JP5244507B2 - Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method - Google Patents

Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method Download PDF

Info

Publication number
JP5244507B2
JP5244507B2 JP2008220746A JP2008220746A JP5244507B2 JP 5244507 B2 JP5244507 B2 JP 5244507B2 JP 2008220746 A JP2008220746 A JP 2008220746A JP 2008220746 A JP2008220746 A JP 2008220746A JP 5244507 B2 JP5244507 B2 JP 5244507B2
Authority
JP
Japan
Prior art keywords
parts
water
surface treatment
treatment composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008220746A
Other languages
Japanese (ja)
Other versions
JP2010053413A (en
Inventor
英樹 松田
伶美 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2008220746A priority Critical patent/JP5244507B2/en
Publication of JP2010053413A publication Critical patent/JP2010053413A/en
Application granted granted Critical
Publication of JP5244507B2 publication Critical patent/JP5244507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、従来のクロム酸塩処理及びリン酸塩処理に替わる、耐薬品性、平面部の耐食性、加工部や端面部における耐食性や、付着性に優れる無公害型の表面処理組成物、該表面処理組成物を用いた皮膜形成方法及び表面処理金属板に関する。   The present invention replaces conventional chromate treatment and phosphate treatment, chemical resistance, corrosion resistance of the flat part, corrosion resistance in the processed part and end face part, pollution-free surface treatment composition excellent in adhesion, The present invention relates to a film forming method using a surface treatment composition and a surface-treated metal plate.

従来、コイルコーティングなどによって塗装されたプレコート鋼板などのプレコート金属板は、建築物の屋根、壁、シャッター、ガレージなどの建築資材、各種家電製品、配電盤、冷凍ショーケース、鋼製家具及び厨房器具などの住宅関連商品として幅広く使用されている。   Conventionally, pre-coated metal sheets such as pre-coated steel sheets painted by coil coating, etc., building materials such as roofs, walls, shutters, garages, various household appliances, switchboards, refrigerated showcases, steel furniture, kitchen appliances, etc. Widely used as a housing related product.

プレコート金属板からこれらの住宅関連商品を製造するには、通常、プレコート鋼板を切断しプレス成型し接合される。したがって、これらの住宅関連商品 には、切断面である金属露出部やプレス加工によるワレ発生部が存在することが多い。上記金属露出部やワレ発生部は、他の部分に比べて耐食性が低下しやすいので耐食性の向上のため、プレコート鋼板の金属表面の耐食性を向上させるためクロム酸塩処理及びリン酸塩処理が一般に行われている。   In order to manufacture these housing-related products from a pre-coated metal plate, the pre-coated steel plate is usually cut, press-molded and joined. Therefore, these housing-related products often have a metal exposed portion that is a cut surface and a crack generating portion due to press working. Chromate treatment and phosphate treatment are generally used to improve the corrosion resistance of the metal surface of pre-coated steel sheets in order to improve the corrosion resistance of the exposed metal parts and crack generation parts as compared with other parts. Has been done.

しかしながら近年クロムの毒性が社会問題になっている。クロム酸塩を使用する表面処理方法は、処理工程でのクロム酸塩ヒュームの飛散の問題、排水処理設備に多大な費用を要すること、さらには化成処理皮膜からクロム酸の溶出による問題などがある。また6価クロム化合物は、IARC(International Agency for Research on Cancer Review)を初めとして多くの公的機関が人体に対する発癌性物質に指定しており、極めて有害な物質である。   However, in recent years, the toxicity of chromium has become a social problem. The surface treatment method using chromate has the problem of scattering of chromate fume in the treatment process, the wastewater treatment facility requires a large expense, and further the problem of elution of chromic acid from the chemical conversion treatment film. . Hexavalent chromium compounds are extremely harmful substances as many public institutions, including IARC (International Agency for Research on Cancer Review), have designated as carcinogenic substances for the human body.

またリン酸塩処理では、リン酸亜鉛系、リン酸鉄系の表面処理が通常行われているが、耐食性を付与する目的でリン酸塩処理後、通常クロム酸によるリンス処理を行うためクロム処理の問題とともにリン酸塩処理剤中の反応促進剤、金属イオンなどの排水処理、被処理金属からの金属イオンの溶出によるスラッジ処理などの問題がある。   Also, in phosphate treatment, zinc phosphate and iron phosphate surface treatments are usually performed, but in order to provide corrosion resistance, chrome treatment is usually performed after phosphating for rinsing with chromic acid. In addition to the above problems, there are problems such as a reaction accelerator in the phosphate treatment agent, wastewater treatment of metal ions, and sludge treatment by elution of metal ions from the metal to be treated.

例えば、クロム酸塩処理やリン酸亜鉛処理以外の処理方法として、(A)エポキシ基含有アクリル樹脂のエポキシ基に、分子中に少なくとも1つ以上の活性水素を有するアミン化合物を反応させてなるアミン変性アクリル樹脂、(B)リン酸系化合物、弗化水素酸、金属弗化水素酸及び金属弗化水素酸塩から選ばれる少なくとも1種の化合物、(C)モリブデン化合物、タングステン化合物及びバナジウム化合物から選ばれる少なくとも1種の化合物、(D)PH7以下で安定な水性有機高分子化合物、ならびに(E)潤滑剤を必須成分として含有することを特徴とする潤滑鋼板用表面処理組成物が記載されている(特許文献1)。   For example, as a treatment method other than chromate treatment or zinc phosphate treatment, (A) an amine obtained by reacting an epoxy compound of an epoxy group-containing acrylic resin with an amine compound having at least one active hydrogen in the molecule From a modified acrylic resin, (B) at least one compound selected from phosphoric acid compounds, hydrofluoric acid, metal hydrofluoric acid and metal hydrofluoric acid salts, (C) molybdenum compounds, tungsten compounds and vanadium compounds There is described a surface treatment composition for a lubricating steel sheet, comprising at least one selected compound, (D) an aqueous organic polymer compound that is stable at a pH of 7 or less, and (E) a lubricant as an essential component. (Patent Document 1).

また、(A)エポキシ基含有アクリル樹脂のエポキシ基に、分子中に少なくとも1つ以上の活性水素基を有するアミン化合物を反応させてなるアミン変性アクリル樹脂、(B)リン酸系化合物、弗化水素酸、金属弗化水素酸及び金属弗化水素酸塩から選ばれる少なくとも1種の化合物、ならびに(C)モリブデン化合物、タングステン化合物及びバナジウム化合物から選ばれる少なくとも1種の化合物を必須成分として含有することを特徴とする金属材料用表面処理組成物が開示されている(特許文献2)。   And (A) an amine-modified acrylic resin obtained by reacting an epoxy compound of an epoxy group-containing acrylic resin with an amine compound having at least one active hydrogen group in the molecule; (B) a phosphoric acid compound; It contains at least one compound selected from hydroacid, metal hydrofluoric acid and metal hydrofluoride, and (C) at least one compound selected from molybdenum compounds, tungsten compounds and vanadium compounds as essential components. A surface treatment composition for metal materials is disclosed (Patent Document 2).

また、(A)加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液の固形分100重量部に基いて、(B)有機リン酸化合物1〜400重量部、(C)水溶性又は水分散性有機樹脂を固形分で10〜2,000重量部、(D)バナジン酸化合物1〜400重量部、(E)弗化ジルコニウム化合物1〜400重量部及び(F)炭酸ジルコニウム化合物1〜400重量部を含有してなることを特徴とする金属表面処理組成物が開示されている(特許文献3)。   Further, (A) at least one titanium compound selected from the group consisting of a hydrolyzable titanium compound, a low condensate of hydrolyzable titanium compound, titanium hydroxide and a low condensate of titanium hydroxide is a hydrogen peroxide solution. Based on 100 parts by weight of the solid content of the titanium-containing aqueous liquid obtained by mixing, 1 to 400 parts by weight of (B) an organic phosphoric acid compound, and 10 to 2 parts of (C) a water-soluble or water-dispersible organic resin in solids. 2,000 parts by weight, (D) 1 to 400 parts by weight of a vanadic acid compound, (E) 1 to 400 parts by weight of a zirconium fluoride compound, and (F) 1 to 400 parts by weight of a zirconium carbonate compound. A metal surface treatment composition is disclosed (Patent Document 3).

他に、特許文献4には、金属鋼板上に、(I)乾燥膜厚で0.01〜1μmの高耐食性下層皮膜と、(II)乾燥膜厚で0.2〜3μmの耐指紋性皮膜とが順次形成されてなる表面処理鋼板であって、該高耐食性下層皮膜(I)が、(A)加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液100重量部に基いて、(B)有機リン酸化合物1〜400重量部、(C)水溶性又は水分散性有機樹脂10〜2,000重量部、(D)メタバナジン酸塩1〜400重量部、(E)ジルコニウム弗化塩1〜400重量部及び(F)炭酸ジルコニウム塩1〜400重量部を含有してなる下層皮膜用表面処理組成物から形成された皮膜を有する表面処理鋼板が開示されている(特許文献4)。しかしながら、特許文献3又は特許文献4に記載された金属表面処理組成物は、クロム系顔料を使用した皮膜に比べ、耐食性及び耐薬品性に劣るものであり、特に端面部における耐食性が不十分であった。   In addition, Patent Document 4 discloses (I) a high corrosion-resistant underlayer film having a dry film thickness of 0.01 to 1 μm and (II) a fingerprint-resistant film having a dry film thickness of 0.2 to 3 μm on a metal steel plate. Is a surface-treated steel sheet in which the high corrosion-resistant underlayer coating (I) is (A) a hydrolyzable titanium compound, a low condensate of a hydrolyzable titanium compound, titanium hydroxide, and titanium hydroxide. Based on 100 parts by weight of a titanium-containing aqueous liquid obtained by mixing at least one titanium compound selected from the group consisting of low-condensates with hydrogen peroxide, (B) 1 to 400 parts by weight of an organophosphate compound , (C) water-soluble or water-dispersible organic resin 10 to 2,000 parts by weight, (D) metavanadate 1 to 400 parts by weight, (E) zirconium fluoride 1 to 400 parts by weight, and (F) zirconium carbonate Lower layer containing 1 to 400 parts by weight of salt A surface-treated steel sheet having a film formed from the surface treatment composition for film is disclosed (Patent Document 4). However, the metal surface treatment composition described in Patent Document 3 or Patent Document 4 is inferior in corrosion resistance and chemical resistance compared to a film using a chromium-based pigment, and in particular, the corrosion resistance at the end face is insufficient. there were.

さらに、特許文献5には、平均粒径が0.4〜0.6μmの内部ゲル化硬質重合体粒子(a)、水分散性シリカ(b)、グリシドキシアルキルトリアルコキシシラン(c)、有機バナジウム化合物(d)、水分散性ウレタン樹脂(e)、ジルコニウム化合物(f)、及びリン酸水素二アンモニウム(g)を含有する水性防錆被覆剤組成物で処理された塗装亜鉛系メッキ鋼板が開示されている。   Further, in Patent Document 5, internal gelled hard polymer particles (a) having an average particle diameter of 0.4 to 0.6 μm, water-dispersible silica (b), glycidoxyalkyltrialkoxysilane (c), Painted zinc-based plated steel sheet treated with an aqueous rust-proof coating composition containing an organic vanadium compound (d), a water-dispersible urethane resin (e), a zirconium compound (f), and diammonium hydrogen phosphate (g) Is disclosed.

しかしながら、特許文献1〜5に記載された表面処理組成物等は、クロム系顔料を使用した表面処理組成物に比べ、耐食性に劣り、特に加工部及び端面部における耐食性や付着性が不十分である。   However, the surface treatment compositions and the like described in Patent Documents 1 to 5 are inferior in corrosion resistance compared to the surface treatment composition using a chromium-based pigment, and in particular, the corrosion resistance and adhesion at the processed part and the end face part are insufficient. is there.

特開2003−166073号公報JP 2003-166073 A 特開2003−226982号公報JP 2003-226882 A 特開2006−9121号公報Japanese Patent Laid-Open No. 2006-9121 特開2006−22370号公報JP 2006-22370 A 特開2008−81785号公報JP 2008-81785 A

本発明の課題は、平面部の耐食性、加工部や端面部における耐食性や付着性に優れた無公害型の表面処理組成物を見出し、上記皮膜性能に優れる無公害型の表面処理組成物、皮膜形成方法及び表面処理金属板を提供することである。   An object of the present invention is to find a pollution-free surface treatment composition excellent in corrosion resistance and adhesion at a flat portion, processed portion and end face portion, and a pollution-free surface treatment composition and coating excellent in the above-mentioned film performance A forming method and a surface-treated metal plate are provided.

そこで、本発明者らは、従来の上記問題点を解決すべく鋭意研究を重ねた結果、水溶性又は水分散性樹脂(A)、防錆成分混合物(B)として、特定のバナジウム化合物(b1)、珪素化合物(b2)及びリン酸系カルシウム塩(b3)を所定量配合した表面処理組成物によって、平面部の耐食性のみならず、塗装金属板などにおける加工部や端面部の耐食性に優れた塗膜を形成できる表面処理組成物を見出し、本発明を完成するに至った。   Therefore, as a result of intensive studies to solve the above-described conventional problems, the present inventors have obtained a specific vanadium compound (b1) as a water-soluble or water-dispersible resin (A) and a rust preventive component mixture (B). ), The surface treatment composition containing a predetermined amount of the silicon compound (b2) and the phosphoric acid calcium salt (b3) is excellent not only in the corrosion resistance of the flat surface portion but also in the corrosion resistance of the processed portion and the end surface portion in the coated metal plate and the like. The present inventors have found a surface treatment composition capable of forming a coating film and have completed the present invention.

即ち、本発明は、「1.水溶性又は水分散性樹脂(A)、下記の防錆成分混合物(B)を含有する固形分1〜30質量%の表面処理組成物、
防錆成分混合物(B):五酸化バナジウム、バナジン酸カルシウム及びメタバナジン酸アンモニウムのうちの少なくとも1種のバナジウム化合物(b1)、珪素化合物(b2)、リン酸系カルシウム塩(b3)、からなるものであって、
該水溶性又は水分散性樹脂(A)の樹脂固形分100質量部に対して、バナジウム化合物(b1)の量が1〜30質量部、珪素化合物(b2)の量が1〜30質量部、及び該リン酸系カルシウム塩(b3)の量が1〜30質量部であり、かつ該防錆成分混合物(B)の量が3〜90質量部である
2.さらに、フルオロ金属イオンを生じる化合物(b4)を、水溶性又は水分散性樹脂(A)の樹脂固形分100質量部に対して1〜30質量部含有する1項に記載の表面処理組成物、
3.水溶性又は水分散性樹脂(A)が、アミノ基含有エポキシ樹脂である1又は2に記載の表面処理組成物、
4.水溶性又は水分散性樹脂(A)の樹脂固形分100質量部に対して、レゾール型フェノール樹脂を0.1〜10質量部含有する1〜3のいずれか1項に記載の表面処理組成物、
5.金属基材に、請求項1〜4のいずれか1項に記載の表面処理組成物による0.01〜10μmの硬化塗膜を形成し、素材到達温度80℃〜120℃で1秒間〜60秒間加熱乾燥することを特徴とする皮膜形成方法、
6.5に記載の皮膜形成方法によって得られた表面処理金属板」、に関する。
That is, the present invention provides a surface treatment composition having a solid content of 1 to 30% by mass containing “1. water-soluble or water-dispersible resin (A) and the following antirust component mixture (B),
Antirust component mixture (B): a composition comprising at least one of vanadium pentoxide, calcium vanadate and ammonium metavanadate (b1), silicon compound (b2), and phosphate calcium salt (b3) Because
1 to 30 parts by mass of the vanadium compound (b1) and 1 to 30 parts by mass of the silicon compound (b2) with respect to 100 parts by mass of the resin solid content of the water-soluble or water-dispersible resin (A). And the amount of the phosphate calcium salt (b3) is 1 to 30 parts by mass, and the amount of the rust preventive component mixture (B) is 3 to 90 parts by mass. Furthermore, the surface treatment composition of 1 which contains 1-30 mass parts of compound (b4) which produces a fluoro metal ion with respect to 100 mass parts of resin solid content of water-soluble or water-dispersible resin (A),
3. The surface treatment composition according to 1 or 2, wherein the water-soluble or water-dispersible resin (A) is an amino group-containing epoxy resin,
4). The surface treatment composition according to any one of 1 to 3, comprising 0.1 to 10 parts by mass of a resol-type phenol resin with respect to 100 parts by mass of the resin solid content of the water-soluble or water-dispersible resin (A). ,
5. A cured coating film having a thickness of 0.01 to 10 μm is formed on the metal substrate using the surface treatment composition according to any one of claims 1 to 4, and the material arrival temperature is 80 ° C. to 120 ° C. for 1 second to 60 seconds. A film forming method characterized by heating and drying;
The surface-treated metal plate obtained by the film forming method according to 6.5 ”.

本発明の表面処理組成物は、クロム系の防錆顔料を含まず環境衛生面で有利である。表面処理組成物を塗布して得られた皮膜は、平面部の耐食性に優れるのみならず、非クロム系防錆顔料を含有する表面処理組成物では達成が困難であった表面処理金属板の加工部や端面部における耐食性、付着性に優れた効果を発揮する。   The surface treatment composition of the present invention does not contain a chromium-based rust preventive pigment and is advantageous in terms of environmental hygiene. The film obtained by applying the surface treatment composition is not only excellent in corrosion resistance of the flat portion, but also processing of the surface-treated metal plate that was difficult to achieve with the surface treatment composition containing a non-chromium rust preventive pigment. Excellent effect on corrosion resistance and adhesion at the edge and end face.

本発明は、水溶性又は水分散性樹脂(A)及び防錆成分混合物(B)を特定量含有する表面処理組成物に関する。以下、詳細に述べる。   The present invention relates to a surface treatment composition containing a specific amount of a water-soluble or water-dispersible resin (A) and an antirust component mixture (B). Details will be described below.

[金属板]
本発明の表面処理組成物の被塗物となる金属板は、例えば、電気亜鉛めっき鋼板、電気亜鉛−ニッケルめっき鋼板、溶融亜鉛めっき鋼板、亜鉛−アルミ溶融めっき鋼板、などの亜鉛系めっき鋼板、熱延鋼板、冷延鋼板、ステンレス鋼板、銅めっき鋼板、アルミニウム板、溶融すず−亜鉛(Sn−10%Zn)めっき鋼板、溶融アルミめっき鋼板、Al−Mg合金などが挙げられる。
[Metal plate]
The metal plate to be coated with the surface treatment composition of the present invention includes, for example, an electrogalvanized steel sheet, an electrogalvanized nickel plated steel sheet, a hot dip galvanized steel sheet, a zinc-aluminum hot dip plated steel sheet, Examples include hot-rolled steel sheets, cold-rolled steel sheets, stainless steel sheets, copper-plated steel sheets, aluminum sheets, molten tin-zinc (Sn-10% Zn) -plated steel sheets, molten aluminum-plated steel sheets, Al-Mg alloys.

水溶性又は水分散性であるアミノ基含有エポキシ樹脂]
水溶性又は水分散性であるアミノ基含有エポキシ樹脂は、エポキシ樹脂にアミノ基含有化合物を付加反応させて得られる樹脂で、平面部の耐食性に優れるのみならず、加工部や端面部における耐食性や付着性向上の面から好適である。





[ Water-soluble or water-dispersible amino group-containing epoxy resin]
An amino group-containing epoxy resin that is water-soluble or water-dispersible is a resin obtained by addition reaction of an amino group-containing compound with an epoxy resin, and not only has excellent corrosion resistance at the flat part, but also corrosion resistance at the processed part and end face part. This is preferable from the viewpoint of improving adhesion.





上記のアミノ基含有エポキシ樹脂としては、例えば、(1)エポキシ樹脂と第1級モノ−及びポリアミン、第2級モノ−及びポリアミン又は第1、2級混合ポリアミンとの付加物(例えば、米国特許第3,984,299号明細書参照);(2)エポキシ樹脂とケチミン化された第1級アミノ基を有する第2級モノ−及びポリアミンとの付加物(例えば、米国特許第4,017,438号 明細書参照);(3)エポキシ樹脂とケチミン化された第1級アミノ基を有するヒドロキシ化合物とのエーテル化により得られる反応物(例えば、特開昭59−43013号公報参照)等を挙げることができる。   Examples of the amino group-containing epoxy resin include (1) an adduct of an epoxy resin and a primary mono- and polyamine, a secondary mono- and polyamine, or a primary and secondary mixed polyamine (for example, US Patents). (2) Adducts of epoxy resins with secondary mono- and polyamines having ketiminated primary amino groups (see, for example, US Pat. No. 4,017, (3) a reaction product obtained by etherification of an epoxy resin and a ketiminated hydroxy compound having a primary amino group (for example, see JP-A-59-43013), etc. Can be mentioned.

上記のアミノ基含有エポキシ樹脂の製造に使用されるエポキシ樹脂は、1分子中にエポキシ基を少なくとも1個、好ましくは2個以上有する化合物であり、その分子量は一般に少なくとも300、好ましくは400〜4,000、さらに好ましくは800〜2,500の範囲内の「数平均分子量(注1)」及び少なくとも160、好ましくは180〜2,500、さらに好ましくは400〜1,500の範囲内のエポキシ当量を有するものが適しており、特に、ポリフェノール化合物とエピハロヒドリンとの反応によって得られるものが好ましい。   The epoxy resin used in the production of the amino group-containing epoxy resin is a compound having at least one, preferably two or more epoxy groups in one molecule, and its molecular weight is generally at least 300, preferably 400-4. "Number average molecular weight (Note 1)" in the range of 800, 2,500, more preferably in the range of 800 to 2,500 and epoxy equivalents in the range of at least 160, preferably 180 to 2,500, more preferably 400 to 1,500. In particular, those obtained by the reaction of a polyphenol compound and an epihalohydrin are preferable.

(注1)数平均分子量:JIS K 0124−83に記載の方法に準じ、分離カラムとして「TSK GEL4000HXL」、「TSK G3000HXL」、「TSK G2500HXL」、「TSK G2000HXL」(東ソー株式会社製)の4本を用いて、溶離液としてGPC用テトラヒドロフランを用いて40℃及び流速1.0ml/分において、RI屈折計で得られたクロマトグラムと標準ポリスチレンの検量線から求めた。   (Note 1) Number average molecular weight: 4 according to the method described in JIS K 0124-83, 4 of “TSK GEL4000HXL”, “TSK G3000HXL”, “TSK G2500HXL”, “TSK G2000HXL” (manufactured by Tosoh Corporation) Using the book, it was obtained from a chromatogram obtained with an RI refractometer and a standard polystyrene calibration curve at 40 ° C. and a flow rate of 1.0 ml / min using tetrahydrofuran for GPC as an eluent.

該エポキシ樹脂の形成のために用いられるポリフェノール化合物としては、例えば、ビス(4−ヒドロキシフェニル)−2,2−プロパン[ビスフェノールA]、ビス(4−ヒドロキシフェニル)メタン[ビスフェノールF]、ビス(4−ヒドロキシシクロヘキシル)メタン[水添ビスフェノールF]、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン[水添ビスフェノールA]、4,4’−ジヒドロキシベンゾフェノン、ビス(4−ヒドロキシフェニル)−1,1−エタン、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−3−tert−ブチル−フェニル)−2,2−プロパン、ビス(2−ヒドロキシナフチル)メタン、テトラ(4−ヒドロキシフェニル)−1,1,2,2−エタン、4,4’−ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどを挙げることができる。   Examples of the polyphenol compound used for forming the epoxy resin include bis (4-hydroxyphenyl) -2,2-propane [bisphenol A], bis (4-hydroxyphenyl) methane [bisphenol F], bis ( 4-hydroxycyclohexyl) methane [hydrogenated bisphenol F], 2,2-bis (4-hydroxycyclohexyl) propane [hydrogenated bisphenol A], 4,4′-dihydroxybenzophenone, bis (4-hydroxyphenyl) -1, 1-ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-3-tert-butyl-phenyl) -2,2-propane, bis (2-hydroxynaphthyl) methane, tetra ( 4-hydroxyphenyl) -1,1,2,2-ethane, 4,4 ′ Dihydroxydiphenyl sulfone, phenol novolak, and the like cresol novolak.

また、ポリフェノール化合物とエピクロルヒドリンとの反応によって得られるエポキシ樹脂としては、中でも、ビスフェノールAから誘導される下記式の樹脂が好適である。   Moreover, as an epoxy resin obtained by reaction of a polyphenol compound and epichlorohydrin, the resin of the following formula induced | guided | derived from bisphenol A is suitable especially.

Figure 0005244507
Figure 0005244507

ここで、n=0〜8で示されるものが好適である。
かかるエポキシ樹脂の市販品としては、jER828EL、jER1002、jER1004、jER1007(ジャパンエポキシレジン(株)、商品名)、アラルダイトAER6099(旭チバ社製、商品名)、エポミックR−309(三井化学社製、商品名)が挙げられる。
Here, what is shown by n = 0-8 is suitable.
As commercially available products of such epoxy resins, jER828EL, jER1002, jER1004, jER1007 (Japan Epoxy Resin Co., Ltd., trade name), Araldite AER6099 (made by Asahi Ciba Co., Ltd., trade name), Epomic R-309 (Mitsui Chemicals, Product name).

該エポキシ樹脂は、ポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリアミドアミン、多塩基酸、ポリイソシアネート化合物などの変性成分とを反応させた変性エポキシ樹脂であってもよく、さらにまた、ε−カプロラクトンなどのラクトン類、アクリルモノマーなどをグラフト重合させた変性エポキシ樹脂であってもよい。
なお上記変性成分とエポキシ樹脂とを反応させて変性エポキシ樹脂を製造する方法は、特に限定されるものではない。変性成分とエポキシ樹脂との反応は、例えば、これらの各成分を溶解できる溶媒中において、必要に応じて反応触媒の存在下で、通常、100〜150℃にて100〜150℃で1〜5時間反応させることによって好適に行うことができる。
The epoxy resin may be a modified epoxy resin obtained by reacting a modifying component such as a polyol, a polyether polyol, a polyester polyol, a polyamidoamine, a polybasic acid, or a polyisocyanate compound, and further, such as ε-caprolactone. It may be a modified epoxy resin obtained by graft polymerization of lactones, acrylic monomers, or the like.
The method for producing the modified epoxy resin by reacting the modified component with the epoxy resin is not particularly limited. The reaction between the modified component and the epoxy resin is usually, for example, 1 to 5 at 100 to 150 ° C. at 100 to 150 ° C. in the presence of a reaction catalyst as necessary in a solvent capable of dissolving these components. It can carry out suitably by making it react for time.

上記反応触媒としては、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、トリフェニルベンジルフォスフォニウムクロライド等の4級塩触媒、トリエチルアミン等のアミン類を挙げることができる。   Examples of the reaction catalyst include quaternary salt catalysts such as tetraethylammonium bromide, tetrabutylammonium bromide, triphenylbenzylphosphonium chloride, and amines such as triethylamine.

上記(1)のアミノ基含有エポキシ樹脂の製造に使用される第1級モノ−及びポリアミン、第2級モノ−及びポリアミン又は第1、2級混合ポリアミンとしては、例えば、モノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジブチルアミンなどのモノ−もしくはジ−アルキルアミン;モノエタノールアミン、ジエタノールアミン、モノ(2−ヒドロキシプロピル)アミン、モノメチルアミノエタノールなどのアルカノールアミン;エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンなどのアルキレンポリアミンなどアミン化合物を挙げることができる。   Examples of primary mono- and polyamines, secondary mono- and polyamines, and primary and secondary mixed polyamines used in the production of the amino group-containing epoxy resin of (1) above include monomethylamine, dimethylamine, Mono- or di-alkylamines such as monoethylamine, diethylamine, monoisopropylamine, diisopropylamine, monobutylamine, dibutylamine; alkanolamines such as monoethanolamine, diethanolamine, mono (2-hydroxypropyl) amine, monomethylaminoethanol; Examples include amine compounds such as alkylene polyamines such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.

上記(2)のアミノ基含有エポキシ樹脂の製造に使用されるケチミン化された第1級アミノ基を有する第2級モノ−及びポリアミンとしては、例えば、上記(1)のアミン付加エポキシ樹脂の製造に使用される第1、2級混合ポリアミンのうち、例えば、ジエチレントリアミンなどにケトン化合物を反応させて生成させたアミン化合物のケチミン化物を挙げることができる。   Examples of the secondary mono- and polyamine having a ketiminated primary amino group used in the production of the amino group-containing epoxy resin of (2) above include the production of an amine-added epoxy resin of (1) above. Among the primary and secondary mixed polyamines used in 1), for example, ketimine compounds of amine compounds produced by reacting ketone compounds with diethylenetriamine or the like can be mentioned.

上記(3)のアミノ基含有エポキシ樹脂の製造に使用されるケチミン化された第1級アミノ基を有するヒドロキシ化合物としては、例えば、上記(1)のアミン付加エポキシ樹脂の製造に使用される第1級モノ−及びポリアミン、第2級モノ−及びポリアミン又は第1、2級混合ポリアミンのうち、第1級アミノ基とヒドロキシル基を有する化合物、例えば、モノエタノールアミン、モノ(2−ヒドロキシプロピル)アミンなどにケトン化合物を反応させてなるアミン化合物のヒドロキシル基含有ケチミン化物を挙げることができる。   Examples of the hydroxy compound having a ketiminated primary amino group used in the production of the amino group-containing epoxy resin of (3) above include, for example, those used in the production of the amine-added epoxy resin of (1) above. Among primary mono- and polyamines, secondary mono- and polyamines or primary and secondary mixed polyamines, compounds having primary amino groups and hydroxyl groups, such as monoethanolamine, mono (2-hydroxypropyl) A hydroxyl group-containing ketimine compound of an amine compound obtained by reacting a ketone compound with an amine or the like can be mentioned.

特に、アミノ基含有エポキシ樹脂の中でもプレコート鋼板用における加工部の耐食性向上の観点からより好ましい樹脂として、炭素数4〜36の脂肪族多塩基酸とエポキシ樹脂とを反応させて変性エポキシ樹脂に、アミン化合物等を付加してなる、脂肪族多塩基酸変性のアミノ基含有エポキシ樹脂;他に、ポリイソシアネート化合物とエポキシ樹脂とを反応させて変性エポキシ樹脂に、アミン化合物等を付加してなる、ジイソシアネート化合物変性のアミノ基含有変性エポキシ樹脂;を挙げることができる。   In particular, among the amino group-containing epoxy resins, as a more preferable resin from the viewpoint of improving the corrosion resistance of the processed portion for pre-coated steel sheets, a modified epoxy resin by reacting an aliphatic polybasic acid having 4 to 36 carbon atoms with an epoxy resin, An aliphatic polybasic acid-modified amino group-containing epoxy resin formed by adding an amine compound or the like; in addition, an amine compound or the like is added to the modified epoxy resin by reacting a polyisocyanate compound and an epoxy resin. And diisocyanate compound-modified amino group-containing modified epoxy resins.

上記の炭素数4〜36の脂肪族多塩基酸は、好ましくは6〜36の飽和又は不飽和の脂肪族多塩基酸であって、例えば、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、メチルヘキサヒドロテレフタル酸、△1−テトラヒドロフタル酸、△2−テトラヒドロフタル酸、△3−テトラヒドロフタル酸、△4−テトラヒドロフタル酸、△1−テトラヒドロイソフタル酸、△2−テトラヒドロイソフタル酸、△3−テトラヒドロイソフタル酸、△4−テトラヒドロイソフタル酸、△1−テトラヒドロテレフタル酸、△2−テトラヒドロテレフタル酸、メチルテトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、ヘキサクロロエンドメチレンテトラヒドロフタル酸等の脂環式ジカルボン酸及びその無水物;コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンニ酸、ドデカンジカルボン酸、スベリン酸、ピメリン酸、マレイン酸、フマル酸、イタコン酸、ブラシリン酸、シトラコン酸、クロロマレイン酸、ダイマー酸等の脂肪族ジカルボン酸及びその無水物;ヘキサヒドロトリメリット酸等の3価以上の脂肪族多塩基酸;これらの酸のメチルエステル、エチルエステルのごとき低級アルキルエステル等が挙げられる。   The aliphatic polybasic acid having 4 to 36 carbon atoms is preferably a saturated or unsaturated aliphatic polybasic acid having 6 to 36, such as hexahydroisophthalic acid, hexahydroterephthalic acid, hexahydrophthalic acid. Acid, methyl hexahydrophthalic acid, methyl hexahydroterephthalic acid, Δ1-tetrahydrophthalic acid, Δ2-tetrahydrophthalic acid, Δ3-tetrahydrophthalic acid, Δ4-tetrahydrophthalic acid, Δ1-tetrahydroisophthalic acid, Δ 2-tetrahydroisophthalic acid, Δ3-tetrahydroisophthalic acid, Δ4-tetrahydroisophthalic acid, Δ1-tetrahydroterephthalic acid, Δ2-tetrahydroterephthalic acid, methyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthal Acid, hexachloroe Alicyclic dicarboxylic acids such as domethylenetetrahydrophthalic acid and its anhydrides; succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanic acid, dodecanedicarboxylic acid, suberic acid, pimelic acid, maleic acid, fumaric acid Aliphatic dicarboxylic acids such as itaconic acid, brassic acid, citraconic acid, chloromaleic acid, and dimer acid, and anhydrides thereof; trivalent or higher aliphatic polybasic acids such as hexahydrotrimellitic acid; methyl esters of these acids And lower alkyl esters such as ethyl ester.

上記のポリイソシアネート化合物は、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタン−2,2’−ジイソシアネート、ジフェニルメタン−2,4’−ジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、クルードMDI[ポリメチレンポリフェニルイソシアネート]、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、イソホロンジイソシアネートなどの芳香族、脂肪族又は脂環族ポリイソシアネート化合物;これらのポリイソシアネート化合物の環化重合体又はビゥレット体;又はこれらの組合せを挙げることができる。特に、ヘキサメチレンジイソシアネートが、加工部や端面部の耐食性向上の面から好適である。   Examples of the polyisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,2′-diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, crude MDI [ Polymethylene polyphenyl isocyanate], bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, isophorone diisocyanate and the like; cyclization of these polyisocyanate compounds; A polymer or biuret body; or a combination thereof. In particular, hexamethylene diisocyanate is preferable from the viewpoint of improving the corrosion resistance of the processed part and the end face part.

なお、アミノ基含有エポキシ樹脂の製造において、エポキシ樹脂(変性エポキシ樹脂)に対する、及びアミノ基含有化合物の付加反応は、通常、適当な溶媒中で、80〜170℃、好ましくは90〜150℃の温度で1〜6時間、好ましくは1〜5時間行うことができる。上記の溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、n−ヘキサンなどの炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトンなどのケトン系溶媒;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒;メタノール、エタノール、n−プロパノール、iso−プロパノールなどのアルコール系溶媒;あるいはこれらの混合物などが挙げられる。   In addition, in manufacture of an amino group-containing epoxy resin, the addition reaction of an epoxy resin (modified epoxy resin) and an amino group-containing compound is usually performed at 80 to 170 ° C., preferably 90 to 150 ° C. in an appropriate solvent. The temperature can be 1 to 6 hours, preferably 1 to 5 hours. Examples of the solvent include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, and methyl amyl ketone. Ketone solvents; amide solvents such as dimethylformamide and dimethylacetamide; alcohol solvents such as methanol, ethanol, n-propanol, and iso-propanol; or a mixture thereof.

上記の付加反応における各反応成分の使用割合は、厳密に制限されるものではなく適宜変えることができるが、エポキシ樹脂(変性エポキシ樹脂)とアミノ基含有化合物の合計固形分質量を基準にして、エポキシ樹脂は、70〜95質量%、好ましくは80〜95質量%;アミノ基含有化合物は、5〜30質量%、好ましくは5〜20質量%の範囲内で用いる。   The use ratio of each reaction component in the above addition reaction is not strictly limited and can be changed as appropriate. Based on the total solid mass of the epoxy resin (modified epoxy resin) and the amino group-containing compound, The epoxy resin is used in the range of 70 to 95% by mass, preferably 80 to 95% by mass; the amino group-containing compound is used in the range of 5 to 30% by mass, preferably 5 to 20% by mass.

また、アミノ基含有化合物の使用量は、本発明の最終生成物であるカチオン性樹脂のアミン価が10〜80mgKOH/g、好ましくは20〜70mgKOH/gとなるような範囲内が、水分散性と皮膜の耐食性向上の面から好ましい。   The amount of the amino group-containing compound used is within the range such that the amine value of the cationic resin as the final product of the present invention is 10 to 80 mgKOH / g, preferably 20 to 70 mgKOH / g. From the viewpoint of improving the corrosion resistance of the film.

[防錆成分混合物(B)]
本発明の表面処理組成物は、特定の防錆成分混合物(B)を一定量含有することによって、平面部の耐食性、加工部や端面部における耐食性に優れた塗装金属板を得ることができる。なお防錆成分混合物(B)は、バナジウム化合物(b1)、珪素化合物(b2)及びリン酸系カルシウム塩(b3)からなる。さらに、防錆成分混合物(B)には必要に応じて、フルオロ金属イオンを生じる化合物(b4)を含有することができる。以下、詳細に記載する。
[Anti-rust component mixture (B)]
The surface treatment composition of this invention can obtain the coating metal plate excellent in the corrosion resistance of a plane part, and the corrosion resistance in a process part and an end surface part by containing a specific amount of specific antirust component mixtures (B). In addition, a rust prevention component mixture (B) consists of a vanadium compound (b1), a silicon compound (b2), and a phosphate calcium salt (b3). Furthermore, the antirust component mixture (B) may contain a compound (b4) that generates a fluoro metal ion, if necessary. Details will be described below.

バナジウム化合物(b1):
バナジウム化合物(b1)は、五酸化バナジウム、バナジン酸カルシウム及びメタバナジン酸アンモニウムのうちの少なくとも1種のバナジウム化合物である。五酸化バナジウム、バナジン酸カルシウム及びメタバナジン酸アンモニウムは、5価バナジウムイオンの水への溶出性に優れており、バナジウム化合物(b1)から放出される5価バナジウムイオンが、素材金属と反応したり、他の防錆成分混合物からのイオンと反応することにより耐食性向上に効果的に働く。この中でも、特に、五酸化バナジウムが、耐食性向上効果が大きい。
Vanadium compound (b1):
The vanadium compound (b1) is at least one vanadium compound selected from vanadium pentoxide, calcium vanadate, and ammonium metavanadate. Vanadium pentoxide, calcium vanadate and ammonium metavanadate are excellent in elution of pentavalent vanadium ions into water, and the pentavalent vanadium ions released from the vanadium compound (b1) react with the material metal, It works effectively to improve corrosion resistance by reacting with ions from other anti-rust component mixtures. Among these, vanadium pentoxide is particularly effective in improving corrosion resistance.

珪素化合物(b2):
珪素化合物(b2)は、ケイ酸金属塩、シリカ微粒子、金属イオン交換シリカ微粒子から選ばれる少なくとも1種の化合物を含有するものである。
ケイ酸金属塩は、二酸化珪素と金属酸化物とからなる塩であり、オルト珪酸塩、ポリ珪酸塩などのいずれであってもよい。珪酸塩としては、例えば、珪酸亜鉛、珪酸アルミニウム、オルト珪酸アルミニウム、水化珪酸アルミニウム、珪酸アルミニウムカルシウム、珪酸アルミニウムナトリウム、珪酸アルミニウムベリリウム、珪酸ナトリウム、オルト珪酸カルシウム、メタ珪酸カルシウム、珪酸カルシウムナトリウム、珪酸ジルコニウム、オルト珪酸マグネシウム、メタ珪酸マグネシウム、珪酸マグネシウムカルシウム、珪酸マンガン、珪酸バリウム、カンラン石、ザクロ石、トルトバイタイト、イキョク鉱、ベニトアイト、ネプチュナイト、リョクチュウ石、トウキ石、ケイカイ石、バラキ石、トウセン石、ゾノトラ石、タルク、ギョガン石、アルミノ珪酸塩、ホウ珪酸塩、ベリロ珪酸塩、チョウ石、フッ石などを挙げることができる。ケイ酸金属塩としては、なかでもオルト珪酸カルシウム、メタ珪酸カルシウムが好適である。
Silicon compound (b2):
The silicon compound (b2) contains at least one compound selected from metal silicate salts, silica fine particles, and metal ion exchanged silica fine particles.
The silicate metal salt is a salt made of silicon dioxide and a metal oxide, and may be any of orthosilicate, polysilicate and the like. Examples of the silicate include zinc silicate, aluminum silicate, aluminum orthosilicate, hydrated aluminum silicate, aluminum calcium silicate, sodium aluminum silicate, beryllium aluminum silicate, sodium silicate, calcium orthosilicate, calcium metasilicate, calcium calcium silicate, and silicic acid. Zirconium, magnesium orthosilicate, magnesium metasilicate, magnesium calcium silicate, manganese silicate, barium silicate, olivine, garnet, tortovite, cyllite, benitoite, neptunite, nymphite, turquoise, quartzite, barracite, tosen Stones, zonotorite, talc, gyoganite, aluminosilicate, borosilicate, beryllosilicate, cholite, fluorite and the like. As the metal silicate, calcium orthosilicate and calcium metasilicate are particularly preferable.

シリカ微粒子は、シリカ微粒子である限り特に制限なく使用でき、例えば、表面が無処理のシリカ微粉末、表面が有機物で処理されたシリカ微粉末、カルシウムイオン交換シリカ微粒子、有機溶剤分散性コロイダルシリカなどを挙げることができる。表面が無処理又は有機物で処理されたシリカ微粒子としては、平均粒子径0.5〜15μm、好ましくは1〜10μmを有するシリカ微粉末、有機溶剤分散性コロイダルシリカが挙げられる。シリカ微粉末としては、吸油量が30〜350ml/100g、好ましくは30〜150ml/100gの範囲内にあるものを好適に使用することができ、市販品として、サイリシア710、サイリシア740、サイリシア550、アエロジルR972(以上、いずれも富士シリシア化学(株)製)、ミズカシルP−73(水澤化学工業(株)製)、ガシル200DF(クロスフィールド社製)などを挙げることができる。   The silica fine particles can be used without particular limitation as long as they are silica fine particles, such as silica fine powder with an untreated surface, silica fine powder with a surface treated with an organic material, calcium ion-exchanged silica fine particles, organic solvent-dispersed colloidal silica, etc. Can be mentioned. Examples of the silica fine particles whose surface is not treated or treated with an organic substance include silica fine powder having an average particle size of 0.5 to 15 μm, preferably 1 to 10 μm, and organic solvent-dispersible colloidal silica. As the fine silica powder, those having an oil absorption of 30 to 350 ml / 100 g, preferably 30 to 150 ml / 100 g can be suitably used, and as commercially available products, silicia 710, silicia 740, silicia 550, Examples include Aerosil R972 (all of which are manufactured by Fuji Silysia Chemical Co., Ltd.), Mizukacil P-73 (manufactured by Mizusawa Chemical Industry Co., Ltd.), Gasil 200DF (manufactured by Crossfield).

上記の有機溶剤分散性コロイダルシリカは、オルガノシリカゾルとも呼称され、アルコール類、グリコール類、エーテル類などの有機溶剤中に、粒子径が約5〜120nm程度のシリカ微粒子が安定に分散されたものであって、市販品としては、オスカル(OSCAL)シリーズ(触媒化成(株)製)、オルガノゾル(日産化学(株)製)などを挙げることができる。   The organic solvent-dispersible colloidal silica is also referred to as an organosilica sol, in which silica fine particles having a particle size of about 5 to 120 nm are stably dispersed in an organic solvent such as alcohols, glycols, and ethers. In addition, examples of commercially available products include the OSCAL series (manufactured by Catalytic Chemicals Co., Ltd.) and organosols (manufactured by Nissan Chemical Co., Ltd.).

金属イオン交換シリカ微粒子は、微細な多孔質のシリカ担体にイオン交換によって金属イオンが導入されたシリカ微粒子である。具体的には、カルシウムやマグネシウムを導入したシリカ微粒子である。例えば、カルシウムイオン交換シリカの市販品としては、SHIELDEX(シールデックス、登録商標)C303、SHIELDEXAC−3、 SHIELDEXC−5(以上、いずれもW.R.Grace & Co.社製)などを挙げることができる。   The metal ion exchanged silica fine particles are silica fine particles in which metal ions are introduced into a fine porous silica carrier by ion exchange. Specifically, it is a silica fine particle into which calcium or magnesium is introduced. For example, as commercially available products of calcium ion exchange silica, SHIELDEX (Shielddex, registered trademark) C303, SHIELDEXAC-3, SHIELDEXC-5 (all of which are manufactured by WR Grace & Co.) and the like can be mentioned. it can.

金属イオン交換シリカから放出されるアルカリ土類金属イオンは、電気化学的作用や種々の塩生成作用にかかわり、耐食性の向上に効果的に働く。また、塗膜中に固定化されるシリカは、腐食雰囲気下での塗膜の剥離抑制などに効果的に働く。   Alkaline earth metal ions released from metal ion-exchanged silica are involved in electrochemical action and various salt forming actions, and effectively work to improve corrosion resistance. Moreover, the silica fixed in the coating film effectively works to suppress peeling of the coating film in a corrosive atmosphere.

リン酸系カルシウム塩(b3):
リン酸系カルシウム塩(b3)は、金属元素としてカルシウムを含有するリン酸塩であり、例えば、リン酸カルシウム、リン酸カルシウムアンモニウム、リン酸一水素カルシウム、リン酸二水素カルシウム、リン酸塩化フッ化カルシウム、トリポリリン酸カルシウムなどを挙げることができる。リン酸系カルシウム塩(b3)から放出されるリン酸イオン及びカルシウムイオンが耐食性の向上に効果的に働く。
Phosphate-based calcium salt (b3):
The phosphate calcium salt (b3) is a phosphate containing calcium as a metal element. For example, calcium phosphate, calcium ammonium phosphate, calcium monohydrogen phosphate, calcium dihydrogen phosphate, calcium phosphate phosphate, tripoly A calcium phosphate etc. can be mentioned. Phosphate ions and calcium ions released from the phosphate calcium salt (b3) work effectively to improve corrosion resistance.

本発明の表面処理組成物は、前記水溶性又は水分散性樹脂(A)の樹脂固形分100質量部に対して、防錆成分混合物(B)における、バナジウム化合物(b1)、珪素化合物(b2)及びリン酸系カルシウム塩(b3)が、下記範囲内にある。   In the surface treatment composition of the present invention, the vanadium compound (b1) and the silicon compound (b2) in the antirust component mixture (B) with respect to 100 parts by mass of the resin solid content of the water-soluble or water-dispersible resin (A). ) And phosphate calcium salt (b3) are within the following range.

バナジウム化合物(b1):1〜30質量部、好ましくは1〜20質量部、珪素化合物(b2):1〜30質量部、好ましくは1〜20質量部、リン酸系カルシウム塩(b3):1〜30質量部、好ましくは1〜20質量部である。   Vanadium compound (b1): 1 to 30 parts by mass, preferably 1 to 20 parts by mass, silicon compound (b2): 1 to 30 parts by mass, preferably 1 to 20 parts by mass, phosphate calcium salt (b3): 1 -30 mass parts, preferably 1-20 mass parts.

さらに、本発明の表面処理組成物は、前記水溶性又は水分散性樹脂(A)の樹脂固形分100質量部に対して、防錆成分混合物(B)の量が3〜90質量部、好ましくは9〜60質量部であることが、平面部の耐食性、加工部や端面部おける耐食性、付着性に優れた皮膜を得る為にも好ましい。   Furthermore, in the surface treatment composition of the present invention, the amount of the rust preventive component mixture (B) is preferably 3 to 90 parts by mass, preferably 100 parts by mass of the resin solid content of the water-soluble or water-dispersible resin (A). 9 to 60 parts by mass is also preferable in order to obtain a film excellent in the corrosion resistance of the flat part, the corrosion resistance in the processed part and the end face part, and the adhesion.

本発明の表面処理組成物は、防錆成分混合物(B)として、これらバナジウム化合物(b1)、珪素化合物(b2)及びリン酸系カルシウム塩(b3)を所定量組合せることによって、相乗的に耐食性を向上させることができるものである。なおこの中でも、防錆成分混合物(B)は、五酸化バナジウム、メタ珪酸カルシウム及びリン酸カルシウムの組合せが、耐食性の点から好適である。   The surface treatment composition of the present invention synergistically combines the vanadium compound (b1), the silicon compound (b2) and the phosphate calcium salt (b3) in a predetermined amount as the antirust component mixture (B). Corrosion resistance can be improved. Of these, the combination of vanadium pentoxide, calcium metasilicate, and calcium phosphate is suitable for the antirust component mixture (B) from the viewpoint of corrosion resistance.

さらに、防錆成分混合物(B)には、上記バナジウム化合物(b1)、珪素化合物(b2)及びリン酸系カルシウム塩(b3)に加えて、必要に応じて、フルオロ金属イオンを生じる化合物(b4)を配合することができる。   Furthermore, in addition to the vanadium compound (b1), the silicon compound (b2) and the phosphoric acid calcium salt (b3), the rust-preventive component mixture (B) includes a compound (b4) that generates a fluoro metal ion, if necessary. ) Can be blended.

フルオロ金属イオンを生じる化合物(b4):
フルオロ金属イオンを生じる化合物(b4)は、ジルコニウムフッ素水素イオン、チタンフッ化水素イオン、珪フッ化水素イオンなどのフルオロ金属イオン生じる化合物であり、具体的には、例えば、ジルコニウムフッ化水素酸、ジルコニウムフッ化水素酸塩(例えば、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等)など;チタンフッ化水素酸、チタンフッ化水素酸塩(例えば、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等)など;珪フッ化水素酸、珪フッ化水素酸塩(例えば、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等)など;が挙げられる。
Compound (b4) producing a fluoro metal ion:
The compound (b4) that generates a fluoro metal ion is a compound that generates a fluoro metal ion such as zirconium fluorine hydrogen ion, titanium hydrogen fluoride ion, or hydrogen silicofluoride ion. Specifically, for example, zirconium hydrofluoric acid, zirconium Hydrofluoric acid salt (eg, sodium salt, potassium salt, lithium salt, ammonium salt, etc.); Titanium hydrofluoric acid, titanium hydrofluoric acid salt (eg, sodium salt, potassium salt, lithium salt, ammonium salt, etc.), etc. Hydrosilicic acid, hydrosilicic acid salt (for example, sodium salt, potassium salt, lithium salt, ammonium salt, etc.) and the like.

さらに、前記水溶性又は水分散性樹脂(A)の樹脂固形分100質量部に対して、バナジウム化合物(b1)、珪素化合物(b2)、リン酸系カルシウム塩(b3)、必要に応じて配合されるフルオロ金属イオンを生じる化合物(b4)の各々の混合物を、25℃の5質量%濃度の塩化ナトリウム水溶液10,000質量部に添加して6時間攪拌し、25℃で48時間静置した上澄み液を濾過した濾液のpH=3〜8、好ましくはpH=4〜6であることが、防錆成分混合物(B)の水分による溶解性及び防錆成分の溶解液と金属板との反応性の観点から好適である。   Further, vanadium compound (b1), silicon compound (b2), phosphoric acid calcium salt (b3), blended as necessary with respect to 100 parts by mass of the resin solid content of the water-soluble or water-dispersible resin (A). Each mixture of the compound (b4) that produces a fluoro metal ion was added to 10,000 parts by weight of a 5% strength by weight sodium chloride aqueous solution at 25 ° C., stirred for 6 hours, and allowed to stand at 25 ° C. for 48 hours. The pH of the filtrate obtained by filtering the supernatant is 3 to 8, preferably 4 to 6. The solubility of the rust preventive component mixture (B) by water and the reaction between the solution of the rust preventive component and the metal plate From the viewpoint of sex.

すなわち、上記pH測定をする濾液は、25℃の5質量%濃度の塩化ナトリウム水溶液10,000質量部に対して、バナジウム化合物(b1)が1〜30質量部の範囲内のいずれかの量、珪素化合物(b2)が1〜30質量部の範囲内のいずれかの量、及びリン酸系カルシウム塩(b3)が1〜30質量部
必要に応じて、フルオロ金属イオンを生じる化合物(b4)を1〜30質量部添加し、溶解した溶解液の濾液である。
That is, the filtrate for pH measurement is any amount in the range of 1 to 30 parts by mass of the vanadium compound (b1) with respect to 10,000 parts by mass of a 5% by mass sodium chloride aqueous solution at 25 ° C. The amount of the silicon compound (b2) in the range of 1 to 30 parts by mass, and the amount of the phosphate calcium salt (b3) of 1 to 30 parts by mass. It is a filtrate of a dissolved solution added and dissolved in an amount of 1 to 30 parts by mass.

本発明の表面処理組成物の製造は、前記の防錆成分混合物(B)を、必要に応じて、分散用樹脂、着色顔料、体質顔料等の顔料、有機錫化合物、紫外線吸収剤、紫外線安定剤、有機溶剤、シランカップリング剤、沈降防止剤、消泡剤、塗面調整剤などの従来から公知の添加剤や、中和剤(例えば、酸類、具体的には、酢酸、リン酸、乳酸、又はこれらの混合物などが挙げられる)を配合し、ボールミル、サンドミル、ペブルミル等の分散混合機中で分散処理して得られる分散ペーストとして配合する。   The surface treatment composition of the present invention can be prepared by using the antirust component mixture (B), if necessary, a dispersion resin, a pigment such as a color pigment, an extender pigment, an organic tin compound, an ultraviolet absorber, and an ultraviolet stabilizer. Conventionally known additives such as agents, organic solvents, silane coupling agents, anti-settling agents, antifoaming agents, coating surface modifiers, and neutralizing agents (for example, acids, specifically, acetic acid, phosphoric acid, Lactic acid, or a mixture thereof) is blended, and blended as a dispersion paste obtained by dispersing in a dispersion mixer such as a ball mill, sand mill, or pebble mill.

上記の中和剤においてリン酸を使用することによって、得られた表面処理皮膜の耐食性向上の面から好ましい。表面処理組成物中のリン酸の割合としては、水溶性又は水分散性樹脂(A)における官能基を基準にして、0.1〜1.0当量、好ましくは0.3〜0.8当量がよい。   Use of phosphoric acid in the neutralizing agent is preferable from the viewpoint of improving the corrosion resistance of the obtained surface treatment film. The proportion of phosphoric acid in the surface treatment composition is 0.1 to 1.0 equivalent, preferably 0.3 to 0.8 equivalent, based on the functional group in the water-soluble or water-dispersible resin (A). Is good.

上記分散用樹脂としては、公知のものが使用でき、例えば水酸基及びカチオン性基を有する基体樹脂、界面活性剤等、又は3級アミン型エポキシ樹脂、4級アンモニウム塩型エポキシ樹脂、3級スルホニウム塩型エポキシ樹脂などの樹脂を使用できる。上記分散用樹脂の使用量は、防錆成分100質量部あたり1〜150質量部、特に10〜100質量部の範囲内が好適である。   As the dispersing resin, known ones can be used. For example, a base resin having a hydroxyl group and a cationic group, a surfactant, etc., or a tertiary amine type epoxy resin, a quaternary ammonium salt type epoxy resin, a tertiary sulfonium salt. Resins such as type epoxy resins can be used. The amount of the dispersing resin used is preferably 1 to 150 parts by mass, particularly 10 to 100 parts by mass per 100 parts by mass of the rust preventive component.

上記着色顔料としては、例えばシアニンブルー、シアニングリーン、アゾ系やキナクリドン系などの有機赤顔料などの有機着色顔料;チタン白、チタンエロー、ベンガラ、カーボンブラック、各種焼成顔料などの無機着色顔料を挙げることができ、なかでもチタン白を好適に使用することができる。   Examples of the colored pigment include organic colored pigments such as cyanine blue, cyanine green, organic red pigments such as azo and quinacridone; and inorganic colored pigments such as titanium white, titanium yellow, bengara, carbon black, and various fired pigments. Among them, titanium white can be preferably used.

上記体質顔料としては、例えばタルク、クレー、シリカ、マイカ、アルミナ、炭酸カルシウム、硫酸バリウム等を挙げることができる。上記有機錫化合物としては、ジブチル錫ジベンゾエート、ジオクチル錫オキサイド、ジブチル錫オキサイド等を好適に使用することができる。   Examples of the extender pigment include talc, clay, silica, mica, alumina, calcium carbonate, barium sulfate and the like. As the organic tin compound, dibutyltin dibenzoate, dioctyltin oxide, dibutyltin oxide and the like can be suitably used.

上記有機溶剤は、本発明の表面処理組成物の塗装性改善などのために必要に応じて配合されるものであり、水溶性又は水分散性樹脂(A)を溶解ないし分散できるものが使用でき、具体的には、例えば、トルエン、キシレン、高沸点石油系炭化水素などの炭化水素系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤、酢酸エチル、酢酸ブチル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどのエステル系溶剤、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール系溶剤、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルなどのエーテルアルコール系溶剤などを挙げることができ、これらは単独で、あるいは2種以上を混合して使用することができる。   The organic solvent described above is blended as necessary for improving the coating properties of the surface treatment composition of the present invention, and those capable of dissolving or dispersing the water-soluble or water-dispersible resin (A) can be used. Specifically, for example, hydrocarbon solvents such as toluene, xylene, high boiling petroleum hydrocarbons, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone, ethyl acetate, butyl acetate, ethylene glycol monoethyl Ester solvents such as ether acetate and diethylene glycol monoethyl ether acetate, alcohol solvents such as methanol, ethanol, isopropanol and butanol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether The like can be illustrated ether alcohol solvents such as these can be used alone or in combination of two or more.

前記のシランカップリング剤は、例えば、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、β−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(ビニルベンジルアミン)−β−アミノエチル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどを挙げることができ、これらは単独で、あるいは2種以上を混合して使用することができる。   Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycid. X-propyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane , Γ-aminopropyltrimethoxysilane, β-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N- (vinylbenzylamine) -β-aminoethyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane Etc. can be mentioned, which may be used alone or in combination of two or more.

以上のような防錆成分混合物(B)を含有する分散ペーストを、後述するエマルションに加え、水で調整することによって表面処理組成物を調整できる。   The surface treatment composition can be adjusted by adding the dispersion paste containing the antirust component mixture (B) as described above to the emulsion to be described later and adjusting with water.

本発明の表面処理組成物に製造には、水溶性又は水分散性樹脂(A)に、必要に応じて、ブロック化ポリイソシアネート化合物、レゾール型フェノール樹脂、界面活性剤、潤滑剤等の各種化合物や添加剤や有機溶剤等を十分に混合して調合樹脂とした後、上記調合樹脂を酢酸、リン酸、ギ酸、プロピオン酸、乳酸等の有機カルボン酸;塩酸、硫酸などの無機酸等で水溶化又は水分散化して、エマルションを得ることができる。   For the production of the surface treatment composition of the present invention, various compounds such as a water-soluble or water-dispersible resin (A), a blocked polyisocyanate compound, a resol type phenol resin, a surfactant, and a lubricant, as necessary. After thoroughly mixing additives, organic solvents, etc. to prepare a compounded resin, the compounded resin is water-soluble with organic carboxylic acids such as acetic acid, phosphoric acid, formic acid, propionic acid and lactic acid; inorganic acids such as hydrochloric acid and sulfuric acid. Or an aqueous dispersion to obtain an emulsion.

上記ブロック化ポリイソシアネート化合物は、ポリイソシアネート化合物とイソシアネートブロック剤とのほぼ化学理論量での付加反応生成物である。ブロック化ポリイソシアネート化合物で使用されるポリイソシアネート化合物としては、公知のものを使用することができ、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタン−2,2’−ジイソシアネート、ジフェニルメタン−2,4’−ジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、クルードMDI[ポリメチレンポリフェニルイソシアネート]、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、イソホロンジイソシアネートなどの芳香族、脂肪族又は脂環族ポリイソシアネート化合物;これらのポリイソシアネート化合物の環化重合体又はビゥレット体;又はこれらの組合せを挙げることができる。   The blocked polyisocyanate compound is an addition reaction product of a polyisocyanate compound and an isocyanate blocking agent in a substantially theoretical amount. As the polyisocyanate compound used in the blocked polyisocyanate compound, known compounds can be used. For example, tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,2′-diisocyanate, diphenylmethane-2 , 4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, crude MDI [polymethylene polyphenyl isocyanate], bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, isophorone diisocyanate, and other aromatics, Aliphatic or alicyclic polyisocyanate compounds; cyclized polymers or vinyls of these polyisocyanate compounds Tsu DOO body; or a combination thereof can be mentioned.

特に、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタン−2,4’−ジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、クルードMDI等の芳香族ポリイソシアネート化合物が、平面部の耐食性との観点から好適である。
特に、イソシアネート種としてヘキサメチレンジイソシアネートを用いることによって、硬化性向上と塗膜に柔軟性を付与できる為、プレコート鋼板における加工部や端面部の耐食性向上の為により好ましい。
In particular, aromatic polyisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, and crude MDI are used from the viewpoint of corrosion resistance of the planar portion. Is preferred.
In particular, by using hexamethylene diisocyanate as the isocyanate species, it is more preferable for improving the curability and improving the corrosion resistance of the processed part and the end face part in the precoated steel sheet because it can impart flexibility to the coating film.

一方、前記イソシアネートブロック剤は、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものであり、そして付加によって生成するブロックポリイソシアネート化合物は常温において安定であるが、塗膜の焼付け温度(100〜200℃)に加熱した際、ブロック剤が解離して遊離のイソシアネート基を再生しうるものであることが望ましい。   On the other hand, the isocyanate blocking agent is added to the isocyanate group of the polyisocyanate compound to block, and the blocked polyisocyanate compound produced by the addition is stable at room temperature, but the baking temperature of the coating film (100 to 200). It is desirable that the blocking agent can be dissociated to regenerate free isocyanate groups when heated to (° C.).

ブロック化ポリイソシアネート化合物で使用されるブロック剤としては、例えば、メチルエチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム系化合物;フェノール、パラ−t−ブチルフェノール、クレゾールなどのフェノール系化合物;n−ブタノール、2−エチルヘキサノールなどの脂肪族アルコール類;フェニルカルビノール、メチルフェニルカルビノールなどの芳香族アルキルアルコール類;エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテルアルコール系化合物;ε−カプロラクタム、γ−ブチロラクタムなどのラクタム系化合物;等が挙げられる。   Examples of the blocking agent used in the blocked polyisocyanate compound include oxime compounds such as methyl ethyl ketoxime, methyl amyl ketoxime, and cyclohexanone oxime; phenol compounds such as phenol, para-t-butylphenol, and cresol; n-butanol Aliphatic alcohols such as 2-ethylhexanol; aromatic alkyl alcohols such as phenyl carbinol and methyl phenyl carbinol; ether alcohol compounds such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether; ε-caprolactam, γ- And lactam compounds such as butyrolactam; and the like.

必要に応じて配合されるブロック化ポリイソシアネート化合物の配合割合としては、上記成分(A)の樹脂固形分100質量部を基準にして、ブロック化ポリイソシアネート化合物を1〜60質量部、好ましくは10〜40質量部の範囲内であることが、耐食性向上の面から好ましい。   The blending ratio of the blocked polyisocyanate compound blended as necessary is 1 to 60 parts by weight, preferably 10 based on 100 parts by weight of the resin solid content of the component (A). It is preferable in the range of -40 mass parts from a surface of a corrosion-resistant improvement.

必要に応じて配合されるレゾール型フェノール樹脂は、フェノールやビスフェノールAなどのフェノール類とホルムアルデヒドなどのアルデヒド類とを反応触媒の存在下で縮合反応させて、メチロール基を導入してなるフェノール樹脂、また導入されたメチロール基の一部を炭素原子数6以下のアルコールでアルキルエーテル化したものも包含される。
レゾール型フェノール樹脂は、数平均分子量(注1)が200〜1,000、好ましくは300〜700の範囲内であり、かつベンゼン核1核当りのメチロール基の平均数が0.3〜2.5個、好ましくは0.5〜2.0個の範囲内であることが適当である。上記レゾール型フェノール樹脂を使用することによって、密着性などの塗膜性能の優れた塗膜を形成できる。上記レゾール型フェノール樹脂の市販品としては、スミライトレジンPR−55317(住友ベークライト社製、商品名)、ショーノールBKS−316、等が挙げられる。
The resol type phenol resin blended as necessary is a phenol resin obtained by condensing a phenol such as phenol or bisphenol A and an aldehyde such as formaldehyde in the presence of a reaction catalyst to introduce a methylol group, Also included are those in which part of the introduced methylol group is alkyl etherified with an alcohol having 6 or less carbon atoms.
The resol type phenol resin has a number average molecular weight (Note 1) in the range of 200 to 1,000, preferably 300 to 700, and an average number of methylol groups per nucleus of the benzene nucleus of 0.3 to 2. It is suitable that it is in the range of 5, preferably 0.5 to 2.0. By using the above-mentioned resol type phenolic resin, it is possible to form a coating film having excellent coating performance such as adhesion. As a commercial item of the said resole type phenol resin, Sumilite resin PR-55317 (the Sumitomo Bakelite company make, brand name), Shounol BKS-316, etc. are mentioned.

表面処理組成物の製造は、水溶性又は水分散性樹脂(A)を含むエマルションに、防錆成分混合物(B)を含む分散ペーストを配合し、適宜、添加剤、中和剤を加え、さらに脱イオン水で希釈して、固形分が1〜30質量%、好ましくは5〜20質量%の範囲内となるように調整して得られる。   For the production of the surface treatment composition, an emulsion containing a water-soluble or water-dispersible resin (A) is blended with a dispersion paste containing a rust preventive component mixture (B), and an additive and a neutralizing agent are added as appropriate. It is obtained by diluting with deionized water and adjusting so that the solid content is in the range of 1 to 30% by mass, preferably 5 to 20% by mass.

皮膜形成方法について
本発明の表面処理組成物は、金属板上に塗装することによって塗装金属板を得ることができる。金属板は、前記した金属板を用いることができる。ここで図1は、本発明の表面処理組成物を「表面処理」として用いた場合の塗装ラインのモデル図である。図2は、本発明の表面処理組成物を用いた複層塗膜を示す。
About the film formation method The surface treatment composition of this invention can obtain a coating metal plate by coating on a metal plate. The metal plate described above can be used as the metal plate. Here, FIG. 1 is a model diagram of a coating line when the surface treatment composition of the present invention is used as “surface treatment”. FIG. 2 shows a multilayer coating film using the surface treatment composition of the present invention.

本発明の表面処理組成物を用いた塗装は、上記金属板上に、ロールコート法、カーテンフローコート法、スプレー法、刷毛塗り法、浸漬法などの公知の方法により塗装することができる。   The coating using the surface treatment composition of the present invention can be applied to the metal plate by a known method such as a roll coating method, a curtain flow coating method, a spray method, a brush coating method, or a dipping method.

表面処理組成物から得られる塗膜の硬化膜厚は、特に限定されるものではないが、通常0.01〜10μm、好ましくは0.1〜5μmの範囲で使用される。塗膜の硬化は、使用する樹脂の種類などに応じて適宜設定すればよく、コイルコーティング法などによって塗装したものを連続的に焼付ける場合には、素材到達最高温度が60〜120℃、好ましくは80〜100℃となる条件で1秒間〜60秒間、好ましくは5秒間〜30秒間焼付けられる。本発明の表面処理組成物が金属板上に塗装され、形成された皮膜は、優れた耐食性を示す。   Although the cured film thickness of the coating film obtained from a surface treatment composition is not specifically limited, Usually, 0.01-10 micrometers, Preferably it is used in the range of 0.1-5 micrometers. Curing of the coating film may be appropriately set according to the type of resin used, and when the material coated by the coil coating method is continuously baked, the maximum material reaching temperature is preferably 60 to 120 ° C., preferably Is baked under conditions of 80 to 100 ° C. for 1 second to 60 seconds, preferably 5 seconds to 30 seconds. The film formed by coating the surface treatment composition of the present invention on a metal plate exhibits excellent corrosion resistance.

その理由は以下の3つにあると考えている。   There are three reasons for this.

1.腐食環境下での塩化物イオンなどによる素材金属の溶解により生成される金属イオンと5価のバナジウムイオン(VO やVO 3−のバナジン酸イオン)との酸化還元反応を経ない直接的な沈殿性塩の生成、5価バナジウムイオンと素材金属との酸化還元反応により生成する3価バナジウムイオン及び素材金属イオンが、ケイ酸イオンと効果的に沈殿性の塩又は化合物を生成することで、素材露出面を効果的に被覆する。更には、同時に溶出するリン酸イオンにより、腐食進行部位及びその周辺が、特に5価バナジウムイオンと素材金属との酸化還元反応が進行するのに好適なpH域に調整されるためと考えられる。 1. Directly without oxidation-reduction reaction between metal ions generated by dissolution of raw material metal such as chloride ions in a corrosive environment and pentavalent vanadium ions (VO 3 and VO 4 3− vanadate ions) Formation of a precipitating salt, trivalent vanadium ion and raw material metal ion generated by the oxidation-reduction reaction of pentavalent vanadium ion and raw material metal effectively produce a precipitating salt or compound with silicate ion. Effectively covers the exposed surface of the material. Furthermore, it is considered that the corrosion progressing site and its periphery are adjusted to a pH range suitable for the oxidation-reduction reaction between the pentavalent vanadium ion and the material metal by the phosphate ions eluting at the same time.

2.表面処理組成物中には防錆剤の一部が溶解して金属イオンの状態で存在する。本表面処理組成物を金属素材に塗装して加熱乾燥して得られた塗膜においては、この溶解成分が素材金属の界面上で効果的に反応し、化成処理的な働きをする皮膜を形成する。さらに該皮膜上に、被塗面に傷がついても、塗膜中から防錆成分混合物(B)に起因する金属イオンが溶出してその傷を保護する働き(自己修復性)を有する塗膜を形成できる。上記の「皮膜と塗膜」の形成が、1回の塗装と加熱乾燥によって成し得ることができ、このことが耐食性に優れた塗装物品を得ることに大きく寄与していると考える。   2. In the surface treatment composition, a part of the rust inhibitor is dissolved and exists in the form of metal ions. In the coating film obtained by applying this surface treatment composition to a metal material and drying by heating, this dissolved component reacts effectively on the interface of the material metal to form a film that functions as a chemical conversion treatment. To do. Furthermore, even if the surface to be coated is scratched on the coating, the coating has a function (self-healing property) to protect the scratch by leaching out metal ions resulting from the antirust component mixture (B) from the coating. Can be formed. The formation of the above-mentioned “film and coating film” can be achieved by a single coating and heat drying, and it is considered that this greatly contributes to obtaining a coated article having excellent corrosion resistance.

3.防錆成分混合物を構成する前記バナジウム化合物(1)、珪酸塩化合物(2)及び該リン酸系カルシウム塩(3)を併用することで、前記(1)、(2)及び(3)のそれぞれが有する耐酸性や耐アルカリ性及び耐水性の弱さを効果的に打ち消すことができる。更には、カルシウムイオンはpH10を越えるような素材金属が溶解し易い強アルカリ雰囲気下での素材金属の溶解を抑制する作用を持つため、優れた耐薬品性と耐水性をも同時に達成できる。これら防錆成分混合物に基く作用の相乗効果が大きく働いたことも、本表面処理組成物の優れた耐食性に大きく寄与したものと考えている。
なお、本発明の表面処理組成物から得られる硬化塗膜のガラス転移温度は、40〜115℃、好ましくは50〜105℃であることが塗膜の耐食性、耐酸性及び加工性などの点から好適である。
なお、塗膜のガラス転移温度は、DINAMIC VISCOELASTOMETER MODEL VIBRON(ダイナミックビスコエラストメータ モデルバイブロン) DDV−IIEA型(東洋ボールドウィン社製、自動動的粘弾性測定機)を用いて周波数110Hzにおける温度分散測定によるtanδの変化から求めた極大値の温度である。
表面処理組成物を焼き付け乾燥した得られた塗膜の上に、必要に応じて、上塗塗膜を設けることもできる(図2参照)。上塗塗膜の膜厚は、5〜100μm、好ましくは10〜50μmである。
上記の上塗塗料としては、例えば、プレコート鋼板用として公知のポリエステル樹脂系、アルキド樹脂系、シリコン変性ポリエステル樹脂系、シリコン変性アクリル樹脂系、フッ素樹脂系などの上塗塗料を挙げることができる。上塗塗料の種類としては、特に限定されるものでないが、特に、加工性が特に重視される場合には、高度加工用のポリエステル系上塗塗料を使用することによって加工性の特に優れた塗装鋼板を得ることができる。
なお、被塗物となる金属板として、亜鉛メッキ鋼板、アルミニウム−亜鉛合金メッキ鋼板を使用した場合、平面部の耐食性はかなり向上してきているものの、従来では、切断した端面部や成型加工した加工部においては、耐食性は不十分であったが、本発明の表面処理組成物を塗装することによって、耐薬品性、端面部、加工部においても優れた耐食性を得ることができる。
3. By using the vanadium compound (1), the silicate compound (2) and the phosphoric acid calcium salt (3) constituting the rust preventive component mixture in combination, each of the above (1), (2) and (3) Can effectively counteract the weak acid resistance, alkali resistance and water resistance. Furthermore, since calcium ions have an action of suppressing the dissolution of the material metal in a strong alkali atmosphere in which the material metal having a pH exceeding 10 is easily dissolved, excellent chemical resistance and water resistance can be achieved at the same time. The fact that the synergistic effect of the action based on these rust-preventive component mixtures worked greatly also contributes greatly to the excellent corrosion resistance of the surface treatment composition.
In addition, the glass transition temperature of the cured coating film obtained from the surface treatment composition of the present invention is 40 to 115 ° C., preferably 50 to 105 ° C. from the viewpoint of the corrosion resistance, acid resistance, workability, etc. of the coating film. Is preferred.
In addition, the glass transition temperature of the coating film was measured using a DINAMIC VISCOELASTOMETER MODEL VIBRON (Dynamic Visco Elastometer Model Vibron) DDV-IIEA (manufactured by Toyo Baldwin Co., Ltd., automatic dynamic viscoelasticity measuring machine) at a frequency of 110 Hz. Is the maximum temperature obtained from the change in tan δ.
A top coat film can also be provided on the obtained coating film obtained by baking and drying the surface treatment composition (see FIG. 2). The film thickness of the top coat film is 5 to 100 μm, preferably 10 to 50 μm.
Examples of the above-mentioned top coating material include a known top coating material such as polyester resin-based, alkyd resin-based, silicon-modified polyester resin-based, silicon-modified acrylic resin-based, and fluororesin-based for pre-coated steel sheets. The type of top coating is not particularly limited, but especially when workability is particularly important, a coated steel sheet with particularly excellent workability can be obtained by using a polyester-based top coating for advanced processing. Can be obtained.
In addition, when a galvanized steel plate or an aluminum-zinc alloy plated steel plate is used as the metal plate to be coated, the corrosion resistance of the flat surface portion has been considerably improved, but conventionally, the cut end surface portion and the processed processing Although corrosion resistance was insufficient in the parts, excellent corrosion resistance can be obtained also in the chemical resistance, the end face part, and the processed part by coating the surface treatment composition of the present invention.

以下、製造例、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。各例中の「部」は質量部、「%」は質量%を示す。   Hereinafter, the present invention will be described in more detail with reference to Production Examples, Examples, and Comparative Examples, but the present invention is not limited thereto. In each example, “parts” indicates mass parts, and “%” indicates mass%.

水溶性又は水分散性樹脂(A)の製造
製造例1 カチオン性エポキシ樹脂No.1の製造例(エポキシ樹脂系)
攪拌機、温度計、窒素導入管および還流冷却器を取りつけたフラスコで、jER1004(ビスフェノールA型エポキシ樹脂、エポキシ価0.108mol/100g、数平均分子量1650、ジャパンエポキシレジン社製)100部と、酢酸−3−メトキシブチル25部を100℃にて加温混合した。
均一に溶解したことを確認した後、モノエタノールアミンを2.75部添加し、2時間そのまま反応を行った。エポキシ価が0.018mol/100gとなったのを確認し、ジエタノールアミン1.89部添加し、更に1時間反応を継続した。エポキシ価が0.005mol/100g以下となったところで、予めメチルエチルケトオキシム/キシレン/ブタノール=1/1/1に混合しておいた混合溶剤にて希釈し、固形分65%のカチオン性エポキシ樹脂No.1を得た。
Production and Production Example 1 of Water-soluble or Water-dispersible Resin (A) Cationic Epoxy Resin No. 1 1 Production example (epoxy resin)
In a flask equipped with a stirrer, thermometer, nitrogen inlet tube and reflux condenser, jER1004 (bisphenol A type epoxy resin, epoxy value 0.108 mol / 100 g, number average molecular weight 1650, manufactured by Japan Epoxy Resin Co., Ltd.) and acetic acid 25 parts of -3-methoxybutyl was heated and mixed at 100 ° C.
After confirming uniform dissolution, 2.75 parts of monoethanolamine was added, and the reaction was allowed to proceed for 2 hours. After confirming that the epoxy value was 0.018 mol / 100 g, 1.89 parts of diethanolamine was added, and the reaction was further continued for 1 hour. When the epoxy value became 0.005 mol / 100 g or less, it was diluted with a mixed solvent previously mixed with methyl ethyl ketoxime / xylene / butanol = 1/1/1 to obtain a cationic epoxy resin No. having a solid content of 65%. . 1 was obtained.

製造例2 カチオン性エポキシ樹脂No.2の製造例(ウレタン変性系)
攪拌機、温度計、窒素導入管および還流冷却器を取りつけたフラスコで、jER1004(ビスフェノールA型エポキシ樹脂、エポキシ価0.108mol/100g、数平均分子量1650、ジャパンエポキシレジン社製)100部と、酢酸−3−メトキシブチル25部を100℃にて加温混合した。均一に溶解したことを確認した後、n−メチルエタノールアミン6.75部添加し、2時間そのまま反応を行った。エポキシ価が0.018mol/100gとなったのを確認し、予め混合しておいたメチルエチルケトオキシム/キシレン=1/1混合溶剤を11.1部添加し、反応温度を40℃まで冷却した。均一に溶解していることを確認した後、ヘキサメチレンジイソシアネートを7.56部添加し、そのまま1時間反応を行った。その後、再び反応温度を100℃まで加温し、ジエタノールアミン1.89部添加し、更に1時間反応を継続した。エポキシ価が0.005mol/100g以下となったところで、予めメチルエチルケトオキシム/キシレン/ブタノール=1/1/1に混合しておいた混合溶剤にて希釈し、固形分65%のウレタン変性のカチオンエポキシ樹脂No.2を得た。
Production Example 2 Cationic Epoxy Resin No. Example 2 (urethane-modified)
In a flask equipped with a stirrer, thermometer, nitrogen inlet tube and reflux condenser, jER1004 (bisphenol A type epoxy resin, epoxy value 0.108 mol / 100 g, number average molecular weight 1650, manufactured by Japan Epoxy Resin Co., Ltd.) and acetic acid 25 parts of -3-methoxybutyl was heated and mixed at 100 ° C. After confirming that the solution was uniformly dissolved, 6.75 parts of n-methylethanolamine was added and the reaction was allowed to proceed for 2 hours. After confirming that the epoxy value was 0.018 mol / 100 g, 11.1 parts of a pre-mixed methyl ethyl ketoxime / xylene = 1/1 mixed solvent was added, and the reaction temperature was cooled to 40 ° C. After confirming that it was uniformly dissolved, 7.56 parts of hexamethylene diisocyanate was added and the reaction was carried out for 1 hour. Thereafter, the reaction temperature was again raised to 100 ° C., 1.89 parts of diethanolamine was added, and the reaction was further continued for 1 hour. When the epoxy value became 0.005 mol / 100 g or less, it was diluted with a mixed solvent previously mixed with methyl ethyl ketoxime / xylene / butanol = 1/1/1 to obtain a urethane-modified cationic epoxy having a solid content of 65%. Resin No. 2 was obtained.

製造例3 カチオン性エポキシ樹脂No.3の製造例(2塩基酸変性系)
攪拌機、温度計、窒素導入管および還流冷却器を取りつけたフラスコで、jER1004(ビスフェノールA型エポキシ樹脂、エポキシ価0.108mol/100g、数平均分子量1650、ジャパンエポキシレジン社製)100部と、酢酸−3−メトキシブチル25部を100℃にて加温混合した。均一に溶解したことを確認した後、ツノダイム205(ダイマー酸、築野食品工業社製)10部添加し2時間そのまま反応を行った。酸価が0.5mgKOH/g以下になったことを確認した後、モノエタノールアミンを2.36部添加し、あらにそのまま2時間反応を継続した。エポキシ価が0.018mol/100gとなったのを確認し、ジエタノールアミン1.89部を添加し、更に1時間反応行った。をエポキシ価が0.005mol/100g以下となったところで、予めメチルエチルケトオキシム/キシレン/ブタノール=1/1/1に混合しておいた混合溶剤にて希釈し、固形分65%のダイマー酸変性のカチオン性エポキシ樹脂No.3を得た。
Production Example 3 Cationic Epoxy Resin No. Example 3 (2 basic acid modified system)
In a flask equipped with a stirrer, thermometer, nitrogen inlet tube and reflux condenser, jER1004 (bisphenol A type epoxy resin, epoxy value 0.108 mol / 100 g, number average molecular weight 1650, manufactured by Japan Epoxy Resin Co., Ltd.) and acetic acid 25 parts of -3-methoxybutyl was heated and mixed at 100 ° C. After confirming uniform dissolution, 10 parts of Tsunodim 205 (dimer acid, manufactured by Tsukino Food Industry Co., Ltd.) was added and the reaction was carried out for 2 hours. After confirming that the acid value was 0.5 mgKOH / g or less, 2.36 parts of monoethanolamine was added, and the reaction was continued for 2 hours. After confirming that the epoxy value was 0.018 mol / 100 g, 1.89 parts of diethanolamine was added, and the reaction was further continued for 1 hour. When the epoxy value became 0.005 mol / 100 g or less, it was diluted with a mixed solvent previously mixed in methyl ethyl ketoxime / xylene / butanol = 1/1/1 to obtain a dimer acid-modified product having a solid content of 65%. Cationic epoxy resin no. 3 was obtained.

エマルションの製造例
製造例4 エマルションNo.1の製造例
製造例1で得られたカチオン性エポキシ樹脂No.1を153.8部(固形分100部)、エチレングリコールモノブチルエーテルを20部混合し、さらに10%酢酸30.3部を配合して均一に攪拌した後、脱イオン水129.2
部を強く攪拌しながら約30分間を要して滴下して、樹脂固形分30%のエマルションNo.1を得た。
Emulsion Production Example Production Example 4 Emulsion No. Production Example 1 Cationic Epoxy Resin No. 1 obtained in Production Example 1 After mixing 153.8 parts (solid content 100 parts) and 20 parts of ethylene glycol monobutyl ether, and further mixing 30.3 parts of 10% acetic acid and stirring uniformly, deionized water 129.2
The solution was dripped over about 30 minutes with vigorous stirring, and emulsion No. 30 having a resin solid content of 30% was added. 1 was obtained.

製造例5〜12 エマルションNo.2〜No.9の製造例
表1の配合内容とする以外は、製造例4と同様にして、エマルションNo.2〜No.9を得た。
Production Examples 5 to 12 Emulsion No. 2-No. Production Example 9 Emulsion No. 9 was prepared in the same manner as in Production Example 4 except that the contents shown in Table 1 were used. 2-No. 9 was obtained.

Figure 0005244507
Figure 0005244507

(注2)デスモジュールBL−3175:住化バイエルウレタン社製、メチルエチルケトオキシムでブロックされたヘキサメチレンジイソシアネートのヌレート体の樹脂溶液、固形分75%。   (Note 2) Desmodur BL-3175: Sumika Bayer Urethane Co., Ltd., a solution of hexamethylene diisocyanate nurate blocked with methyl ethyl ketoxime, solid content 75%.

(注3)デュラネートMF−K60X:旭化成ケミカルズ社製、低温硬化型のブロック化ポリイソシアネート樹脂溶液、固形分60%。   (Note 3) Duranate MF-K60X: manufactured by Asahi Kasei Chemicals Corporation, a low-temperature curable blocked polyisocyanate resin solution, solid content 60%.

製造例13 分散用樹脂の製造例
jER828EL(注4)1010部に、ビスフェノールAを390部、プラクセル212(ポリカプロラクトンジオール、ダイセル化学工業株式会社、商品名、重量平均分子量約1,250)240部及びジメチルベンジルアミン0.2部を加え、130℃でエポキシ当量が約1,090になるまで反応させた。
次に、ジメチルエタノールアミン134部及び90%の乳酸水溶液150部を加え、120℃で4時間反応させた。次いで、メチルイソブチルケトンを加えて固形分を調整し、固形分60%のアンモニウム塩型樹脂系の分散用樹脂を得た。上記分散用樹脂のアンモニウム塩濃度は、0.78mmol/gであった。
Production Example 13 Production Example of Dispersing Resin jER828EL (Note 4) 1010 parts, 390 parts of bisphenol A, Plaxel 212 (polycaprolactone diol, Daicel Chemical Industries, Ltd., trade name, weight average molecular weight of about 1,250) 240 parts And 0.2 part of dimethylbenzylamine was added and reacted at 130 ° C. until the epoxy equivalent reached about 1,090.
Next, 134 parts of dimethylethanolamine and 150 parts of a 90% aqueous lactic acid solution were added and reacted at 120 ° C. for 4 hours. Next, methyl isobutyl ketone was added to adjust the solid content, and an ammonium salt type resin dispersion resin having a solid content of 60% was obtained. The ammonium salt concentration of the dispersing resin was 0.78 mmol / g.

(注4)jER828EL:ジャパンエポキシレジン社製、商品名、エポキシ樹脂。   (Note 4) jER828EL: Japan Epoxy Resin, trade name, epoxy resin.

製造例14 分散ペーストNo.1の製造例
製造例10で得た固形分60%の分散用樹脂8.3部(固形分5部)、
五酸化バナジウム2部、メタ珪酸カルシウム1部、リン酸カルシウム2部、チタン白20部、バリタ20部及び脱イオン水37.6部を加え、ボールミルにて20時間分散し、ツブ(防錆成分の粗粒子の粒子径)が5μm以下となるまで分散を行って、固形分55%の分散ペーストNo.1を得た。
Production Example 14 Dispersion Paste No. Production Example 1 1 8.3 parts of a resin having a solid content of 60% obtained in Production Example 10 (5 parts solid content),
Add 2 parts of vanadium pentoxide, 1 part of calcium metasilicate, 2 parts of calcium phosphate, 20 parts of titanium white, 20 parts of barrita and 37.6 parts of deionized water, and disperse in a ball mill for 20 hours. Dispersion is carried out until the particle diameter of the particles becomes 5 μm or less, and a dispersion paste No. 5 having a solid content of 55% is obtained. 1 was obtained.

製造例15〜32
表2の配合内容とする以外は、製造例14と同様にして、分散ペーストNo.2〜No.19を得た。
Production Examples 15 to 32
A dispersion paste No. 1 was prepared in the same manner as in Production Example 14 except that the contents of Table 2 were used. 2-No. 19 was obtained.

Figure 0005244507
Figure 0005244507

Figure 0005244507
Figure 0005244507

比較製造例1〜10
表4の配合内容とする以外は、製造例14と同様にして、分散ペーストNo.20〜No.29を得た。
Comparative Production Examples 1-10
A dispersion paste No. 1 was prepared in the same manner as in Production Example 14 except that the blending contents shown in Table 4 were used. 20-No. 29 was obtained.

Figure 0005244507
Figure 0005244507

製造例33 レゾール型フェノール樹脂架橋剤溶液の製造
反応容器に、ビスフェノールA100部、37%ホルムアルデヒド水溶液178部及び水酸化ナトリウム1部を配合し、60℃で3時間反応させた後、減圧下、50℃で1時間脱水した。次いで、n−ブタノール100部とリン酸3部を加え、110〜120℃で2時間反応を行った。反応終了後、得られた溶液を濾過して生成したリン酸ナトリウムを濾別し、固形分約50%のレゾール型フェノール樹脂架橋剤溶液を得た。得られた樹脂は、数平均分子量880で、ベンゼン核1核当たり平均メチロール基数が0.4個及び平均アルコキシメチル基数が1.0個であった。
Production Example 33 Production of resol type phenolic resin crosslinking agent solution
In a reaction vessel, 100 parts of bisphenol A, 178 parts of 37% formaldehyde aqueous solution and 1 part of sodium hydroxide were blended, reacted at 60 ° C. for 3 hours, and dehydrated at 50 ° C. for 1 hour under reduced pressure. Subsequently, 100 parts of n-butanol and 3 parts of phosphoric acid were added and reacted at 110 to 120 ° C. for 2 hours. After completion of the reaction, the resulting solution was filtered to remove the sodium phosphate produced to obtain a resol type phenolic resin crosslinking agent solution having a solid content of about 50%. The obtained resin had a number average molecular weight of 880, an average number of methylol groups per benzene nucleus of 0.4, and an average number of alkoxymethyl groups of 1.0.

実施例1 表面処理剤No.1の製造
製造例4で得たエマルションNo.1を333.3部(固形分100部)、製造例14で得た55%分散ペーストNo.1を90.9部(固形分50部)及び脱イオン水236.2部を混合して、固形分20%の表面処理剤No.1を得た。
Example 1 Surface treatment agent No. 1 Production of emulsion No. 1 obtained in Production Example 4 1 333.3 parts (solid content 100 parts), 55% dispersion paste No. 1 obtained in Production Example 14. 1 was mixed with 90.9 parts (solid content 50 parts) and deionized water 236.2 parts to obtain a surface treatment agent No. 1 having a solid content of 20%. 1 was obtained.

実施例2〜32 表面処理剤No.2〜No.32の製造
下記表5及び表6に示す配合とする以外は、実施例1と同様にして、固形分20%の表面処理剤No.2〜No.32を得た。
Examples 2-32 Surface treatment agent No. 2-No. 32 Production of a surface treatment agent No. 32 having a solid content of 20% was performed in the same manner as in Example 1 except that the formulations shown in Tables 5 and 6 below were used. 2-No. 32 was obtained.

Figure 0005244507
Figure 0005244507

Figure 0005244507
Figure 0005244507


(注6)KBE−903:γ―アミノプロピルトリエトキシシラン:信越化学社製、商品名、シランカップリング剤。

(Note 6) KBE-903: γ-aminopropyltriethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name, silane coupling agent.

(注7)KBE−603:N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン:信越化学社製、商品名、シランカップリング剤。   (Note 7) KBE-603: N-β (aminoethyl) γ-aminopropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name, silane coupling agent.

(注8)KBM−803:γ−メルカプトプロピルトリメトキシシラン:信越化学社製、商品名、シランカップリング剤。   (Note 8) KBM-803: γ-mercaptopropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name, silane coupling agent.

(注9)KBE−403:γ−グリシドキシプロピルトリメトキシシラン:信越化学社製、商品名、シランカップリング剤。   (Note 9) KBE-403: γ-glycidoxypropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name, silane coupling agent.

比較例1〜10
下記表7に示す配合とする以外は、実施例1と同様にして表面処理剤No.33〜No.42を得た。
Comparative Examples 1-10
Except for the formulation shown in Table 7 below, the surface treatment agent No. 33-No. 42 was obtained.

Figure 0005244507
Figure 0005244507

[試験用塗装板の作成]
上記実施例1〜32、比較例1〜10で得た各表面処理剤No.1〜No.42を用い、下記の塗装仕様1、塗装仕様2にて、各素材に塗装して焼付けを行って各試験板を得た。
[Preparation of test paint plate]
Each surface treating agent No. obtained in the said Examples 1-32 and Comparative Examples 1-10. 1-No. No. 42 was used, and each test plate was obtained by painting and baking each material according to the following coating specifications 1 and 2.

塗装仕様1
溶融亜鉛めっき鋼板(板厚0.35mm、亜鉛めっき目付け量250g/m、表中「GI鋼板」と略す)を、日本シービーケミカル社製のアルカリ脱脂剤「CC−561B」を濃度2%の水溶液とし、液温65℃で20秒間スプレーして脱脂後、液温60℃の湯で20秒間スプレ−して湯洗を行った。
この脱脂した鋼板上に、実施例及び比較例によって得られた各表面処理剤をバーコーターにて乾燥膜厚2μmとなるように塗装し、120℃(素材到達最高温度)で20秒間コンベアオーブンにて加熱乾燥して、試験板GI−1〜GI−42を得た。
これらの試験板(A)上に、KPカラー1580B40(関西ペイント社製、商品名、ポリエステル系上塗塗料、青色、硬化塗膜のガラス転移温度約70℃)をバーコーターにて乾燥膜厚が約15μmとなるように塗装し、素材到達最高温度が220℃で40秒間焼付けて、塗装試験板を得た。
Paint specification 1
A hot-dip galvanized steel sheet (thickness 0.35 mm, galvanized basis weight 250 g / m 2 , abbreviated as “GI steel sheet” in the table), an alkaline degreasing agent “CC-561B” manufactured by Nippon CB Chemical Co., Ltd. with a concentration of 2% After degreasing by spraying for 20 seconds at a liquid temperature of 65 ° C., the solution was sprayed with hot water at a liquid temperature of 60 ° C. for 20 seconds and washed with hot water.
On this degreased steel sheet, each surface treatment agent obtained in Examples and Comparative Examples was coated with a bar coater so as to have a dry film thickness of 2 μm, and placed in a conveyor oven for 20 seconds at 120 ° C. (maximum material arrival temperature). And dried by heating to obtain test plates GI-1 to GI-42.
On these test plates (A), KP color 1580B40 (manufactured by Kansai Paint Co., Ltd., trade name, polyester-based top coating, blue, glass transition temperature of cured coating film about 70 ° C.) was dried with a bar coater. The coating was applied to a thickness of 15 μm and baked for 40 seconds at a maximum material temperature of 220 ° C. to obtain a coating test plate.

塗装仕様2
電気亜鉛めっき鋼板(板厚0.35mm、メッキ目付量150g/m、表中「EG鋼板」と表示する。)を、日本シービーケミカル社製のアルカリ脱脂剤「CC−561B」を濃度2%の水溶液とし、液温65℃で20秒間スプレーして脱脂後、液温60℃の湯で20秒間スプレ−して湯洗を行った。
この脱脂した鋼板上に、実施例及び比較例によって得られた各表面処理剤をバーコーターにて乾燥膜厚1μmとなるように塗装し、120℃(素材到達最高温度)で20秒間コンベアオーブンにて加熱乾燥して、試験板EG−1〜EG−42を得た。
次いで、これらの試験板EG−1〜EG−42上に、マジクロン1000(アクリル樹脂/メラミン系塗料)をスプレーにて乾燥膜厚30μmとなるように塗装し、炉温180℃に設定した箱型乾燥炉にて30分間加熱乾燥し、塗装試験板を得た。
Paint specification 2
Electrogalvanized steel sheet (plate thickness: 0.35 mm, plating basis weight: 150 g / m 2 , indicated as “EG steel sheet” in the table), alkaline degreasing agent “CC-561B” manufactured by Nippon CB Chemical Co., Ltd. with a concentration of 2% After degreasing by spraying at a liquid temperature of 65 ° C. for 20 seconds, spraying with hot water at a liquid temperature of 60 ° C. for 20 seconds was followed by washing with hot water.
On this degreased steel sheet, each surface treatment agent obtained in Examples and Comparative Examples was coated with a bar coater so as to have a dry film thickness of 1 μm, and then placed in a conveyor oven at 120 ° C. (maximum material arrival temperature) for 20 seconds. And dried by heating to obtain test plates EG-1 to EG-42.
Next, on these test plates EG-1 to EG-42, a Magiclon 1000 (acrylic resin / melamine-based paint) was applied by spraying so as to have a dry film thickness of 30 μm, and a box type set at a furnace temperature of 180 ° C. It was heated and dried for 30 minutes in a drying furnace to obtain a coating test plate.

塗膜性能試験
上記実施例1〜32、比較例1〜10で得られた試験板GI−1〜GI−42及び各塗装試験板、試験板EG−1〜EG−42及び各塗装試験板について下記試験方法に従って塗膜性能試験を行った。試験結果を表8〜表10に示す。
Coating Film Performance Test Regarding the test plates GI-1 to GI-42 and the respective coating test plates obtained in Examples 1 to 32 and Comparative Examples 1 to 10, the test plates EG-1 to EG-42, and the respective coating test plates. The coating film performance test was conducted according to the following test method. The test results are shown in Tables 8 to 10.

Figure 0005244507
Figure 0005244507

Figure 0005244507
Figure 0005244507

Figure 0005244507
Figure 0005244507


試験方法
(注11)塩水噴霧試験(表面処理):5cm×10cmの大きさに切断した各塗装試験板(塗装仕様1による上塗り塗料を塗装していない試験板、又は塗装仕様2による上塗り塗料を塗装していない試験板)の裏面及び切断面を防錆塗料にてシールし、塗装板の表面中央に素地に達するクロスカットを入れた。この塗装板を35℃で5%食塩水による塩水噴霧試験(JIS Z−2371)を168時間行い、試験後の塗面の白錆及び赤錆発生状態を評価するとともに、クロスカット部より進行した平均の腐食幅(片側)を評価した。
◎:白錆及び赤錆の発生がない又はわずかであり、カット部からの平均腐食幅が3mm未満。
○:白錆の発生が認められるものの、カットからの平均腐食幅は3mm未満であるか、或いは白錆発生がない又はわずかであるもののカット部からのテープ剥離幅が7mm未満。
△:全体に白錆の発生が認められてカットからの平均腐食幅が3mm以上7mm未満である。
×:赤錆の発生が認められるか、或いは赤錆発生はないもののカットからの平均腐食幅が片側7mmを越える。

Test method (Note 11) Salt spray test (surface treatment): Each test plate cut to a size of 5 cm x 10 cm (a test plate not coated with a top coating material according to coating specification 1 or a top coating material according to coating specification 2) The back surface and the cut surface of the test plate (uncoated) were sealed with a rust preventive paint, and a cross cut reaching the substrate was put in the center of the surface of the painted plate. The coated plate was subjected to a salt spray test (JIS Z-2371) with 5% saline at 35 ° C. for 168 hours to evaluate the occurrence of white rust and red rust on the coated surface after the test, and the average progressed from the crosscut portion The corrosion width (one side) was evaluated.
A: White rust and red rust are not generated or slight, and the average corrosion width from the cut portion is less than 3 mm.
○: Although occurrence of white rust is recognized, the average corrosion width from the cut is less than 3 mm, or the tape peeling width from the cut portion is less than 7 mm although the white rust is not generated or is slight.
(Triangle | delta): Generation | occurrence | production of white rust is recognized by the whole and the average corrosion width | variety from a cut is 3 mm or more and less than 7 mm.
X: The occurrence of red rust is observed, or the average corrosion width from the cut exceeds 7 mm on one side although no red rust is generated.

(注12)塩水噴霧試験(アルカリ脱脂後):5cm×10cmの大きさに切断した各塗装試験板(塗装仕様1による上塗り塗料を塗装していない試験板、又は塗装仕様2による上塗り塗料を塗装していない試験板)の裏面及び切断面を防錆塗料にてシールし、塗装板の表面中央に素地に達するクロスカットを入れた。
次いで、この塗装板を50℃に加温した2%パルクリーンN364S(日本パーカライジング社製、アルカリ脱脂剤)溶液に2分浸漬した後、取出し洗浄した。この塗装板を35℃で5%食塩水による塩水噴霧試験(JIS Z−2371)を96時間行い、試験後の塗面の白錆及び赤錆発生状態を評価するとともに、クロスカット部より進行した平均の腐食幅(片側)を評価した。
◎:白錆及び赤錆の発生がない又はわずかであり、カット部からの平均腐食幅が3mm未満。
○:白錆の発生が認められるものの、カットからの平均腐食幅は3mm未満であるか、或いは白錆発生がない又はわずかであるもののカット部からのテープ剥離幅が7mm未満。
△:全体に白錆の発生が認められてカットからの平均腐食幅が3mm以上7mm未満であるか。
×:赤錆の発生が認められるか、或いは赤錆発生はないもののカットからの平均腐食幅が片側7mmを越える。
(Note 12) Salt spray test (after alkaline degreasing): Each coated test plate cut to a size of 5 cm x 10 cm (test plate not coated with topcoat paint according to coating specification 1 or topcoat paint according to coating specification 2) The back surface and the cut surface of the test plate) were sealed with a rust preventive paint, and a cross cut reaching the substrate was put in the center of the surface of the painted plate.
Next, this coated plate was immersed in a 2% Pulclean N364S (manufactured by Nihon Parkerizing Co., Ltd., alkaline degreasing agent) solution heated to 50 ° C. for 2 minutes, and then taken out and washed. This coated plate was subjected to a salt spray test (JIS Z-2371) with 5% saline at 35 ° C. for 96 hours to evaluate the occurrence of white rust and red rust on the coated surface after the test, and proceeded from the crosscut portion. The corrosion width (one side) was evaluated.
A: White rust and red rust are not generated or slight, and the average corrosion width from the cut portion is less than 3 mm.
○: Although occurrence of white rust is recognized, the average corrosion width from the cut is less than 3 mm, or the tape peeling width from the cut portion is less than 7 mm although the white rust is not generated or is slight.
Δ: Whether white rust is observed on the whole and the average corrosion width from the cut is 3 mm or more and less than 7 mm.
X: The occurrence of red rust is observed, or the average corrosion width from the cut exceeds 7 mm on one side although no red rust is generated.

(注13)耐水付着性:5cm×10cmの大きさに切断した各試験用塗装板を約100℃の沸騰水中に2時間浸漬した後、引き上げて表面(おもて面)側の塗膜外観を評価するとともに、碁盤目テープ付着試験を行い評価した。
碁盤目テープ付着試験は、JIS K−5600−5−6(1999)碁盤目テープ法に準じて、切り傷の隙間間隔を1mmとし、碁盤目100個を作り、その表面にセロハン粘着テープを密着させ、急激に剥がした後の塗面に残存する碁盤目の数を調べた。
◎:塗膜にフクレの発生、白化などの異常がなく、残存碁盤目数100個、
○:塗膜にフクレの発生、白化などの異常がなく、残存碁盤目数91〜99個、
△:塗膜にフクレ又は白化などの異常がわずかに認められ、残存碁盤目数91〜99個である、又は塗膜にフクレの発生、白化などの異常がないが、残存碁盤目数71〜90個、
×:塗膜にフクレの発生がかなりもしくは著しく認められる、又は残存碁盤目数70個以下。
(Note 13) Adhesion to water: Each test coating plate cut to a size of 5 cm × 10 cm is immersed in boiling water at about 100 ° C. for 2 hours, and then pulled up and the coating film appearance on the surface (front surface) side In addition, a cross-cut tape adhesion test was conducted for evaluation.
The cross-cut tape adhesion test is performed in accordance with JIS K-5600-5-6 (1999) cross-cut tape method, with a gap spacing of cuts of 1 mm, making 100 cross-cuts, and attaching cellophane adhesive tape to the surface. Then, the number of grids remaining on the coated surface after abrupt peeling was examined.
A: There is no abnormality such as blistering or whitening in the coating film, and there are 100 remaining grids,
○: There are no abnormalities such as blistering and whitening in the coating film, and a residual grid number of 91 to 99,
Δ: Slightly abnormalities such as blistering or whitening were observed in the coating film, and the residual grid number was 91 to 99, or the coating film had no abnormality such as blistering or whitening, but the residual grid number was 71 to 99. 90 pieces
X: Generation | occurrence | production of the swelling of a coating film is recognized fairly or remarkably, or the number of remaining grids is 70 or less.

(注14)耐アルカリ性:5cm×10cmの大きさに切断した各試験用塗装板裏面及び切断面を防錆塗料にてシールし、塗装板の表面側中央部に素地に達するクロスカットを入れた。この塗装板を20℃の5%水酸化ナトリウム水溶液に24時間浸漬した後、取出し洗浄し、室温にて乾燥した塗装板の表面側の塗膜外観を評価するとともに、クロスカット部にセロハン粘着テープを密着させ、急激に剥がした後の塗膜におけるカット部からの剥離幅(片側)を評価した。
◎:フクレの発生がなく、カット部からのテープ剥離幅が1.5mm以下、
○:フクレの発生がなく、カット部からのテープ剥離幅が1.5mmを超え、3mm以下、
△:フクレの発生が少し認められるが、カット部からのテープ剥離幅が3mm以下、又はフクレの発生が認められないが、カット部からのテープ剥離幅が3mmを超える、
×:フクレの発生が認められ、かつカット部からのテープ剥離幅が3mmを超える。
(Note 14) Alkali resistance: The back and cut surfaces of each test paint plate cut to a size of 5 cm × 10 cm were sealed with a rust-proof paint, and a cross cut reaching the substrate was put in the center of the front side of the paint plate. . This coated plate was immersed in a 5% aqueous sodium hydroxide solution at 20 ° C. for 24 hours, then taken out, washed, and evaluated for the appearance of the coating on the surface side of the coated plate dried at room temperature. Was peeled off, and the peel width (one side) from the cut portion in the coating film after peeling off was evaluated.
A: There is no occurrence of swelling, and the tape peeling width from the cut part is 1.5 mm or less.
○: There is no occurrence of blisters, and the tape peeling width from the cut part exceeds 1.5 mm, 3 mm or less,
Δ: Slight occurrence of swelling is observed, but tape peeling width from the cut portion is 3 mm or less, or occurrence of swelling is not recognized, but the tape peeling width from the cut portion exceeds 3 mm,
X: Generation | occurrence | production of a swelling is recognized and the tape peeling width from a cut part exceeds 3 mm.

(注15)耐酸性:5cm×10cmの大きさに切断した各試験用塗装板裏面及び切断面を防錆塗料にてシールし、塗装板の表面側中央部に素地に達するクロスカットを入れた。この塗装板を20℃の5%硫酸水溶液に24時間浸漬した後、取出し洗浄し、室温にて乾燥した塗装板の表面側の塗膜外観を評価するとともに、クロスカット部にセロハン粘着テープを密着させ、急激に剥がした後の塗膜におけるカット部からの剥離幅(片側)を評価した。
◎:フクレの発生がなく、カット部からのテープ剥離幅が1.5mm以下、
○:フクレの発生がなく、カット部からのテープ剥離幅が1.5mmを超え3mm以下、
△:フクレの発生が少し認められるが、カット部からのテープ剥離幅が3mm以下、又はフクレの発生が認められないが、カット部からのテープ剥離幅が3mmを超える、
×:フクレの発生が認められ、かつカット部からのテープ剥離幅が3mmを超える。
(Note 15) Acid resistance: The back and cut surfaces of each test paint plate cut to a size of 5 cm × 10 cm were sealed with a rust preventive paint, and a cross cut reaching the substrate was put in the center of the front side of the paint plate. . This coated plate was immersed in a 5% sulfuric acid aqueous solution at 20 ° C. for 24 hours, then taken out, washed, and evaluated for the appearance of the coating on the surface side of the coated plate dried at room temperature. The peel width (one side) from the cut portion in the coating film after being peeled off rapidly was evaluated.
A: There is no occurrence of swelling, and the tape peeling width from the cut part is 1.5 mm or less.
○: There is no occurrence of swelling, and the tape peeling width from the cut part exceeds 1.5 mm and is 3 mm or less.
Δ: Slight occurrence of swelling is observed, but tape peeling width from the cut portion is 3 mm or less, or occurrence of swelling is not recognized, but the tape peeling width from the cut portion exceeds 3 mm,
X: Generation | occurrence | production of a swelling is recognized and the tape peeling width from a cut part exceeds 3 mm.

(注16)複合サイクル腐食試験:JIS K−5621(1990)に準ずる。各試験用塗装板の長辺のエッジ部のバリが表面側塗膜面に向って右側において表面側に向き、左側において裏面側に向くように、6cm×12cmの大きさに切断した各試験用塗装板の表面側中央部に素地に達する狭角30度、線幅0.5mmのクロスカットをカッターナイフの背中を用いて入れ、塗装板上端エッジ部を防錆塗料にてシールし、上端部に4T折り曲げ加工部(塗装板の表面側を外側にして折り曲げ、その内側に塗装板と同じ厚さの板を4枚挟み、上記塗装板を万力にて180度折り曲げする加工)を設けた塗装板について、(30℃で5%食塩水噴霧0.5時間)−(30℃でRH95%以上の耐湿試験器内で試験1.5時間)−(50℃で乾燥2時間)−(30℃で乾燥2時間)を1サイクルとして、300サイクル(合計1800時間)試験を行った。この試験後の塗装板のエッジ部、クロスカット部、4T折り曲げ加工部の状態を評価した。
(4T加工部)4T加工部における錆部の合計長さを評価した。
◎:錆の発生が認められない、
○:白錆が認められるが20mm未満、
△:白錆が20mm以上でかつ40mm未満、
×:白錆が40mm以上、又は赤錆の発生が認められる。
(エッジ部)塗装板の左右の長辺のエッジクリープ幅の平均値を求め、次の基準により評価した。
◎:5mm未満、
○:5mm以上でかつ10mm未満、
△:10mm以上でかつ20mm未満、
×:20mm以上。
(クロスカット部)クロスカット部の腐食状態を、0.5mmのカット幅の地金露出部における白錆発生長さ割合、及びカット部の左右のフクレ幅(両側の和)の平均値により、次の基準で評価した。
◎:地金露出部における白錆発生長さ割合50%未満でかつフクレ幅3mm未満、
○:地金露出部における白錆発生長さ割合50%以上でかつフクレ幅3mm未満、又は地金露出部における白錆発生長さ割合50%未満でかつフクレ幅3mm以上で5mm未満、
△:地金露出部における白錆発生長さ割合50%以上でかつフクレ幅5mm以上で10mm未満、
×:地金露出部における白錆発生長さ割合50%以上でかつフクレ幅10mm以上。
(Note 16) Combined cycle corrosion test: According to JIS K-5621 (1990). For each test, cut to a size of 6 cm x 12 cm so that the burrs at the edge of the long side of each test coating plate face the front side on the right side toward the front side and the back side on the left side. Insert a cross cut with a narrow angle of 30 degrees and a line width of 0.5 mm into the center of the surface side of the paint board using the back of the cutter knife, and seal the top edge of the paint board with anticorrosive paint. Is provided with a 4T bending portion (processing to bend with the surface side of the coated plate facing outward, sandwiching four plates of the same thickness as the painted plate inside, and bending the painted plate 180 degrees in a vise) About the coated plate (5% saline sprayed at 30 ° C. for 0.5 hour)-(Test for 1.5 hours in a humidity tester of RH 95% or higher at 30 ° C.)-(Dry at 50 ° C. for 2 hours)-(30 Drying at 2 ° C for 2 hours is one cycle and 300 cycles (total Was 1800 hours) test. The state of the edge part, cross cut part, and 4T bending process part of the coating board after this test was evaluated.
(4T process part) The total length of the rust part in a 4T process part was evaluated.
A: No occurrence of rust,
○: White rust is observed, but less than 20 mm,
Δ: White rust is 20 mm or more and less than 40 mm,
X: Generation | occurrence | production of white rust 40 mm or more or red rust is recognized.
(Edge part) The average value of the edge creep widths of the left and right long sides of the coated plate was determined and evaluated according to the following criteria.
A: Less than 5 mm
○: 5 mm or more and less than 10 mm,
Δ: 10 mm or more and less than 20 mm,
X: 20 mm or more.
(Cross cut part) Corrosion state of the cross cut part, by the average value of the white rust occurrence length ratio in the bare metal exposed part of 0.5mm cut width, and the left and right swelling width (sum of both sides) of the cut part, Evaluation was made according to the following criteria.
A: White rust generation length ratio in exposed metal portion is less than 50% and swelling width is less than 3 mm,
○: The white rust generation length ratio in the bare metal exposed portion is 50% or more and less than 3 mm, or the white rust occurrence length ratio in the bare metal exposed portion is less than 50% and the swelling width is 3 mm or more and less than 5 mm,
Δ: White rust generation length ratio in exposed metal portion is 50% or more and swelling width is 5 mm or more and less than 10 mm,
X: The white rust generation length ratio in the bare metal exposed part is 50% or more and the swelling width is 10 mm or more.

(注17)塩水噴霧試験:5cm×10cmの大きさに切断した各試験用塗装板の裏面及び切断面を防錆塗料にてシールし、塗装板の表面中央に素地に達するクロスカットを入れた。この塗装板を35℃で5%食塩水による塩水噴霧試験(JIS Z−2371)を360時間行い、試験後の塗面の白錆発生状態を評価するとともに、クロスカット部にセロハン粘着テープを密着させ、急激に剥がした後の塗膜におけるカット部からのテープ剥離幅(片側)を評価した。
◎:赤錆及び白錆の発生がない又はわずかであり、カット部からのテープ剥離幅が5mm未満、
○:赤錆及び白錆の発生はわずかであるがカット部からのテープ剥離幅が5mm以上10mm未満であるか、又は赤錆・及び白錆の発生はやや認められるものの、カット部からのテープ剥離幅が5mm未満。
△:カット部全体に赤錆及び白錆の発生がやや認められ、カット部からのテープ剥離幅が5mm以上で10mm未満。
×:カット部全体に赤錆の発生が認められるか、或いはカット部からのテープ剥離幅が10mm以上。
(Note 17) Salt spray test: The back and cut surfaces of each test paint plate cut to a size of 5 cm × 10 cm were sealed with a rust-proof paint, and a cross cut reaching the substrate was put in the center of the surface of the paint plate. . The coated plate is subjected to a salt spray test (JIS Z-2371) with 5% saline at 35 ° C. for 360 hours to evaluate the white rust occurrence state of the coated surface after the test, and adhere the cellophane adhesive tape to the crosscut portion. The tape peeling width (one side) from the cut portion in the coating film after being peeled off rapidly was evaluated.
A: There is no or little occurrence of red rust and white rust, and the tape peeling width from the cut part is less than 5 mm,
○: The occurrence of red rust and white rust is slight, but the tape peel width from the cut part is 5 mm or more and less than 10 mm, or the occurrence of red rust and white rust is somewhat recognized, but the tape peel width from the cut part Is less than 5 mm.
Δ: Some occurrence of red rust and white rust was observed in the entire cut part, and the tape peeling width from the cut part was 5 mm or more and less than 10 mm.
X: Generation | occurrence | production of red rust is recognized by the whole cut part, or the tape peeling width from a cut part is 10 mm or more.

本発明の表面処理組成物は、平面部の耐食性、加工部や端面部の耐食性に優れた塗装金属板や塗装物品を提供できる。   The surface treatment composition of the present invention can provide a coated metal plate or a coated article excellent in the corrosion resistance of the flat portion and the corrosion resistance of the processed portion and the end surface portion.

連続コイルコーティング・ラインの一例を示す。An example of a continuous coil coating line is shown. 本発明の表面処理組成物を含む塗膜の塗膜構造を示す。The coating-film structure of the coating film containing the surface treatment composition of this invention is shown.

符号の説明Explanation of symbols

1.鉄面を示す。
2.メッキ層を示す。
3.本発明の表面処理組成物を用いた処理層を示す。
4.下塗り塗膜を示す。
5.上塗り塗膜を示す。
1. Shows the iron surface.
2. A plating layer is shown.
3. The processing layer using the surface treatment composition of this invention is shown.
4). An undercoat film is shown.
5. The top coat film is shown.

Claims (5)

水溶性又は水分散性であるアミノ基含有エポキシ樹脂、下記の防錆成分混合物(B)を含有する固形分1〜30質量%の表面処理組成物。
防錆成分混合物(B):五酸化バナジウム、バナジン酸カルシウム及びメタバナジン酸
アンモニウムのうちの少なくとも1種のバナジウム化合物(b1)、珪素化合物(b2)
、リン酸系カルシウム塩(b3)、からなるものであって、
水溶性又は水分散性であるアミノ基含有エポキシ樹脂の樹脂固形分100質量部に対して、バナジウム化合物(b1)の量が1〜30質量部、珪素化合物(b2)の量が1〜30質量部、及び該リン酸系カルシウム塩(b3)の量が1〜30質量部であり、かつ該防錆成分混合物(B)の量が3〜90質量部である
A surface treatment composition having a solid content of 1 to 30% by mass , comprising an amino group-containing epoxy resin that is water-soluble or water-dispersible, and the following antirust component mixture (B).
Antirust component mixture (B): at least one vanadium compound (b1) of vanadium pentoxide, calcium vanadate and ammonium metavanadate (b2), silicon compound (b2)
, Phosphate-based calcium salt (b3),
The resin solid content 100 parts by weight of said water-soluble or amino group-containing epoxy resin is a water dispersible, the amount of amount of 1 to 30 parts by weight of the vanadium compound (b1), silicon compound (b2) 1 to 30 The amount of the mass part and the phosphate calcium salt (b3) is 1 to 30 parts by mass, and the amount of the anticorrosive component mixture (B) is 3 to 90 parts by mass.
さらに、フルオロ金属イオンを生じる化合物(b4)を、水溶性又は水分散性であるアミノ基含有エポキシ樹脂の樹脂固形分100質量部に対して1〜30質量部含有する請求項1に記載の表面処理組成物。 Furthermore, the surface of Claim 1 which contains 1-30 mass parts of compound (b4) which produces a fluoro metal ion with respect to 100 mass parts of resin solid content of the amino group containing epoxy resin which is water-soluble or water-dispersible. Treatment composition. 水溶性又は水分散性であるアミノ基含有エポキシ樹脂の樹脂固形分100質量部に対して、レゾール型フェノール樹脂を0.1〜10質量部含有する請求項1又は2に記載の表面処理組成物。 The surface treatment composition according to claim 1 or 2, comprising 0.1 to 10 parts by mass of a resol-type phenol resin with respect to 100 parts by mass of a resin solid content of an amino group-containing epoxy resin that is water-soluble or water-dispersible . . 金属基材に、請求項1〜3のいずれか1項に記載の表面処理組成物による0.01〜10μmの硬化塗膜を形成し、素材到達温度80℃〜120℃で1秒間〜60秒間加熱乾燥することを特徴とする皮膜形成方法。 A cured coating film having a thickness of 0.01 to 10 μm is formed on the metal base material using the surface treatment composition according to any one of claims 1 to 3, and the material arrival temperature is 80 ° C. to 120 ° C. for 1 second to 60 seconds. A film-forming method, characterized by heating and drying. 請求項4に記載の皮膜形成方法によって得られた表面処理金属板。 A surface-treated metal plate obtained by the film forming method according to claim 4.
JP2008220746A 2008-08-29 2008-08-29 Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method Active JP5244507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220746A JP5244507B2 (en) 2008-08-29 2008-08-29 Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220746A JP5244507B2 (en) 2008-08-29 2008-08-29 Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method

Publications (2)

Publication Number Publication Date
JP2010053413A JP2010053413A (en) 2010-03-11
JP5244507B2 true JP5244507B2 (en) 2013-07-24

Family

ID=42069632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220746A Active JP5244507B2 (en) 2008-08-29 2008-08-29 Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method

Country Status (1)

Country Link
JP (1) JP5244507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618830B2 (en) * 2008-08-11 2014-11-05 関西ペイント株式会社 Water-based paint composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537340B2 (en) * 2010-08-31 2014-07-02 日新製鋼株式会社 Surface treatment liquid, surface treated steel plate and method for producing the same
JP5667426B2 (en) * 2010-12-14 2015-02-12 日新製鋼株式会社 Painted stainless steel sheet and manufacturing method thereof
JP5707582B2 (en) * 2011-07-15 2015-04-30 日本パーカライジング株式会社 Water-based metal surface treatment agent and metal material treated with the treatment agent
CN104630757A (en) * 2013-11-11 2015-05-20 安徽未来表面技术有限公司 Low temperature black phosphatization liquid with characteristics of high friction resistance and corrosion resistance
CN112534083B (en) * 2018-07-31 2022-05-17 杰富意钢铁株式会社 Insulating film treating liquid, grain-oriented electrical steel sheet with insulating film, and method for producing same
WO2023176768A1 (en) * 2022-03-14 2023-09-21 株式会社Adeka Epoxy resin composition, composition for metal surface processing, method for producing layered metal sheet, and method for bonding metal sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311454A (en) * 1992-04-03 1993-11-22 Nkk Corp Composite coated aluminum plate or aluminum alloy plate excellent in press moldability, scratch resistance, filiform erosion resistance and image clarity
JP2000248374A (en) * 1998-12-28 2000-09-12 Nippon Steel Corp Rust preventing treated steel
JP3549455B2 (en) * 1999-02-01 2004-08-04 新日本製鐵株式会社 Non-chrome type surface treated metal material
JP2003105555A (en) * 2001-07-23 2003-04-09 Nkk Corp Surface treated steel sheet having excellent white rust resistance, and production method therefor
JP4042913B2 (en) * 2004-09-08 2008-02-06 大日本塗料株式会社 Water-based coating composition for galvanized steel sheet or zinc alloy plated steel sheet and coated steel sheet
JP5088095B2 (en) * 2006-12-13 2012-12-05 Jfeスチール株式会社 Surface treated galvanized steel sheet with excellent corrosion resistance, blackening resistance, appearance and corrosion resistance after press molding, and aqueous surface treatment liquid for galvanized steel sheet
JP4374034B2 (en) * 2007-03-12 2009-12-02 関西ペイント株式会社 Coating composition with excellent corrosion resistance
JP4988434B2 (en) * 2007-05-28 2012-08-01 関西ペイント株式会社 Coating composition with excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618830B2 (en) * 2008-08-11 2014-11-05 関西ペイント株式会社 Water-based paint composition

Also Published As

Publication number Publication date
JP2010053413A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5618830B2 (en) Water-based paint composition
JP5244507B2 (en) Surface treatment composition, film formation method using the surface treatment composition, and surface-treated metal plate obtained by the film formation method
TWI394864B (en) Metal surface treatment composition, and surface-treated metal material with metal surface treatment film obtained from the metal surface treatment composition
JP5554531B2 (en) How to paint metal materials
US11466164B2 (en) Electrodeposition system
JP4825841B2 (en) Film formation method
KR20090112671A (en) Conductive, organic coatings having an optimized polymer system
JP5652999B2 (en) Metal surface treatment composition and surface-treated metal material having a metal surface treatment layer obtained from the metal surface treatment composition
WO2016143707A1 (en) Cationic electrodeposition coating composition
JP5835775B2 (en) Rust preventive coating composition for galvanized or zinc alloy plated steel sheet
JP5737803B2 (en) Coating composition with excellent corrosion resistance
WO2017051901A1 (en) Method for preparing cationic electrodeposition coating composition
WO2012147478A1 (en) Cationic electrodeposition coating composition and coated article
JP5490656B2 (en) High corrosion resistance surface-treated steel sheet
JP5325516B2 (en) Corrosion-resistant coating composition and painted metal plate
JP5461115B2 (en) High corrosion resistance surface-treated steel sheet
JP5996338B2 (en) Electrodeposition coating composition
JP5592579B2 (en) How to paint metal materials
JP4246689B2 (en) Pre-coated metal plate with excellent corrosion resistance
JP2017179261A (en) Primer coating for solvent-based metal, metal material with thin film and precoat metal material
JP5489961B2 (en) Metal surface treatment composition and metal substrate having surface treatment film
JP5814520B2 (en) Film formation method
JPH04202781A (en) Aluminum alloy sheet excellent in scratch resistance and corrosion resistance and its production
JP5622504B2 (en) Multi-layer coating formation method
JP2011052254A (en) Highly corrosion resistant surface-treated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5244507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250