JP5245137B2 - Aromatic compounds and UV absorbers - Google Patents

Aromatic compounds and UV absorbers Download PDF

Info

Publication number
JP5245137B2
JP5245137B2 JP2008056347A JP2008056347A JP5245137B2 JP 5245137 B2 JP5245137 B2 JP 5245137B2 JP 2008056347 A JP2008056347 A JP 2008056347A JP 2008056347 A JP2008056347 A JP 2008056347A JP 5245137 B2 JP5245137 B2 JP 5245137B2
Authority
JP
Japan
Prior art keywords
aromatic compound
compound represented
formula
group
reference example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008056347A
Other languages
Japanese (ja)
Other versions
JP2009209120A (en
Inventor
靖仁 三宅
秀介 大崎
一 森
朝夫 細田
久次 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2008056347A priority Critical patent/JP5245137B2/en
Publication of JP2009209120A publication Critical patent/JP2009209120A/en
Application granted granted Critical
Publication of JP5245137B2 publication Critical patent/JP5245137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furan Compounds (AREA)
  • Indole Compounds (AREA)

Description

本発明は、芳香族化合物及び紫外線吸収剤に関するものである。   The present invention relates to an aromatic compound and an ultraviolet absorber.

地上に降り注ぐ紫外線はその波長の違いにより中波長のUV−B(290nm〜320nm)ならびに長波長のUV−A(320nm〜400nm)に分けられるが、それぞれ生体やプラスチックなどに様々な影響を及ぼすことが知られている。例えば生体に対しては、UV−Bは皮膚内へ透過することにより水泡の形成や色素の沈着を誘発するとされており、UV−Aは人間の真皮にまで到達することで即時黒化作用を引き起こし、さらには皮膚の老化やガン化を促進させるということが知られている。   Ultraviolet rays falling on the ground can be divided into medium-wavelength UV-B (290 nm to 320 nm) and long-wavelength UV-A (320 nm to 400 nm) depending on the difference in wavelength. It has been known. For example, for the living body, UV-B is said to induce formation of water bubbles and pigmentation by permeating into the skin, and UV-A has an immediate blackening action by reaching the human dermis. It is known to cause aging and canceration of the skin.

また、各種プラスチックに対しては、屋外においては太陽光、そして屋内においては蛍光灯からの紫外線に暴露されることにより、プラスチック中の官能基や残留触媒が励起され、これらはプラスチックの劣化を促進し、その結果、プラスチック自身の寿命を短くする。更に、紫外線は、透明な包装用フィルムにより包装された食品や衣類の該包装フィルムを透過して鮮度の低下や変質を引き起こしている。   For various plastics, exposure to sunlight outdoors and ultraviolet rays from fluorescent lights indoors excites functional groups and residual catalysts in the plastic, which promotes plastic deterioration. As a result, the life of the plastic itself is shortened. Furthermore, the ultraviolet rays permeate through the packaging film of food and clothing packaged with a transparent packaging film, causing a decrease in freshness and alteration.

このように有害な紫外線から生体やプラスチックなどを保護するため、従来サリチル酸誘導体、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、安息香酸誘導体など、主に枯渇資源である原油等を原料とする紫外線吸収剤が利用されてきた。また、天然由来の紫外線吸収剤としては、米ぬか由来物質であるフェルラ酸およびその誘導体が存在している。この米ぬか由来物質であるフェルラ酸等の紫外線吸収剤を化粧品組成物に利用した技術が下記特許文献1に記載されている。   In order to protect living organisms and plastics from such harmful ultraviolet rays, ultraviolet absorbers mainly made from crude oil, which is a depleted resource, such as salicylic acid derivatives, benzophenone derivatives, benzotriazole derivatives, and benzoic acid derivatives have been used. I came. In addition, as a naturally occurring ultraviolet absorber, ferulic acid and its derivatives, which are rice bran-derived substances, exist. Patent Document 1 listed below discloses a technique in which an ultraviolet absorber such as ferulic acid, which is a substance derived from rice bran, is used in a cosmetic composition.

特開2005−15453号公報JP 2005-15453 A

しかしながら、上記サリチル酸誘導体等の原油等を原料とする従来の紫外線吸収剤は、400nm付近の長波長の紫外線を効率的に吸収することができず、また、枯渇資源である原油などを原料とするために今後の原油価格の上昇も懸念されるだけでなく、クリーンな社会の構築を進めるうえで解決していかなくてはならない問題である。   However, conventional ultraviolet absorbers using crude oil such as the salicylic acid derivative as a raw material cannot efficiently absorb ultraviolet rays having a long wavelength around 400 nm, and crude oil as a depleted resource is used as a raw material. Therefore, it is not only a concern about the future rise in crude oil prices, but also a problem that must be solved in order to build a clean society.

また、フェルラ酸およびその誘導体を用いた天然由来の紫外線吸収剤は、中波長のUV−Bに吸収特性が対応しており、長波長のUV−A側に吸収端を有する紫外線吸収剤としては不十分である。   Naturally derived ultraviolet absorbers using ferulic acid and derivatives thereof have absorption characteristics corresponding to medium wavelength UV-B, and as ultraviolet absorbers having an absorption edge on the long wavelength UV-A side. It is insufficient.

本発明は、上記した従来の問題点に鑑みてなされたものであって、広い波長範囲で紫外線を吸収し、かつ天然由来原料を用いた化合物及びこの化合物を用いた紫外線吸収剤の提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a compound that absorbs ultraviolet rays in a wide wavelength range and uses a naturally-derived raw material, and an ultraviolet absorber using the compound. And

上記目的を達成するために、本発明に係る芳香族化合物は、式(1)で表される芳香族化合物である。

Figure 0005245137
式中1,R2,R7およびR8は、水素原子、炭素数1〜40の直鎖もしくは分岐のアルキル基のいずれかを示し、R3,R4,R9およびR10は、水素原子、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセチル基のいずれかを示し、R5およびR11は、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセトキシ基のいずれかを示し、Xは酸素原子またはNHを示す。) In order to achieve the above object, the aromatic compound according to the present invention is an aromatic compound represented by the formula (1) .
Figure 0005245137
(In the formula, R 1 , R 2 , R 7 and R 8 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms, and R 3 , R 4 , R 9 and R 10 are , A hydrogen atom, a hydroxyl group, a linear or branched alkoxyl group having 1 to 40 carbon atoms, or an acetyl group, and R 5 and R 11 are a hydroxyl group, a linear or branched group having 1 to 40 carbon atoms Any one of an alkoxyl group and an acetoxy group in the form of X, and X represents an oxygen atom or NH.)

また、本発明に係る芳香族化合物は、式(2)で表される芳香族化合物である。

Figure 0005245137
(式中R1,R2およびR7は、水素原子、炭素数1〜40の直鎖状もしくは分岐状のアルキル基のいずれかを示し、R3、R4およびR10は、水素原子、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセチル基のいずれかを示し、R5およびR11は、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセトキシ基のいずれかを示し、Xは酸素原子またはNHを示す。) Moreover, the aromatic compound which concerns on this invention is an aromatic compound represented by Formula (2) .
Figure 0005245137
(In the formula, R 1 , R 2 and R 7 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms; R 3 , R 4 and R 10 are a hydrogen atom, R 1 represents a hydroxyl group, a linear or branched alkoxyl group having 1 to 40 carbon atoms, or an acetyl group, and R 5 and R 11 are a hydroxyl group, a linear or branched alkoxyl group having 1 to 40 carbon atoms. Any of an acetoxy group , and X represents an oxygen atom or NH.)

更に、本発明に係る紫外線吸収剤は、前記式(1)及び(2)で表される芳香族化合物を含有することを特徴とするものである。 Furthermore, the ultraviolet absorber according to the present invention is characterized by containing an aromatic compound represented by the above formulas (1) and (2) .

なお、式(3)で表される芳香族化合物は、本発明と関連する芳香族化合物である。

Figure 0005245137
式中1,R2は、水素原子、炭素数1〜40の直鎖もしくは分岐のアルキル基のいずれかを示し、R3,R4およびR6は、水素原子、水酸基、炭素数1〜40の直鎖もしくは分岐のアルコキシル基、アセチル基のいずれかを示し、R5はアミノ基、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセトキシ基のいずれかを示し、Xは酸素原子またはNHを示す。) In addition, the aromatic compound represented by Formula (3) is an aromatic compound relevant to this invention .
Figure 0005245137
(In the formula, R 1 and R 2 represent either a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms, and R 3 , R 4 and R 6 represent a hydrogen atom, a hydroxyl group, or a carbon number of 1; Represents a linear or branched alkoxyl group of -40 or acetyl group, and R 5 represents any of an amino group, a hydroxyl group, a linear or branched alkoxyl group of 1 to 40 carbon atoms, or an acetoxy group. , X represents an oxygen atom or NH.)

本発明に係る紫外線吸収剤によれば、式(1)、(2)のいずれかで示す芳香族化合物を含有するので、広い波長範囲で紫外線を吸収可能であり、かつ非石油由来物質として安定供給可能な桂皮酸誘導体から合成されることから天然由来原料から生成される物質を用いた紫外線吸収剤を提供することができる。 According to the ultraviolet absorbent according to the present invention, since it contains the aromatic compound represented by any one of formulas (1) and (2), it can absorb ultraviolet rays in a wide wavelength range and is stable as a non-petroleum-derived substance. Since it is synthesized from a cinnamic acid derivative that can be supplied, it is possible to provide an ultraviolet absorber using a substance produced from a naturally derived raw material.

本発明の最良の実施形態を以下に説明する。
式(1)、(2)、(3)において、R1,R2,R7およびR8は水素原子、炭素数1〜40、好ましくは1〜20の直鎖状もしくは分岐状のアルキル基のいずれかを示す。炭素数1〜40の直鎖状もしくは分岐状のアルキル基の具体例は、メチル、エチル、プロピル、ブチル、2−メチル−1−ブチル、2−エチル−1−ヘキシル、ラウリル、オクタデシル、エイコシル、イソプロピル、イソブチル、シクロヘキシル、イソノルボルニル、t−ブチル、アダマンチルなどを挙げることができる。
The best embodiment of the present invention will be described below.
In the formulas (1), (2) and (3), R 1 , R 2 , R 7 and R 8 are a hydrogen atom, a linear or branched alkyl group having 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms. Indicates one of the following. Specific examples of the linear or branched alkyl group having 1 to 40 carbon atoms include methyl, ethyl, propyl, butyl, 2-methyl-1-butyl, 2-ethyl-1-hexyl, lauryl, octadecyl, eicosyl, Examples include isopropyl, isobutyl, cyclohexyl, isonorbornyl, t-butyl, adamantyl and the like.

また、式(1)、(2)、(3)において、R3,R4,R6,R9およびR10は、水素原子、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセチル基のいずれかを示す。炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基の具体例は、メトキシ、エトキシ、プロピルオキシ、ブチルオキシ、2−メチル−1−ブトキシ、2−エチル−1−ヘキシルオキシ、ラウリルオキシ、オクタデシルオキシ、エイコシルオキシ等の第一級アルコキシル基、イソプロピルオキシ、イソブトキシ、シクロヘキシルオキシ、イソノルボルニルオキシ等の第二級アルコキシル基、さらにはt−ブトキシ、アダマンチルオキシといった第三級アルコキシル基などを挙げることができる。 In the formulas (1), (2), and (3), R 3 , R 4 , R 6 , R 9 and R 10 are each a hydrogen atom, a hydroxyl group, a linear or branched group having 1 to 40 carbon atoms. It represents either an alkoxyl group or an acetyl group. Specific examples of the linear or branched alkoxyl group having 1 to 40 carbon atoms include methoxy, ethoxy, propyloxy, butyloxy, 2-methyl-1-butoxy, 2-ethyl-1-hexyloxy, lauryloxy, octadecyl Primary alkoxyl groups such as oxy and eicosyloxy, secondary alkoxyl groups such as isopropyloxy, isobutoxy, cyclohexyloxy, and isonorbornyloxy; and tertiary alkoxyl groups such as t-butoxy and adamantyloxy Can be mentioned.

式(1)、(2)、(3)において、R5およびR11は、アミノ基、水酸基、炭素数1〜40の直鎖状、分岐状もしくは環状のアルコキシル基、アセトキシ基のいずれかを示す。アミノ基の具体例は、N,N−ジメチルアミノ基、N−メチルアミノ基など挙げられ、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基の具体例は、上述したR3,R4,R6,R9およびR10の具体例として示したものと同一のものが挙げられる。 In the formulas (1), (2) and (3), R 5 and R 11 are any one of an amino group, a hydroxyl group, a linear, branched or cyclic alkoxyl group having 1 to 40 carbon atoms, and an acetoxy group. Show. Specific examples of the amino group include N, N-dimethylamino group, N-methylamino group and the like. Specific examples of the linear or branched alkoxyl group having 1 to 40 carbon atoms include R 3 and R described above. 4, R 6, R 9 and the same as those shown as specific examples of R 10 can be mentioned.

また式(1)、(2)、(3)において、Xは酸素原子またはNHを示す。   In the formulas (1), (2) and (3), X represents an oxygen atom or NH.

式(1)、(2)、(3)で示す化合物の具体例を以下に挙げるが、本実施形態にかかる芳香族化合物はこれらの化合物に限定されるものではない。尚、以下に示す芳香族化合物においてa,b,c,d,e,h,i,j,k,m,nは0〜40の整数である。

Figure 0005245137
Specific examples of the compounds represented by the formulas (1), (2), and (3) are listed below, but the aromatic compound according to this embodiment is not limited to these compounds. In the aromatic compounds shown below, a, b, c, d, e, h, i, j, k, m, and n are integers from 0 to 40.
Figure 0005245137

Figure 0005245137
Figure 0005245137

Figure 0005245137
Figure 0005245137

式(1)、(2)、(3)に示す芳香族化合物の原料は桂皮酸誘導体であり、多くは天然中に存在する化合物である。具体例として、4−ヒドロキシ桂皮酸、コーヒー酸、フェルラ酸、シナピン酸などが挙げられる。また、前記桂皮酸誘導体は紫外線を吸収する部位である芳香環を有し、かつ非石油由来物質として安定供給可能な化合物群である。   The raw materials of the aromatic compounds represented by the formulas (1), (2) and (3) are cinnamic acid derivatives, and many are compounds existing in nature. Specific examples include 4-hydroxycinnamic acid, caffeic acid, ferulic acid, sinapinic acid and the like. The cinnamic acid derivatives are a group of compounds that have an aromatic ring that is a site that absorbs ultraviolet rays and can be stably supplied as non-petroleum-derived substances.

更に、前記桂皮酸誘導体は、カルボン酸、フェノール性の水酸基、二重結合など、それぞれ反応性の異なる官能基をその分子内に同時に有しているため、反応性の異なる各官能基ごとに、異なる性質を付与することができ、その機能や、融点、溶解性などの物性を比較的自由に設定可能であるという特徴を有する。   Furthermore, since the cinnamic acid derivative has functional groups having different reactivity, such as carboxylic acid, phenolic hydroxyl group and double bond, in the molecule at the same time, for each functional group having different reactivity, Different properties can be imparted, and the properties and physical properties such as melting point and solubility can be set relatively freely.

式(1)、(2)、(3)で示す芳香族化合物はこの桂皮酸誘導体から得られ、原料である桂皮酸誘導体より官能基の数が多くなっていることから、より物性や機能の制御が容易となる。   The aromatic compounds represented by the formulas (1), (2), and (3) are obtained from this cinnamic acid derivative and have a larger number of functional groups than the cinnamic acid derivative as a raw material. Control becomes easy.

こうした天然由来の桂皮酸の1つであるフェルラ酸およびその誘導体のフェルラ酸エステル類は、320nm付近に最大吸収を持ち、360nm付近にその吸収端を有する化合物である。このことから、これらの化合物は中波長のUV−Bに対する天然の紫外線吸収剤として注目されてきた。   Ferulic acid, which is one of these naturally occurring cinnamic acids, and ferulic acid esters of derivatives thereof are compounds having a maximum absorption near 320 nm and an absorption edge near 360 nm. Therefore, these compounds have attracted attention as natural ultraviolet absorbers for medium wavelength UV-B.

本実施形態に係る式(1)、(2)及び本発明と関連する式(3)に示す芳香族化合物は、これらフェルラ酸ならびにフェルラ酸エステル類と同様320nm付近にその最大吸収波長を有するが、その吸光度はフェルラ酸及びフェルラ酸誘導体より大きくなっており、またその吸収端は400nm付近にまで達する。さらに鋭意検討することにより、その吸光度を最大限まで大きくするとともに、従来はほとんど存在しなかったような450nm付近の紫外線まで吸収可能な物質の開発に成功した。 The aromatic compounds represented by the formulas (1) and (2) according to the present embodiment and the formula (3) related to the present invention have the maximum absorption wavelength in the vicinity of 320 nm like these ferulic acids and ferulic acid esters. The absorbance is higher than that of ferulic acid and ferulic acid derivatives, and the absorption edge reaches around 400 nm. Furthermore, through intensive studies, the inventors have succeeded in developing a substance capable of absorbing the ultraviolet light near 450 nm, which has been increased to the maximum, and has hardly existed in the past.

すなわち、有害な紫外線である長波長UV−Aおよび中波長であるUV−Bを同時に効率よく吸収する紫外線吸収剤の開発を行い、また、近年需要の高まっている400nm以上の長波長領域の紫外線を効率的に吸収する材料の開発に成功したのである。   That is, the development of an ultraviolet absorber that efficiently absorbs harmful UV rays, such as long-wavelength UV-A and medium-wavelength UV-B, at the same time. We have succeeded in developing a material that efficiently absorbs water.

本発明と関連する式(3)に示す芳香族化合物を製造する際には、例えば、前記桂皮酸誘導体を金属触媒の存在下溶媒中に分散し、所定時間還流を行った後、析出固体を濾別し、得られた溶液を減圧下で濃縮する。この濃縮により得られた残査を精製することにより第1中間生成物を得、該第1中間生成物を塩基性溶媒に溶解し、無水酢酸等の保護試薬を滴下し、その後室温で攪拌を行う。所定時間経過後加水し、塩酸などで酸性化し、有機溶媒で抽出、水洗を行う。得られた有機層を減圧蒸留することで第2中間生成物を得る。 In producing the aromatic compound represented by the formula (3) related to the present invention , for example, the cinnamic acid derivative is dispersed in a solvent in the presence of a metal catalyst and refluxed for a predetermined time. Filter off and concentrate the resulting solution under reduced pressure. By purifying the residue obtained by this concentration, a first intermediate product is obtained, the first intermediate product is dissolved in a basic solvent, a protective reagent such as acetic anhydride is added dropwise, and then stirred at room temperature. Do. Water is added after a predetermined time, acidified with hydrochloric acid, etc., extracted with an organic solvent, and washed with water. The obtained organic layer is distilled under reduced pressure to obtain a second intermediate product.

得られた第2中間生成物をDDQなどの酸化剤とともに溶媒に溶解し、所定時間還流を行った後、析出した固体を濾別することで得られた溶液を減圧下で濃縮する。この濃縮により得られた残査を精製することにより目的生成物としての式(3)で示す芳香族化合物を得ることができる。 The obtained second intermediate product is dissolved in a solvent together with an oxidizing agent such as DDQ, refluxed for a predetermined time, and then the solution obtained by filtering the precipitated solid is concentrated under reduced pressure. By purifying the residue obtained by this concentration, the aromatic compound represented by the formula (3) as the target product can be obtained.

更に、上記方法により得られた式(3)で示す芳香族化合物について、該芳香族化合物の有する所定の官能基を他の官能基に置換する反応を行うことによって、式(3)で示す他の芳香族化合物を得ることができる。 Further, the aromatic compound represented by the formula (3) obtained by the above method is subjected to a reaction for substituting a predetermined functional group of the aromatic compound with another functional group, whereby another compound represented by the formula (3) is obtained. The aromatic compound can be obtained.

本実施形態に係る式(1)に示す芳香族化合物を製造方法は、上記方法により得られた式(3)に示す芳香族化合物を溶媒に溶解し、酸化剤を加え攪拌を行う。その後、溶媒を留去し、得られた残査を精製することにより目的生成物としての式(1)で示す芳香族化合物を得ることができる。 In the method for producing an aromatic compound represented by the formula (1) according to this embodiment, the aromatic compound represented by the formula (3) obtained by the above method is dissolved in a solvent, and an oxidant is added and stirred. Then, the aromatic compound shown by Formula (1) as a target product can be obtained by distilling a solvent off and refine | purifying the obtained residue.

本実施形態に係る式(1)、(2)及び本発明と関連する式(3)に示す芳香族化合物は、紫外線吸収剤としての利用が可能であり、太陽光や蛍光灯にさらされるような各種プラスチック(合成樹脂)に所定量混合することで、広い波長範囲の紫外線を吸収可能となり、該プラスチックの劣化などを抑止可能である。具体的には、ガラス代替用の透明プラスチック、もしくはそのコーティング剤、内外装用の樹脂、または包装用フィルムなどに本実施形態に係る式(1)、(2)、(3)に示す芳香族化合物を所定量混合することなどを挙げることができる。 The aromatic compounds represented by the formulas (1) and (2) according to the present embodiment and the formula (3) related to the present invention can be used as an ultraviolet absorber and exposed to sunlight or fluorescent lamps. By mixing a predetermined amount with various plastics (synthetic resins), it becomes possible to absorb ultraviolet rays in a wide wavelength range, and to suppress deterioration of the plastics. Specifically, the aromatic compound represented by the formulas (1), (2), and (3) according to the present embodiment is used for a transparent plastic for glass replacement, or a coating agent thereof, a resin for interior and exterior, or a packaging film. And the like in a predetermined amount.

また、本実施形態に係る式(1)、(2)及び本発明と関連する式(3)に示す芳香族化合物は、近年需要の増えている配線基盤の積層化に伴う裏写り防止剤(光遮蔽剤)としての用途も期待できる。 In addition, the aromatic compound represented by the formulas (1) and (2) according to the present embodiment and the formula (3) related to the present invention is an anti-show-through agent that accompanies the lamination of wiring boards, which has been increasing in demand in recent years ( Use as a light shielding agent) can also be expected.

以下の参考例、実施例は本発明の内容を詳細に説明しているが、これらは本発明の内容を制限するものではない。 The following reference examples and examples describe the contents of the present invention in detail, but these do not limit the contents of the present invention.

参考例1Reference example 1

下記化学式(4)で表される芳香族化合物の合成。

Figure 0005245137
フェルラ酸メチル2.1g、Ag2O 1.0gをトルエン15mLおよびアセトン10mLの混合溶液中に分散し、12時間不活性ガス中で還流した。反応溶液を室温まで戻した後、析出固体を濾別し、得られた溶液を減圧下で濃縮した。得られた残査をシリカゲルカラムクロマトグラフィーで精製することにより第1中間生成物1.0gを得た。 Synthesis of an aromatic compound represented by the following chemical formula (4).
Figure 0005245137
2.1 g of methyl ferulate and 1.0 g of Ag 2 O were dispersed in a mixed solution of 15 mL of toluene and 10 mL of acetone and refluxed in an inert gas for 12 hours. After returning the reaction solution to room temperature, the precipitated solid was filtered off, and the resulting solution was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 1.0 g of a first intermediate product.

この第1中間生成物0.5gをピリジン10mLに溶解し、無水酢酸2mLを滴下した後室温で攪拌を行った。2時間後水100mLを加え、さらに6N−HClで酸性化した後酢酸エチルで抽出、水洗を行った。得られた有機層を硫酸マグネシウムで乾燥させた後、減圧蒸留することで第2中間生成物0.55gを得た。   0.5 g of this first intermediate product was dissolved in 10 mL of pyridine, and 2 mL of acetic anhydride was added dropwise, followed by stirring at room temperature. Two hours later, 100 mL of water was added, and the mixture was further acidified with 6N-HCl, extracted with ethyl acetate, and washed with water. The obtained organic layer was dried over magnesium sulfate and then distilled under reduced pressure to obtain 0.55 g of a second intermediate product.

得られた第2中間生成物0.5gおよびDDQ0.3gをジオキサン100mLに溶解し、20時間還流した。室温まで戻した後に析出固体を濾別し、得られた溶液を減圧下で濃縮した。得られた残査をシリカゲルカラムクロマトグラフィーで精製することにより目的生成物としての式(4)に示す芳香族化合物0.3gを得た。得られた芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.84 (1H, d, J=2.0 Hz), 7.81 (1H, d, J=16.0 Hz), 7.79 (1H, d, J=1.2 Hz), 7.68 (1H, dd, J=2.0, 8.4 Hz), 7.15 (1H, d, J=8.4 Hz), 7.03 (1H, d, J=1.2 Hz), 6.47 (1H, d, J=16.0 Hz), 4.05 (3H, s), 3.96 (3H, s), 3.94 (3H, s), 3.84 (3H, s), 2.35 (3H, s); 13C NMR (100MHz, CDCl3) δ 168.62, 167.42, 163.97, 160.61, 150.75, 145.36, 145.33, 144.25, 141.57, 131.56, 129.06, 127.63, 122.61, 122.41, 117.22, 116.19, 113.82, 109.24, 106.100, 56.12, 51.86, 51.72, 20.68
0.5 g of the obtained second intermediate product and 0.3 g of DDQ were dissolved in 100 mL of dioxane and refluxed for 20 hours. After returning to room temperature, the precipitated solid was filtered off, and the resulting solution was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.3 g of an aromatic compound represented by the formula (4) as a target product. The spectrum data of the obtained aromatic compound are as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.84 (1H, d, J = 2.0 Hz), 7.81 (1H, d, J = 16.0 Hz), 7.79 (1H, d, J = 1.2 Hz), 7.68 (1H, dd, J = 2.0, 8.4 Hz), 7.15 (1H, d, J = 8.4 Hz), 7.03 (1H, d, J = 1.2 Hz), 6.47 (1H, d, J = 16.0 Hz), 4.05 (3H, s), 3.96 (3H, s), 3.94 (3H, s), 3.84 (3H, s), 2.35 (3H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 168.62, 167.42, 163.97, 160.61, 150.75 , 145.36, 145.33, 144.25, 141.57, 131.56, 129.06, 127.63, 122.61, 122.41, 117.22, 116.19, 113.82, 109.24, 106.100, 56.12, 51.86, 51.72, 20.68

参考例2Reference example 2

下記化学式(5)で表される芳香族化合物の合成。

Figure 0005245137
Synthesis of an aromatic compound represented by the following chemical formula (5).
Figure 0005245137

フェルラ酸メチルに替えて、フェルラ酸エチルを原料に用いた以外は上記参考例1と同様に反応を行い、目的生成物としての式(5)に示す芳香族化合物を得た。得られた芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.83-7.81 (2H, m), 7.80 (1H, d, J=16.0 Hz), 7.68 (1H, dd, J=2.0, 8.4 Hz), 7.15 (1H, d, J=8.4 Hz), 7.05 (1H, d, J=1.6 Hz), 6.46 (1H, d, J=16.0 Hz), 4.44 (2H, q, 7.2 Hz), 4.30 (2H, q, 7.2 Hz), 4.06 (3H, s), 3.93 (3H, s), 2.35 (3H, s), 1.44 (3H, t, 7.2 Hz), 1.37 (3H, t, 7.2 Hz); 13C NMR (100MHz, CDCl3) δ 168.65, 167.05, 163.57, 160.53, 150.75, 145.35, 145.18, 144.29, 141.54, 131.62, 129.18, 127.76, 122.57, 122.52, 117.66, 116.32, 113.85, 109.56, 105.96, 60.98, 60.54, 56.14, 20.70, 14.36
The reaction was carried out in the same manner as in Reference Example 1 except that ethyl ferulate was used as a raw material instead of methyl ferulate to obtain an aromatic compound represented by the formula (5) as a target product. The spectrum data of the obtained aromatic compound are as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.83-7.81 (2H, m), 7.80 (1H, d, J = 16.0 Hz), 7.68 (1H, dd, J = 2.0, 8.4 Hz), 7.15 (1H, d , J = 8.4 Hz), 7.05 (1H, d, J = 1.6 Hz), 6.46 (1H, d, J = 16.0 Hz), 4.44 (2H, q, 7.2 Hz), 4.30 (2H, q, 7.2 Hz) , 4.06 (3H, s), 3.93 (3H, s), 2.35 (3H, s), 1.44 (3H, t, 7.2 Hz), 1.37 (3H, t, 7.2 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 168.65, 167.05, 163.57, 160.53, 150.75, 145.35, 145.18, 144.29, 141.54, 131.62, 129.18, 127.76, 122.57, 122.52, 117.66, 116.32, 113.85, 109.56, 105.96, 60.98, 60.54, 56.36, 20.70, 14.

参考例3Reference example 3

下記化学式(6)で表される芳香族化合物の合成。

Figure 0005245137
Synthesis of an aromatic compound represented by the following chemical formula (6).
Figure 0005245137

上記参考例1で得られた芳香族化合物0.2gをピロリジン2mLに溶解し、そのまま5分間攪拌を行った。その後水10mLを加え、1N−HClで中和した後、析出固体を濾別乾燥し、目的生成物として式(6)に示す芳香族化合物0.18gを得た。得られた芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.81 (1H, d, J=16.0 Hz), 7.78 (1H, d, J=1.2 Hz), 7.76 (1H, d, J=2.0 Hz), 7.66 (1H, dd, J=2.0, 8.4 Hz), 7.03-7.00 (2H, m), 6.46(1H, d, J=16.0 Hz), 5.99 (1H, s), 4.05 (3H, s), 3.99 (3H, s), 3.96 (3H, s), 3.84 (3H, s); 13C NMR (100MHz, CDCl3) δ 167.50, 164.28, 161.87, 148.01, 145.99, 145.52, 145.19, 143.98, 131.36, 129.29, 123.79, 121.04, 117.02, 116.14, 114.20, 112.12, 107.83, 105.79, 56.16, 56.09, 51.74, 51.72
0.2 g of the aromatic compound obtained in Reference Example 1 was dissolved in 2 mL of pyrrolidine and stirred as it was for 5 minutes. Thereafter, 10 mL of water was added and neutralized with 1N-HCl, and then the precipitated solid was filtered and dried to obtain 0.18 g of an aromatic compound represented by the formula (6) as a target product. The spectrum data of the obtained aromatic compound are as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.81 (1H, d, J = 16.0 Hz), 7.78 (1H, d, J = 1.2 Hz), 7.76 (1H, d, J = 2.0 Hz), 7.66 (1H, dd, J = 2.0, 8.4 Hz), 7.03-7.00 (2H, m), 6.46 (1H, d, J = 16.0 Hz), 5.99 (1H, s), 4.05 (3H, s), 3.99 (3H, s ), 3.96 (3H, s), 3.84 (3H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 167.50, 164.28, 161.87, 148.01, 145.99, 145.52, 145.19, 143.98, 131.36, 129.29, 123.79, 121.04, 117.02, 116.14, 114.20, 112.12, 107.83, 105.79, 56.16, 56.09, 51.74, 51.72

参考例4Reference example 4

下記化学式(7)で表される芳香族化合物の合成。

Figure 0005245137
Synthesis of an aromatic compound represented by the following chemical formula (7).
Figure 0005245137

参考例2で得られた化合物を原料とした以外は上記参考例3と同様に反応を行い、目的生成物である式(7)に示す芳香族化合物を得た。得られた芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.80 (1H, d, J=16.0 Hz), 7.80 (1H, d, J=1.2 Hz), 7.74 (1H, d, J=2.0 Hz), 7.66 (1H, dd, J =2.0, 8.4 Hz), 7.02(1H, d, J =1.2 Hz), 7.01(1H, d, J=8.4 Hz), 6.45(1H, d, J=16.0 Hz), 5.95 (1H, s), 4.43 (2H, q, 7.2 Hz), 4.30 (2H, q, 7.2 Hz), 4.05 (3H, s), 3.99 (3H, s), 1.45 (3H, t, 7.2 Hz), 1.37 (3H, t, 7.2 Hz); 13C NMR (100MHz, CDCl3) δ 167.11, 163.88, 161.78, 147.96, 145.98, 145.33, 145.22, 144.01, 131.42, 129.42, 123.90, 121.17, 117.46, 116.29, 114.15, 112.13, 108.15, 105.65, 60.81, 60.53, 56.19, 56.11, 14.42, 14.38
A reaction was carried out in the same manner as in Reference Example 3 except that the compound obtained in Reference Example 2 was used as a starting material, to obtain an aromatic compound represented by the formula (7) as the target product. The spectrum data of the obtained aromatic compound are as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.80 (1H, d, J = 16.0 Hz), 7.80 (1H, d, J = 1.2 Hz), 7.74 (1H, d, J = 2.0 Hz), 7.66 (1H, dd, J = 2.0, 8.4 Hz), 7.02 (1H, d, J = 1.2 Hz), 7.01 (1H, d, J = 8.4 Hz), 6.45 (1H, d, J = 16.0 Hz), 5.95 (1H, s), 4.43 (2H, q, 7.2 Hz), 4.30 (2H, q, 7.2 Hz), 4.05 (3H, s), 3.99 (3H, s), 1.45 (3H, t, 7.2 Hz), 1.37 (3H , t, 7.2 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 167.11, 163.88, 161.78, 147.96, 145.98, 145.33, 145.22, 144.01, 131.42, 129.42, 123.90, 121.17, 117.46, 116.29, 114.15, 112.13, 108.15 , 105.65, 60.81, 60.53, 56.19, 56.11, 14.42, 14.38

参考例5Reference Example 5

下記化学式(8)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (8).
Figure 0005245137

フェルラ酸メチルに替えて、フェルラ酸2−メチル−1−ブタノールを用いた以外は上記参考例1と同様に反応を行い中間生成物を得た後、その中間生成物を原料として参考例3と同様の反応を行い、目的生成物を得た。得られた式(8)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.84 (1H, d, J=1.2 Hz), 7.78 (1H, d, J=16.0 Hz), 7.73 (1H, d, J=2.0 Hz), 7.65 (1H, dd, J=8.4, 2.0 Hz), 7.02-7.00 (2H, m), 6.46 (1H, d, J=16.0 Hz), 5.96 (1H, s), 4.29-4.02 (4H, m), 4.06 (3H, s), 3.99 (3H, s), 1.92-0.94 (18H, m); 13C NMR (100MHz, CDCl3) δ 167.21, 164.04, 161.91, 147.94, 145.97, 145.21, 143.98, 131.45, 129.40, 123.91, 121.18, 117.52, 116.00, 114.14, 112.16, 108.24, 105.90, 69.55, 69.17, 56.17, 56.13, 34.27, 34.26, 26.23, 26.10, 16.62, 16.45, 11.26, 11.23
Instead of ferulic acid methyl, then except for using ferulic acid 2-methyl-1-butanol to give intermediate A reaction was conducted in the same manner as in Reference Example 1, Reference Example 3 and the intermediate product as a raw material The same reaction was performed to obtain the desired product. The spectrum data of the obtained aromatic compound represented by the formula (8) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.84 (1H, d, J = 1.2 Hz), 7.78 (1H, d, J = 16.0 Hz), 7.73 (1H, d, J = 2.0 Hz), 7.65 (1H, dd, J = 8.4, 2.0 Hz), 7.02-7.00 (2H, m), 6.46 (1H, d, J = 16.0 Hz), 5.96 (1H, s), 4.29-4.02 (4H, m), 4.06 (3H , s), 3.99 (3H, s), 1.92-0.94 (18H, m); 13 C NMR (100MHz, CDCl 3 ) δ 167.21, 164.04, 161.91, 147.94, 145.97, 145.21, 143.98, 131.45, 129.40, 123.91, 121.18, 117.52, 116.00, 114.14, 112.16, 108.24, 105.90, 69.55, 69.17, 56.17, 56.13, 34.27, 34.26, 26.23, 26.10, 16.62, 16.45, 11.26, 11.23

参考例6Reference Example 6

下記化学式(9)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (9).
Figure 0005245137

参考例3で得られた芳香族化合物100mgをTHF1mLに溶解し、そこに水酸化ナトリウム100mgを水10mLに溶解した溶液を加え、室温で8時間攪拌を行った。その後1N−HClで中和し、析出固体を濾別乾燥することにより、目的物80mgを得た。得られた式(9)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, DMSO-d6)δ 7.77 (1H, d, J=1.2 Hz), 7.72 (1H, d, J=16.0 Hz), 7.69 (1H, d, J=2.0 Hz), 7.49 (1H, dd, J=2.0, 8.4 Hz), 7.42(1H, d, J=1.2 Hz), 6.93 (1H, d, J=8.4 Hz), 6.63 (1H, d, J=16.0 Hz), 4.03 (3H, s), 3.90 (3H, s), 3.85 (3H, s); 13C NMR (100MHz, DMSO-d6) δ 167.70, 163.55, 161.07, 149.41,147.12, 144.96, 144.49, 143.06, 131.65, 128.61, 122.92, 119.37, 118.85, 115.55, 115.33, 113.27, 107.02, 106.36, 56.17, 51.77
100 mg of the aromatic compound obtained in Reference Example 3 was dissolved in 1 mL of THF, and a solution obtained by dissolving 100 mg of sodium hydroxide in 10 mL of water was added thereto, followed by stirring at room temperature for 8 hours. Thereafter, the mixture was neutralized with 1N-HCl, and the precipitated solid was separated by filtration and dried to obtain 80 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (9) is as follows.
1 H NMR (400MHz, DMSO-d 6 ) δ 7.77 (1H, d, J = 1.2 Hz), 7.72 (1H, d, J = 16.0 Hz), 7.69 (1H, d, J = 2.0 Hz), 7.49 ( 1H, dd, J = 2.0, 8.4 Hz), 7.42 (1H, d, J = 1.2 Hz), 6.93 (1H, d, J = 8.4 Hz), 6.63 (1H, d, J = 16.0 Hz), 4.03 ( 3H, s), 3.90 (3H, s), 3.85 (3H, s); 13 C NMR (100MHz, DMSO-d 6 ) δ 167.70, 163.55, 161.07, 149.41,147.12, 144.96, 144.49, 143.06, 131.65, 128.61 , 122.92, 119.37, 118.85, 115.55, 115.33, 113.27, 107.02, 106.36, 56.17, 51.77

参考例7Reference Example 7

下記化学式(10)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (10).
Figure 0005245137

参考例3で得られた化合物100mgをTHF1mLに溶解し、そこに水酸化ナトリウム100mgを水10mLに溶解した溶液を加え、還流下8時間攪拌を行った。その後1N−HClで中和し、析出固体を濾別乾燥することにより、目的物70mgを得た。得られた式(19)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, DMSO-d6)δ 7.76 (1H, d, J=1.2 Hz), 7.72 (1H, d, J=2.0 Hz), 7.69 (1H, d, J =16.0 Hz), 7.49 (1H, dd, J =2.0, 8.4 Hz), 7.40(1H, d, J =1.2 Hz), 6.92(1H, d, J=8.4 Hz), 6.59(1H, d, J=16.0 Hz), 4.03 (3H, s), 3.84 (3H, s); 13C NMR (100MHz, DMSO-d6) δ 167.82, 164.84, 160.83, 149.34, 147.20, 145.12, 144.74, 143.24, 131.60, 129.41, 123.06, 119.83, 118.88, 115.74, 115.44, 113.58, 108.20, 106.38, 56.34, 55.87
100 mg of the compound obtained in Reference Example 3 was dissolved in 1 mL of THF, and a solution obtained by dissolving 100 mg of sodium hydroxide in 10 mL of water was added thereto, followed by stirring for 8 hours under reflux . Thereafter, the mixture was neutralized with 1N-HCl, and the precipitated solid was separated by filtration and dried to obtain 70 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (19) is as follows.
1 H NMR (400MHz, DMSO-d 6 ) δ 7.76 (1H, d, J = 1.2 Hz), 7.72 (1H, d, J = 2.0 Hz), 7.69 (1H, d, J = 16.0 Hz), 7.49 ( 1H, dd, J = 2.0, 8.4 Hz), 7.40 (1H, d, J = 1.2 Hz), 6.92 (1H, d, J = 8.4 Hz), 6.59 (1H, d, J = 16.0 Hz), 4.03 ( 3H, s), 3.84 (3H, s); 13 C NMR (100 MHz, DMSO-d 6 ) δ 167.82, 164.84, 160.83, 149.34, 147.20, 145.12, 144.74, 143.24, 131.60, 129.41, 123.06, 119.83, 118.88, 115.74, 115.44, 113.58, 108.20, 106.38, 56.34, 55.87

参考例8Reference Example 8

下記化学式(11)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (11).
Figure 0005245137

参考例7で得られた化合物150mgをメタノール25mLに分散させ、そこに硫酸を4滴加えて50度で3時間攪拌した。室温に戻した後減圧下で濃縮を行い、得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより目的物102mgを得た。得られた式(11)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, DMSO-d6)δ 7.79-7.75 (2H, m), 7.73 (1H, d, J=2.0 Hz), 7.50 (1H, dd, J=2.0, 8.4 Hz), 7.44 (1H, d, J=1.2 Hz), 6.92 (1H, d, J=8.4 Hz), 6.70 (1H, d, J=16.0 Hz), 4.03 (3H, s), 3.84 (3H, s), 3.75 (3H, s); 13C NMR (100MHz, DMSO-d6) δ 166.93, 164.85, 160.71, 149.32, 147.20, 145.39, 145.13, 143.36, 131.33, 129.47, 123.03, 119.83, 117.43, 116.19, 115.44, 113.56, 108.35, 106.34, 56.35, 55.86, 51.64, 30.88
150 mg of the compound obtained in Reference Example 7 was dispersed in 25 mL of methanol, 4 drops of sulfuric acid was added thereto, and the mixture was stirred at 50 degrees for 3 hours. After returning to room temperature, concentration was performed under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 102 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (11) is as follows.
1 H NMR (400MHz, DMSO-d 6 ) δ 7.79-7.75 (2H, m), 7.73 (1H, d, J = 2.0 Hz), 7.50 (1H, dd, J = 2.0, 8.4 Hz), 7.44 (1H , d, J = 1.2 Hz), 6.92 (1H, d, J = 8.4 Hz), 6.70 (1H, d, J = 16.0 Hz), 4.03 (3H, s), 3.84 (3H, s), 3.75 (3H , s); 13 C NMR (100 MHz, DMSO-d 6 ) δ 166.93, 164.85, 160.71, 149.32, 147.20, 145.39, 145.13, 143.36, 131.33, 129.47, 123.03, 119.83, 117.43, 116.19, 115.44, 113.56, 108.35, 106.34, 56.35, 55.86, 51.64, 30.88

参考例9Reference Example 9

下記化学式(12)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (12) .
Figure 0005245137

メタノールに替えてC1225OHを用いた以外は上記参考例8と同様に試験を行い目的生成物を得た。得られた式(12)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.75 (1H, d, J=16.0 Hz), 7.41 (1H, dd, J=2.0, 8.4 Hz), 7.37 (1H, d, J=2.0 Hz), 7.33 (1H, d, J=1.2 Hz), 6.99 (1H, d, J=8.4 Hz), 6.97 (1H, d, J=1.2 Hz), 6.87 (1H, s), 6.42 (1H, d, J=16.0 Hz), 5.78 (1H, s), 4.22 (2H, t, J=6.8 Hz), 4.07 (3H, s), 4.01 (3H, s), 1.75-0.86 (22H, m); 13C NMR (100MHz, CDCl3) δ 167.28, 157.33, 146.73, 146.61, 145.33, 145.29, 145.09, 131.42, 130.57, 122.48, 119.03, 116.95, 114.80, 114.48, 107.59, 105.06, 100.14, 64.70, 56.17, 56.08, 31.92, 29.66, 29.64, 29.60, 29.55, 29.35, 29.31, 28.78, 26.01, 22.69, 14.12
A test was conducted in the same manner as in Reference Example 8 except that C 12 H 25 OH was used instead of methanol to obtain the desired product. The spectrum data of the obtained aromatic compound represented by the formula (12) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.75 (1H, d, J = 16.0 Hz), 7.41 (1H, dd, J = 2.0, 8.4 Hz), 7.37 (1H, d, J = 2.0 Hz), 7.33 ( 1H, d, J = 1.2 Hz), 6.99 (1H, d, J = 8.4 Hz), 6.97 (1H, d, J = 1.2 Hz), 6.87 (1H, s), 6.42 (1H, d, J = 16.0 Hz), 5.78 (1H, s), 4.22 (2H, t, J = 6.8 Hz), 4.07 (3H, s), 4.01 (3H, s), 1.75-0.86 (22H, m); 13 C NMR (100 MHz , CDCl 3 ) δ 167.28, 157.33, 146.73, 146.61, 145.33, 145.29, 145.09, 131.42, 130.57, 122.48, 119.03, 116.95, 114.80, 114.48, 107.59, 105.06, 100.14, 64.70, 56.17, 56.08, 31.92.29, 66. , 29.60, 29.55, 29.35, 29.31, 28.78, 26.01, 22.69, 14.12

参考例10Reference Example 10

下記化学式(13)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (13).
Figure 0005245137

参考例7で得られた化合物200mgを0.5N−NaOH水溶液3.5mLに溶解し、さらに水を加えてトータル10mLにした。そこに氷冷下無水酢酸100μL加えたのち10分、さらに室温で80分攪拌を行った。その後、水を25mL加えた後6N−HClで中和し、析出固体を濾別乾燥させることにより目的生成物162mgを得た。得られた式(13)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, DMSO-d6)δ 7.83 (1H, d, J=2.0 Hz), 7.80 (1H, d, J=1.2 Hz), 7.71 (1H, d, J=15.6 Hz), 7.57 (1H, dd, J=2.0, 8.4 Hz), 7.45 (1H, d, J=1.2 Hz), 7.27 (1H, d, J=8.4 Hz), 6.61 (1H, d, J=15.6 Hz), 4.04 (3H, s), 3.85 (3H, s), 2.31 (3H, s)
200 mg of the compound obtained in Reference Example 7 was dissolved in 3.5 mL of 0.5N NaOH aqueous solution, and water was further added to make a total of 10 mL. The mixture was added with 100 μL of acetic anhydride under ice-cooling, and stirred for 10 minutes and further at room temperature for 80 minutes. Then, 25 mL of water was added and neutralized with 6N-HCl, and the precipitated solid was filtered and dried to obtain 162 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (13) is as follows.
1 H NMR (400MHz, DMSO-d 6 ) δ 7.83 (1H, d, J = 2.0 Hz), 7.80 (1H, d, J = 1.2 Hz), 7.71 (1H, d, J = 15.6 Hz), 7.57 ( 1H, dd, J = 2.0, 8.4 Hz), 7.45 (1H, d, J = 1.2 Hz), 7.27 (1H, d, J = 8.4 Hz), 6.61 (1H, d, J = 15.6 Hz), 4.04 ( 3H, s), 3.85 (3H, s), 2.31 (3H, s)

参考例11Reference Example 11

下記化学式(14)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (14).
Figure 0005245137

参考例10で得られた芳香族化合物が89mgと、C1225OHが170mgと、トリフェニルホスフィンが260mgとをジクロロメタン10mL中に分散させ、そこにアゾジイソプロピルジカルボキシレートの40%トルエン溶液を500mg滴下した後一晩室温で攪拌を行った。その後減圧下で濃縮を行い、得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより目的生成物を70mgを得た。得られた式(14)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.82 (1H, d, J=1.2 Hz), 7.82 (1H, d, J=2.0 Hz), 7.79 (1H, d, J=16.0 Hz), 7.67 (1H, dd, J=2.0, 8.4 Hz), 7.14 (1H, d, J=8.4 Hz), 7.05 (1H, d, J=1.2 Hz), 6.46 (1H, d, J=16.0 Hz), 4.36 (2H, t, J=6.8 Hz), 4.23 (2H, t, J=6.8 Hz), 4.06 (3H, s), 3.93 (3H, s), 2.35 (3H, s), 1.83-0.87 (46H, m)
89 mg of the aromatic compound obtained in Reference Example 10 , 170 mg of C 12 H 25 OH, and 260 mg of triphenylphosphine were dispersed in 10 mL of dichloromethane, and a 40% toluene solution of azodiisopropyldicarboxylate was added thereto. After adding 500 mg dropwise, the mixture was stirred overnight at room temperature. Thereafter, concentration was performed under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 70 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (14) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.82 (1H, d, J = 1.2 Hz), 7.82 (1H, d, J = 2.0 Hz), 7.79 (1H, d, J = 16.0 Hz), 7.67 (1H, dd, J = 2.0, 8.4 Hz), 7.14 (1H, d, J = 8.4 Hz), 7.05 (1H, d, J = 1.2 Hz), 6.46 (1H, d, J = 16.0 Hz), 4.36 (2H, t, J = 6.8 Hz), 4.23 (2H, t, J = 6.8 Hz), 4.06 (3H, s), 3.93 (3H, s), 2.35 (3H, s), 1.83-0.87 (46H, m)

参考例12Reference Example 12

下記化学式(15)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (15).
Figure 0005245137

参考例7で得られた化合物50mg、C2041OHを155mg、さらにトリフェニルホスフィン140mgをジクロロメタン15mL中に分散させ、そこにアゾジイソプロピルジカルボキシレートの40%トルエン溶液を265mg滴下した後一晩室温で攪拌を行った。その後減圧下で濃縮を行い、得られた残渣にアセトン50mLを加え、析出固体を濾別乾燥することにより目的生成物153mgを得た。得られた式(15)に示す芳香族化合物のスペクトルデータは次の通りである。 50 mg of the compound obtained in Reference Example 7 , 155 mg of C 20 H 41 OH, and 140 mg of triphenylphosphine were dispersed in 15 mL of dichloromethane, and 265 mg of a 40% toluene solution of azodiisopropyldicarboxylate was added dropwise thereto overnight. Stir at room temperature. Thereafter, concentration was performed under reduced pressure, 50 mL of acetone was added to the obtained residue, and the precipitated solid was separated by filtration and dried to obtain 153 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (15) is as follows.

参考例13Reference Example 13

下記化学式(16)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (16).
Figure 0005245137

2041OHに替えて2-エチル-1-ヘキサノールを用いた以外は上記参考例12と同様に反応を行うことによって目的生成物を得た。得られた式(16)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.85 (1H, d, J=1.2 Hz), 7.77 (1H, d, J=16.0 Hz), 7.68-7.66 (2H, m), 7.02 (1H, d, J=1.2 Hz), 6.95 (1H, d, J=9.2 Hz), 6.46 (1H, d, J=16.0 Hz), 4.32-3.93 (6H, m), 4.06 (3H, s), 3.94 (3H, s), 1.89-0.88 (45H, m); 13C NMR (100MHz, CDCl3) δ 167.27, 164.13, 162.06, 151.16, 148.93, 145.22, 145.15, 144.02, 131.45, 129.45, 123.36, 121.38, 117.59, 115.81, 113.37, 112.04, 108.32, 106.07, 76.30, 71.80, 67.14, 66.89, 56.36, 56.16, 39.03, 38.91, 30.57, 30.47, 30.39, 28.98, 23.97, 23.85, 23.75, 23.05, 23.01, 22.96, 14.08, 14.04, 11.05, 11.04, 10.95
The target product was obtained by carrying out the reaction in the same manner as in Reference Example 12 except that 2-ethyl-1-hexanol was used in place of C 20 H 41 OH. The spectrum data of the obtained aromatic compound represented by the formula (16) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.85 (1H, d, J = 1.2 Hz), 7.77 (1H, d, J = 16.0 Hz), 7.68-7.66 (2H, m), 7.02 (1H, d, J = 1.2 Hz), 6.95 (1H, d, J = 9.2 Hz), 6.46 (1H, d, J = 16.0 Hz), 4.32-3.93 (6H, m), 4.06 (3H, s), 3.94 (3H, s ), 1.89-0.88 (45H, m); 13 C NMR (100 MHz, CDCl 3 ) δ 167.27, 164.13, 162.06, 151.16, 148.93, 145.22, 145.15, 144.02, 131.45, 129.45, 123.36, 121.38, 117.59, 115.81, 113.37 , 112.04, 108.32, 106.07, 76.30, 71.80, 67.14, 66.89, 56.36, 56.16, 39.03, 38.91, 30.57, 30.47, 30.39, 28.98, 23.97, 23.85, 23.75, 23.05, 23.01, 22.96, 14.08, 14.04, 11.05, 11.04 , 10.95

参考例14Reference Example 14

下記化学式(17)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (17).
Figure 0005245137

2041OHに替えてメタノールを用いた以外は上記参考例12と同様に反応を行うことによって目的生成物を得た。得られた式(17)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.82 (1H, d, J=16.0 Hz), 7.80 (1H, d, J=1.2 Hz), 7.74-7.71 (2H, m), 7.02 (1H, d, J=1.2 Hz), 6.97 (1H, d, J=9.2 Hz), 6.47 (1H, d, J=16.0 Hz), 4.06 (3H, s), 3.98 (3H, s), 3.97 (3H, s), 3.96 (3H, s), 3.84 (3H, s) ; 13C NMR (100MHz, CDCl3) δ 167.50, 164.26, 161.82, 151.08, 148.41, 145.51, 145.24, 144.08, 131.42, 129.29, 123.21, 121.54, 117.08, 116.16, 112.48, 110.51, 108.08, 105.84, 56.12, 56.09, 55.97, 51.78, 51.74
The target product was obtained by carrying out the reaction in the same manner as in Reference Example 12 except that methanol was used instead of C 20 H 41 OH. The spectrum data of the obtained aromatic compound represented by the formula (17) is as follows.
1 H NMR (400MHz, CDCl 3 ) δ 7.82 (1H, d, J = 16.0 Hz), 7.80 (1H, d, J = 1.2 Hz), 7.74-7.71 (2H, m), 7.02 (1H, d, J = 1.2 Hz), 6.97 (1H, d, J = 9.2 Hz), 6.47 (1H, d, J = 16.0 Hz), 4.06 (3H, s), 3.98 (3H, s), 3.97 (3H, s), 3.96 (3H, s), 3.84 (3H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 167.50, 164.26, 161.82, 151.08, 148.41, 145.51, 145.24, 144.08, 131.42, 129.29, 123.21, 121.54, 117.08, 116.16, 112.48, 110.51, 108.08, 105.84, 56.12, 56.09, 55.97, 51.78, 51.74

参考例15Reference Example 15

下記化学式(18)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (18).
Figure 0005245137

2041OHに替えてエタノールを用いた以外は上記参考例12と同様に反応を行うことによって目的生成物を得た。得られた式(18)に示す芳香族化合物のスペクトルデータは次の通りである。 The target product was obtained by carrying out the reaction in the same manner as in Reference Example 12 except that ethanol was used instead of C 20 H 41 OH. The spectrum data of the obtained aromatic compound represented by the formula (18) is as follows.

参考例16Reference Example 16

下記化学式(19)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (19).
Figure 0005245137

2041OHに替えてC1225OHを用いた以外は上記参考例12と同様に反応を行うことによって目的生成物を得た。得られた式(19)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.82 (1H, d, J=1.2 Hz), 7.79 (1H, d, J=15.6 Hz), 7.69-7.67 (2H, m), 7.02 (1H, d, J=1.2 Hz), 6.95 (1H, d, J=9.2 Hz), 6.45 (1H, d, J=15.6 Hz), 4.36 (2H, t, J=6.8 Hz), 4.22 (2H, t, J=6.8 Hz), 4.09 (2H, t, J=6.8 Hz), 4.06 (3H, s), 3.96 (3H, s), 1.90-0.86 (69H, m)
The target product was obtained by carrying out the reaction in the same manner as in Reference Example 12 except that C 12 H 25 OH was used instead of C 20 H 41 OH. The spectrum data of the obtained aromatic compound represented by the formula (19) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.82 (1H, d, J = 1.2 Hz), 7.79 (1H, d, J = 15.6 Hz), 7.69-7.67 (2H, m), 7.02 (1H, d, J = 1.2 Hz), 6.95 (1H, d, J = 9.2 Hz), 6.45 (1H, d, J = 15.6 Hz), 4.36 (2H, t, J = 6.8 Hz), 4.22 (2H, t, J = 6.8 Hz), 4.09 (2H, t, J = 6.8 Hz), 4.06 (3H, s), 3.96 (3H, s), 1.90-0.86 (69H, m)

下記化学式(20)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (20).
Figure 0005245137

参考例5で得られた芳香族化合物47mgを15mLのCH2Cl2に溶解し、そこにCu(OH)Cl・TMEDA25mgを加え、室温で15時間攪拌を行った。溶媒を留去した後プレパラティブTLCで精製を行い、目的生成物43mgを得た。得られた式(20)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.86 (2H, d, J=2.0 Hz), 7.83 (2H, d, J=1.2 Hz), 7.77 (2H, d, J=16.0 Hz), 7.75 (2H, d, J=2.0 Hz), 7.00(2H, d, J=1.2 Hz), 6.45(2H, d, J=16.0 Hz), 6.43 (2H, s), 4.25-3.97 (8H, m), 4.03 (6H, s), 4.02 (6H, s), 1.89-0.91 (36H, m); 13C NMR (100MHz, CDCl3) δ 167.23, 164.01, 161.65, 146.60, 145.41, 145.27, 145.25, 144.05, 131.42, 129.45, 125.53, 123.36, 120.98, 117.48, 116.02, 108.48, 106.01, 69.64, 69.18, 56.43, 56.13, 34.30, 34.26, 26.24, 26.12, 16.62, 16.48, 11.30, 11.23
47 mg of the aromatic compound obtained in Reference Example 5 was dissolved in 15 mL of CH 2 Cl 2 , 25 mg of Cu (OH) Cl · TMEDA was added thereto, and the mixture was stirred at room temperature for 15 hours. After distilling off the solvent, purification was performed by preparative TLC to obtain 43 mg of the desired product. The spectrum data of the obtained aromatic compound represented by the formula (20) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.86 (2H, d, J = 2.0 Hz), 7.83 (2H, d, J = 1.2 Hz), 7.77 (2H, d, J = 16.0 Hz), 7.75 (2H, d, J = 2.0 Hz), 7.00 (2H, d, J = 1.2 Hz), 6.45 (2H, d, J = 16.0 Hz), 6.43 (2H, s), 4.25-3.97 (8H, m), 4.03 ( 6H, s), 4.02 (6H, s), 1.89-0.91 (36H, m); 13 C NMR (100 MHz, CDCl 3 ) δ 167.23, 164.01, 161.65, 146.60, 145.41, 145.27, 145.25, 144.05, 131.42, 129.45 , 125.53, 123.36, 120.98, 117.48, 116.02, 108.48, 106.01, 69.64, 69.18, 56.43, 56.13, 34.30, 34.26, 26.24, 26.12, 16.62, 16.48, 11.30, 11.23

下記化学式(21)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (21).
Figure 0005245137

参考例5で得られた芳香族化合物に替えて参考例3で得られた芳香族化合物を原料とた以外は上記実施例1と同様に反応を行い、目的生成物を得た。得られた式(21)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.85 (2H, d, J=2.0 Hz), 7.81 (2H, d, J=1.2 Hz), 7.81 (2H, d, J=16.0 Hz), 7.73 (2H, d, J=2.0 Hz), 7.01 (2H, d, J =1.2 Hz), 6.46 (2H, d, J=16.0 Hz), 6.31 (1H, s), 4.06 (6H, s), 4.03 (6H, s), 3.98 (6H, s), 3.83 (6H, s); 13C NMR (100MHz, CDCl3) δ 167.49, 164.23, 161.52, 146.55, 145.52, 145.42, 145.22, 144.08, 131.40, 129.40, 125.48, 123.30, 120.90, 117.05, 116.12, 111.83, 108.12, 105.91, 56.42, 56.09, 51.82, 51.72
The target product was obtained in the same manner as in Example 1 except that the aromatic compound obtained in Reference Example 3 was used as a raw material instead of the aromatic compound obtained in Reference Example 5 . The spectrum data of the obtained aromatic compound represented by the formula (21) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.85 (2H, d, J = 2.0 Hz), 7.81 (2H, d, J = 1.2 Hz), 7.81 (2H, d, J = 16.0 Hz), 7.73 (2H, d, J = 2.0 Hz), 7.01 (2H, d, J = 1.2 Hz), 6.46 (2H, d, J = 16.0 Hz), 6.31 (1H, s), 4.06 (6H, s), 4.03 (6H, s), 3.98 (6H, s), 3.83 (6H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 167.49, 164.23, 161.52, 146.55, 145.52, 145.42, 145.22, 144.08, 131.40, 129.40, 125.48, 123.30 , 120.90, 117.05, 116.12, 111.83, 108.12, 105.91, 56.42, 56.09, 51.82, 51.72

下記化学式(22)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (22).
Figure 0005245137

参考例5で得られた芳香族化合物に替えて参考例4で得られた芳香族化合物を原料とした以外は上記実施例1と同様に反応を行い、目的生成物を得た。得られた式(22)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.85 (2H, d, J=2.0 Hz), 7.81 (2H, d, J=1.6 Hz), 7.79 (2H, d, J=16.0 Hz), 7.74 (2H, d, J=2.0 Hz), 7.61 (2H, d, J=1.6 Hz), 6.44 (2H, d, J=16.0 Hz), 6.31 (2H, s), 4.43 (4H, q, J=7.2 Hz), 4.29 (4H, q, J=7.2 Hz), 4.05 (6H, s), 4.03 (6H, s), 1.41 (6H, t, J=3.2 Hz), 1.36 (6H, t, J=3.2 Hz); 13C NMR (100MHz, CDCl3) δ 167.10, 163.81, 161.41, 146.50, 145.35, 145.32, 145.23, 144.08, 131.40, 129.48, 125.48, 123.28, 120.98, 117.44, 116.26, 111.88, 108.41, 105.76, 60.85, 60.50, 56.43, 56.10, 14.38, 14.36
The target product was obtained in the same manner as in Example 1 except that the aromatic compound obtained in Reference Example 4 was used instead of the aromatic compound obtained in Reference Example 5 . The spectrum data of the obtained aromatic compound represented by the formula (22) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.85 (2H, d, J = 2.0 Hz), 7.81 (2H, d, J = 1.6 Hz), 7.79 (2H, d, J = 16.0 Hz), 7.74 (2H, d, J = 2.0 Hz), 7.61 (2H, d, J = 1.6 Hz), 6.44 (2H, d, J = 16.0 Hz), 6.31 (2H, s), 4.43 (4H, q, J = 7.2 Hz) , 4.29 (4H, q, J = 7.2 Hz), 4.05 (6H, s), 4.03 (6H, s), 1.41 (6H, t, J = 3.2 Hz), 1.36 (6H, t, J = 3.2 Hz) ; 13 C NMR (100 MHz, CDCl 3 ) δ 167.10, 163.81, 161.41, 146.50, 145.35, 145.32, 145.23, 144.08, 131.40, 129.48, 125.48, 123.28, 120.98, 117.44, 116.26, 111.88, 108.41, 105.76, 60.85, 60.50 , 56.43, 56.10, 14.38, 14.36

下記化学式(23)で表される化合物の合成。

Figure 0005245137
Synthesis of a compound represented by the following chemical formula (23).
Figure 0005245137

実施例2で得た芳香族化合物560mgをピリジン4mLに溶解し、そこに無水酢酸150μLを加え室温で一晩攪拌を行った。その後水を50mL加え、析出固体を洗浄、濾別乾燥することにより、目的化合物600mgを得た。得られた式(23)に示す芳香族化合物のスペクトルデータは次の通りである。
1H NMR(400MHz, CDCl3)δ 7.93 (2H, d, J=2.0 Hz), 7.82 (2H, d, J=1.6 Hz), 7.81 (2H, d, J=16.0 Hz), 7.61 (2H, d, J=2.0 Hz), 7.03 (2H, d, J=1.6 Hz), 6.47 (2H, d, J=16.0 Hz), 4.03 (6H, s), 3.98 (6H, s), 3.98 (6H, s), 3.83 (6H, s), 2.18 (6H, s); 13C NMR (100MHz, CDCl3) δ 168.22, 167.46, 163.95, 160.24, 151.10, 149.81, 145.37, 144.37, 139.56, 131.63, 130.91, 129.13, 127.17, 124.17, 117.27, 116.17, 113.55, 109.48, 106.21, 56.39, 56.10, 51.94, 51.74, 20.49
560 mg of the aromatic compound obtained in Example 2 was dissolved in 4 mL of pyridine, 150 μL of acetic anhydride was added thereto, and the mixture was stirred overnight at room temperature. Thereafter, 50 mL of water was added, and the precipitated solid was washed, filtered and dried to obtain 600 mg of the target compound. The spectrum data of the obtained aromatic compound represented by the formula (23) is as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.93 (2H, d, J = 2.0 Hz), 7.82 (2H, d, J = 1.6 Hz), 7.81 (2H, d, J = 16.0 Hz), 7.61 (2H, d, J = 2.0 Hz), 7.03 (2H, d, J = 1.6 Hz), 6.47 (2H, d, J = 16.0 Hz), 4.03 (6H, s), 3.98 (6H, s), 3.98 (6H, s), 3.83 (6H, s), 2.18 (6H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 168.22, 167.46, 163.95, 160.24, 151.10, 149.81, 145.37, 144.37, 139.56, 131.63, 130.91, 129.13 , 127.17, 124.17, 117.27, 116.17, 113.55, 109.48, 106.21, 56.39, 56.10, 51.94, 51.74, 20.49

図1に、参考例3において合成を行った化学式(6)で示す芳香族化合物の紫外線吸収スペクトルを太線で、従来紫外線吸収剤として使用されているフェルラ酸メチルの紫外線吸収スペクトル細線で示す。また、図2には実施例2において合成を行った化学式(21)で示す芳香族化合物の紫外線吸収スペクトルを太線で、図1と同じくフェルラ酸メチルの紫外線吸収スペクトル細線で示す。 In FIG. 1, the ultraviolet absorption spectrum of the aromatic compound represented by the chemical formula (6) synthesized in Reference Example 3 is indicated by a thick line, and the ultraviolet absorption spectrum fine line of methyl ferulate conventionally used as an ultraviolet absorber. 2 shows the ultraviolet absorption spectrum of the aromatic compound represented by the chemical formula (21) synthesized in Example 2 with a thick line, and the ultraviolet absorption spectrum fine line of methyl ferulate like FIG.

図1,2より、参考例3実施例2で得られた化学式(6),(21)で示す芳香族化合物は全波長でフェルラ酸メチルより高い吸光度を示し、特にフェルラ酸メチルは吸収できない320nm〜400nmのUV−Aの紫外線についても高い吸収度を示していることが分かる。 1 and 2 , the aromatic compounds represented by the chemical formulas (6) and (21) obtained in Reference Example 3 and Example 2 exhibit higher absorbance than methyl ferulate at all wavelengths, and in particular, methyl ferulate cannot be absorbed. It can be seen that UV-A ultraviolet rays of 320 nm to 400 nm also show high absorbance.

また、参考例1,2,4〜16において合成を行った式(3)で表される芳香族化合物の紫外線吸収スペクトルについても、図1と略同様の結果が得られた。よって、式(1)で表される芳香族化合物は全波長でフェルラ酸メチルより高い吸光度を示すとともに、UV−Aの紫外線についても高い吸収度を示していることが分かる。また、実施例1において合成を行った式(1)で表される芳香族化合物の紫外線吸収スペクトルについても、図2と略同様の結果が得られた。これより、式(3)と同様に、式(1)で表される芳香族化合物が全波長でフェルラ酸メチルより高い吸光度を示すとともに、UV−Aの紫外線についても高い吸収度を示していることが分かる。 Moreover, the result substantially the same as FIG. 1 was obtained also about the ultraviolet absorption spectrum of the aromatic compound represented by Formula (3) synthesize | combined in Reference Examples 1, 2, 4-16. Therefore, it can be seen that the aromatic compound represented by the formula (1) exhibits higher absorbance than methyl ferulate at all wavelengths and also exhibits higher absorbance for UV-A ultraviolet rays. In addition, the ultraviolet absorption spectrum of the aromatic compound represented by the formula (1) synthesized in Examples 1 , 3 , and 4 was almost the same as that shown in FIG. From this, similarly to Formula (3) , the aromatic compound represented by Formula (1) exhibits higher absorbance than methyl ferulate at all wavelengths, and also exhibits high absorbance for UV-A ultraviolet rays. I understand that.

本発明と関連する芳香族化合物の紫外線波長に対する吸光度を示す図である。It is a figure which shows the light absorbency with respect to the ultraviolet wavelength of the aromatic compound relevant to this invention. 本発明の一実施形態に係る芳香族化合物の紫外線波長に対する吸光度を示す図である。Is a diagram showing an absorbance for ultraviolet light having a wavelength of an aromatic compound according to Kazumi facilities embodiment of the present invention.

Claims (3)

(1)で表される芳香族化合物。
Figure 0005245137
式中1,R2,R7およびR8は、水素原子、炭素数1〜40の直鎖もしくは分岐のアルキル基のいずれかを示し、R3,R4,R9およびR10は、水素原子、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセチル基のいずれかを示し、R5およびR11は、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセトキシ基のいずれかを示し、Xは酸素原子またはNHを示す。)
An aromatic compound represented by the formula (1) .
Figure 0005245137
(In the formula, R 1 , R 2 , R 7 and R 8 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms, and R 3 , R 4 , R 9 and R 10 are , A hydrogen atom, a hydroxyl group, a linear or branched alkoxyl group having 1 to 40 carbon atoms, or an acetyl group, and R 5 and R 11 are a hydroxyl group, a linear or branched group having 1 to 40 carbon atoms Any one of an alkoxyl group and an acetoxy group in the form of X, and X represents an oxygen atom or NH.)
(2)で表される芳香族化合物。
Figure 0005245137
(式中R1,R2およびR7は、水素原子、炭素数1〜40の直鎖状もしくは分岐状のアルキル基のいずれかを示し、R3、R4およびR10は、水素原子、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセチル基のいずれかを示し、R5およびR11は、水酸基、炭素数1〜40の直鎖状もしくは分岐状のアルコキシル基、アセトキシ基のいずれかを示し、Xは酸素原子またはNHを示す。)
An aromatic compound represented by the formula (2) .
Figure 0005245137
(In the formula, R 1 , R 2 and R 7 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms; R 3 , R 4 and R 10 are a hydrogen atom, R 1 represents a hydroxyl group, a linear or branched alkoxyl group having 1 to 40 carbon atoms, or an acetyl group, and R 5 and R 11 are a hydroxyl group, a linear or branched alkoxyl group having 1 to 40 carbon atoms. Any of an acetoxy group , and X represents an oxygen atom or NH.)
請求項1又は請求項のいずれかに記載の芳香族化合物を含有することを特徴とする紫外線吸収剤。 The ultraviolet absorber containing the aromatic compound in any one of Claim 1 or Claim 2 .
JP2008056347A 2008-03-06 2008-03-06 Aromatic compounds and UV absorbers Active JP5245137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056347A JP5245137B2 (en) 2008-03-06 2008-03-06 Aromatic compounds and UV absorbers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056347A JP5245137B2 (en) 2008-03-06 2008-03-06 Aromatic compounds and UV absorbers

Publications (2)

Publication Number Publication Date
JP2009209120A JP2009209120A (en) 2009-09-17
JP5245137B2 true JP5245137B2 (en) 2013-07-24

Family

ID=41182625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056347A Active JP5245137B2 (en) 2008-03-06 2008-03-06 Aromatic compounds and UV absorbers

Country Status (1)

Country Link
JP (1) JP5245137B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195465A (en) * 2010-03-17 2011-10-06 Wakayama Prefecture Process for manufacturing cinnamic acid derivative, and cinnamic acid derivative
DK3153505T3 (en) * 2015-10-05 2018-07-23 Sanko Tekstil Isletmeleri San Ve Tic As BIS-INDOLYLMETHANETS UNKNOWN, METHOD OF PRODUCING ITS AND APPLICATIONS THEREOF

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271454A (en) * 1993-03-23 1994-09-27 Kanebo Ltd Skin cosmetic
JPH07206842A (en) * 1994-01-21 1995-08-08 Kanebo Ltd New benzofuranylpropenoic acid derivative
CA2393722A1 (en) * 1999-12-13 2002-06-14 President And Fellows Of Harvard College Methods for treating cell death diseases and inflammation
JP2005015453A (en) * 2003-06-25 2005-01-20 Matsumoto Trading Co Ltd Cosmetic composition containing isostearyl ferulate

Also Published As

Publication number Publication date
JP2009209120A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP2013523625A (en) Synergist
EP2588585B1 (en) Method for functionalizing natural fatty substances
CN101909729A (en) At liquid CO 2And CO 2Ozonolysis reactions in the expanded solvents
Liu et al. A novel route to olefins from vicinal diols
CN105377855A (en) Method and apparatus for the synthesis of dihydroartemisinin and artemisinin derivatives
JP5245137B2 (en) Aromatic compounds and UV absorbers
CN1653035A (en) Method for producing 2-(4-N,N-dialkylamino-2-hydroxybenzol)benzoates
CN101941952B (en) Resin monomer skeleton-derivative ketone compound photoinitiator
Ramalingam et al. Preparation and stereochemistry of some substituted 4-thianones and 4-thianols. Single-crystal analysis of (R)-2, trans-6-diphenyl-cis-3-methyl-4-thianone and (R)-2, trans-6-diphenyl-cis-3-ethyl-4-thianone
Asakawa Chemical Constituents of Alnus sieboldiana (Betulaceae). III. The synthesis and stereochemistry of yashabushiketols
CN101314044B (en) Oxidation resistance ligand functionalized golden nano-complexes, preparation method and application thereof
DE2545511C2 (en) Process for the preparation of 5-substituted 2,3-dimethoxy-6-methyl-1,4-benzohydroquinones
JP6990406B2 (en) Caged compound and its manufacturing method
EP1840096B1 (en) Intermediate film of laminated safety glass with antiglare function and novel neodymium compound
EP4079331A1 (en) Vegetable oil-derived contrast agent with high stability and preparation method thereof
JPS62226947A (en) Monoglyceride of highly unsaturated higher fatty acid and production thereof
JP4593157B2 (en) Refractive index conversion material
JP5991521B2 (en) Method for producing carbonyl compound
JP4586190B2 (en) Azobenzene compound, gelling agent comprising the same, and method for producing the same
CN109053445A (en) A kind of exchange method of ester
JPS60197638A (en) Preparation of optically-active mevalonic ester
JPH10259202A (en) Production of (meth) acrylic ester of cyclodextrin and (meth)acrylic ester of cyclodextrin
JPH02167291A (en) Silicone-based cinnamic acid derivative, production thereof and ultraviolet light absorber
ES2386219B1 (en) Procedure to isomerize c-22 iodovinilderivatives by photoisomerization.
Handayani Synthesis and activity test of two asymmetric dibenzalacetones as potential sunscreen material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Ref document number: 5245137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250