbubble generator is controlled to provide hot water for bath It has a washing control part which can make a microbubble generating device for pouring water intermittently perform operation of microbubbles when hot water flows from a pipe line to a bath side circulation pipe.

本発明の貯湯式給湯機では、循環用微小泡発生装置および注水用微小泡発生装置の各々に微小泡発生動作を間欠的に行わせて管路内の湯水中に微小泡を生じさせることができるので、微小泡発生動作を連続的に行わせる場合に比べ、微小泡による洗浄効果を高めることができる。また、上記の微小泡による風呂側循環管路内あるいは風呂用給湯管路内の洗浄が自動的に行われるように構成したり、洗浄の実施が喚起されるように構成したりすることも容易である。したがって、本発明の貯湯式給湯機によれば、風呂側循環管路内や追焚き用熱交換器内を清浄に保ち易くなる。   In the hot water storage type hot water supply apparatus of the present invention, each of the microbubble generator for circulation and the microbubble generator for water injection is intermittently operated to generate microbubbles in the hot water in the pipeline. Therefore, the cleaning effect by the microbubbles can be enhanced as compared with the case where the microbubble generation operation is continuously performed. It is also easy to configure the bath-side circulation line or bath hot water supply line with the above-mentioned micro bubbles to be automatically performed, or to facilitate cleaning. It is. Therefore, according to the hot water storage type water heater of the present invention, it becomes easy to keep the inside of the bath side circulation line and the inside of the reheating heat exchanger clean.

図1は、本発明の貯湯式給湯機の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a hot water storage type hot water supply apparatus of the present invention. 図2は、図1に示した貯湯式給湯機での制御装置の構成と該制御装置に接続された構成要素とを概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing the configuration of the control device and the components connected to the control device in the hot-water storage type water heater shown in FIG. 図3は、図1に示した貯湯式給湯機での循環用微小泡発生装置およびその周辺の構成要素を拡大して示す概略図である。FIG. 3 is an enlarged schematic view showing the circulating microbubble generator and its peripheral components in the hot water storage type hot water supply apparatus shown in FIG. 図4は、図1に示した貯湯式給湯機での循環洗浄運転時の制御手順の一例を概略的に示すフローチャートである。FIG. 4 is a flowchart schematically showing an example of a control procedure during the circulation cleaning operation in the hot water storage type hot water supply machine shown in FIG. 図5は、循環用微小泡発生装置に微小泡発生動作を連続的に行わせたときの微小泡の形態の遷移を示す概念図である。FIG. 5 is a conceptual diagram showing the transition of the form of the microbubbles when the microbubble generating apparatus for circulation is continuously subjected to the microbubble generating operation. 図6は、循環用微小泡発生装置に微小泡発生動作を間欠的に行わせたときの微小泡の形態の遷移を示す概念図である。FIG. 6 is a conceptual diagram showing transition of the form of microbubbles when the microbubble generator for circulation is intermittently performed with the microbubble generating operation. 図7は、本発明の貯湯式給湯機のうちで注水用微小泡発生装置を有するものの一例を示す概略図である。FIG. 7 is a schematic view showing an example of the hot water storage type hot water heater of the present invention having a water injection microbubble generator. 図8は、図7に示した貯湯式給湯機での注水用微小泡発生装置およびその周辺の構成要素を拡大して示す概略図である。FIG. 8 is a schematic diagram showing an enlarged view of the water injection micro-bubble generating device and its surrounding components in the hot water storage type hot water supply machine shown in FIG. 図9は、図7に示した貯湯式給湯機での注水洗浄運転時の制御手順の一例を概略的に示すフローチャートである。FIG. 9 is a flowchart schematically showing an example of a control procedure at the time of a water injection cleaning operation in the hot water storage type hot water supply machine shown in FIG. 7. 図10は、本発明の貯湯式給湯機のうちで循環用微小泡発生装置と注水用微小泡発生装置とが併用されたものの一例を示す概略図である。FIG. 10 is a schematic view showing an example of a combination of a circulating microbubble generator and a irrigating microbubble generator in the hot water storage type water heater of the present invention. 図11は、図10に示した貯湯式給湯機での循環洗浄運転時および注水洗浄運転時の制御手順の一例を概略的に示すフローチャートである。FIG. 11 is a flowchart schematically showing an example of a control procedure during the circulation cleaning operation and the water injection cleaning operation in the hot water storage type water heater shown in FIG. 10. 図12は、本発明の貯湯式給湯機のうち、リモートコントローラから循環洗浄開始指令が入力されたときに循環洗浄運転を開始するように構成されたものでの循環洗浄運転時の制御手順の一例を概略的に示すフローチャートである。FIG. 12 shows an example of a control procedure at the time of the circulation cleaning operation in the hot water storage type water heater of the present invention which is configured to start the circulation cleaning operation when a circulation cleaning start command is input from the remote controller. FIG. 図13は、本発明の貯湯式給湯機のうち、リモートコントローラから注水洗浄開始指令が入力されたときに注水洗浄運転を開始するように構成されたものでの注水洗浄運転時の制御手順の一例を概略的に示すフローチャートである。FIG. 13: is an example of the control procedure at the time of the water injection washing | cleaning operation in the hot water storage type water heater of this invention which was comprised so that a water injection washing operation might be started when the water injection washing start command was input from the remote controller. FIG. 図14は、本発明の貯湯式給湯機のうち、リモートコントローラから洗浄開始指令が入力されたときに循環洗浄運転と注水洗浄運転とを連続的に行うように構成されたものでの洗浄運転時の制御手順の一例を概略的に示すフローチャートである。FIG. 14 shows a hot water storage type hot water heater according to the present invention in which a circulation cleaning operation and a water injection cleaning operation are continuously performed when a cleaning start command is input from a remote controller. 6 is a flowchart schematically showing an example of the control procedure.

以下、本発明の貯湯式給湯機の実施の形態について、図面を参照して詳細に説明する。なお、本発明は下記の実施の形態に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a hot water storage type water heater of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.

実施の形態1.
図1は、本発明の貯湯式給湯機の一例を示す概略図である。同図に示す貯湯式給湯機150Aは、水を湯に沸き上げて浴槽170に給湯する機能と、浴槽170内の浴水170aが温度低下したときに該浴水170aを追い焚きすることができる機能とを有するものであり、当該貯湯式給湯機150Aは、ヒートポンプユニット10とタンクユニット120とリモートコントローラ130とを備えている。以下、貯湯式給湯機150Aの各構成要素について説明する。
Embodiment 1 FIG.
FIG. 1 is a schematic view showing an example of a hot water storage type hot water supply apparatus of the present invention. The hot water storage type water heater 150A shown in the figure is capable of boiling water into hot water and supplying hot water to the bathtub 170, and replenishing the bath water 170a when the temperature of the bath water 170a in the bathtub 170 drops. The hot water storage type hot water heater 150 </ b> A includes a heat pump unit 10, a tank unit 120, and a remote controller 130. Hereinafter, each component of the hot water storage type hot water heater 150A will be described.

上記のヒートポンプユニット10は、冷媒を圧縮する圧縮機1と、放熱器に相当する貯湯用熱交換器2と、膨張弁3と、蒸発器4と、これらを環状に接続する循環配管5とによって構成された冷凍サイクル部7を有し、熱源機として機能する。冷凍サイクル部7では、二酸化炭素等の冷媒が圧縮機1で圧縮されて高温、高圧となった後に貯湯用熱交換器2で放熱し、膨張弁3で減圧され、蒸発器4で吸熱してガス状態となって圧縮機1に吸入される。冷媒として二酸化炭素を用いる場合、高圧側では該二酸化炭素の臨界圧を超える条件下で運転することが好ましい。この冷凍サイクル部7は、ユニットケースUC1に納められている。 The heat pump unit 10 includes a compressor 1 that compresses refrigerant, a hot water storage heat exchanger 2 that corresponds to a radiator, an expansion valve 3, an evaporator 4, and a circulation pipe 5 that connects these in an annular shape. It has the refrigeration cycle part 7 comprised and functions as a heat source machine. In the refrigeration cycle section 7, a refrigerant such as carbon dioxide is compressed by the compressor 1 to become a high temperature and a high pressure, and then radiates heat by the hot water storage heat exchanger 2, depressurizes by the expansion valve 3, and absorbs heat by the evaporator 4. It becomes a gas state and is sucked into the compressor 1. When carbon dioxide is used as the refrigerant, it is preferable to operate on the high pressure side under conditions that exceed the critical pressure of the carbon dioxide. The refrigeration cycle unit 7 is housed in the unit case UC 1.

一方、タンクユニット120は、貯湯タンク20、給水管路30、貯湯用循環管路40、タンク側循環管路50、風呂側循環管路60、追焚き用熱交換器70、第1給湯管路75、風呂側湯水混合弁80a、一般側湯水混合弁80b、第2給湯管路90、第3給湯管路95、および制御装置110を有している。   On the other hand, the tank unit 120 includes a hot water storage tank 20, a water supply line 30, a hot water circulation line 40, a tank side circulation line 50, a bath side circulation line 60, a reheating heat exchanger 70, and a first hot water supply line. 75, a bath-side hot / cold water mixing valve 80 a, a general hot-water / water mixing valve 80 b, a second hot-water supply pipe 90, a third hot-water supply pipe 95, and a control device 110.

上記の貯湯タンク20は、給水管路30から供給される水を貯留すると共にヒートポンプユニット10で沸き上げられた湯を貯留する積層式の貯湯タンクである。この貯湯タンク20の下部には、給水管路30が接続される水導入口20aと、貯湯用循環管路40の往き管40aが接続される水導出口20bとが設けられており、当該貯湯タンク20の上部には、貯湯用循環管路40の戻り管40bが接続される温水導入口20cと、第1給湯管路75が接続される温水導出口20dとが設けられている。貯湯タンク20は、給水管路30からの給水により常に満水状態に保たれる。   The hot water storage tank 20 is a stacked hot water storage tank that stores water supplied from the water supply pipe 30 and stores hot water boiled by the heat pump unit 10. Below the hot water storage tank 20, a water inlet 20a to which the water supply pipe 30 is connected and a water outlet 20b to which the forward pipe 40a of the hot water circulation pipe 40 is connected are provided. In the upper part of the tank 20, a hot water inlet 20c to which the return pipe 40b of the hot water storage circulation line 40 is connected and a hot water outlet 20d to which the first hot water supply line 75 is connected are provided. The hot water storage tank 20 is always kept in a full state by supplying water from the water supply pipe 30.

図示を省略しているが、貯湯タンク20の上部には、貯湯タンク20からタンク側循環管路50、第1給湯管路75に流入する湯の温度を検知するための温度センサが取り付けられている。また、貯湯タンク20の周面部には、貯湯タンク20内の湯水の温度を検知するための複数の温度センサが互いに異なる取付け高さをもって取り付けられている。   Although not shown, a temperature sensor for detecting the temperature of hot water flowing from the hot water storage tank 20 into the tank-side circulation pipe 50 and the first hot water supply pipe 75 is attached to the upper part of the hot water storage tank 20. Yes. A plurality of temperature sensors for detecting the temperature of the hot water in the hot water storage tank 20 are attached to the peripheral surface portion of the hot water storage tank 20 with different mounting heights.

給水管路30は、市水等の水を貯湯タンク20、風呂側湯水混合弁80a、一般側湯水混合弁80b、および一般給湯先180に供給する管路であり、減圧弁25と第1〜第3給水管部30a〜30cとを有している。減圧弁25は、第1給水管部30aの途中に設けられて、水道等の水源(図示せず)からの水圧を所定値に減じる。第1給水管部30aは、水源と貯湯タンク20の水導入口20aとを繋ぎ、第2給水管部30bは、減圧弁25で第1給水管部30aから分岐して該第1給水管部30aと風呂側湯水混合弁80a、一般側湯水混合弁80bとを繋ぎ、第3給水管部30cは、減圧弁25の上流側で第1給水管部30aから分岐して該第1給水管部30aと一般給湯先180とを繋ぐ。図示を省略しているが、第2給水管部30bには、該第2給水管部30b内の水の温度を検知するための温度センサが設けられている。   The water supply line 30 is a line for supplying water such as city water to the hot water storage tank 20, the bath-side hot / cold water mixing valve 80 a, the general hot water / water mixing valve 80 b, and the general hot water supply destination 180. It has 3rd water supply pipe parts 30a-30c. The pressure reducing valve 25 is provided in the middle of the first water supply pipe section 30a, and reduces the water pressure from a water source (not shown) such as a water supply to a predetermined value. The 1st water supply pipe part 30a connects the water source and the water inlet 20a of the hot water storage tank 20, and the 2nd water supply pipe part 30b branches from the 1st water supply pipe part 30a with the pressure-reduction valve 25, and this 1st water supply pipe part 30a is connected to the bath-side hot / cold water mixing valve 80a and the general-side hot / cold water mixing valve 80b, and the third water supply pipe 30c is branched from the first water supply pipe 30a upstream of the pressure reducing valve 25. 30a and general hot water supply destination 180 are connected. Although not shown, the second water supply pipe portion 30b is provided with a temperature sensor for detecting the temperature of the water in the second water supply pipe portion 30b.

なお、この明細書でいう「一般給湯先」とは、ユーザが手で直接操作して開栓する(センサを感応させて開栓する場合を含む)給湯先を意味する。図示の例では、一般給湯先180の例として1つの給湯栓が示されている。給水管路30での水の流れ方向を図1中に実線の矢印で示してある。   Note that the “general hot water supply destination” in this specification means a hot water supply destination that is opened by a user's direct operation by hand (including a case where the sensor is opened in response to a sensor). In the illustrated example, one hot water tap is shown as an example of the general hot water supply destination 180. The direction of water flow in the water supply line 30 is indicated by solid arrows in FIG.

貯湯用循環管路40は、貯湯タンク20下部の水導出口20bからヒートポンプユニット10中の貯湯用熱交換器2を経由して貯湯タンク20上部の温水導入口20cに達する管路であり、貯湯用送水ポンプ33および電動式の三方弁35が設けられた往き管40aと、戻り管40bと、三方弁35で往き管40aから分岐したバイパス管40cとを有している。上記の往き管40aは水導出口20bと貯湯用熱交換器2とを繋ぎ、戻り管40bは貯湯用熱交換器2と温水導入口20cとを繋ぎ、バイパス管40cは三方弁35と戻り管40bとを繋ぐ。   The hot water storage circulation line 40 is a pipe that reaches from the water outlet 20b at the lower part of the hot water storage tank 20 to the hot water inlet 20c at the upper part of the hot water storage tank 20 via the hot water heat exchanger 2 in the heat pump unit 10. It has a forward pipe 40a provided with a water supply pump 33 and an electric three-way valve 35, a return pipe 40b, and a bypass pipe 40c branched from the forward pipe 40a by the three-way valve 35. The forward pipe 40a connects the water outlet 20b and the hot water storage heat exchanger 2, the return pipe 40b connects the hot water heat exchanger 2 and the hot water inlet 20c, and the bypass pipe 40c connects the three-way valve 35 and the return pipe. Connect 40b.

貯湯タンク20内の水をヒートポンプユニット10で湯に沸き上げる沸上げ運転の初期段階では、ヒートポンプユニット10による湯の沸上げ温度が低いので、十分な温度の湯が沸き上げられるようになるまでは三方弁35での貯湯タンク20側の流入路が閉弁される。なお、図示を省略しているが、往き管40aには、該往き管40a内の湯水の温度を検知するための温度センサが設けられている。   In the initial stage of the boiling operation in which the water in the hot water storage tank 20 is boiled into hot water by the heat pump unit 10, the boiling temperature of the hot water by the heat pump unit 10 is low, so that hot water of sufficient temperature can be boiled up. The inflow path on the hot water storage tank 20 side at the three-way valve 35 is closed. Although not shown, the forward pipe 40a is provided with a temperature sensor for detecting the temperature of hot water in the forward pipe 40a.

タンク側循環管路50は、貯湯タンク20上部の温水導出口20dから追焚き用熱交換器70を経由して貯湯タンク20下部に達する管路であり、往き管50aと、タンク側送水ポンプ45が設けられた戻り管50bとを有している。往き管50aは温水導出口20dと追焚き用熱交換器70上部の温水導入口70aとを繋ぎ、戻り管50bは追焚き用熱交換器70下部の温水導出口70bと貯湯タンク20の下部とを繋ぐ。   The tank-side circulation pipe 50 is a pipe that reaches the lower part of the hot water storage tank 20 from the hot water outlet 20d at the upper part of the hot water storage tank 20 via the reheating heat exchanger 70. The forward pipe 50a and the tank side water supply pump 45 And a return pipe 50b. The forward pipe 50a connects the hot water outlet 20d and the hot water inlet 70a above the reheating heat exchanger 70, and the return pipe 50b connects the hot water outlet 70b below the reheating heat exchanger 70 and the lower part of the hot water storage tank 20. Connect.

風呂側循環管路60は、浴槽170から追焚き用熱交換器70を経由して浴槽170に戻る管路であり、往き管60aと戻り管60bとを有している。往き管60aは浴槽170と追焚き用熱交換器70下部の浴水導入口70cとを繋ぎ、戻り管60bは追焚き用熱交換器70上部の浴水導出口70dと浴槽170とを繋ぐ。往き管60aには、追焚き用熱交換器70側から上流側(浴槽170側)に向かって、循環用微小泡発生装置51、フロースイッチ53、水位センサ55、および風呂側送水ポンプ57がこの順番で設けられている。また、図示を省略しているが、当該往き管60aには、該往き管60a内の湯水の温度を検知するための温度センサも設けられている。   The bath-side circulation pipe 60 is a pipe that returns from the bathtub 170 to the bathtub 170 via the reheating heat exchanger 70, and includes an outward pipe 60a and a return pipe 60b. The forward pipe 60 a connects the bathtub 170 and the bath water introduction port 70 c below the reheating heat exchanger 70, and the return pipe 60 b connects the bath water outlet 70 d above the reheating heat exchanger 70 and the bathtub 170. From the reheating heat exchanger 70 side to the upstream side (tub 170 side), the circulating microbubble generator 51, the flow switch 53, the water level sensor 55, and the bath-side water supply pump 57 are connected to the outgoing pipe 60a. In order. Although not shown, the forward pipe 60a is also provided with a temperature sensor for detecting the temperature of hot water in the forward pipe 60a.

上記の循環用微小泡発生装置51は、往き管60aを流れる浴水170a中に微小泡を生じさせるためのものであり、例えばエジェクタを用いて構成される。また、フロースイッチ53は往き管60aでの水流の有無を検出し、水位センサ55は、該水位センサ55の取付け位置を基準にした往き管60a内の水圧から浴槽170での浴水170aの水位を検出し、風呂側送水ポンプ57は、浴槽170内の浴水170aを風呂側循環管路60に循環させる。そして、図示を省略した上記の温度センサは、往き管60a内の浴水170aの温度を検知する。なお、浴槽170内には浴槽アダプタ165が取り付けられ、往き管60aおよび戻り管60bの各々は当該浴槽アダプタ165に接続される。   The circulating microbubble generator 51 is for generating microbubbles in the bath water 170a flowing through the forward pipe 60a, and is configured using, for example, an ejector. The flow switch 53 detects the presence or absence of water flow in the forward pipe 60a, and the water level sensor 55 determines the water level of the bath water 170a in the bathtub 170 from the water pressure in the forward pipe 60a with reference to the mounting position of the water level sensor 55. The bath-side water pump 57 circulates the bath water 170a in the bathtub 170 through the bath-side circulation line 60. The temperature sensor (not shown) detects the temperature of the bath water 170a in the forward pipe 60a. A bathtub adapter 165 is attached in the bathtub 170, and each of the forward pipe 60a and the return pipe 60b is connected to the bathtub adapter 165.

追焚き用熱交換器70は、タンク側循環管路50を流れる湯と風呂側循環管路60を流れる浴水170aとの間で熱交換を行って浴水170aを加熱する。例えば、複数の伝熱プレートが積層されたプレート式の水−水熱交換器が追焚き用熱交換器70として用いられる。プレート式の追焚き用熱交換器70では、上部の方が下部よりも高温になるので、熱交換量を高め易いと共に貯湯タンク20に戻す温水の温度を低め易い。このため、熱交換能力が高いプレート式の熱交換器を追焚き用熱交換器70として用いることにより、貯湯タンク20内に相当量の熱量が蓄積された状態で追焚き運転を行ったときでも貯湯タンク20下部での貯留水を低温状態に保ち易くなる。   The reheating heat exchanger 70 heats the bath water 170a by exchanging heat between the hot water flowing through the tank-side circulation conduit 50 and the bath water 170a flowing through the bath-side circulation conduit 60. For example, a plate-type water-water heat exchanger in which a plurality of heat transfer plates are stacked is used as the reheating heat exchanger 70. In the plate-type reheating heat exchanger 70, the upper part is hotter than the lower part, so that it is easy to increase the amount of heat exchange and lower the temperature of hot water returned to the hot water storage tank 20. For this reason, by using a plate-type heat exchanger having a high heat exchange capability as the reheating heat exchanger 70, even when a reheating operation is performed in a state where a considerable amount of heat is accumulated in the hot water storage tank 20. It becomes easy to keep the water stored in the lower part of the hot water storage tank 20 at a low temperature.

第1給湯管路75は出湯側が二股分岐した管路であり、入湯側が貯湯タンク20の上部に接続され、二股分岐した出湯側での一方の流路が風呂側湯水混合弁80aに、また他方の流路が一般側湯水混合弁80bにそれぞれ接続されて、貯湯タンク20内の湯を風呂側湯水混合弁80aと一般側湯水混合弁80bとに導く。図示の例では、第1給湯管路75での貯湯タンク20側の一領域が、タンク側循環管路50の往き管50aでの貯湯タンク20側の一領域を兼ねている。   The first hot water supply pipe 75 is a pipe branched at the hot water side, the hot water side is connected to the upper part of the hot water storage tank 20, one flow path at the bifurcated hot water side is connected to the bath side hot water / water mixing valve 80a, and the other. Are connected to the general hot water mixing valve 80b, respectively, to guide the hot water in the hot water storage tank 20 to the bath side hot water mixing valve 80a and the general side hot water mixing valve 80b. In the illustrated example, a region of the hot water storage tank 20 side in the first hot water supply pipe 75 also serves as a region of the hot water storage tank 20 side in the forward pipe 50 a of the tank side circulation conduit 50.

風呂側湯水混合弁80aは電動式の弁であり、制御装置110により開度を制御されて、第2給水管部30bから供給される水と第1給湯管路75から供給される湯とを所定の混合比の下に混合する。同様に、一般側湯水混合弁80bも電動式の弁であり、制御装置110により開度を制御されて、第2給水管部30bから供給される水と第1給湯管路75から供給される湯とを所定の混合比の下に混合する。これら風呂側湯水混合弁80aと一般側湯水混合弁80bとは、制御装置110により互いに別個に開度を制御することができるものであればよく、その構造は一体型、独立型等、適宜選定可能である。   The bath-side hot / cold water mixing valve 80a is an electric valve, and the opening degree is controlled by the control device 110 so that water supplied from the second water supply pipe section 30b and hot water supplied from the first hot water supply pipe line 75 are supplied. Mix under a predetermined mixing ratio. Similarly, the general-side hot / cold water mixing valve 80b is also an electric valve, the opening degree of which is controlled by the control device 110, and water supplied from the second water supply pipe section 30b and the first hot water supply pipe line 75. Hot water is mixed under a predetermined mixing ratio. The bath-side hot / cold water mixing valve 80a and the general-side hot / cold water mixing valve 80b only need to be capable of controlling the opening degree separately from each other by the control device 110, and the structure thereof is appropriately selected, such as an integral type or an independent type. Is possible.

第2給湯管路90は、上述した第1給湯管路75と共に風呂用給湯管路BLを構成する管路であり、風呂側湯水混合弁80aと風呂側循環管路60での往き管60aとを繋いで、風呂側湯水混合弁80aで所定温度に調整された湯水を風呂側循環管路60に注水する。この第2給湯管路90には、風呂側湯水混合弁80a側から風呂側循環管路60側に向かって、注水電磁弁83と流量センサ85とがこの順番で設けられている。また、図示を省略しているが、当該第2給湯管路90には、該第2給湯管路90内の湯水の温度を検知するための温度センサも設けられている。   The second hot water supply pipe 90 is a pipe constituting the hot water supply pipe BL for bath together with the first hot water supply pipe 75 described above, and the forward pipe 60a in the bath side hot water mixing valve 80a and the bath side circulation pipe 60, And hot water adjusted to a predetermined temperature by the bath-side hot / cold water mixing valve 80a is poured into the bath-side circulation pipe 60. The second hot water supply pipe 90 is provided with a water injection electromagnetic valve 83 and a flow rate sensor 85 in this order from the bath side hot water / mixing valve 80a side toward the bath side circulation pipe 60 side. Although not shown, the second hot water supply pipe 90 is also provided with a temperature sensor for detecting the temperature of the hot water in the second hot water supply pipe 90.

上記の注水電磁弁83は制御装置110による制御の下に開閉して第2給湯管路90での湯水の流量を調整し、流量センサ85は第2給湯管路90での湯水の流量を検知する。図示の例では、往き管60aでの循環用微小泡発生装置51とフロースイッチ53との間の区間で当該往き管60aに第2給湯管路90が合流している。   The water injection solenoid valve 83 is opened and closed under the control of the control device 110 to adjust the flow rate of hot water in the second hot water supply line 90, and the flow rate sensor 85 detects the flow rate of hot water in the second hot water supply line 90. To do. In the illustrated example, the second hot water supply line 90 joins the forward pipe 60a in a section between the circulating microbubble generator 51 and the flow switch 53 in the forward pipe 60a.

第3給湯管路95は、一般側湯水混合弁80bと一般給湯先180とを繋ぐ管路であり、当該第3給湯管路95には、図示を省略した流量センサおよび温度センサが設けられている。上記の流量センサは第3給湯管路95での湯水の流量を検知し、上記の温度センサは第3給湯管路95内の湯水の温度を検知する。   The third hot water supply pipe 95 is a pipe that connects the general hot water mixing valve 80b and the general hot water supply destination 180, and the third hot water supply pipe 95 is provided with a flow rate sensor and a temperature sensor that are not shown. Yes. The flow rate sensor detects the flow rate of hot water in the third hot water supply pipe 95, and the temperature sensor detects the temperature of hot water in the third hot water supply pipe 95.

制御装置110は、ヒートポンプユニット10、貯湯用送水ポンプ33、三方弁35、タンク側送水ポンプ45、循環用微小泡発生装置51、風呂側送水ポンプ57、風呂側湯水混合弁80a、一般側湯水混合弁80b、および注水電磁弁83に接続されて、これらの動作を制御する。具体的には、当該制御装置110の入力装置として機能するリモートコントローラ130からユーザが入力した沸上げ開始時刻、沸上げ温度、湯張り湯温度、湯張り湯量、追焚き温度、給湯温度等の情報や湯張り運転開始指令、追焚き運転開始指令等の指令と、貯湯タンク20および各管路30,40,60,90,95に設けられた各温度センサ(図示せず)、フロースイッチ53、水位センサ55、流量センサ85等の検出結果等とに基づいて、上記各構成要素の動作を制御する。   The control device 110 includes a heat pump unit 10, a hot water supply water pump 33, a three-way valve 35, a tank side water supply pump 45, a circulation microbubble generator 51, a bath side water supply pump 57, a bath side hot water mixing valve 80a, and a general side hot water mixing. Connected to the valve 80b and the water injection electromagnetic valve 83, these operations are controlled. Specifically, information such as a boiling start time, a boiling temperature, a hot water temperature, an amount of hot water, a reheating temperature, and a hot water temperature input by the user from the remote controller 130 that functions as an input device of the control device 110. Commands such as a hot water filling operation start command, a chasing operation start command, etc., temperature sensors (not shown) provided in the hot water storage tank 20 and the respective pipelines 30, 40, 60, 90, 95, a flow switch 53, Based on the detection results of the water level sensor 55, the flow rate sensor 85, etc., the operation of each of the above components is controlled.

タンクユニット120を構成する上述の構成要素のうち、給水管路30、貯湯用循環管路40、風呂側循環管路60、および第3給湯管路95をそれぞれ除いた残りの構成要素は、ユニットケースUC2に納められている。給水管路30、貯湯用循環管路40、風呂側循環管路60、および第3給湯管路95の各々は、その一部がユニットケースUC2の外部にまで延在している。 Of the above-described components constituting the tank unit 120, the remaining components excluding the water supply pipeline 30, the hot water storage circulation pipeline 40, the bath-side circulation pipeline 60, and the third hot water supply pipeline 95 are unit units. It is housed in a case UC 2. A part of each of the water supply pipe 30, the hot water storage circulation pipe 40, the bath-side circulation pipe 60, and the third hot water supply pipe 95 extends to the outside of the unit case UC 2 .

リモートコントローラ130は、上記の情報や指令を入力するための操作部123と、該操作部123から入力された情報や指令等を表示するための表示部125とを有しており、台所や浴室等に設置されて制御装置110に有線接続または無線接続される。   The remote controller 130 includes an operation unit 123 for inputting the above information and commands, and a display unit 125 for displaying the information, commands and the like input from the operation unit 123. Etc., and wired or wirelessly connected to the control device 110.

上述の各構成要素を備えた貯湯式給湯機150Aでは、例えばユーザがリモートコントローラ130から入力した沸上げ開始時刻になると、制御装置110による制御の下にヒートポンプユニット10および貯湯用送水ポンプ33が起動されて沸上げ運転が開始され、貯湯タンク20に設けられた温度センサ(図示せず)の検出結果から所定温度の湯が貯湯タンク20に所定量貯留されたと判断されるまで継続される。この間、貯湯タンク20下部の水導出口20bから貯湯用循環管路40に低温水が流入し、ヒートポンプユニット10で湯に沸き上げられて貯湯タンク20上部の温水導入口20cから貯湯タンク20に戻される。   In the hot water storage type water heater 150A including the above-described components, for example, when the boiling start time input by the user from the remote controller 130 is reached, the heat pump unit 10 and the hot water storage water supply pump 33 are activated under the control of the control device 110. Then, the boiling operation is started, and is continued until it is determined from the detection result of a temperature sensor (not shown) provided in the hot water storage tank 20 that a predetermined amount of hot water is stored in the hot water storage tank 20. During this time, low-temperature water flows from the water outlet 20b at the bottom of the hot water tank 20 into the hot water circulation pipe 40, is heated to hot water by the heat pump unit 10, and is returned to the hot water tank 20 from the hot water inlet 20c at the top of the hot water tank 20. It is.

ただし、沸上げ運転の初期段階ではヒートポンプユニット10による湯の沸上げ温度が低いため、貯湯用循環管路40についての説明の中で既に述べたように、三方弁35での貯湯タンク20側の流入路が閉弁される。結果として、沸上げ運転の初期段階では、往き管40aでの三方弁35よりも下流側の区間と、貯湯用熱交換器2と、戻り管40bでのバイパス管40cとの合流点よりも上流側の区間と、バイパス管40cとによって構成される循環路内を湯水が循環する。   However, since the boiling temperature of the hot water by the heat pump unit 10 is low in the initial stage of the boiling operation, as already described in the explanation of the hot water circulation pipe 40, the hot water tank 20 side of the three-way valve 35 is provided. The inflow path is closed. As a result, in the initial stage of the boiling operation, the section upstream of the three-way valve 35 in the forward pipe 40a, the upstream of the junction of the hot water storage heat exchanger 2 and the bypass pipe 40c in the return pipe 40b. Hot water circulates in the circulation path constituted by the section on the side and the bypass pipe 40c.

ユーザが給湯栓160を開けると、給湯栓160の開栓により水流が生じたことが例えば第3給湯管路95に設けられた流量センサ(図示せず)によって検出され、給湯運転が開始される。この給湯運転では、制御装置110による制御の下に一般側湯水混合弁80bでの第1給湯管路75側の弁開度および第2給水管部30b側の弁開度が調整されて、所定の給湯温度に調整された湯水が給湯栓160から出湯する。   When the user opens the hot-water tap 160, the flow of water caused by opening the hot-water tap 160 is detected by, for example, a flow sensor (not shown) provided in the third hot-water supply line 95, and the hot-water supply operation is started. . In this hot water supply operation, under the control of the control device 110, the valve opening on the first hot water supply pipe 75 side and the valve opening on the second water supply pipe part 30b side in the general hot water mixing valve 80b are adjusted to be predetermined. The hot water adjusted to the hot water temperature of the hot water is discharged from the hot water tap 160.

また、ユーザがリモートコントローラ130から湯張り運転開始指令を入力すると、湯張り運転が開始される。この湯張り運転では、制御装置110による制御の下に風呂側湯水混合弁80aでの第1給湯管路75側の弁開度および第2給水管部30b側の弁開度が調整されると共に注水電磁弁83が開弁し、風呂側湯水混合弁80aにより所定の湯張り温度に調整された温湯が第2給湯管路90を流れて風呂側循環管路60に流入し、該風呂側循環管路60の往き管60aと戻り管60bとを流れて浴槽170に流入する。浴槽170への湯張り湯量は、水位センサ55の検出結果と流量センサ85の検出結果とに基づいて制御装置110により調整され、リモートコントローラ130からユーザが予め入力しておいた湯張り湯量に達すると、制御装置110による制御の下に注水電磁弁83が閉弁して湯張り運転が終了する。風呂側湯水混合弁80aから浴槽170への湯水の流れ方向を図1中に破線の矢印で示してある。   Further, when the user inputs a hot water operation start command from the remote controller 130, the hot water operation is started. In this hot water filling operation, the valve opening degree on the first hot water supply pipe line 75 side and the valve opening degree on the second water supply pipe part 30b side in the bath side hot water mixing valve 80a are adjusted under the control of the control device 110. The water injection solenoid valve 83 is opened, and the hot water adjusted to a predetermined hot water filling temperature by the bath-side hot / cold water mixing valve 80a flows through the second hot water supply pipe 90 and flows into the bath-side circulation pipe 60, and the bath-side circulation. It flows through the forward pipe 60 a and the return pipe 60 b of the pipe line 60 and flows into the bathtub 170. The amount of hot water supplied to the bathtub 170 is adjusted by the control device 110 based on the detection result of the water level sensor 55 and the detection result of the flow sensor 85, and reaches the amount of hot water supplied by the user from the remote controller 130 in advance. Then, under the control of the control device 110, the water injection electromagnetic valve 83 is closed and the hot water filling operation is finished. The flow direction of hot water from the bath-side hot / cold water mixing valve 80a to the bathtub 170 is indicated by a broken arrow in FIG.

ユーザがリモートコントローラ130から追焚き運転開始指令を入力すると、制御装置110による制御の下にタンク側送水ポンプ45および風呂側送水ポンプ57が起動されて追焚き運転が開始される。貯湯タンク20に貯留されている湯がタンク側循環管路50の往き管50aに流入する一方で浴槽170内の浴槽170aが風呂側循環管路60の往き管60aに流入し、タンク側循環管路50を流れる湯と風呂側循環管路60を流れる浴水170aとの間で追焚き用熱交換器70により熱交換が行われて浴水170aが加熱され、該加熱された浴水170aが風呂側循環管路60の戻り管60bから浴槽170に戻される。この追焚き運転は、例えば往き管60aに配置された温度センサ(図示せず)の検出結果から浴槽170内の浴水170aが所定温度に加熱されたと判断されるまで、継続される。風呂側循環管路60での浴水170aの流れ方向を図1中に一点鎖線の矢印で示してある。   When the user inputs a chasing operation start command from the remote controller 130, the tank-side water pump 45 and the bath-side water pump 57 are activated under the control of the control device 110, and chasing operation is started. Hot water stored in the hot water storage tank 20 flows into the forward pipe 50a of the tank side circulation pipe 50, while the bathtub 170a in the bathtub 170 flows into the forward pipe 60a of the bath side circulation pipe 60, and the tank side circulation pipe. Heat is exchanged between the hot water flowing through the passage 50 and the bath water 170a flowing through the bath-side circulation pipe 60 by the reheating heat exchanger 70 to heat the bath water 170a, and the heated bath water 170a is heated. It returns to the bathtub 170 from the return pipe 60b of the bath-side circulation pipeline 60. This chasing operation is continued, for example, until it is determined from the detection result of a temperature sensor (not shown) disposed in the forward pipe 60a that the bath water 170a in the bathtub 170 is heated to a predetermined temperature. The flow direction of the bath water 170a in the bath-side circulation pipe 60 is indicated by a dashed line arrow in FIG.

また、ユーザが浴槽170の栓(図示せず)を抜き、水位センサ55により検出される浴槽170での浴水170aの水位が予め定められた洗浄開始水位以下になると、循環洗浄運転が開始される。制御装置110による制御の下に風呂側送水ポンプ55と循環用微小泡発生装置51とが順次起動されて、浴水170aが風呂側循環管路60を循環すると共に循環用微小泡発生装置51が往き管60a内の浴水170a中に微小泡(マイクロバブル)を生じさせて、風呂側循環管路60の循環洗浄が行われる。予め定められた循環洗浄時間が経過すると、または浴槽170内の浴水170aの水位が浴槽アダプタ165と往き管60aとの接続箇所よりも低くなると、循環洗浄運転が終了する。   When the user unplugs the bathtub 170 (not shown) and the water level of the bath water 170a in the bathtub 170 detected by the water level sensor 55 falls below a predetermined cleaning start water level, the circulating cleaning operation is started. The Under the control of the control device 110, the bath-side water pump 55 and the circulation microbubble generator 51 are sequentially activated, and the bath water 170a circulates through the bath-side circulation pipe 60 and the circulation microbubble generator 51 Microbubbles are generated in the bath water 170a in the outgoing pipe 60a, and the bath-side circulation pipe 60 is circulated and washed. When the predetermined circulating cleaning time has elapsed, or when the water level of the bath water 170a in the bathtub 170 becomes lower than the connection point between the bathtub adapter 165 and the forward pipe 60a, the circulating cleaning operation ends.

上述した各運転を行う貯湯式給湯機150Aは、風呂側循環管路60の洗浄形態に特徴を有しているので、以下、当該洗浄形態について図2〜図6を参照して詳述する。   Since the hot water storage type hot water heater 150A that performs each operation described above is characterized by the cleaning mode of the bath-side circulation pipe 60, the cleaning mode will be described in detail below with reference to FIGS.

図2は、図1に示した貯湯式給湯機での制御装置の構成と該制御装置に接続された構成要素とを概略的に示すブロック図である。同図に示すように、制御装置110は送受信処理部101、制御部103、および記憶部105を有しており、制御部103は沸上げ制御部103a、給湯制御部103b、湯張り制御部103c、追焚き制御部103d、および洗浄制御部103eを含んでいる。なお、図2に示した構成要素のうちで図1を参照して既に説明した構成要素については、図1で用いた参照符号と同じ参照符号を付してその説明を省略する。   FIG. 2 is a block diagram schematically showing the configuration of the control device and the components connected to the control device in the hot-water storage type water heater shown in FIG. As shown in the figure, the control device 110 includes a transmission / reception processing unit 101, a control unit 103, and a storage unit 105. The control unit 103 includes a boiling control unit 103a, a hot water supply control unit 103b, and a hot water control unit 103c. The chasing control unit 103d and the cleaning control unit 103e are included. 2 that are already described with reference to FIG. 1 are denoted by the same reference numerals as those used in FIG. 1 and description thereof is omitted.

上記の送受信処理部101は、ヒートポンプユニット10(図1参照)への指令の送信に係る処理、リモートコントローラ130(図1参照)からの指令や情報の受信および振り分けに係る処理、およびリモートコントローラ130への情報(例えば運転状況等)の送信に係る処理を行う。   The transmission / reception processing unit 101 includes a process related to transmission of a command to the heat pump unit 10 (see FIG. 1), a process related to reception and distribution of a command and information from the remote controller 130 (see FIG. 1), and a remote controller 130. Processing related to transmission of information (for example, driving status) to the user is performed.

また、制御部103を構成する沸上げ制御部103aは、前述した沸上げ運転時にヒートポンプユニット10、貯湯用送水ポンプ33、および三方弁35の動作を制御し、給湯制御部103bは、前述した給湯運転時に一般側湯水混合弁80bの動作を制御する。また、湯張り制御部103cは、前述した湯張り運転時に風呂側湯水混合弁80aの動作を制御すると共に水位センサ55および流量センサ85の検出結果を用いて注水電磁弁83の動作を制御し、追焚き制御部103dは、前述した追焚き運転時にタンク側送水ポンプ45および風呂側送水ポンプ57の動作を制御する。そして、洗浄制御部103eは、フロースイッチ53および水位センサ55の検出結果を用いて前述の循環洗浄運転時に循環用微小泡発生装置51および風呂側送水ポンプ57の動作を制御する。   The boiling control unit 103a constituting the control unit 103 controls the operation of the heat pump unit 10, the hot water storage water supply pump 33, and the three-way valve 35 during the above-described boiling operation, and the hot water supply control unit 103b is configured as described above. During operation, the operation of the general-side hot / cold water mixing valve 80b is controlled. In addition, the hot water filling control unit 103c controls the operation of the water injection solenoid valve 83 using the detection results of the water level sensor 55 and the flow rate sensor 85 while controlling the operation of the bath side hot water mixing valve 80a during the hot water filling operation described above. The chasing control unit 103d controls the operations of the tank-side water pump 45 and the bath-side water pump 57 during the chasing operation described above. And the washing | cleaning control part 103e controls operation | movement of the microbubble generator 51 for a circulation and the bath side water supply pump 57 at the time of the above-mentioned circulation washing operation using the detection result of the flow switch 53 and the water level sensor 55. FIG.

図3は、図1に示した貯湯式給湯機での循環用微小泡発生装置およびその周辺の構成要素を拡大して示す概略図である。同図に示すように、循環用微小泡発生装置51は、風呂側循環管路60の往き管60aに取り付けられたエジェクタ部51aと、該エジェクタ部51aへの空気の流入路となるガス導入管51bと、ガス導入管51bでのエジェクタ部51a側に設けられて往き管60aからの浴水170a(図1参照)の流入を防止する逆止弁51cと、ガス導入管51bでのガス導入口側に設けられて該ガス導入管51bを開閉させるエジェクタ用電磁弁51dとを有している。   FIG. 3 is an enlarged schematic view showing the circulating microbubble generator and its peripheral components in the hot water storage type hot water supply apparatus shown in FIG. As shown in the figure, a circulating microbubble generator 51 includes an ejector portion 51a attached to an outgoing tube 60a of a bath-side circulation conduit 60, and a gas introduction tube serving as an air inflow passage to the ejector portion 51a. 51b, a check valve 51c provided on the side of the ejector portion 51a in the gas introduction pipe 51b to prevent the inflow of bath water 170a (see FIG. 1) from the forward pipe 60a, and a gas introduction port in the gas introduction pipe 51b And an ejector electromagnetic valve 51d that opens and closes the gas introduction pipe 51b.

この循環用微小泡発生装置51は、制御装置110の洗浄制御部103e(図2参照)が上記のエジェクタ用電磁弁51dを開閉させることにより動作制御される。エジェクタ用電磁弁51dを開弁させると循環用微小泡発生装置51が微小泡発生動作を行い、閉弁させると循環用微小泡発生装置51の微小泡発生動作が停止する。洗浄制御部103eは、循環洗浄運転時にエジェクタ用電磁弁51dを間欠的に開閉させることで循環用微小泡発生装置51に微小泡発生動作を間欠的に行わせて、往き管60a内の浴水170a中に微小泡を発生させる。なお、図3に示す構成要素のうちで図1を参照して既に説明した構成要素については、図1で用いた参照符号と同じ参照符号を付してその説明を省略する。   The circulation microbubble generator 51 is controlled in operation by the cleaning controller 103e (see FIG. 2) of the controller 110 opening and closing the ejector solenoid valve 51d. When the electromagnetic valve 51d for ejector is opened, the microbubble generator 51 for circulation performs a microbubble generating operation, and when the valve is closed, the microbubble generating operation of the microbubble generator 51 for circulation stops. The cleaning controller 103e intermittently opens and closes the ejector solenoid valve 51d during the circulating cleaning operation to cause the circulating microbubble generator 51 to intermittently perform the microbubble generation operation, so that the bath water in the forward pipe 60a is discharged. Microbubbles are generated in 170a. 3 that are already described with reference to FIG. 1 are denoted by the same reference numerals as those used in FIG. 1 and description thereof is omitted.

図4は、図1に示した貯湯式給湯機での循環洗浄運転時の制御手順の一例を概略的に示すフローチャートである。図示の例では、貯湯式給湯機150Aの制御装置110(図1参照)がステップS1〜S8を行って循環洗浄運転を制御する。   FIG. 4 is a flowchart schematically showing an example of a control procedure during the circulation cleaning operation in the hot water storage type hot water supply machine shown in FIG. In the example shown in the figure, the control device 110 (see FIG. 1) of the hot water storage type hot water heater 150A performs steps S1 to S8 to control the circulation cleaning operation.

最初に行われるステップS1は、湯張り運転が終了した後に断続的に行われるステップであり、当該ステップS1では、洗浄制御部103e(図2参照)が水位センサ55の検出結果に基づいて浴槽170での浴水170a(図1参照)の現在の水位を判定し、判定結果を記憶部105(図2参照)に格納する。   Step S1 that is first performed is a step that is intermittently performed after the hot water filling operation is completed. In step S1, the cleaning control unit 103e (see FIG. 2) performs the bath 170 based on the detection result of the water level sensor 55. The current water level of the bath water 170a (see FIG. 1) is determined, and the determination result is stored in the storage unit 105 (see FIG. 2).

次いで行われるステップS2では、ステップS1で判定した浴水170aの現在の水位が循環洗浄運転を開始すべき洗浄動作開始水位以下に低下した否かを洗浄制御部103eが判断する。上記の洗浄動作開始水位は、例えば浴槽170の構造や深さ等を考慮して貯湯式給湯機150A(図1参照)のメーカにより決定され、そのデータが制御装置100の記憶部105(図2参照)に予め格納される。あるいは、湯張り運転終了時の浴水170aの水位を基に洗浄制御部103eが例えば次式(i)の演算
洗浄動作開始水位=(湯張り運転終了時の水位)−10[cm] ……(i)
により求めて設定し、そのデータが記憶部105に格納される。
Next, in step S2, which is performed, the cleaning control unit 103e determines whether or not the current water level of the bath water 170a determined in step S1 has decreased below the cleaning operation start water level at which the circulating cleaning operation should be started. The above-described cleaning operation start water level is determined by the manufacturer of the hot water storage type hot water heater 150A (see FIG. 1) in consideration of, for example, the structure and depth of the bathtub 170, and the data is stored in the storage unit 105 (FIG. 2) of the control device 100. Stored in advance). Alternatively, based on the water level of the bath water 170a at the end of the hot water filling operation, the washing control unit 103e calculates, for example, the following formula (i): the washing operation start water level = (water level at the end of the hot water filling operation) −10 [cm] (I)
Is obtained and set, and the data is stored in the storage unit 105.

このステップS2で浴水170aの現在の水位が洗浄動作開始水位以下ではないと判断されたときにはステップS1に戻って該ステップS1以降を繰り返し、浴水170aの現在の水位が洗浄動作開始水位以下であると判断されたときにはステップS3に進む。例えばユーザが浴槽170の栓を抜くと、浴水170aの水位が漸次低下し、やがて洗浄動作開始水位以下となってステップS3に進むことになる。   When it is determined in step S2 that the current water level of the bath water 170a is not less than or equal to the cleaning operation start water level, the process returns to step S1 to repeat step S1 and subsequent steps, and the current water level of the bath water 170a is less than or equal to the cleaning operation start water level. If it is determined that there is, the process proceeds to step S3. For example, when the user pulls out the stopper of the bathtub 170, the water level of the bath water 170a gradually decreases and eventually becomes equal to or lower than the cleaning operation start water level, and the process proceeds to step S3.

ステップS3では、洗浄制御部103eが風呂側送水ポンプ57(図1参照)を起動させる。風呂側送水ポンプ57の起動により、浴槽170内の浴水170aが風呂側循環管路60の往き管60a、追焚き用熱交換器70、戻り管60b(図1参照)、および浴槽170をこの順番で循環し始める。   In step S3, the cleaning control unit 103e activates the bath-side water pump 57 (see FIG. 1). By the activation of the bath-side water supply pump 57, the bath water 170a in the bathtub 170 is connected to the forward pipe 60a of the bath-side circulation pipe 60, the reheating heat exchanger 70, the return pipe 60b (see FIG. 1), and the bathtub 170. It starts to circulate in order.

次いで行われるステップS4では、洗浄制御部103eが循環用微小泡発生装置51(図1参照)を起動し、微小泡発生動作を間欠的に行わせる。また、エジェクタ用電磁弁51d(図1参照)への最初のオン(ON)信号(開信号)からの経過時間の計時を洗浄制御部103eが開始する。   Next, in step S4 to be performed, the cleaning control unit 103e activates the circulation microbubble generator 51 (see FIG. 1), and intermittently performs the microbubble generation operation. In addition, the cleaning control unit 103e starts measuring the elapsed time from the first ON signal (open signal) to the ejector solenoid valve 51d (see FIG. 1).

当該ステップS4での循環用微小泡発生装置51の起動時には、風呂側循環管路60への浴水170aの循環が既に開始しているので、往き管60a内が負圧になっている。このため、エジェクタ用電磁弁51dを開弁させるとガス導入管51bに空気が吸い込まれてエジェクタ部51aに供給され、該エジェクタ部51aにより浴水170a中に微小泡(マイクロバブル)が形成される。また、エジェクタ用電磁弁51dを閉弁させるとガス導入管51bへの空気の流入が止まり、エジェクタ部51aにより微小泡の形成も停止する。したがて、エジェクタ用電磁弁51dを開閉制御することで当該循環用微小泡発生装置51に微小泡発生動作を間欠的に行わせることができる。   Since the circulation of the bath water 170a to the bath-side circulation pipe 60 has already started when the microbubble generator 51 for circulation in the step S4 is started, the inside of the forward pipe 60a has a negative pressure. Therefore, when the ejector solenoid valve 51d is opened, air is sucked into the gas introduction pipe 51b and supplied to the ejector portion 51a, and microbubbles are formed in the bath water 170a by the ejector portion 51a. . Further, when the ejector electromagnetic valve 51d is closed, the inflow of air into the gas introduction pipe 51b is stopped, and the formation of micro bubbles is also stopped by the ejector portion 51a. Therefore, by controlling the opening and closing of the ejector solenoid valve 51d, the microbubble generator 51 for circulation can be intermittently operated.

例えば、循環用微小泡発生装置51に対してエジェクタ用電磁弁51d(図3参照)を5秒間開弁させた後に5秒間閉弁させるという制御を繰り返し行って、あるいは1秒間開弁させた後に1秒間閉弁させるという制御を繰り返し行って、往き管60a内の浴水中170a中に微小泡を生じさせる。これにより、微小泡による風呂側循環管路60内および追焚き用熱交換器70内の循環洗浄が行われる。   For example, after repeating the control that the electromagnetic valve 51d for ejector (see FIG. 3) is opened for 5 seconds and then closed for 5 seconds with respect to the microbubble generator 51 for circulation, or after the valve is opened for 1 second. The control of closing the valve for 1 second is repeatedly performed to generate micro bubbles in the bath water 170a in the forward pipe 60a. Thereby, the circulation washing in the bath side circulation line 60 and the reheating heat exchanger 70 by the fine bubbles is performed.

なお、循環用微小泡発生装置51での1回の微小泡発生動作時間と、微小泡発生動作の動作間隔とは、それぞれ適宜選定可能である。微小泡発生動作時間を微小泡発生動作の動作間隔とを同じにしてもよいし、微小泡発生動作時間を微小泡発生動作の動作間隔より長くしてもよい。このステップS4と前述したステップS3とは、実施の順番を入れ替えることも可能である。   Note that one microbubble generation operation time in the circulation microbubble generator 51 and the operation interval of the microbubble generation operation can be selected as appropriate. The micro bubble generation operation time may be the same as the operation interval of the micro bubble generation operation, or the micro bubble generation operation time may be longer than the operation interval of the micro bubble generation operation. The order of execution of step S4 and step S3 described above can be interchanged.

ステップS5では、循環用微小泡発生装置51に最初に微小泡を発生させてからの時間が予め定められた循環洗浄時間を経過したか否かを洗浄制御部103eが判断する。上記の循環洗浄時間は、貯湯式給湯機150Aのメーカにより例えば風呂側循環管路60の管路長等に応じて60秒等の時間に定められて、そのデータが記憶部105に予め格納される。洗浄制御部103eは、記憶部105に格納されている循環洗浄時間のデータと、ステップS4で開始した計時の結果とを用いてステップS5を行う。   In step S5, the cleaning control unit 103e determines whether or not a predetermined circulation cleaning time has elapsed since the first generation of microbubbles in the circulating microbubble generator 51. The circulation cleaning time is set to a time such as 60 seconds according to the length of the bath-side circulation pipeline 60 by the manufacturer of the hot-water storage type hot water heater 150A, and the data is stored in the storage unit 105 in advance. The The cleaning control unit 103e performs step S5 using the data of the circulating cleaning time stored in the storage unit 105 and the time measurement result started in step S4.

このステップS5で循環洗浄時間を経過してはいないと判断されたときはステップS6に進んで、循環洗浄が可能な量の浴水170aが浴槽170に残っている否かを洗浄制御部103eが判断する。洗浄制御部103eは、例えばフロースイッチ53(図1参照)による水流検出の有無に基づいて当該判断を行う。図4においては、循環洗浄が可能な量の浴水170aが浴槽170内に残っていないことを「浴水なし」と表記している。   If it is determined in step S5 that the circulating cleaning time has not elapsed, the process proceeds to step S6, and the cleaning control unit 103e determines whether or not the bath water 170a that can be circulated remains in the bathtub 170. to decide. The cleaning control unit 103e makes the determination based on, for example, whether or not a water flow is detected by the flow switch 53 (see FIG. 1). In FIG. 4, the fact that the bath water 170a that can be circulated and washed is not left in the bathtub 170 is described as “no bath water”.

上記のステップS6で循環洗浄が可能な量の浴水170aが浴槽170に残っていると判断されたときにはステップS5に戻って該ステップS5以降を繰り返し、循環洗浄が可能な量の浴水170aが浴槽170に残ってはいないと判断されたときにはステップS7に進む。また、上述したステップS5で循環洗浄時間を経過していると判断されたときにも、ステップS7に進む。   When it is determined in step S6 that the amount of the bath water 170a that can be circulated and washed remains in the bathtub 170, the process returns to step S5 and the steps S5 and after are repeated. When it is determined that it does not remain in the bathtub 170, the process proceeds to step S7. Also, when it is determined in step S5 described above that the circulation cleaning time has elapsed, the process proceeds to step S7.

ステップS7では、洗浄制御部103eが循環用微小泡発生装置51を停止させる。具体的には、エジェクタ用電磁弁51dを閉弁させる。この後に行われるステップS8では、洗浄制御部103eが風呂側送水ポンプ57を停止させる。このステップS8まで行うことにより、風呂側循環管路60の循環洗浄運転が終了する。なお、ステップS7とステップS8とは実施の順番を入れ替えることも可能である。   In step S7, the cleaning control unit 103e stops the circulation microbubble generator 51. Specifically, the ejector electromagnetic valve 51d is closed. In step S8 performed thereafter, the cleaning control unit 103e stops the bath-side water pump 57. By performing up to step S8, the circulation cleaning operation of the bath-side circulation pipeline 60 is completed. Note that step S7 and step S8 can be switched in order of implementation.

上述のようにして循環洗浄運転を行う貯湯式給湯機150Aでは、循環用微小泡発生装置51に微小泡発生動作を間欠的に行わせて風呂側循環管路60内の浴水170a中に微小泡を生じさせ、該微小泡により風呂側循環管路60内および追焚き用熱交換器70内を洗浄するので、循環用微小泡発生装置51に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。以下、図5および図6を用いて、微小泡発生動作を間欠的に行わせることによる洗浄効果の向上について説明する。   In the hot water storage type hot water heater 150A that performs the circulation cleaning operation as described above, the microbubble generator 51 for the circulation is intermittently operated to generate microbubbles in the bath water 170a in the bath-side circulation pipe 60. When bubbles are generated and the inside of the bath-side circulation pipe 60 and the heat exchanger 70 for replenishment are washed with the microbubbles, the microbubble generator 51 for circulation continuously performs the microbubble generation operation. Compared to the above, the cleaning effect by the fine bubbles can be enhanced. Hereinafter, with reference to FIG. 5 and FIG. 6, the improvement of the cleaning effect by intermittently performing the microbubble generation operation will be described.

図5は、循環用微小泡発生装置に微小泡発生動作を連続的に行わせたときの微小泡の形態の遷移を示す概念図であり、図6は、循環用微小泡発生装置に微小泡発生動作を間欠的に行わせたときの微小泡の形態の遷移を示す概念図である。   FIG. 5 is a conceptual diagram showing the transition of the form of microbubbles when the microbubble generating device for circulation is continuously performed, and FIG. 6 shows the microbubbles generated in the microbubble generator for circulation. It is a conceptual diagram which shows the transition of the form of microbubbles when generation | occurrence | production operation | movement is performed intermittently.

図5に示すように、循環用微小泡発生装置51(図1参照)に微小泡発生動作を連続的に行わせた場合、発生直後の各微小泡MBは、同図中に実線の矢印で示す浴水170aの流れ方向に分散するものの、次第に微小泡MB同士の合一化が進む。そして、風呂側循環管路60の往き管60a(図1参照)や戻り管60bの末端上部辺りでは大きな気泡GBが生じ易くなり、当該大きな気泡GB同士が合一化して気体層ALとなることもある。気体層ALが生じると、該気体層ALが接している配管表面を微小泡MBにより洗浄することが不可能になる。気体層ALは、風呂側循環管路60の管路長が長くなるほど形成され易い。   As shown in FIG. 5, when the microbubble generating device 51 for circulation (see FIG. 1) is continuously operated to generate microbubbles, each microbubble MB immediately after generation is indicated by a solid line arrow in the figure. Although it is dispersed in the flow direction of the bath water 170a shown, the coalescence of the microbubbles MB gradually proceeds. Then, large bubbles GB are likely to be generated around the upper end of the forward pipe 60a (see FIG. 1) of the bath-side circulation pipe 60 and the return pipe 60b, and the large bubbles GB are united to form the gas layer AL. There is also. When the gas layer AL is generated, it becomes impossible to clean the pipe surface in contact with the gas layer AL with the fine bubbles MB. The gas layer AL is more easily formed as the pipe length of the bath-side circulation pipe 60 becomes longer.

一方、図6に示すように、循環用微小泡発生装置51(図1参照)に微小泡発生動作を間欠的に行わせた場合には、循環用微小泡発生装置51の近傍の浴水170a中には微小泡MBが密に分布する箇所と微小泡MBが実質的に分布しない箇所とが形成されるものの、浴水170aが往き管60a、追焚き用熱交換器70(図示せず)、および戻り管60bへと流れてゆく過程で当該浴水170a中に微小泡MBが略均一に分布するようになる。そのため、風呂側循環管路60の管路長に応じて循環用微小泡発生装置51での微小泡発生動作時間と微小泡発生動作の動作間隔とを適宜選定することにより、往き管60aや戻り管60bの末端での気体層AL(図5参照)の形成を防止することができ、往き管60aや戻り管60bの全長に亘ってその内側表面を微小泡MBにより洗浄することができる。また、追焚き用熱交換器70内も多数の微小泡MBにより洗浄することができる。図6においては、浴水170aの流れ方向を実線の矢印で示している。   On the other hand, as shown in FIG. 6, when the microbubble generator 51 for circulation (see FIG. 1) is caused to intermittently perform the microbubble generation operation, bath water 170a in the vicinity of the microbubble generator 51 for circulation is used. Although the locations where the microbubbles MB are densely distributed and the locations where the microbubbles MB are not substantially distributed are formed inside, the bath water 170a is provided as the outgoing pipe 60a and the reheating heat exchanger 70 (not shown). In the process of flowing to the return pipe 60b, the microbubbles MB are distributed substantially uniformly in the bath water 170a. Therefore, by appropriately selecting the microbubble generation operation time and the microbubble generation operation interval in the circulation microbubble generator 51 according to the pipe length of the bath-side circulation pipe 60, the forward pipe 60a and the return pipe 60a Formation of the gas layer AL (see FIG. 5) at the end of the pipe 60b can be prevented, and the inner surface of the forward pipe 60a and the return pipe 60b can be cleaned with the microbubbles MB over the entire length. Further, the inside of the reheating heat exchanger 70 can be cleaned with a large number of microbubbles MB. In FIG. 6, the flow direction of the bath water 170a is indicated by solid arrows.

したがって、循環用微小泡発生装置51に微小泡発生動作を間欠的に行わせる貯湯式給湯機150A(図1参照)では、循環用微小泡発生装置51に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。例えば、微小泡発生動作の動作時間および動作間隔をそれぞれ5秒に設定して循環洗浄運転を行うと、循環用微小泡発生装置51に微小泡発生動作を連続的に行わせた場合に比べて汚れの付着量(残油分量)を4割程度低減させることも比較的容易である。また、循環用微小泡発生装置51は、浴槽170での浴水170a(図1参照)の水位が洗浄動作開始水位にまで低下すれば制御装置110(図1参照)による制御の下に自動的に動作を開始するので、循環洗浄をし忘れるということも防止される。   Therefore, in the hot water storage hot water supply apparatus 150A (see FIG. 1) that causes the microbubble generating device 51 for circulation to intermittently perform the microbubble generating operation, the microbubble generating device 51 for circulation continuously performs the microbubble generating operation. Compared to the case, the cleaning effect by the fine bubbles can be enhanced. For example, if the circulation cleaning operation is performed with the operation time and the operation interval of the microbubble generation operation set to 5 seconds, respectively, as compared with the case where the microbubble generation device 51 is continuously operated. It is relatively easy to reduce the amount of dirt attached (residual oil amount) by about 40%. Further, the circulating micro-bubble generating device 51 is automatically controlled under the control of the control device 110 (see FIG. 1) when the water level of the bath water 170a (see FIG. 1) in the bathtub 170 drops to the cleaning operation start water level. Therefore, it is possible to prevent the user from forgetting to perform the circulation cleaning.

これらの理由から、貯湯式給湯機150Aでは、風呂側循環管路60内や追焚き用熱交換器70(図1参照)内を清浄に保ち易い。また、プレート間の間隔を1mm程度にまで狭めた小型のプレート式熱交換器を追焚き用熱交換器70として用いた場合でも、該追焚き用熱交換器70内を清浄に保つことが容易になるので、高い信頼性の下に当該貯湯式給湯機150Aの小型化を図ることも容易になる。   For these reasons, in the hot water storage type hot water heater 150A, it is easy to keep the inside of the bath-side circulation pipe 60 and the inside of the reheating heat exchanger 70 (see FIG. 1) clean. Further, even when a small plate heat exchanger having a space between the plates reduced to about 1 mm is used as the reheating heat exchanger 70, it is easy to keep the reheating heat exchanger 70 clean. Therefore, it is easy to reduce the size of the hot water storage type water heater 150A with high reliability.

実施の形態2.
本発明の貯湯式給湯機では、風呂用給湯管路に微小泡発生装置(以下、「注水用微小泡発生装置」という)を設け、浴槽への注水を行いながら当該微小泡発生装置を動作させて、風呂側循環管路内および追焚き用熱交換器内を微小泡により洗浄するように構成することもできる。このように構成した場合、実施の形態1で説明した循環用微小泡発生装置は省略可能である。注水用微小泡発生装置は、実施の形態1で説明した循環用微小泡発生装置と同様に、微小泡発生動作を間欠的に行うように動作制御される。
Embodiment 2. FIG.
In the hot water storage type hot water supply apparatus of the present invention, a microbubble generator (hereinafter referred to as “water injection microbubble generator”) is provided in a hot water supply pipe for bath, and the microbubble generator is operated while pouring water into a bathtub. Thus, the inside of the bath-side circulation line and the inside of the reheating heat exchanger can be washed with fine bubbles. In such a configuration, the circulating microbubble generator described in the first embodiment can be omitted. The water injection microbubble generator is controlled to perform the microbubble generation operation intermittently in the same manner as the circulation microbubble generator described in the first embodiment.

図7は、注水用微小泡発生装置を有する貯湯式給湯機の一例を示す概略図である。同図に示す貯湯式給湯機150Bは、風呂用給湯管路BLを構成する第2給湯管路90での注水電磁弁83の下流側、具体的には流量センサ85の下流側に注水用微小泡発生装置87が設けられているという点、および図1に示した循環用微小泡発生装置51が省略されているという点をそれぞれ除き、図1に示した貯湯式給湯機150Aと同様の構成を有している。図7に示した構成要素のうちで注水用微小泡発生装置87を除いた残りの構成要素については、図1で用いた参照符号と同じ参照符号を付してその説明を省略する。   FIG. 7 is a schematic view showing an example of a hot water storage type hot water heater having a water injection microbubble generator. The hot water storage type water heater 150B shown in the figure has a small amount of water injection on the downstream side of the water injection electromagnetic valve 83, specifically on the downstream side of the flow rate sensor 85 in the second hot water supply pipe line 90 constituting the hot water supply pipe line BL for bath. Except for the point that the bubble generating device 87 is provided and the point that the microbubble generating device 51 for circulation shown in FIG. 1 is omitted, the same configuration as the hot water storage type hot water heater 150A shown in FIG. have. Among the components shown in FIG. 7, the remaining components excluding the water injection microbubble generator 87 are denoted by the same reference symbols as those used in FIG. 1, and description thereof is omitted.

図8は、図7に示した貯湯式給湯機での注水用微小泡発生装置およびその周辺の構成要素を拡大して示す概略図である。同図に示すように、注水用微小泡発生装置87は、第2給湯管路90に取り付けられたエジェクタ部87aと、該エジェクタ部87aへの空気の流入路となるガス導入管87bと、ガス導入管87bでのエジェクタ部87a側に設けられて第2給湯管路90からの湯水の流入を防止する逆止弁87cと、ガス導入管87bでのガス導入口側に設けられて該ガス導入管87bを開閉させるエジェクタ用電磁弁87dとを有している。図3との対比から明らかなように、注水用微小泡発生装置87の構成は実施の形態1で説明した循環用微小泡発生装置51の構成と同じである。   FIG. 8 is a schematic diagram showing an enlarged view of the water injection micro-bubble generating device and its surrounding components in the hot water storage type hot water supply machine shown in FIG. As shown in the figure, the water injection microbubble generator 87 includes an ejector portion 87a attached to the second hot water supply conduit 90, a gas introduction tube 87b serving as an air inflow passage to the ejector portion 87a, and a gas A check valve 87c provided on the ejector portion 87a side of the introduction pipe 87b to prevent the inflow of hot water from the second hot water supply pipe line 90, and a gas introduction port provided on the gas introduction port side of the gas introduction pipe 87b. And an ejector solenoid valve 87d for opening and closing the tube 87b. As is clear from the comparison with FIG. 3, the configuration of the water injection microbubble generator 87 is the same as the configuration of the circulation microbubble generator 51 described in the first embodiment.

上記の注水用微小泡発生装置87を有する貯湯式給湯機150Bでの制御装置110(図7参照)は、実施の形態1で説明した貯湯式給湯機150Aでの制御装置110(図2参照)と同様の構成とすることができる。ただし、洗浄制御部103e(図2参照)は、注水用微小泡発生装置87による風呂側循環管路60内および追焚き用熱交換器70内の注水洗浄運転を制御するために、注水電磁弁83および注水用微小泡発生装置87の動作を制御する。   The control device 110 (see FIG. 7) in the hot water storage type hot water heater 150B having the above-described water injection microbubble generator 87 is the control device 110 (see FIG. 2) in the hot water storage type hot water heater 150A described in the first embodiment. It can be set as the same structure. However, the cleaning control unit 103e (see FIG. 2) is configured to use a water injection solenoid valve to control the water injection cleaning operation in the bath-side circulation pipe 60 and the reheating heat exchanger 70 by the water injection microbubble generator 87. 83 and the operation of the water injection microbubble generator 87 are controlled.

具体的には、注水電磁弁83を開弁させて第2給湯管路90から風呂側循環管路60、さらには浴槽170への注水を開始させ、続いて注水用微小泡発生装置87のエジェクタ用電磁弁87d(図7参照)を開閉させて、該注水用微小泡発生装置87に微小泡発生動作を間欠的に行わせる。多数の微小泡(マイクロバブル)を含んだ湯水が第2給湯管路90から風呂側循環管路60、さらには浴槽170へと注水され、その過程で風呂側循環管路60内および追焚き用熱交換器70内が微小泡により洗浄される。このとき、第2給湯管路90から風呂側循環管路60に湯や温湯を注水してもよいが、貯湯タンク20内の湯の消費を抑えるという観点からは、第2給水管部30b(図7参照)からの水を第2給湯管路90から風呂側循環管路60に注水することが好ましい。   Specifically, the water injection electromagnetic valve 83 is opened to start water injection from the second hot water supply pipe 90 to the bath-side circulation pipe 60 and further to the bathtub 170, and then the ejector of the water injection microbubble generator 87 The electromagnetic valve 87d (see FIG. 7) is opened and closed to cause the water injection microbubble generator 87 to perform the microbubble generation operation intermittently. Hot water containing a large number of micro bubbles is poured from the second hot water supply pipe 90 into the bath-side circulation pipe 60 and further into the bathtub 170, and in the process, the inside of the bath-side circulation pipe 60 and for reheating. The inside of the heat exchanger 70 is cleaned with microbubbles. At this time, hot water or hot water may be poured from the second hot water supply pipe 90 into the bath-side circulation pipe 60. However, from the viewpoint of suppressing consumption of hot water in the hot water storage tank 20, the second water supply pipe 30b ( It is preferable to pour water from the second hot water supply line 90 into the bath-side circulation line 60.

図9は、図7に示した貯湯式給湯機での注水洗浄運転時の制御手順の一例を概略的に示すフローチャートである。図示の例では、貯湯式給湯機150Bの制御装置110(図7参照)がステップS11〜S22を行って注水洗浄運転を制御する。   FIG. 9 is a flowchart schematically showing an example of a control procedure at the time of a water injection cleaning operation in the hot water storage type hot water supply machine shown in FIG. 7. In the illustrated example, the control device 110 (see FIG. 7) of the hot-water storage type hot water supply device 150B performs steps S11 to S22 to control the water injection cleaning operation.

最初に行われるステップS11〜S14は、注水洗浄のために第2給湯管路90から風呂側循環管路60に第2給水管部30bからの水を注水するにあたって、浴槽170内に浴水170a(図7参照)がないことをもって入浴者がいないと判断するためのステップである。これらのステップS11〜S14のうちのステップS11,S12は、実施の形態1で図4を用いて説明したステップS1,S2と同じであるので、ここではその説明を省略する。   Steps S11 to S14 performed first include the bathing water 170a in the bathtub 170 when water from the second water supply pipe portion 30b is poured from the second hot water supply pipe 90 to the bath-side circulation pipe 60 for water washing. This is a step for determining that there is no bather when there is no (see FIG. 7). Of these steps S11 to S14, steps S11 and S12 are the same as steps S1 and S2 described in the first embodiment with reference to FIG.

ステップS13では、洗浄制御部が風呂側送水ポンプ57(図7参照)を起動させる。ステップS14では、風呂側送水ポンプ57の起動から予め定められた水流判定待ち時間(例えば45秒間)が経過したか否かを洗浄制御部が判断する。上記の水流判定待ち時間は、ユーザが浴槽170の栓(図示せず)を抜いたために浴水170aの現在の水位が洗浄動作開始水位以下に低下したのか、浴槽170の栓は抜かれず、浴水170aの消費により該浴水170aの現在の水位が洗浄動作開始水位以下に低下しただけなのかをフロースイッチ53の検知結果から判断するための所要時間(例えば浴水170aが風呂側循環管路60を1巡するのに要する時間(例えば60秒))である。   In step S13, the cleaning control unit activates the bath-side water pump 57 (see FIG. 7). In step S14, the cleaning control unit determines whether or not a predetermined water flow determination waiting time (for example, 45 seconds) has elapsed since the activation of the bath-side water pump 57. In the above water flow determination waiting time, whether the current water level of the bath water 170a has dropped below the cleaning operation start water level because the user pulled out the stopper (not shown) of the bathtub 170, the stopper of the bathtub 170 is not removed, The time required to determine from the detection result of the flow switch 53 whether the current water level of the bath water 170a has dropped below the cleaning operation start water level due to consumption of the water 170a (for example, the bath water 170a is a bath-side circulation line). This is the time required to make one round of 60 (for example, 60 seconds).

この水流判定待ち時間は、貯湯式給湯機150Bのメーカにより定められて制御装置110(図7参照)の記憶部(図示せず)に予め格納される。当該水流判定待ち時間を計時するために、洗浄制御部に計時機能を付与してもよいし、制御装置110(図7参照)にカウンタ等の計時部を設けてもよい。当該ステップS14で水流判定待ち時間が未だ経過してはいないと判断されたときには該ステップS14を繰り返し、水流判定待ち時間が経過したと判断されたときにはステップS15に進む。   This water flow determination waiting time is determined by the manufacturer of the hot water storage type hot water heater 150B and is stored in advance in a storage unit (not shown) of the control device 110 (see FIG. 7). In order to time the water flow determination waiting time, a time measuring function may be added to the cleaning control unit, or a time measuring unit such as a counter may be provided in the control device 110 (see FIG. 7). When it is determined in step S14 that the water flow determination waiting time has not yet elapsed, step S14 is repeated, and when it is determined that the water flow determination waiting time has elapsed, the process proceeds to step S15.

ステップS15では、所定量の浴水170aが浴槽170に残っている否かをフロースイッチ53(図7参照)の検知結果に基づいて洗浄制御部が判断する。往き管60aと浴槽アダプタ165(図7参照)との接続位置よりも浴水170aの水位が低下すると、風呂側送水ポンプ57を運転しても風呂側循環管路60に浴水170aが流入しなくなるので、フロースイッチ53が水流を検知しなくなる。フロースイッチ53が水流を検知したときには、所定量の浴水170aが浴槽170に残っていると判断、別言すれば浴槽170の栓が抜かれてはいない可能性があると判断することができ、フロースイッチ53が水流を検知しないときには、所定量の浴水170aが浴槽170に残ってはいない、別言すれば浴槽170の栓が抜かれた可能性が高いと判断することができる。   In step S15, the cleaning control unit determines whether or not a predetermined amount of bath water 170a remains in the bathtub 170 based on the detection result of the flow switch 53 (see FIG. 7). When the water level of the bath water 170a is lower than the connection position between the forward pipe 60a and the bathtub adapter 165 (see FIG. 7), the bath water 170a flows into the bath side circulation pipe 60 even when the bath side water pump 57 is operated. Therefore, the flow switch 53 does not detect the water flow. When the flow switch 53 detects the water flow, it can be determined that a predetermined amount of the bath water 170a remains in the bathtub 170, in other words, it can be determined that the bathtub 170 may not be unplugged, When the flow switch 53 does not detect the water flow, it can be determined that a predetermined amount of the bath water 170a does not remain in the bathtub 170, in other words, the possibility that the bathtub 170 has been unplugged is high.

上記のステップS15で所定量の浴水170aが浴槽170に残っていると判断されたときにはステップS16に進み、洗浄制御部が風呂側送水ポンプ57を停止させる。この後、ステップS11に戻って該ステップS11以降を繰り返す。一方、ステップS15で所定量の浴水170aが浴槽170に残ってはいないと判断されたときには、ステップS17以降に進む。なお、図9においては、所定量の浴水170aが浴槽170に残ってはいないことを「浴水なし」と表記している。   When it is determined in step S15 that a predetermined amount of bath water 170a remains in the bathtub 170, the process proceeds to step S16, and the cleaning control unit stops the bath-side water pump 57. Then, it returns to step S11 and repeats after this step S11. On the other hand, when it is determined in step S15 that the predetermined amount of bath water 170a does not remain in the bathtub 170, the process proceeds to step S17 and subsequent steps. In FIG. 9, the fact that a predetermined amount of bath water 170a does not remain in the bathtub 170 is indicated as “no bath water”.

ステップS17では洗浄制御部が風呂側送水ポンプ57を停止させ、ステップS18では洗浄制御部が注水電磁弁83(図7参照)を開弁させ、ステップS19では洗浄制御部が注水用微小泡発生装置87(図7参照)を起動させる。   In step S17, the cleaning control unit stops the bath-side water pump 57, in step S18, the cleaning control unit opens the water injection electromagnetic valve 83 (see FIG. 7), and in step S19, the cleaning control unit controls the water injection microbubble generator. 87 (see FIG. 7) is activated.

上記のステップS18で注水電磁弁83を開弁させることにより、第2給湯管路90(図7参照)から風呂側循環管路60、さらには浴槽170への注水が開始される。例えば第2給水管部30b(図7参照)からの水が第2給湯管路90から風呂側循環管路60に注水される。また、上記のステップS19で起動された注水用微小泡発生装置87は、洗浄制御部によりエジェクタ用電磁弁87d(図8参照)を開閉制御されて、実施の形態1で説明した循環用微小泡発生装置51(図1参照)と同様に、微小泡発生動作を間欠的に行う。多数の微小泡(マイクロバブル)を含んだ湯水が第2給湯管路90から風呂側循環管路60、さらには浴槽170へと注水され、その過程で風呂側循環管路60内および追焚き用熱交換器70内が微小泡により洗浄される注水洗浄が行われる。   By opening the water injection electromagnetic valve 83 in step S18 described above, water injection from the second hot water supply line 90 (see FIG. 7) to the bath side circulation line 60 and further to the bathtub 170 is started. For example, water from the second water supply pipe 30b (see FIG. 7) is poured from the second hot water supply pipe 90 into the bath-side circulation pipe 60. In addition, the water injection microbubble generator 87 activated in step S19 is controlled to open and close the ejector electromagnetic valve 87d (see FIG. 8) by the cleaning control unit, and the microbubbles for circulation described in the first embodiment. Similar to the generator 51 (see FIG. 1), the microbubble generation operation is performed intermittently. Hot water containing a large number of micro bubbles is poured from the second hot water supply pipe 90 into the bath-side circulation pipe 60 and further into the bathtub 170, and in the process, the inside of the bath-side circulation pipe 60 and for reheating. Water injection cleaning is performed in which the inside of the heat exchanger 70 is cleaned with microbubbles.

なお、注水用微小泡発生装置87での1回の微小泡発生動作時間と、微小泡発生動作の動作間隔とは、適宜選定可能である。例えば、微小泡発生動作時間を1秒に設定し、微小泡発生動作の動作間隔を1秒に設定することができる。勿論、微小泡発生動作時間を微小泡発生動作の動作間隔と同じにしてもよいし、微小泡発生動作時間を微小泡発生動作の動作間隔より長くしてもよい。上述したステップS18とステップS19とは、実施の順番を入れ替えることも可能である。   It should be noted that one microbubble generation operation time in the water injection microbubble generator 87 and the operation interval of the microbubble generation operation can be appropriately selected. For example, the microbubble generation operation time can be set to 1 second, and the operation interval of the microbubble generation operation can be set to 1 second. Of course, the microbubble generation operation time may be the same as the operation interval of the microbubble generation operation, or the microbubble generation operation time may be longer than the operation interval of the microbubble generation operation. Step S18 and step S19 mentioned above can also change the order of implementation.

この後、ステップS20に進み、第2給湯管路90から風呂側循環管路60への注水量が最大注水量を超過したか否かを、流量センサ85(図7参照)の検知結果に基づいて洗浄制御部が判断する。上記の最大注水量は、注水洗浄時に使用する最大水量であり、例えば貯湯式給湯機150Bのメーカにより定められて、制御装置110の記憶部に予め格納される。このステップS20で最大注水量を未だ超過していないと判断されたときには該ステップS20を繰り返し、最大注水量を超過したと判断されたときにはステップS21に進む。   Then, it progresses to step S20 and it is based on the detection result of the flow sensor 85 (refer FIG. 7) whether the water injection quantity from the 2nd hot water supply pipe line 90 to the bath side circulation pipe line 60 exceeded the maximum water injection quantity. The cleaning controller determines. The maximum water injection amount is the maximum water amount used at the time of water injection cleaning, is determined by, for example, the manufacturer of the hot water storage type hot water heater 150B, and is stored in advance in the storage unit of the control device 110. When it is determined in step S20 that the maximum water injection amount has not yet been exceeded, step S20 is repeated, and when it is determined that the maximum water injection amount has been exceeded, the process proceeds to step S21.

ステップS21では、洗浄制御部が注水用微小泡発生装置87を停止させる。具体的には、エジェクタ用電磁弁87dを閉弁させる。この後に行われるステップS22では、洗浄制御部が注水電磁弁83を閉弁させる。このステップS22まで行うことにより、風呂側循環管路60の注水洗浄運転が終了する。なお、ステップS21とステップS22とは実施の順番を入れ替えることも可能である。   In step S <b> 21, the cleaning control unit stops the water injection microbubble generator 87. Specifically, the ejector electromagnetic valve 87d is closed. In step S22 performed thereafter, the cleaning control unit closes the water injection electromagnetic valve 83. By performing to this step S22, the water-injection washing | cleaning driving | operation of the bath side circulation pipeline 60 is complete | finished. Note that step S21 and step S22 can be switched in order of implementation.

上述のようにして注水洗浄運転を行う貯湯式給湯機150B(図7参照)では、実施の形態1で説明した理由と同様の理由から、注水用微小泡発生装置87に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。例えば、微小泡発生動作の動作時間および動作間隔をそれぞれ1秒に設定して注水洗浄運転を行うと、注水用微小泡発生装置87に微小泡発生動作を連続的に行わせた場合に比べて汚れの付着量(残油分量)を5割程度低減させることも比較的容易である。また、注水洗浄をし忘れるということも防止される。すなわち、貯湯式給湯機150Bは、実施の形態1で説明した貯湯式給湯機150A(図1参照)と同様の技術的効果を奏する。   In the hot water storage type water heater 150B (see FIG. 7) that performs the water injection cleaning operation as described above, the micro bubble generation operation is continuously performed on the water injection micro bubble generator 87 for the same reason as described in the first embodiment. Compared with the case where it carries out automatically, the cleaning effect by a microbubble can be improved. For example, when the water injection cleaning operation is performed with the operation time and the operation interval of the micro bubble generation operation set to 1 second, compared to the case where the micro bubble generation device 87 is continuously configured to perform the micro bubble generation operation. It is also relatively easy to reduce the amount of dirt attached (residual oil content) by about 50%. In addition, it is possible to prevent the user from forgetting to wash with water. That is, the hot water storage type hot water supply device 150B has the same technical effect as the hot water storage type hot water supply device 150A described in the first embodiment (see FIG. 1).

さらには、注水用微小泡発生装置87に微小泡発生動作を連続的に行わせた場合に比べて微小泡による洗浄効果が高められるので、注水洗浄時に使用する水量の低減および洗浄時間の短縮を容易に図ることができ、結果として節水を図ることができる。例えば、注水用微小泡発生装置87に微小泡発生動作を連続的に行わせたときに12リットルの洗浄水を要する洗浄効果と同等の洗浄効果を9リットルの洗浄水で得ることも可能である。同様に、注水用微小泡発生装置87に微小泡発生動作を連続的に行わせたときに60秒を要する洗浄効果と同等の洗浄効果を45秒で得ることも可能である。   Furthermore, since the cleaning effect by the microbubbles is enhanced as compared with the case where the microbubble generating device 87 for water injection is continuously operated, the amount of water used at the time of water injection cleaning and the cleaning time can be shortened. This can be easily achieved, and as a result, water can be saved. For example, it is also possible to obtain a cleaning effect equivalent to a cleaning effect that requires 12 liters of washing water with 9 liters of washing water when the microbubble generation device 87 for water injection is continuously performed. . Similarly, a cleaning effect equivalent to a cleaning effect that requires 60 seconds can be obtained in 45 seconds when the microbubble generating device 87 for water injection is continuously operated to generate micro bubbles.

実施の形態3.
本発明の貯湯式給湯機では、実施の形態1で説明した循環用微小泡発生装置と実施の形態2で説明した注水用微小泡発生装置とを併用することができる。これらの微小泡発生装置は、いずれも、微小泡発生動作を間欠的に行うように動作制御される。
Embodiment 3 FIG.
In the hot water storage type hot water supply apparatus of the present invention, the microbubble generator for circulation described in the first embodiment and the microbubble generator for water injection described in the second embodiment can be used in combination. All of these microbubble generators are controlled so as to intermittently perform microbubble generation operations.

図10は、循環用微小泡発生装置と注水用微小泡発生装置とが併用された貯湯式給湯機の一例を示す概略図である。同図に示す貯湯式給湯機150Cは、風呂用給湯管路BLを構成する第2給湯管路90に注水用微小泡発生装置87が設けられているという点を除き、図1に示した貯湯式給湯機150Aと同様の構成を有している。別の見方をすれば、風呂側循環管路60の往き管60aに循環用微小泡発生装置51が設けられているという点を除き、図7に示した貯湯式給湯機150Bと同様の構成を有している。図10に示した各構成要素については、図1または図7で用いた参照符号と同じ参照符号を付してその説明を省略する。   FIG. 10 is a schematic view showing an example of a hot water storage type hot water heater in which a circulating microbubble generator and a water injection microbubble generator are used in combination. The hot water storage type hot water heater 150C shown in the figure is the hot water storage shown in FIG. 1 except that a water injection micro-bubble generating device 87 is provided in the second hot water supply pipe 90 constituting the bath hot water supply pipe BL. It has the same configuration as the type hot water heater 150A. From another point of view, it has the same configuration as the hot water storage type hot water supply apparatus 150B shown in FIG. 7 except that the circulation microbubble generator 51 is provided in the forward pipe 60a of the bath-side circulation pipe 60. Have. The constituent elements shown in FIG. 10 are denoted by the same reference numerals as those used in FIG. 1 or FIG.

循環用微小泡発生装置51と注水用微小泡発生装置87とを有する貯湯式給湯機150Cでの制御装置110は、実施の形態1で説明した貯湯式給湯機150Aでの制御装置110(図2参照)と同様の構成とすることができる。ただし、洗浄制御部103e(図2参照)は、循環用微小泡発生装置51による風呂側循環管路60内および追焚き用熱交換器70内の循環洗浄運転と、注水用微小泡発生装置87による風呂側循環管路60内および追焚き用熱交換器70内の注水洗浄運転とを制御するために、循環用微小泡発生装置51および注水用微小泡発生装置87それぞれの動作を制御する。例えば、循環洗浄運転を行った後に注水洗浄運転を行う。ただし、循環洗浄運転の終了後に注水洗浄運転を行うにあたっては、図9に示したステップS11〜S17での各処理が省略される。   The control device 110 in the hot water storage type hot water heater 150C having the microbubble generation device 51 for circulation and the microbubble generation device 87 for water injection is the control device 110 in the hot water storage type water heater 150A described in the first embodiment (FIG. 2). Reference) can be used. However, the cleaning control unit 103e (see FIG. 2) is configured to perform the circulating cleaning operation in the bath-side circulation pipe 60 and the reheating heat exchanger 70 by the circulating micro-bubble generating device 51, and the irrigating micro-bubble generating device 87. In order to control the water injection cleaning operation in the bath-side circulation pipe 60 and the reheating heat exchanger 70, the operations of the circulation microbubble generator 51 and the water injection microbubble generator 87 are controlled. For example, the water injection cleaning operation is performed after the circulation cleaning operation. However, when the water injection cleaning operation is performed after the circulation cleaning operation is completed, each processing in steps S11 to S17 shown in FIG. 9 is omitted.

図11は、図10に示した貯湯式給湯機での循環洗浄運転時および注水洗浄運転時の制御手順の一例を概略的に示すフローチャートである。図示の例では、貯湯式給湯機150Cの制御装置110(図10参照)がステップS31〜S38を行って循環洗浄運転を制御した後、ステップS39〜S43を行って注水洗浄運転を制御する。循環洗浄運転の制御に係るステップS31〜S38は図4に示したステップS1〜S8と同じであり、注水洗浄運転の制御に係るステップS39〜S43は図9に示したステップS18〜S43と同じであるので、ここでは各ステップの説明を省略する。   FIG. 11 is a flowchart schematically showing an example of a control procedure during the circulation cleaning operation and the water injection cleaning operation in the hot water storage type water heater shown in FIG. 10. In the illustrated example, the controller 110 (see FIG. 10) of the hot water storage type hot water heater 150C performs steps S31 to S38 to control the circulation cleaning operation, and then performs steps S39 to S43 to control the water injection cleaning operation. Steps S31 to S38 related to the control of the circulation cleaning operation are the same as Steps S1 to S8 shown in FIG. 4, and Steps S39 to S43 related to the control of the water injection cleaning operation are the same as Steps S18 to S43 shown in FIG. Therefore, the description of each step is omitted here.

上述のようにして循環洗浄運転と注水洗浄運転とを行う貯湯式給湯機150C(図10参照)では、実施の形態1,2で説明した理由と同様の理由から、各微小泡発生装置51,87に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。また、循環洗浄および注水洗浄をし忘れるということも防止される。そして、循環洗浄運転と注水洗浄運転とを行うので、実施の形態1,2で説明した貯湯式給湯機150A,150B(図1および図7参照)に比べても、風呂側循環管路60内および追焚き用熱交換器70(図10参照)内を清浄に保ち易い。   In the hot water storage type hot water heater 150C (see FIG. 10) that performs the circulation cleaning operation and the water injection cleaning operation as described above, for the same reason as described in the first and second embodiments, each microbubble generator 51, Compared with the case where the operation of generating fine bubbles is continuously performed by 87, the cleaning effect by the fine bubbles can be enhanced. In addition, it is possible to prevent the user from forgetting to perform circulation cleaning and water injection cleaning. Since the circulation washing operation and the water injection washing operation are performed, the inside of the bath-side circulation line 60 is also larger than the hot water storage type water heaters 150A and 150B described in the first and second embodiments (see FIGS. 1 and 7). And it is easy to keep the inside of the reheating heat exchanger 70 (see FIG. 10) clean.

なお、循環用微小泡発生装置51および注水用微小泡発生装置87の各々での1回の微小泡発生動作時間と、微小泡発生動作の動作間隔とは、適宜選定可能である。循環用微小泡発生装置51での1回の微小泡発生動作時間と注水用微小泡発生装置87での1回の微小泡発生動作時間とは、互いに同じ値にすることもできるし、互いに異なる値にすることもできる。同様に、循環用微小泡発生装置51での微小泡発生動作の動作間隔と注水用微小泡発生装置87での微小泡発生動作の動作間隔とは、互いに同じ値にすることもできるし、互いに異なる値にすることもできる。   It should be noted that one microbubble generation operation time in each of the circulation microbubble generator 51 and the water injection microbubble generator 87 and the operation interval of the microbubble generation operation can be appropriately selected. The one microbubble generation operation time in the circulation microbubble generator 51 and the one microbubble generation operation time in the water injection microbubble generator 87 can be set to the same value or different from each other. It can also be a value. Similarly, the operation interval of the microbubble generation operation in the circulation microbubble generation device 51 and the operation interval of the microbubble generation operation in the water injection microbubble generation device 87 can be set to the same value. It can be a different value.

実施の形態4.
本発明の貯湯式給湯機は、ユーザからの指令に応じて循環洗浄運転を行うように構成することもできる。この場合、リモートコントローラには、循環洗浄運転の開始指令を入力するための入力スイッチ(以下、「洗浄開始スイッチ」という)が設けられる。循環洗浄運転時には、実施の形態1で説明した貯湯式給湯機150A(図1参照)におけるように、循環用微小泡発生装置が微小泡発生動作を間欠的に行う。
Embodiment 4 FIG.
The hot water storage type hot water heater of the present invention can also be configured to perform a circulation cleaning operation in accordance with a command from a user. In this case, the remote controller is provided with an input switch (hereinafter referred to as “cleaning start switch”) for inputting a command for starting the circulating cleaning operation. During the circulation cleaning operation, as in the hot water storage type hot water heater 150A described in the first embodiment (see FIG. 1), the circulation microbubble generator intermittently performs the microbubble generation operation.

当該貯湯式給湯機の全体構成は、リモートコントローラの操作部に上記の洗浄開始スイッチが設けられるという点を除き、例えば図1に示した貯湯式給湯機150Aと同様の構成にすることができる。また、制御装置の構成は、上記の洗浄開始スイッチにより循環洗浄運転の開始指令(以下、「循環洗浄開始指令」という)が入力されたときに洗浄制御部が循環洗浄に係る動作制御を開始するという点を除き、例えば図2に示した制御装置110と同様の構成とすることできる。ここでは、貯湯式給湯機および制御装置それぞれの図示を省略する。   The overall configuration of the hot water storage type hot water heater can be the same as that of the hot water storage type hot water heater 150A shown in FIG. 1, for example, except that the above-described cleaning start switch is provided in the operation unit of the remote controller. Further, the configuration of the control device is such that the cleaning control unit starts the operation control related to the circulating cleaning when the start command of the circulating cleaning operation (hereinafter referred to as “circulating cleaning start command”) is input by the cleaning start switch. Except for this point, for example, the configuration can be the same as that of the control device 110 shown in FIG. Here, illustration of each of the hot water storage type water heater and the control device is omitted.

図12は、リモートコントローラから循環洗浄開始指令が入力されたときに循環洗浄運転が開始されるように構成された貯湯式給湯機での循環洗浄運転時の制御手順の一例を概略的に示すフローチャートである。図示の例では、貯湯式給湯機の制御装置がステップS51〜S60を行って循環洗浄運転を制御する。これらのステップS51〜S60のうちのステップS56〜S60は図4に示したステップS4〜S8と同じであるので、ここではステップS56〜S60の説明を省略して、ステップS51〜S55についてのみ説明する。   FIG. 12 is a flowchart schematically showing an example of a control procedure during a circulation cleaning operation in a hot water storage water heater configured to start the circulation cleaning operation when a circulation cleaning start command is input from the remote controller. It is. In the illustrated example, the control device for the hot water storage type hot water heater performs steps S51 to S60 to control the circulation cleaning operation. Of these steps S51 to S60, steps S56 to S60 are the same as steps S4 to S8 shown in FIG. 4, and therefore, description of steps S56 to S60 is omitted here and only steps S51 to S55 are described. .

最初に行われるステップS51では、リモートコントローラの洗浄開始スイッチにより循環洗浄開始指令が入力されたか否かを制御装置の洗浄制御部が判断する。このステップS51で循環洗浄開始指令が入力されてはいないと判断されたときには該ステップS51を繰り返し、循環洗浄開始指令が入力されたと判断されたときにはステップS52に進む。なお、図12においては、洗浄開始スイッチにより循環洗浄開始指令が入力されたことを「洗浄開始スイッチON」と表記している。   In step S51 performed first, the cleaning control unit of the control device determines whether or not a circulation cleaning start command is input by the cleaning start switch of the remote controller. If it is determined in step S51 that the circulation cleaning start command is not input, step S51 is repeated, and if it is determined that the circulation cleaning start command is input, the process proceeds to step S52. In FIG. 12, the input of the circulation cleaning start command by the cleaning start switch is denoted as “cleaning start switch ON”.

次いで、ステップS52〜S55を行って、浴槽内の浴水の有無を洗浄制御部が判断する。ステップS52では、洗浄制御部が風呂側送水ポンプを起動させ、ステップS53では、風呂側送水ポンプの動作時間が予め定められた循環時間以上になったか否かを洗浄制御部が判断する。   Next, Steps S52 to S55 are performed, and the cleaning control unit determines the presence or absence of bath water in the bathtub. In step S52, the washing control unit activates the bath-side water pump, and in step S53, the washing control unit determines whether or not the operation time of the bath-side water pump has reached a predetermined circulation time.

ここで、上記の「循環時間」は、風呂側循環管路に設けられているフロースイッチが水流を検知したときに、該水流が風呂側循環管路内の残水の流れではなく浴槽からの浴水の流れであると判断するに足る風呂側送水ポンプの動作時間であり、貯湯式給湯機のメーカにより例えば浴水が風呂側循環管路を1巡するのに要する時間(例えば60秒)以上に設定されて、そのデータが制御装置の記憶部に予め格納される。   Here, the above “circulation time” means that when the flow switch provided in the bath-side circulation pipeline detects a water flow, the water flow is not from the remaining water flow in the bath-side circulation pipeline but from the bathtub. This is the operation time of the bath-side water pump that is sufficient to determine the flow of the bath water. For example, the time required for the bath water to make one round of the bath-side circulation line (for example, 60 seconds) by the manufacturer of the hot water storage type With the above settings, the data is stored in advance in the storage unit of the control device.

当該ステップS53で風呂側送水ポンプの動作時間が循環時間以上になってはいないと判断されたときには該ステップS53を繰り返し、循環時間以上になったと判断されたときにはステップS54に進んで、フロースイッチの検知結果を洗浄制御部が取得する。ステップS55では、ステップS54で取得したフロースイッチの検知結果に基づいて、浴槽内に浴水があるか否かを洗浄制御部が判断する。   If it is determined in step S53 that the operation time of the bath-side water pump is not longer than the circulation time, step S53 is repeated. If it is determined that the operation time is longer than the circulation time, the process proceeds to step S54. The cleaning control unit acquires the detection result. In step S55, based on the detection result of the flow switch acquired in step S54, the cleaning control unit determines whether there is bath water in the bathtub.

このステップS55で浴水がないと判断されたときにはステップS60に進んで洗浄制御部が風呂側送水ポンプを停止させ、浴水があると判断されたときにはステップS56に進んで洗浄制御部が循環用微小泡発生装置を起動させる。当該ステップS56は、図4に示したステップS4と同じステップであり、この後は図4に示したステップS5〜S8と同じステップS57〜60が行われる。   If it is determined in step S55 that there is no bath water, the process proceeds to step S60, where the cleaning control unit stops the bath-side water pump, and if it is determined that there is bath water, the process proceeds to step S56, where the cleaning control unit performs circulation. Activate the microbubble generator. The step S56 is the same as the step S4 shown in FIG. 4, and thereafter, the same steps S57 to S60 as the steps S5 to S8 shown in FIG. 4 are performed.

洗浄開始スイッチから循環洗浄開始指令が入力されたときに上述のようにして循環洗浄運転を行う貯湯式給湯機では、実施の形態1,2で説明した理由と同様の理由から、循環用微小泡発生装置に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。また、リモートコントローラに洗浄開始スイッチが設けられているので、循環洗浄の実施をユーザに喚起することができ、循環洗浄をし忘れるということも防止される。したがって、当該貯湯式給湯機でも、風呂側循環管路内および追焚き用熱交換器内を清浄に保ち易い。   In the hot water storage type water heater that performs the cyclic cleaning operation as described above when the circulation cleaning start command is input from the cleaning start switch, the microbubbles for circulation are used for the same reason as described in the first and second embodiments. Compared with the case where the generating device continuously performs the microbubble generation operation, the cleaning effect by the microbubbles can be enhanced. In addition, since the cleaning start switch is provided in the remote controller, it is possible to alert the user to perform the circulating cleaning, and it is possible to prevent the user from forgetting the circulating cleaning. Therefore, even in the hot water storage type water heater, the inside of the bath-side circulation line and the inside of the reheating heat exchanger can be easily kept clean.

実施の形態5.
本発明の貯湯式給湯機は、ユーザからの指令に応じて注水洗浄運転を行うように構成することもできる。この場合、リモートコントローラには、実施の形態4で説明した貯湯式給湯機におけるのと同様に、注水洗浄運転の開始指令を入力するための入力スイッチ(以下、「洗浄開始スイッチ」という)が設けられる。注水洗浄運転時には、実施の形態2で説明した貯湯式給湯機150B(図7参照)におけるように、注水用微小泡発生装置が微小泡発生動作を間欠的に行う。
Embodiment 5 FIG.
The hot water storage type water heater of the present invention can also be configured to perform a water injection cleaning operation in accordance with a command from a user. In this case, the remote controller is provided with an input switch (hereinafter referred to as “cleaning start switch”) for inputting a start command for the water injection cleaning operation, as in the hot water storage type water heater described in the fourth embodiment. It is done. During the water injection cleaning operation, as in the hot water storage type hot water heater 150B described in the second embodiment (see FIG. 7), the water injection microbubble generator intermittently performs the microbubble generation operation.

当該貯湯式給湯機の全体構成は、リモートコントローラの操作部に上記の洗浄開始スイッチが設けられるという点を除き、例えば図7に示した貯湯式給湯機150Bと同様の構成にすることができる。また、制御装置の構成は、上記の洗浄開始スイッチにより注水洗浄運転の開始指令(以下、「注水洗浄開始指令」という)が入力されたときに洗浄制御部が注水洗浄に係る動作制御を開始するという点を除き、例えば実施の形態2で説明した制御装置と同様の構成にすることできる。ここでは、貯湯式給湯機および制御装置それぞれの図示を省略する。   The overall configuration of the hot water storage type hot water heater can be the same as that of the hot water storage type hot water heater 150B shown in FIG. 7, for example, except that the above-described cleaning start switch is provided in the operation unit of the remote controller. Further, the configuration of the control device is such that when a start command for water injection cleaning operation (hereinafter referred to as “water injection cleaning start command”) is input by the above-described cleaning start switch, the cleaning control unit starts operation control related to water injection cleaning. Except for this point, for example, the same configuration as that of the control device described in the second embodiment can be adopted. Here, illustration of each of the hot water storage type water heater and the control device is omitted.

図13は、リモートコントローラから注水洗浄開始指令が入力されたときに注水洗浄運転が開始されるように構成された貯湯式給湯機での注水洗浄運転時の制御手順の一例を概略的に示すフローチャートである。図示の例では、貯湯式給湯機の制御装置がステップS71〜S76を行って注水洗浄運転を制御する。   FIG. 13 is a flowchart schematically showing an example of a control procedure at the time of the water injection cleaning operation in the hot water storage type water heater configured to start the water injection cleaning operation when a water injection cleaning start command is input from the remote controller. It is. In the illustrated example, the control device for the hot water storage type hot water heater performs steps S71 to S76 to control the water injection cleaning operation.

最初に行われるステップS71では、リモートコントローラの洗浄開始スイッチにより注水洗浄開始指令が入力されたか否かを制御装置の洗浄制御部が判断する。このステップS71で注水洗浄開始指令が入力されてはいないと判断されたときには該ステップS71を繰り返し、注水洗浄開始指令が入力されたと判断されたときにはステップS72に進む。なお、図13においては、洗浄開始スイッチにより注水洗浄開始指令が入力されたことを「洗浄開始スイッチON」と表記している。   In step S71 performed first, the cleaning control unit of the control device determines whether or not a water injection cleaning start command is input by the cleaning start switch of the remote controller. If it is determined in step S71 that the water injection cleaning start command has not been input, step S71 is repeated. If it is determined that the water injection cleaning start command has been input, the process proceeds to step S72. In FIG. 13, the fact that a water injection cleaning start command is input by the cleaning start switch is denoted as “cleaning start switch ON”.

次いで行われるステップS72は図9に示したステップS18と同じステップであり、この後に行われるステップS73〜76は図9に示したステップS19〜S22と同じステップであるので、ここではステップS72〜S76の説明を省略する。   Step S72 to be performed next is the same step as step S18 shown in FIG. 9, and steps S73 to S76 performed after this are the same steps as steps S19 to S22 shown in FIG. 9, so here steps S72 to S76 are performed. The description of is omitted.

洗浄開始スイッチから注水洗浄開始指令が入力されたときに上述のようにして注水洗浄運転を行う貯湯式給湯機では、実施の形態1,2で説明した理由と同様の理由から、注水用微小泡発生装置に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。また、リモートコントローラに洗浄開始スイッチが設けられているので、注水洗浄の実施をユーザに喚起することができ、注水洗浄をし忘れるということも防止される。したがって、当該貯湯式給湯機でも、風呂側循環管路内および追焚き用熱交換器内を清浄に保ち易い。   In the hot water storage type water heater that performs the water injection cleaning operation as described above when the water injection cleaning start command is input from the cleaning start switch, for the same reason as described in the first and second embodiments, the water injection microbubbles Compared with the case where the generating device continuously performs the microbubble generation operation, the cleaning effect by the microbubbles can be enhanced. In addition, since the cleaning start switch is provided in the remote controller, it is possible to alert the user to perform the water injection cleaning and to prevent the user from forgetting to perform the water injection cleaning. Therefore, even in the hot water storage type water heater, the inside of the bath-side circulation line and the inside of the reheating heat exchanger can be easily kept clean.

実施の形態6.
本発明の貯湯式給湯機は、ユーザからの指令に応じて循環洗浄運転と注水洗浄運転とを連続的に行うように構成することもできる。この場合、リモートコントローラには、洗浄運転の開始指令を入力するための入力スイッチ(以下、「洗浄開始スイッチ」という)が設けられる。循環洗浄運転時には、実施の形態4で説明した貯湯式給湯機におけるように、循環用微小泡発生装置が微小泡発生動作を間欠的に行う。同様に、注水洗浄運転時には、実施の形態5で説明した貯湯式給湯機におけるように、注水用微小泡発生装置が微小泡発生動作を間欠的に行う。
Embodiment 6 FIG.
The hot water storage type water heater of the present invention can also be configured to continuously perform the circulation cleaning operation and the water injection cleaning operation in accordance with a command from the user. In this case, the remote controller is provided with an input switch (hereinafter referred to as “cleaning start switch”) for inputting a cleaning operation start command. During the circulation cleaning operation, as in the hot water storage type hot water heater described in the fourth embodiment, the circulation microbubble generator intermittently performs the microbubble generation operation. Similarly, during the water injection cleaning operation, as in the hot water storage type hot water heater described in the fifth embodiment, the water injection microbubble generator intermittently performs the microbubble generation operation.

当該貯湯式給湯機の全体構成は、リモートコントローラの操作部に上記の洗浄開始スイッチが設けられるという点を除き、例えば図10に示した貯湯式給湯機150Cと同様の構成にすることができる。また、制御装置の構成は、上記の洗浄開始スイッチにより洗浄運転の開始指令(以下、「洗浄開始指令」という)が入力されたときに洗浄制御部が循環洗浄に係る動作制御を開始し、循環洗浄運転が終了すると洗浄制御部が注水洗浄に係る動作制御を開始するという点を除き、例えば実施の形態3で説明した制御装置と同様の構成にすることできる。ここでは、貯湯式給湯機および制御装置それぞれの図示を省略する。   The overall configuration of the hot water storage type hot water heater can be the same as that of the hot water storage type hot water heater 150C shown in FIG. 10, for example, except that the above-described cleaning start switch is provided in the operation unit of the remote controller. Further, the configuration of the control device is such that when a cleaning operation start command (hereinafter referred to as “cleaning start command”) is input by the above-described cleaning start switch, the cleaning control unit starts operation control related to the circulating cleaning, and the circulation Except for the point that the cleaning control unit starts operation control related to the water injection cleaning when the cleaning operation ends, for example, the same configuration as the control device described in the third embodiment can be adopted. Here, illustration of each of the hot water storage type water heater and the control device is omitted.

図14は、リモートコントローラから洗浄開始指令が入力されたときに循環洗浄運転と注水洗浄運転とを連続的に行うように構成された貯湯式給湯機での洗浄運転時の制御手順の一例を概略的に示すフローチャートである。   FIG. 14 schematically shows an example of a control procedure at the time of a cleaning operation in a hot water storage type water heater configured to continuously perform a circulation cleaning operation and a water injection cleaning operation when a cleaning start command is input from a remote controller. FIG.

図示の例では、貯湯式給湯機の制御装置がステップS81〜S90を行って循環洗浄運転を制御した後、ステップS91〜S95を行って注水洗浄運転を制御する。循環洗浄運転の制御に係るステップS81〜S90は図12に示したステップS51〜S60と同じであり、注水洗浄運転の制御に係るステップS91〜S95は図13に示したステップS72〜S76と同じであるので、ここでは各ステップの説明を省略する。   In the illustrated example, the controller for the hot water storage type hot water heater performs steps S81 to S90 to control the circulation cleaning operation, and then performs steps S91 to S95 to control the water injection cleaning operation. Steps S81 to S90 related to the control of the circulation cleaning operation are the same as steps S51 to S60 shown in FIG. 12, and steps S91 to S95 related to the control of the water injection cleaning operation are the same as steps S72 to S76 shown in FIG. Therefore, the description of each step is omitted here.

上述のようにして循環洗浄運転と注水洗浄運転とを連続して行う貯湯式給湯機では、実施の形態1,2で説明した理由と同様の理由から、循環用微小泡発生装置および注水用微小泡発生装置の各々に微小泡発生動作を連続的に行わせた場合に比べ、微小泡による洗浄効果を高めることができる。また、リモートコントローラに洗浄開始スイッチが設けられているので、洗浄の実施をユーザに喚起することができ、循環洗浄および注水洗浄をし忘れるということも防止される。したがって、当該貯湯式給湯機でも、風呂側循環管路内および追焚き用熱交換器内を清浄に保ち易い。   In the hot water storage type hot water heater that continuously performs the circulation cleaning operation and the water injection cleaning operation as described above, for the same reason as described in the first and second embodiments, the circulation microbubble generator and the water injection micro Compared with the case where each of the foam generating devices is continuously operated to generate micro bubbles, the cleaning effect by the micro bubbles can be enhanced. In addition, since the remote controller is provided with a cleaning start switch, it is possible to alert the user to perform the cleaning, and it is possible to prevent the user from forgetting to perform the circulation cleaning and the water injection cleaning. Therefore, even in the hot water storage type water heater, the inside of the bath-side circulation line and the inside of the reheating heat exchanger can be easily kept clean.

以上、本発明の貯湯式給湯機について実施の形態を挙げて説明したが、前述のように、本発明は上記の形態に限定されるものではない。例えば、沸上げ運転での湯の沸上げは、ヒートポンプユニットにより行う他に、ガス燃焼装置や貯湯タンク内に配置したヒータにより行うこともできる。また、注水洗浄運転は、実施の形態2で説明したように最大注水量を定めて行う代わりに、最大注水時間を定めて行うこともできる。   As mentioned above, although the hot water storage type hot water heater of the present invention has been described with reference to the embodiment, as described above, the present invention is not limited to the above embodiment. For example, the boiling of hot water in the boiling operation can be performed not only by a heat pump unit but also by a heater disposed in a gas combustion device or a hot water storage tank. Further, the water injection cleaning operation can be performed by determining the maximum water injection time instead of performing the maximum water injection amount as described in the second embodiment.

実施の形態1,3,4,6で説明したように風呂側送水ポンプの起動後に循環用微小泡発生装置を起動させる場合には、実施の形態1で説明したように風呂側循環管路60での往き管60a内が負圧になって該往き管60aからガス導入管51b(図3参照)への浴水の流入が防止されるので、循環用微小泡発生装置51での逆止弁51c(図3参照)を省略することが可能である。ただし、誤操作あるいは誤作動が生じたときの漏水を防止するという観点からは、循環用微小泡発生装置51のガス導入管51bに逆止弁51cを設けた方が好ましい。風呂側送水ポンプの起動前に循環用微小泡発生装置を起動させる場合も、循環用微小泡発生装置51のガス導入管51bに逆止弁51cを設けた方が好ましい。同様のことが、注水用微小泡発生装置87についてもいえる。   As described in the first, third, fourth, and sixth embodiments, when the microbubble generator for circulation is started after the start of the bath-side water pump, the bath-side circulation line 60 is used as described in the first embodiment. Since the inside of the forward pipe 60a has a negative pressure and bath water is prevented from flowing into the gas introduction pipe 51b (see FIG. 3) from the forward pipe 60a, the check valve in the microbubble generator 51 for circulation is used. It is possible to omit 51c (see FIG. 3). However, from the viewpoint of preventing water leakage when an erroneous operation or malfunction occurs, it is preferable to provide a check valve 51c in the gas introduction pipe 51b of the microbubble generator 51 for circulation. Even when the microbubble generator for circulation is started before the bath-side water pump is started, it is preferable to provide a check valve 51c in the gas introduction pipe 51b of the microbubble generator for circulation 51. The same is true for the water injection microbubble generator 87.

また、本発明の貯湯式給湯機には、「自動洗浄モード」と「ユーザ指定洗浄モード」とを並設することもできる。例えば、「自動洗浄モード」が選択されたときには、実施の形態1、実施の形態2、または実施の形態3で説明したように、浴水の水位が洗浄開始水位にまで低下すると循環洗浄運転または注水洗浄運転が自動的に開始され、「ユーザ指定洗浄モード」が選択されると、実施の形態1、実施の形態2、または実施の形態3で説明したように、洗浄開始スイッチから洗浄開始指令が入力されたときに循環洗浄運転または注水洗浄運転が開始されるように貯湯式給湯機を構成することができる。例えば、リモートコントローラに「洗浄モード選択スイッチ」を設け、該「洗浄モード選択スイッチ」をユーザが適宜操作して「自動洗浄モード」または「ユーザ指定洗浄モード」を選択するように構成される。   The hot water storage type water heater of the present invention can be provided with an “automatic cleaning mode” and a “user-specified cleaning mode”. For example, when the “automatic cleaning mode” is selected, as described in the first embodiment, the second embodiment, or the third embodiment, when the bath water level drops to the cleaning start water level, the circulation cleaning operation or When the water injection cleaning operation is automatically started and the “user-specified cleaning mode” is selected, a cleaning start command is issued from the cleaning start switch as described in the first embodiment, the second embodiment, or the third embodiment. The hot water storage type hot water supply apparatus can be configured such that the circulation cleaning operation or the water injection cleaning operation is started when the is input. For example, a “cleaning mode selection switch” is provided in the remote controller, and the “cleaning mode selection switch” is appropriately operated by the user to select “automatic cleaning mode” or “user-specified cleaning mode”.

循環洗浄運転については、循環用微小泡発生装置に微小泡発生動作を間欠的に行わせる循環洗浄間欠運転モードと、循環用微小泡発生装置に微小泡発生動作を連続的に行わせる循環洗浄連続運転モードとを設けることもできる。例えば、リモートコントローラに「循環洗浄モード選択スイッチ」を設け、該「循環洗浄モード選択スイッチ」をユーザが適宜操作して「循環洗浄間欠運転モード」または「循環洗浄連続運転モード」を選択するように構成することができる。このように貯湯式給湯機を構成した場合には、リモートコントローラで上記の「循環洗浄間欠運転モード」が選択されると当該リモートコントローラから間欠運転指令が入力され、「循環洗浄連続運転モード」が選択されると当該リモートコントローラから連続運転指令が入力される。   For the circulation cleaning operation, the circulation cleaning intermittent operation mode in which the microbubble generation device for the circulation is intermittently performed and the microbubble generation operation for the circulation is continuously performed in the circulation microbubble generation device. An operation mode can also be provided. For example, a “circulation cleaning mode selection switch” is provided in the remote controller, and the user selects the “circulation cleaning intermittent operation mode” or “circulation cleaning continuous operation mode” by appropriately operating the “circulation cleaning mode selection switch”. Can be configured. When a hot water storage type hot water heater is configured in this way, when the above-mentioned “circulation cleaning intermittent operation mode” is selected by the remote controller, an intermittent operation command is input from the remote controller, and the “circulation cleaning continuous operation mode” is set. When selected, a continuous operation command is input from the remote controller.

上記の間欠運転指令を受けた洗浄制御部は、循環用微小泡発生装置に微小泡発生動作を間欠的に行わせて循環洗浄運転を行い、上記の連続運転指令を受けた洗浄制御部は、循環用微小泡発生装置に微小泡発生動作を連続的に行わせて循環洗浄運転を行う。循環洗浄連続運転モードは、例えばユーザが浴水中に洗浄剤を投入してから行う循環洗浄モードとして好適である。本発明については、上述した以外にも種々の変形、修飾、組み合わせ等が可能である。   The cleaning control unit that has received the intermittent operation command performs the cyclic cleaning operation by causing the microbubble generator for circulation to intermittently perform the microbubble generation operation, and the cleaning control unit that has received the continuous operation command Circulating washing operation is performed by causing the circulating microbubble generator to continuously perform microbubble generating operation. The circulating cleaning continuous operation mode is suitable as a circulating cleaning mode that is performed after the user puts the cleaning agent into the bath water, for example. The present invention can be variously modified, modified and combined in addition to the above.

本発明の貯湯式給湯機は、家庭用または業務用の給湯機として好適に用いることができる。   The hot water storage type hot water heater of the present invention can be suitably used as a hot water heater for home use or business use.

10 ヒートポンプユニット
20 貯湯タンク
30 給水管路
40 貯湯用循環管路
45 タンク側送水ポンプ
50 タンク側循環管路
51 循環用微小泡発生装置
53 フロースイッチ
55 水位センサ
57 風呂側送水ポンプ
60 風呂側循環管路
70 追焚き用熱交換器
75 第1給湯管路
80a 風呂側湯水混合弁
80b 一般側湯水混合弁
83 注水電磁弁
85 流量センサ
87 注水用微小泡発生装置
90 第2給湯管路
95 第3給湯管路
103 制御部
103e 洗浄制御部
110 制御装置
120 タンクユニット
130 リモートコントローラ
150A,150B,150C 貯湯式給湯機
170 浴槽
170a 浴水
BL 風呂用給湯管路
DESCRIPTION OF SYMBOLS 10 Heat pump unit 20 Hot water storage tank 30 Water supply line 40 Circulation line for hot water storage 45 Tank side water supply pump 50 Tank side circulation line 51 Microbubble generator 53 for circulation 53 Flow switch 55 Water level sensor 57 Bath side water supply pump 60 Bath side circulation line Path 70 Heat exchanger for reheating 75 First hot water supply line 80a Bath side hot water mixing valve 80b General side hot water mixing valve 83 Water injection solenoid valve 85 Flow rate sensor 87 Water injection microbubble generator 90 Second hot water supply line 95 Third hot water supply line Pipe line 103 Control part 103e Cleaning control part 110 Control apparatus 120 Tank unit 130 Remote controller 150A, 150B, 150C Hot water storage type hot water heater 170 Bathtub 170a Bath water BL Hot water supply pipe for bath

Claims (5)

貯湯タンクに貯留された湯を浴槽に供給し、該浴槽内の浴水が温度低下したときには、前記貯湯タンクと追焚き用熱交換器とに接続されたタンク側循環管路に前記貯湯タンク内の湯を流すと共に、前記浴槽と前記追焚き用熱交換器とに接続された風呂側循環管路に前記浴水を流し、前記タンク側循環管路を流れる湯と前記風呂側循環管路を流れる浴水との間で前記追焚き用熱交換器により熱交換して前記浴水を追い焚きすることができる貯湯式給湯機であって、
前記風呂側循環管路に前記浴槽内の浴水を循環させる風呂側送水ポンプと、
前記風呂側循環管路での前記追焚き用熱交換器よりも上流側で該風呂側循環管路内の浴水中に微小泡を生じさせる循環用微小泡発生装置と、
前記風呂側送水ポンプおよび前記循環用微小泡発生装置の動作を制御し、前記風呂側循環管路に前記浴水が流れているときに前記循環用微小泡発生装置に微小泡発生動作を間欠的に行わせることができる洗浄制御部と、
を有することを特徴とする貯湯式給湯機。
When hot water stored in the hot water storage tank is supplied to the bathtub and the temperature of the bath water in the bathtub drops, the tank side circulation line connected to the hot water storage tank and the reheating heat exchanger is connected to the hot water storage tank. And flowing the bath water into the bath-side circulation line connected to the bathtub and the heat exchanger for reheating, and the hot water flowing through the tank-side circulation line and the bath-side circulation line A hot water storage type water heater capable of exchanging heat between the flowing bath water and the bath water by exchanging heat with the additional heat exchanger,
A bath-side water supply pump for circulating the bath water in the bathtub to the bath-side circulation conduit;
A microbubble generator for circulation that generates microbubbles in the bath water in the bath-side circulation line upstream of the reheating heat exchanger in the bath-side circulation line;
The operation of the bath-side water pump and the circulation micro-bubble generator is controlled, and the micro-bubble generation operation is intermittently performed on the circulation micro-bubble generator when the bath water is flowing through the bath-side circulation pipeline. A cleaning control unit that can be
A hot water storage type water heater characterized by comprising:
貯湯タンクに貯留された湯を浴槽に供給し、該浴槽内の浴水が温度低下したときには、前記貯湯タンクと追焚き用熱交換器とに接続されたタンク側循環管路に前記貯湯タンク内の湯を流すと共に、前記浴槽と前記追焚き用熱交換器とに接続された風呂側循環管路に前記浴水を流し、前記タンク側循環管路を流れる湯と前記風呂側循環管路を流れる浴水との間で前記追焚き用熱交換器により熱交換して前記浴水を追い焚きすることができる貯湯式給湯機であって、
前記貯湯タンクに貯留された湯を湯水混合弁に導き、該湯水混合弁で水と混合して前記風呂側循環管路に注水することができる風呂用給湯管路と、
該風呂用給湯管路での前記湯水混合弁の下流側で前記風呂用給湯管路を開閉する注水電磁弁と、
前記風呂用給湯管路での前記注水電磁弁よりも下流側で該風呂用給湯管路内の湯水中に微小泡を生じさせる注水用微小泡発生装置と、
前記注水電磁弁および前記注水用微小泡発生装置の動作を制御し、前記風呂用給湯管路から前記風呂側循環管路に湯水が流れているときに前記注水用微小泡発生装置に微小泡発生動作を間欠的に行わせることができる洗浄制御部と、
を有することを特徴とする貯湯式給湯機。
When hot water stored in the hot water storage tank is supplied to the bathtub and the temperature of the bath water in the bathtub drops, the tank side circulation line connected to the hot water storage tank and the reheating heat exchanger is connected to the hot water storage tank. And flowing the bath water into the bath-side circulation line connected to the bathtub and the heat exchanger for reheating, and the hot water flowing through the tank-side circulation line and the bath-side circulation line A hot water storage type water heater capable of exchanging heat between the flowing bath water and the bath water by exchanging heat with the additional heat exchanger,
Hot water stored in the hot water storage tank is led to a hot and cold water mixing valve, mixed with water with the hot and cold water mixing valve and poured into the bath side circulation pipe,
A water injection solenoid valve for opening and closing the hot water supply pipe for bath on the downstream side of the hot water mixing valve in the hot water supply pipe for bath;
A microbubble generator for pouring water that generates microbubbles in the hot water in the hot water supply pipe for the bath on the downstream side of the water injection solenoid valve in the hot water supply pipe for the bath;
Controls the operation of the water injection solenoid valve and the water injection micro-bubble generator, and micro-bubbles are generated in the water injection micro-bubble generator when hot water is flowing from the bath hot water supply pipe to the bath-side circulation pipe A cleaning control unit capable of intermittent operation;
A hot water storage type water heater characterized by comprising:
貯湯タンクに貯留された湯を浴槽に供給し、該浴槽内の浴水が温度低下したときには、前記貯湯タンクと追焚き用熱交換器とに接続されたタンク側循環管路に前記貯湯タンク内の湯を流すと共に、前記浴槽と前記追焚き用熱交換器とに接続された風呂側循環管路に前記浴水を流し、前記タンク側循環管路を流れる湯と前記風呂側循環管路を流れる浴水との間で前記追焚き用熱交換器により熱交換して前記浴水を追い焚きすることができる貯湯式給湯機であって、
前記風呂側循環管路に前記浴槽内の浴水を循環させる風呂側送水ポンプと、
前記風呂側循環管路での前記追焚き用熱交換器よりも上流側の区間で該風呂側循環管路内の浴水中に微小泡を生じさせる循環用微小泡発生装置と、
前記貯湯タンクに貯留された湯を湯水混合弁に導き、該湯水混合弁で水と混合して前記風呂側循環管路に注水することができる風呂用給湯管路と、
該風呂用給湯管路での前記湯水混合弁の下流側で該風呂用給湯管路を開閉する注水電磁弁と、
前記風呂用給湯管路での前記注水電磁弁よりも下流側で該風呂用給湯管路内の湯水中に微小泡を生じさせる注水用微小泡発生装置と、
前記風呂側送水ポンプおよび前記循環用微小泡発生装置の動作を制御して、前記風呂側循環管路に前記浴水が流れているときに前記循環用微小泡発生装置に微小泡発生動作を間欠的に行わせることができると共に、前記注水電磁弁および前記注水用微小泡発生装置の動作を制御して、前記風呂用給湯管路から前記風呂側循環管路に湯水が流れているときに前記注水用微小泡発生装置に微小泡発生動作を間欠的に行わせることができる洗浄制御部と、
を有することを特徴とする貯湯式給湯機。
When hot water stored in the hot water storage tank is supplied to the bathtub and the temperature of the bath water in the bathtub drops, the tank side circulation line connected to the hot water storage tank and the reheating heat exchanger is connected to the hot water storage tank. And flowing the bath water into the bath-side circulation line connected to the bathtub and the heat exchanger for reheating, and the hot water flowing through the tank-side circulation line and the bath-side circulation line A hot water storage type water heater capable of exchanging heat between the flowing bath water and the bath water by exchanging heat with the additional heat exchanger,
A bath-side water supply pump for circulating the bath water in the bathtub to the bath-side circulation conduit;
A microbubble generator for circulation that generates microbubbles in the bath water in the bath-side circulation pipeline in a section upstream of the reheating heat exchanger in the bath-side circulation pipeline;
Hot water stored in the hot water storage tank is led to a hot and cold water mixing valve, mixed with water with the hot and cold water mixing valve and poured into the bath side circulation pipe,
A water injection solenoid valve for opening and closing the hot water supply pipe for the bath on the downstream side of the hot water mixing valve in the hot water supply pipe for the bath;
A microbubble generator for pouring water that generates microbubbles in the hot water in the hot water supply pipe for the bath on the downstream side of the water injection solenoid valve in the hot water supply pipe for the bath;
By controlling the operation of the bath-side water supply pump and the circulating micro-bubble generating device, the micro-bubble generating operation is intermittently performed in the circulating micro-bubble generating device when the bath water is flowing through the bath-side circulation pipeline. And can control the operation of the water injection solenoid valve and the water injection microbubble generator, and when hot water is flowing from the bath hot water supply line to the bath side circulation line, A cleaning control unit capable of causing the microbubble generator for water injection to intermittently perform the microbubble generation operation;
A hot water storage type water heater characterized by comprising:
前記洗浄制御部は、前記循環用微小泡発生装置での微小泡発生動作の動作時間および該循環用微小泡発生装置での微小泡発生動作の動作間隔の各々と、前記注水用微小泡発生装置での微小泡発生動作の動作時間および該注水用微小泡発生装置での微小泡発生動作の動作間隔の各々とを、互いに異ならせることを特徴とする請求項3に記載の貯湯式給湯機。   The cleaning control unit includes an operation time of a microbubble generation operation in the circulation microbubble generator, an operation interval of a microbubble generation operation in the circulation microbubble generator, and the water injection microbubble generator. The hot water storage type hot water supply apparatus according to claim 3, wherein the operation time of the microbubble generation operation in the water and the operation interval of the microbubble generation operation in the water injection microbubble generator are different from each other. 前記洗浄制御部への指令を入力することができるリモートコントローラを更に備え、
該リモートコントローラは、前記循環用微小泡発生装置に微小泡発生動作を間欠的に行わせる間欠運転指令と、前記循環用微小泡発生装置に微小泡発生動作を連続的に行わせる連続運転指令とを入力することができ、
前記洗浄制御部は、前記リモートコントローラから前記間欠運転指令が入力された場合には、前記風呂側循環管路に前記浴水が流れているときに前記循環用微小泡発生装置に微小泡発生動作を間欠的に行わせ、前記リモートコントローラから前記連続運転指令が入力された場合には、前記風呂側循環管路に前記浴水が流れているときに前記循環用微小泡発生装置に微小泡発生動作を連続的に行わせる、
ことを特徴とする請求項1,3,または4のいずれか1つに記載の貯湯式給湯機。
A remote controller capable of inputting a command to the cleaning control unit;
The remote controller includes an intermittent operation command for causing the microbubble generating device for circulation to intermittently perform a microbubble generating operation, and a continuous operation command for causing the microbubble generating device for circulation to continuously perform a microbubble generating operation; Can be entered,
When the intermittent operation command is input from the remote controller, the cleaning control unit is configured to generate a microbubble in the microbubble generator for circulation when the bath water is flowing through the bath-side circulation pipe. When the continuous operation command is input from the remote controller, microbubbles are generated in the circulating microbubble generator when the bath water is flowing in the bath-side circulation pipeline. Make the action run continuously,
The hot water storage type hot water supply device according to any one of claims 1, 3, and 4.
JP2009028941A 2009-02-10 2009-02-10 Hot water storage water heater Active JP5247511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028941A JP5247511B2 (en) 2009-02-10 2009-02-10 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028941A JP5247511B2 (en) 2009-02-10 2009-02-10 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2010185600A JP2010185600A (en) 2010-08-26
JP5247511B2 true JP5247511B2 (en) 2013-07-24

Family

ID=42766368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028941A Active JP5247511B2 (en) 2009-02-10 2009-02-10 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP5247511B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655722B2 (en) * 2011-07-05 2015-01-21 三菱電機株式会社 Hot water storage water heater
JP5819217B2 (en) * 2012-02-22 2015-11-18 株式会社パロマ Bath water heater
JP6508068B2 (en) * 2016-01-14 2019-05-08 三菱電機株式会社 Bathtub cleaning apparatus and water heater
CN108344167A (en) * 2018-04-02 2018-07-31 江苏啄木鸟节能科技有限公司 A kind of spiral electromagnetic vortex heating stove

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300190A (en) * 1997-04-22 1998-11-13 Matsushita Electric Works Ltd Piping-washing structure of circulation device for bathtub
JPH11239770A (en) * 1998-02-25 1999-09-07 Gastar Corp Method and apparatus for washing piping, method for washing bath water circulation apparatus, and bath water circulation apparatus provided with washing function
JP2003106643A (en) * 2001-09-28 2003-04-09 Toto Ltd Electric water heater
JP2006015285A (en) * 2004-07-02 2006-01-19 Ebara Kiko Kk Water pipe washing method and apparatus therefor
JP2006284030A (en) * 2005-03-31 2006-10-19 Daikin Ind Ltd Bath device
JP4767753B2 (en) * 2006-05-15 2011-09-07 東邦瓦斯株式会社 Fine bubble generator and hot water supply device for bath

Also Published As

Publication number Publication date
JP2010185600A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5173513B2 (en) Micro-bubble generating device and water heater with reheating function using the same
JP2009293884A (en) Water heater with reheating function
JP4798004B2 (en) Heat recovery device for bathroom wastewater
JP5247511B2 (en) Hot water storage water heater
JP5247512B2 (en) Hot water storage water heater
JP5772048B2 (en) Bathtub cleaning equipment
JP5655722B2 (en) Hot water storage water heater
JP5407838B2 (en) Hot water storage water heater
JP5153376B2 (en) Water heater with reheating function
JP5401116B2 (en) Water heater
JP5109819B2 (en) Water heater with chasing function
JP2010190466A (en) Water heater
JP6102781B2 (en) Hot water storage water heater
JP2009236413A (en) Water heater with bathtub hot water supplying function
JP6583148B2 (en) Water heater
JP2009293903A (en) Hot water storage type water heater
JP5381731B2 (en) Bathtub cleaning device and hot water supply device with reheating function provided with the same
JP5440193B2 (en) Hot water storage water heater
JP6848449B2 (en) Hot water heater
JPH11241857A (en) Reheater of bath tub water with water heater
JP5141426B2 (en) Water heater with chasing function
JP5197315B2 (en) Water heater with reheating function
JP6729440B2 (en) Water heater
JP5153398B2 (en) Hot water heater with bathtub hot water supply function
JP6687005B2 (en) Hot water storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250