JP5240045B2 - Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit - Google Patents

Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit Download PDF

Info

Publication number
JP5240045B2
JP5240045B2 JP2009105551A JP2009105551A JP5240045B2 JP 5240045 B2 JP5240045 B2 JP 5240045B2 JP 2009105551 A JP2009105551 A JP 2009105551A JP 2009105551 A JP2009105551 A JP 2009105551A JP 5240045 B2 JP5240045 B2 JP 5240045B2
Authority
JP
Japan
Prior art keywords
vibrator
carrier wave
circuit
driving
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009105551A
Other languages
Japanese (ja)
Other versions
JP2010256136A (en
Inventor
誠 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2009105551A priority Critical patent/JP5240045B2/en
Publication of JP2010256136A publication Critical patent/JP2010256136A/en
Application granted granted Critical
Publication of JP5240045B2 publication Critical patent/JP5240045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、振動子の駆動方法および駆動回路ならびにその駆動回路を備える慣性力検出装置に関する。   The present invention relates to a vibrator driving method, a driving circuit, and an inertial force detection device including the driving circuit.

従来のMEMS(micro electro mechanical systems)構造を用いた慣性力検出装置の一例である角速度検出装置400は、従来例1として図4に示され、素子部410と、駆動回路420と、センサ出力回路430とで構成されている。素子部410は、基部411と、基部411から浮いた或いは離間した位置に配置されてx方向およびy方向に変位が可能な振動子412と、振動子412の周囲に配置され基部411に固定されている複数の固定部413と、振動子412を各固定部413に連結する梁414と、振動子412からx方向に突出形成された櫛歯形状の駆動用可動電極415と、基部411に固定配設され駆動用可動電極415と間隔を介して噛み合う櫛歯形状の駆動用固定電極416と、振動子412からy方向に突出形成された櫛歯形状の検出用可動電極417と、基部411に固定配設され検出用可動電極417と間隔を介して噛み合う櫛歯形状の検出用固定電極418とを備える。振動子412は、固定部413を通じて接地されている。   An angular velocity detection device 400, which is an example of an inertial force detection device using a conventional MEMS (micro electro mechanical systems) structure, is shown in FIG. 4 as Conventional Example 1, and includes an element unit 410, a drive circuit 420, and a sensor output circuit. 430. The element portion 410 is disposed at a position that is floated or separated from the base portion 411 and can be displaced in the x direction and the y direction. The element portion 410 is disposed around the vibrator 412 and is fixed to the base portion 411. A plurality of fixed portions 413, beams 414 connecting the vibrator 412 to the respective fixed portions 413, comb-shaped driving movable electrodes 415 formed to protrude from the vibrator 412 in the x direction, and the base portion 411. A comb-shaped driving fixed electrode 416 that is disposed and meshes with the driving movable electrode 415 via a gap, a comb-shaped detecting movable electrode 417 that protrudes from the vibrator 412 in the y direction, and a base 411. A fixed detection electrode 418 having a comb-like shape that is fixedly disposed and meshes with the detection movable electrode 417 via a gap is provided. The vibrator 412 is grounded through the fixing portion 413.

駆動回路420は、発振器421と、増幅器422とを備える。発振器421は、振動子412の共振周波数と同一またはほぼ等しい周波数の交流信号を発生させる。増幅器422は、発振器421により発生した交流信号を増幅し、出力電圧Vk'を駆動信号として素子部410の駆動用固定電極416に印加する。その駆動信号Vk'の式は数式(1)により表すことができる。   The drive circuit 420 includes an oscillator 421 and an amplifier 422. The oscillator 421 generates an AC signal having a frequency that is the same as or approximately equal to the resonance frequency of the vibrator 412. The amplifier 422 amplifies the AC signal generated by the oscillator 421 and applies the output voltage Vk ′ to the driving fixed electrode 416 of the element portion 410 as a driving signal. The expression of the drive signal Vk ′ can be expressed by Expression (1).

Figure 0005240045
Figure 0005240045

ここで、数式(1)中の定数Aは駆動電圧の振幅を表し、定数Bは直流オフセットを表している。frは駆動信号Vk'の周波数であるとともに、振動子の機械的な共振周波数を示している。 Here, the constant A in the formula (1) represents the amplitude of the drive voltage, and the constant B represents the DC offset. fr represents the frequency of the drive signal Vk ′ and the mechanical resonance frequency of the vibrator.

一般的に、極板間に電位差を与えたときに働く静電気力の大きさは電位差の2乗に比例するため、振動子に与えられる静電気力は、駆動用固定電極416に印加する駆動電圧Vk'と振動子412の電圧Vmassとの差の2乗に比例する。振動子412の電位Vmassは通常GND(0V)に固定されるため、図4および図5に示される従来例1の駆動方法において振動子412に与えられる静電気力の大きさは、数式(2)で示される。   In general, since the magnitude of the electrostatic force that acts when a potential difference is applied between the electrode plates is proportional to the square of the potential difference, the electrostatic force applied to the vibrator is the driving voltage Vk applied to the driving fixed electrode 416. It is proportional to the square of the difference between 'and the voltage Vmass of the vibrator 412. Since the potential Vmass of the vibrator 412 is normally fixed to GND (0 V), the magnitude of the electrostatic force applied to the vibrator 412 in the driving method of the conventional example 1 shown in FIGS. Indicated by

Figure 0005240045
Figure 0005240045

数式(2)において実効的に振動子を共振振動させるのは、数式(3a)で示される共振周波数frの成分のみとなる。 In the formula (2), only the component of the resonance frequency fr shown in the formula (3a) can effectively cause the vibrator to resonate.

Figure 0005240045
Figure 0005240045

このように振動子412が共振振動している場合に、素子部410にz軸周りの回転(角速度)が加わると、y方向にコリオリ力が発生し、このコリオリ力に起因して振動子412はx方向だけでなくy方向にも振動する。そのy方向の振動の周波数はx方向の振動の周波数、また駆動電圧Vk'の周波数と同じになる。   In this way, when the vibrator 412 is oscillating at resonance, if rotation (angular velocity) around the z-axis is applied to the element portion 410, a Coriolis force is generated in the y direction, and the vibrator 412 is caused by the Coriolis force. Vibrates not only in the x direction but also in the y direction. The frequency of the vibration in the y direction is the same as the frequency of the vibration in the x direction and the frequency of the drive voltage Vk ′.

センサ出力検出部430は、電圧源接続部431と、抵抗器432と、増幅器433と、整流回路434と、平滑化回路435とを備える。   The sensor output detection unit 430 includes a voltage source connection unit 431, a resistor 432, an amplifier 433, a rectifier circuit 434, and a smoothing circuit 435.

直流の電圧源が電圧源接続部431及び抵抗器432を介して検出用固定電極418に接続される。このような状態のときに、振動子412がコリオリ力に起因してy方向に振動すると、y方向の振動に伴って検出用可動電極417と検出用固定電極418との間の静電容量が変化し、この静電容量の変化に応じた信号(検出信号)が検出用固定電極418に発生する。   A DC voltage source is connected to the detection fixed electrode 418 via the voltage source connection portion 431 and the resistor 432. When the vibrator 412 vibrates in the y direction due to the Coriolis force in such a state, the electrostatic capacitance between the detection movable electrode 417 and the detection fixed electrode 418 is accompanied by the vibration in the y direction. Then, a signal (detection signal) corresponding to the change in capacitance is generated at the detection fixed electrode 418.

検出信号は振動周波数と同じ周波数の交流信号であるため、増幅器433により増幅された後、整流器434により全波整流し、平滑化回路435を通すことで直流成分として出力される。   Since the detection signal is an AC signal having the same frequency as the vibration frequency, it is amplified by the amplifier 433, then full-wave rectified by the rectifier 434, and output as a DC component by passing through the smoothing circuit 435.

他の従来例としては、図7および図8(特許文献1参照)に示される、駆動電圧Vk'に振幅変調をかけた信号を用いる、従来例2の方式が挙げられる。この方式は、従来例1の構成に対し、駆動回路720中に、変調波発生回路721と、搬送波発生回路722と、振幅変調回路723とを備え、センサ出力回路730中に、電圧源接続部431と、抵抗器432と、増幅器433と、低域通過フィルタ731と、整流回路434と、平滑化回路435とを備える。ここで、同一の符号は、従来例1と同様の構成要素を示す。   As another conventional example, there is a method of the conventional example 2 using a signal obtained by applying amplitude modulation to the drive voltage Vk ′ shown in FIGS. 7 and 8 (see Patent Document 1). This system includes a modulation wave generation circuit 721, a carrier wave generation circuit 722, and an amplitude modulation circuit 723 in the drive circuit 720, compared to the configuration of the conventional example 1, and a voltage source connection unit in the sensor output circuit 730. 431, a resistor 432, an amplifier 433, a low-pass filter 731, a rectifier circuit 434, and a smoothing circuit 435. Here, the same reference numerals denote the same components as those in the first conventional example.

変調波発生回路721は、振動子412の共振周波数frと同一またはほぼ等しい周波数の交流信号を生成し、搬送波発生回路722は、振動子712の共振周波数frよりも高い周波数fcの交流信号を生成する。   The modulation wave generation circuit 721 generates an AC signal having a frequency that is the same as or substantially equal to the resonance frequency fr of the vibrator 412, and the carrier wave generation circuit 722 generates an AC signal having a frequency fc that is higher than the resonance frequency fr of the vibrator 712. To do.

振幅変調回路723は、変調波発生回路721から出力された変調波を利用して、搬送波発生回路722から出力された搬送波を振幅変調して駆動信号Vk”を出力し、駆動信号として駆動用固定電極416に印加する。この駆動信号Vk”は数式(4)で表すことができる。   The amplitude modulation circuit 723 amplitude-modulates the carrier wave output from the carrier wave generation circuit 722 using the modulation wave output from the modulation wave generation circuit 721 and outputs the drive signal Vk ″, and is fixed for driving as the drive signal. The drive signal Vk ″ is applied to the electrode 416. This drive signal Vk ″ can be expressed by Equation (4).

Figure 0005240045
Figure 0005240045

数式(4)の信号を駆動用固定電極416に印加し、振動子412の電位をGND(0V)とした場合、振動子412に共振周波数の成分としてかかる静電気力は、数式(5a)で表すことができる。 When the signal of Expression (4) is applied to the driving fixed electrode 416 and the potential of the vibrator 412 is set to GND (0 V), the electrostatic force applied to the vibrator 412 as a component of the resonance frequency is represented by Expression (5a). be able to.

Figure 0005240045
Figure 0005240045

また、従来例2では、駆動信号に振幅変調をかけるとともに、センサ出力回路730に、しきい値周波数が振動子412の共振周波数frよりも大きく、かつ搬送波の周波数よりも小さい低域通過フィルタ731を備えた構成となっている。   Further, in the conventional example 2, the drive signal is subjected to amplitude modulation, and the sensor output circuit 730 has a low-pass filter 731 whose threshold frequency is higher than the resonance frequency fr of the vibrator 412 and lower than the frequency of the carrier wave. It is the composition provided with.

特開2003−28642号公報JP 2003-28642 A

上述した従来例1に記載の駆動方法を用いた角速度検出装置においては、駆動用固定電極416と検出用固定電極418との間の寄生容量により、駆動信号が検出信号に干渉し、検出信号中にノイズ成分(以下「クロストークノイズ」と表記する。)として現れ、オフセットや温度ドリフトの特性に影響を及ぼしてしまう問題がある。図6(a)及び(b)に一般的なCV(Capacitance−Voltage)変換回路の原理を示す。また、駆動信号が寄生容量を介して干渉した場合の出力される信号をそれぞれ数式(6a)及び(6b)に示す。   In the angular velocity detecting device using the driving method described in the above-described conventional example 1, the driving signal interferes with the detection signal due to the parasitic capacitance between the driving fixed electrode 416 and the detection fixed electrode 418, and the detection signal is Appears as a noise component (hereinafter referred to as “crosstalk noise”), which has a problem of affecting the characteristics of offset and temperature drift. 6A and 6B show the principle of a general CV (Capacitance-Voltage) conversion circuit. Further, the output signals when the drive signal interferes with the parasitic capacitance are shown in equations (6a) and (6b), respectively.

Figure 0005240045
Figure 0005240045

Figure 0005240045
Figure 0005240045

ΔCsはコリオリ力によるセンサ容量の変化を表しており、ΔCsに比例する項が検出したい角速度の成分となる。また寄生容量Cparaに比例する項がクロストークノイズの成分である。検出信号とクロストークノイズは同じ周波数の信号であるため、従来例1の場合はそれぞれを分離して検出を行うことは困難である。 ΔCs represents a change in sensor capacity due to Coriolis force, and a term proportional to ΔCs is a component of an angular velocity to be detected. A term proportional to the parasitic capacitance C para is a crosstalk noise component. Since the detection signal and the crosstalk noise are signals having the same frequency, in the case of Conventional Example 1, it is difficult to perform detection separately.

従来例2は、従来例1の改良発明に相当し、駆動信号の周波数を振幅変調することで、検出信号の周波数(振動子の共振周波数)と周波数分離し、駆動信号のもれこみを除去する構成となっている。   Conventional Example 2 corresponds to the improved invention of Conventional Example 1, and the frequency of the drive signal is amplitude-modulated to separate the frequency of the detection signal (resonator frequency of the vibrator) and eliminate the leakage of the drive signal. It is the composition to do.

しかしながら、従来例2の発明においても、角速度の検出信号の感度が低下するという問題がある。   However, the invention of Conventional Example 2 also has a problem that the sensitivity of the angular velocity detection signal is lowered.

角速度を検出する際のコリオリ力(F=質量×速度×角速度)は、速度に比例する力となっており、振動子の速度は振動子の共振周波数と振幅によって決定される。また、振動子の振幅は振動子にかかる静電気力の大きさに比例する。   The Coriolis force (F = mass × velocity × angular velocity) when detecting the angular velocity is a force proportional to the velocity, and the velocity of the vibrator is determined by the resonance frequency and amplitude of the vibrator. The amplitude of the vibrator is proportional to the magnitude of the electrostatic force applied to the vibrator.

数式(3a)において、Aは駆動信号の交流成分の振幅を表し、Bは駆動信号と振動子の直流成分の差をあらわしており、実効的にかかる振動子の共振周波数frの周波数の静電気力は、駆動回路420の電源電圧(VDD)を考慮すると、A及びBがともに1/2・VDDの場合に最大値をとり、数式(3b)であらわされるFMAX'となる。 In Equation (3a), A represents the amplitude of the alternating current component of the drive signal, B represents the difference between the drive signal and the direct current component of the vibrator, and the electrostatic force at the frequency of the resonance frequency fr of the vibrator effectively. In consideration of the power supply voltage (VDD) of the drive circuit 420, the maximum value is obtained when both A and B are 1/2 · VDD, and is F MAX ′ expressed by Expression (3b).

Figure 0005240045
Figure 0005240045

数式(5a)においては、Aは変調波の振幅をあらわしており、A’は変調波と搬送波の直流成分の差を表しており、実効的にかかる振動子の共振周波数frの周波数の静電気力はA及びA’が共に1/4・VDDの場合に最大値をとり、数式(5b)で表されるFMAX”となる。 In Equation (5a), A represents the amplitude of the modulated wave, A ′ represents the difference between the DC component of the modulated wave and the carrier wave, and the electrostatic force having the frequency of the resonance frequency fr of the vibrator effectively applied. Takes the maximum value when A and A ′ are both ¼ · VDD, and is F MAX ″ expressed by Equation (5b).

Figure 0005240045
Figure 0005240045

数式(3b)と数式(5b)を比較すれば分かるように、従来例2においては振動子の振幅が従来例1に比べ1桁近く取りづらい状態にあり、角速度の検出精度が低下してしまう。一般的な角速度検出装置において、コリオリ力による容量変化はaF(10-18F)程度の大きさであり、微小な容量の変化を検出する必要があるため感度の向上は重要となる。 As can be seen from a comparison between Equation (3b) and Equation (5b), in the conventional example 2, the amplitude of the vibrator is more difficult to obtain by almost one digit than in the conventional example 1, and the detection accuracy of the angular velocity is lowered. . In a general angular velocity detection device, the capacitance change due to the Coriolis force is as large as aF (10 −18 F), and since it is necessary to detect a minute change in capacitance, it is important to improve sensitivity.

本発明はこのような課題を解決するためになされたものであり、その第1の目的は、寄生容量によるクロストークノイズを除去可能な振動子の駆動方法および駆動回路において、角速度出力の検出感度を向上させることにある。   The present invention has been made to solve such problems, and a first object of the present invention is to provide a vibrator driving method and a driving circuit capable of removing crosstalk noise due to parasitic capacitance, and to detect angular velocity output sensitivity. Is to improve.

また、その第2の目的は、寄生容量によるクロストークノイズを除去し、かつ、角速度出力の検出感度を向上させる慣性力検出装置を提供することにある。   A second object of the present invention is to provide an inertial force detection device that removes crosstalk noise due to parasitic capacitance and improves the sensitivity of detection of angular velocity output.

このような目的を達成するために、本発明の第1の態様は、振動子と前記振動子に隣接して設けられた駆動用電極との間の電位差に静電気力により、前記振動子を共振駆動する振動子の駆動方法であって、前記振動子の共振周波数よりも高い周波数の交流電圧である搬送波を発生するステップと、前記振動子の共振周波数とほぼ同一の周波数の交流電圧である変調波を発生するステップと、前記搬送波を前記変調波により振幅変調して、前記駆動用電極に駆動信号を出力するステップと、前記搬送波の直流電圧を調整して、前記振動子に調整された前記搬送波を出力するステップとを含むことを特徴とする。   In order to achieve such an object, the first aspect of the present invention is to resonate the vibrator by an electrostatic force in a potential difference between the vibrator and a driving electrode provided adjacent to the vibrator. A method of driving a vibrator to be driven, the step of generating a carrier wave that is an AC voltage having a frequency higher than the resonance frequency of the vibrator, and a modulation that is an AC voltage having a frequency substantially the same as the resonance frequency of the vibrator Generating a wave, amplitude-modulating the carrier wave with the modulated wave, outputting a drive signal to the drive electrode, adjusting a direct-current voltage of the carrier wave, and adjusting the vibrator Outputting a carrier wave.

また、本発明の第2の態様は、第1の態様において、前記搬送波を前記振動子の共振周波数とほぼ同一の周波数の信号により過変調することを特徴とする。   According to a second aspect of the present invention, in the first aspect, the carrier wave is overmodulated with a signal having a frequency substantially the same as a resonance frequency of the vibrator.

また、本発明の第3の態様は、振動子と前記振動子に隣接して設けられた駆動用電極との間の電位差に静電気力により、前記振動子を共振駆動するための駆動回路であって、前記振動子の共振周波数よりも高い周波数の交流電圧である搬送波を発生する搬送波発生回路と、前記振動子の共振周波数とほぼ同一の周波数の交流電圧である変調波を発生する変調波発生回路と、前記搬送波を前記変調波により振幅変調して、前記駆動用電極に駆動信号を出力する振幅変調回路と、前記搬送波の直流電圧を調整して、前記振動子に調整された前記搬送波を出力する直流電圧調整回路とを備えることを特徴とする。   According to a third aspect of the present invention, there is provided a drive circuit for resonantly driving the vibrator by an electrostatic force on a potential difference between the vibrator and a driving electrode provided adjacent to the vibrator. A carrier wave generation circuit for generating a carrier wave having an AC voltage with a frequency higher than the resonance frequency of the vibrator, and a modulation wave generation for generating a modulation wave having an AC voltage having substantially the same frequency as the resonance frequency of the vibrator. A circuit, an amplitude modulation circuit for modulating the amplitude of the carrier wave by the modulated wave, and outputting a drive signal to the drive electrode, and adjusting a direct-current voltage of the carrier wave, and adjusting the carrier wave adjusted to the vibrator And a DC voltage adjusting circuit for output.

また、本発明の第4の態様は、第3の態様において、前記搬送波を前記振動子の共振周波数とほぼ同一の周波数の信号により過変調することを特徴とする。   According to a fourth aspect of the present invention, in the third aspect, the carrier wave is overmodulated with a signal having a frequency substantially the same as a resonance frequency of the vibrator.

また、本発明の第5の態様は、振動子ならびに前記振動子に隣接して設けられた駆動用電極および検出用電極と、前記振動子と前記駆動用電極との間の電位差に静電気力により、前記振動子を共振駆動するための、第3又は第4の態様の駆動回路と、前記検出用電極に接続され、前記振動子の出力に応じた検出信号を出力する検出信号出力部と、前記検出信号出力部に接続され、前記振動子の前記共振周波数よりも高く、かつ、前記搬送波の周波数よりも低い周波数をしきい値周波数としてもつ低域通過フィルタとを備えることを特徴とする慣性力検出装置である。   According to a fifth aspect of the present invention, an electrostatic force is applied to a potential difference between a vibrator, a drive electrode and a detection electrode provided adjacent to the vibrator, and the vibrator and the drive electrode. A drive circuit of the third or fourth aspect for resonantly driving the vibrator, a detection signal output unit connected to the detection electrode and outputting a detection signal according to the output of the vibrator; Inertia comprising: a low-pass filter connected to the detection signal output unit and having a threshold frequency higher than the resonance frequency of the vibrator and lower than the frequency of the carrier wave It is a force detection device.

本発明によれば、振動子の共振周波数よりも高い周波数fcの交流電圧を振動子に印加することにより、寄生容量によるクロストークノイズを除去可能な振動子の駆動方法および駆動回路において角速度出力の検出感度を向上させることができる。また、そのような振動子の駆動回路を備えることにより、寄生容量によるクロストークノイズを除去し、かつ、角速度出力の検出感度を向上させる慣性力検出装置を提供することができる。   According to the present invention, by applying an AC voltage having a frequency fc higher than the resonance frequency of the vibrator to the vibrator, it is possible to remove the angular velocity output in the vibrator driving method and drive circuit capable of removing crosstalk noise due to parasitic capacitance. Detection sensitivity can be improved. Further, by providing such a drive circuit for the vibrator, it is possible to provide an inertial force detection device that removes crosstalk noise due to parasitic capacitance and improves the detection sensitivity of angular velocity output.

本発明の実施形態による角速度検出装置を示す図である。It is a figure which shows the angular velocity detection apparatus by embodiment of this invention. (a)は、図1の駆動回路120から素子部410の駆動用固定電極416に加えられる駆動信号Vkを示し、(b)は、図1の振動子412に印加される電圧Vmassを示す図である。1A shows a drive signal Vk applied from the drive circuit 120 of FIG. 1 to the drive fixed electrode 416 of the element portion 410, and FIG. 1B shows a voltage Vmass applied to the vibrator 412 of FIG. It is. (a)は、本発明の実施形態によるCV変換回路の構成を示し、(b)は、CV変換回路131から出力される信号の持つ周波数の分布を示す図である。(A) shows the configuration of the CV conversion circuit according to the embodiment of the present invention, and (b) shows the frequency distribution of the signal output from the CV conversion circuit 131. 従来のMEMS構造を用いた慣性力検出装置の一例である従来例1を示す図である。It is a figure which shows the prior art example 1 which is an example of the inertial force detection apparatus using the conventional MEMS structure. 図4の駆動用固定電極416に印加される駆動電圧Vk'を示す図である。FIG. 5 is a diagram illustrating a driving voltage Vk ′ applied to the driving fixed electrode 416 in FIG. 4. (a)及び(b)は、一般的なCV変換回路の原理を説明するための図である。(A) And (b) is a figure for demonstrating the principle of a general CV conversion circuit. 駆動電圧Vk'に振幅変調をかけた信号を用いる従来例2を示す図である。It is a figure which shows the prior art example 2 which uses the signal which applied amplitude modulation to drive voltage Vk '. 図7の駆動用固定電極416に印加される駆動信号Vk”を示す図である。FIG. 8 is a diagram illustrating a driving signal Vk ″ applied to the driving fixed electrode 416 in FIG. 7. 図1の振幅変調回路123の具体例を示す図である。It is a figure which shows the specific example of the amplitude modulation circuit 123 of FIG.

以下、図面を参照して本発明に係る実施形態を詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1は、本発明の実施形態による角速度検出装置を示している。角速度検出装置100(「慣性力検出装置」に対応)は、素子部410と、駆動回路120と、センサ出力回路130とで構成されている。素子部410は図1に示した従来例1と基本的には同一であり振動子412を有するが、固定部413が接地されていない点が異なる。駆動回路120は、振動子412の共振周波数とほぼ同一の周波数frの交流電圧である変調波を発生する変調波発生回路121と、振動子412の共振周波数よりも高い周波数fcの交流電圧である搬送波を発生する搬送波発生回路122と、搬送波を変調波により振幅変調して、駆動用固定電極416に駆動信号を出力する振幅変調回路123と、搬送波の直流電圧を調整して、振動子412に、調整された搬送波を出力する直流電圧調整回路124とを備える。センサ出力回路130は、従来例2のものとほぼ共通の構成となっており、CV変換回路131と、低域通過フィルタ132と、整流回路133と、平滑化回路435とを備えている。   FIG. 1 shows an angular velocity detection device according to an embodiment of the present invention. The angular velocity detection device 100 (corresponding to the “inertial force detection device”) includes an element unit 410, a drive circuit 120, and a sensor output circuit 130. The element unit 410 is basically the same as the conventional example 1 shown in FIG. 1 and includes the vibrator 412 except that the fixing unit 413 is not grounded. The drive circuit 120 has a modulation wave generation circuit 121 that generates a modulation wave that is an AC voltage having a frequency fr substantially the same as the resonance frequency of the vibrator 412, and an AC voltage having a frequency fc that is higher than the resonance frequency of the vibrator 412. A carrier wave generation circuit 122 that generates a carrier wave, an amplitude modulation circuit 123 that amplitude-modulates the carrier wave with a modulated wave and outputs a drive signal to the driving fixed electrode 416, and adjusts a direct current voltage of the carrier wave, And a DC voltage adjusting circuit 124 for outputting the adjusted carrier wave. The sensor output circuit 130 has substantially the same configuration as that of the conventional example 2 and includes a CV conversion circuit 131, a low-pass filter 132, a rectifier circuit 133, and a smoothing circuit 435.

駆動回路120の搬送波発生回路122の出力信号が、直流電圧調整回路124を通り、固定部413を通じて振動子412へ印加される。駆動回路120から素子部410の駆動用固定電極416に加えられる駆動信号Vkが図2(a)に示されており、振動子412に印加される電圧Vmassが図2(b)に示されるものである。駆動力Vkを数式(7a)に示し、振動子の電位Vmassを数式(7b)に示す。   The output signal of the carrier wave generation circuit 122 of the drive circuit 120 passes through the DC voltage adjustment circuit 124 and is applied to the vibrator 412 through the fixing unit 413. A drive signal Vk applied from the drive circuit 120 to the drive fixed electrode 416 of the element unit 410 is shown in FIG. 2A, and a voltage Vmass applied to the vibrator 412 is shown in FIG. It is. The driving force Vk is shown in Formula (7a), and the potential Vmass of the vibrator is shown in Formula (7b).

Figure 0005240045
Figure 0005240045

Figure 0005240045
Figure 0005240045

同様に振動子412に加わる共振周波数frの周波数をもつ静電気力の大きさを求めると、次の数式(8a)で表される。   Similarly, when the magnitude of the electrostatic force having the resonance frequency fr applied to the vibrator 412 is obtained, it is expressed by the following formula (8a).

Figure 0005240045
Figure 0005240045

とれる最大値は、AがVDD/2の場合で、数式(8b)で表される。
The maximum value that can be taken is represented by Equation (8b) when A is VDD / 2.

Figure 0005240045
Figure 0005240045

振動子412に加えられる静電気力の大きさは、数式(5b)される従来例2の場合に対して最大で8倍となり、感度が低下する問題を改善することが可能である。   The magnitude of the electrostatic force applied to the vibrator 412 is up to eight times that in the case of the conventional example 2 expressed by the mathematical formula (5b), and it is possible to improve the problem that the sensitivity is lowered.

駆動力が得られる理由は、駆動信号Vkが振幅変調回路123により過変調され、かつ振動子に印加される電圧Vmassに対しても、同時に変調をかける構成とした点である。振動子が固定電位の状態で、図2(a)のように過変調した駆動信号を印加しても駆動力は0である(数式4、及び数式5aにおけるA'=0の状態)。しかしながら、振動子の電位Vmassにも同時に変調をかける場合、図2(c)で示すように、Vk-Vmassの電位差で見ると、過変調は起こらず、さらに取れる電圧の範囲が(3/2)VDDから(-1/2)VDDと駆動回路の電源電圧の倍となっている。つまり、従来例2の場合において、駆動信号Vk'の振幅が2倍とれる状態に相当する。駆動力は電圧の2乗で働くため、駆動信号Vkを過変調し、Vmassにも搬送波を与えることで、従来例2に対して4倍の駆動力を得られる。   The reason why the driving force can be obtained is that the driving signal Vk is overmodulated by the amplitude modulation circuit 123 and the voltage Vmass applied to the vibrator is also modulated simultaneously. Even when an overmodulated drive signal as shown in FIG. 2A is applied while the vibrator is at a fixed potential, the driving force is 0 (the state where A ′ = 0 in Equations 4 and 5a). However, when the potential Vmass of the vibrator is also modulated at the same time, as shown in FIG. 2 (c), when viewed from the potential difference of Vk-Vmass, overmodulation does not occur, and the range of voltage that can be taken is (3/2 ) From VDD to (-1/2) VDD and twice the power supply voltage of the drive circuit. That is, in the case of Conventional Example 2, this corresponds to a state in which the amplitude of the drive signal Vk ′ can be doubled. Since the driving force works by the square of the voltage, the driving signal Vk is overmodulated and a carrier wave is given to Vmass, so that a driving force four times that of the conventional example 2 can be obtained.

さらに本発明の実施例では、搬送波に正弦波ではなく方形波を用いることで、倍の駆動力が得られる構成としている。   Further, in the embodiment of the present invention, a double driving force can be obtained by using a square wave instead of a sine wave as a carrier wave.

また、過変調を行う振幅調整回路123は、反転増幅器、スイッチ、インバータを備えた回路で容易に実現できる(図9参照)。   The amplitude adjustment circuit 123 that performs overmodulation can be easily realized by a circuit including an inverting amplifier, a switch, and an inverter (see FIG. 9).

また、図3(a)は本発明の実施例における検出原理の説明図である。帰還抵抗R、帰還容量CFBを備えたCV変換回路131と、検出容量Csを備えており、検出容量Cs、あるいは寄生容量CPARAのチャージの変化ΔQがCFBを介して電圧として出力される(Vout=ΔQ/CFB)。この駆動方式と図3(a)のようなCV変換回路131(「検出信号出力部」に対応)を用いて検出を行った場合、CV変換回路131から出力される信号は数式(9)で示され、図3(b)では信号の持つ周波数の分布を示している。 FIG. 3A is an explanatory diagram of the detection principle in the embodiment of the present invention. A feedback resistor R, the CV converting circuit 131 having a feedback capacitor C FB, and a detection capacity Cs, the detection capacity Cs or charge change ΔQ of the parasitic capacitance C PARA, is output as a voltage through a C FB (Vout = ΔQ / C FB ). When detection is performed using this driving method and the CV conversion circuit 131 (corresponding to “detection signal output unit”) as shown in FIG. 3A, the signal output from the CV conversion circuit 131 is expressed by Equation (9). FIG. 3B shows the frequency distribution of the signal.

Figure 0005240045
Figure 0005240045

Vk、Vmassは、数式(7a)および数式(7b)で示されるものである。 Vk and Vmass are shown by the mathematical formula (7a) and the mathematical formula (7b).

数式(9)において、検出したい角速度の信号はsin(2π・fr・t)の成分であり、VmassがVDD−VSS(0V)で切り替わる通常のクロックの場合、中心電位がVDD/2となり、sin(2π・fr・t)にかかる係数が0となり出力が取れなくなる。そのため、本発明の実施例では、直流電圧調整回路124を用いて、Vmassの中心電位を0Vに調整している。直流電圧調整回路124は、図3(a)中に示すような抵抗素子及び容量素子のみで容易に実現できる。   In Equation (9), the signal of the angular velocity to be detected is a component of sin (2π · fr · t), and in the case of a normal clock where Vmass is switched at VDD−VSS (0V), the center potential becomes VDD / 2, and sin The coefficient over (2π · fr · t) becomes 0 and output cannot be obtained. Therefore, in the embodiment of the present invention, the DC potential adjustment circuit 124 is used to adjust the center potential of Vmass to 0V. The DC voltage adjustment circuit 124 can be easily realized by using only a resistance element and a capacitance element as shown in FIG.

図1に示される実施形態においては、センサ出力回路130(「センサ出力検出部」に対応)に低域通過フィルタ132を備えており、しきい値周波数がfrよりも高く、fcよりも低いものとなっている。ここで検出したいコリオリ力による信号の周波数は図3(b)で示されるfrを中心とする成分であり、駆動信号によるクロストークノイズはfc±fr、3fc±fr・・・の周波数を持つ成分となる。fc>>frの場合、前述の低域通過フィルタ132によりクロストークノイズは除去し、後段の整流回路133、及び平滑化回路435により、従来例2と同様にコリオリ力による角速度の信号のみを検出することが可能となる。   In the embodiment shown in FIG. 1, the sensor output circuit 130 (corresponding to the “sensor output detector”) includes a low-pass filter 132, and the threshold frequency is higher than fr and lower than fc. It has become. The frequency of the signal due to the Coriolis force to be detected here is a component centered at fr shown in FIG. 3B, and the crosstalk noise due to the drive signal is a component having frequencies of fc ± fr, 3fc ± fr. It becomes. In the case of fc >> fr, the crosstalk noise is removed by the low-pass filter 132 described above, and only the signal of the angular velocity due to the Coriolis force is detected by the subsequent rectifier circuit 133 and the smoothing circuit 435 as in the conventional example 2. It becomes possible to do.

なお、上記実施例では静電容量型の角速度検出装置を例にあげたが、駆動信号の干渉が同様に問題となる、圧電型の角速度検出装置に適応することも可能である。   In the above embodiment, the capacitance type angular velocity detection device is taken as an example, but it is also possible to apply to a piezoelectric type angular velocity detection device in which the interference of the drive signal similarly becomes a problem.

100 角速度検出装置
120 駆動回路
121 変調波発生回路
122 搬送波発生回路
123 振幅変調回路
124 直流電圧調整回路
130 センサ出力回路
131 CV変換回路
132 低域通過フィルタ
133 整流回路
400 角速度検出装置
410 素子部
411 基部
420 駆動回路
411 基部
412 振動子
413 固定部
414 梁
415 駆動用可動電極
416 駆動用固定電極
417 検出用可動電極
418 検出用固定電極
420 駆動回路
421 発振器
422 増幅器
430 センサ出力回路
431 電圧源接続部
432 抵抗器
433 増幅器
434 整流回路
435 平滑化回路
720 駆動回路
721 変調波発生回路
722 搬送波発生回路
723 振幅変調回路
730 センサ出力回路
731 低域通過フィルタ
DESCRIPTION OF SYMBOLS 100 Angular velocity detection apparatus 120 Drive circuit 121 Modulation wave generation circuit 122 Carrier wave generation circuit 123 Amplitude modulation circuit 124 DC voltage adjustment circuit 130 Sensor output circuit 131 CV conversion circuit 132 Low-pass filter 133 Rectification circuit 400 Angular velocity detection apparatus 410 Element part 411 Base 420 drive circuit 411 base 412 vibrator 413 fixed portion 414 beam 415 drive movable electrode 416 drive fixed electrode 417 detection movable electrode 418 detection fixed electrode 420 drive circuit 421 oscillator 422 amplifier 430 sensor output circuit 431 voltage source connection unit 432 Resistor 433 Amplifier 434 Rectifier circuit 435 Smoothing circuit 720 Drive circuit 721 Modulated wave generation circuit 722 Carrier wave generation circuit 723 Amplitude modulation circuit 730 Sensor output circuit 731 Low-pass filter

Claims (5)

振動子と前記振動子に隣接して設けられた駆動用電極との間の電位差に静電気力により、前記振動子を共振駆動する振動子の駆動方法であって、
前記振動子の共振周波数よりも高い周波数の交流電圧である搬送波を発生するステップと、
前記振動子の共振周波数とほぼ同一の周波数の交流電圧である変調波を発生するステップと、
前記搬送波を前記変調波により振幅変調して、前記駆動用電極に駆動信号を出力するステップと、
前記搬送波の直流電圧を調整して、前記振動子に調整された前記搬送波を出力するステップと
を含むことを特徴とする振動子の駆動方法。
A vibrator driving method for resonantly driving the vibrator by electrostatic force in a potential difference between the vibrator and a driving electrode provided adjacent to the vibrator,
Generating a carrier wave that is an AC voltage having a frequency higher than the resonance frequency of the vibrator;
Generating a modulated wave that is an AC voltage having substantially the same frequency as the resonance frequency of the vibrator;
Amplitude-modulating the carrier wave with the modulated wave, and outputting a drive signal to the drive electrode;
Adjusting the DC voltage of the carrier wave, and outputting the adjusted carrier wave to the vibrator.
前記搬送波を前記振動子の共振周波数とほぼ同一の周波数の信号により過変調することを特徴とする請求項1に記載の振動子の駆動方法。   2. The vibrator driving method according to claim 1, wherein the carrier wave is overmodulated by a signal having a frequency substantially the same as a resonance frequency of the vibrator. 振動子と前記振動子に隣接して設けられた駆動用電極との間の電位差に静電気力により、前記振動子を共振駆動するための駆動回路であって、
前記振動子の共振周波数よりも高い周波数の交流電圧である搬送波を発生する搬送波発生回路と、
前記振動子の共振周波数とほぼ同一の周波数の交流電圧である変調波を発生する変調波発生回路と、
前記搬送波を前記変調波により振幅変調して、前記駆動用電極に駆動信号を出力する振幅変調回路と、
前記搬送波の直流電圧を調整して、前記振動子に調整された前記搬送波を出力する直流電圧調整回路と
を備えることを特徴とする振動子の駆動回路。
A driving circuit for resonantly driving the vibrator by an electrostatic force in a potential difference between the vibrator and a driving electrode provided adjacent to the vibrator;
A carrier wave generating circuit that generates a carrier wave that is an AC voltage having a frequency higher than the resonance frequency of the vibrator;
A modulation wave generating circuit that generates a modulation wave that is an AC voltage having substantially the same frequency as the resonance frequency of the vibrator;
An amplitude modulation circuit that amplitude-modulates the carrier wave with the modulation wave and outputs a drive signal to the drive electrode;
A vibrator driving circuit comprising: a DC voltage adjusting circuit that adjusts a DC voltage of the carrier wave and outputs the carrier wave adjusted to the vibrator.
前記搬送波を前記振動子の共振周波数とほぼ同一の周波数の信号により過変調することを特徴とする請求項3に記載の振動子の駆動回路。   4. The vibrator driving circuit according to claim 3, wherein the carrier wave is overmodulated by a signal having a frequency substantially the same as a resonance frequency of the vibrator. 振動子ならびに前記振動子に隣接して設けられた駆動用電極および検出用電極と、
前記振動子と前記駆動用電極との間の電位差に静電気力により、前記振動子を共振駆動するための、請求項3または4に記載の駆動回路と、
前記検出用電極に接続され、前記振動子の出力に応じた検出信号を出力する検出信号出力部と、
前記検出信号出力部に接続され、前記振動子の前記共振周波数よりも高く、かつ、前記搬送波の周波数よりも低い周波数をしきい値周波数としてもつ低域通過フィルタと
を備えることを特徴とする慣性力検出装置。
A vibrator and a drive electrode and a detection electrode provided adjacent to the vibrator;
5. The drive circuit according to claim 3, wherein the vibrator is resonantly driven by an electrostatic force in a potential difference between the vibrator and the driving electrode;
A detection signal output unit connected to the detection electrode and outputting a detection signal corresponding to the output of the vibrator;
Inertia comprising: a low-pass filter connected to the detection signal output unit and having a threshold frequency higher than the resonance frequency of the vibrator and lower than the frequency of the carrier wave Force detection device.
JP2009105551A 2009-04-23 2009-04-23 Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit Active JP5240045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105551A JP5240045B2 (en) 2009-04-23 2009-04-23 Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105551A JP5240045B2 (en) 2009-04-23 2009-04-23 Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit

Publications (2)

Publication Number Publication Date
JP2010256136A JP2010256136A (en) 2010-11-11
JP5240045B2 true JP5240045B2 (en) 2013-07-17

Family

ID=43317226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105551A Active JP5240045B2 (en) 2009-04-23 2009-04-23 Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit

Country Status (1)

Country Link
JP (1) JP5240045B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255668A (en) * 2011-06-07 2012-12-27 Denso Corp Angular velocity sensor
JP5765146B2 (en) * 2011-09-01 2015-08-19 株式会社島津製作所 Cantilever excitation method and atomic force microscope in atomic force microscope
JP5708458B2 (en) * 2011-11-29 2015-04-30 株式会社デンソー Angular velocity detector
KR20160085053A (en) 2015-01-07 2016-07-15 삼성전기주식회사 Gryo sensor module
GB2563192B (en) 2017-03-16 2021-02-24 Rosemount Measurement Ltd Improvements in or relating to vibrating element apparatus
CN116499444B (en) * 2023-06-20 2023-09-05 中国船舶集团有限公司第七〇七研究所 Hemispherical resonant gyro mode switching method based on vibration mode active precession

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530342A (en) * 1994-09-30 1996-06-25 Rockwell International Corporation Micromachined rate sensor comb drive device and method
US5783973A (en) * 1997-02-24 1998-07-21 The Charles Stark Draper Laboratory, Inc. Temperature insensitive silicon oscillator and precision voltage reference formed therefrom
JP2000131074A (en) * 1998-10-28 2000-05-12 Aisin Seiki Co Ltd Electrostatically driven angular velocity-detecting apparatus
JP2001264072A (en) * 2000-03-17 2001-09-26 Aisin Seiki Co Ltd Angular velocity sensor
JP2002148047A (en) * 2000-11-07 2002-05-22 Murata Mfg Co Ltd Jyrosystem
JP2003028642A (en) * 2001-07-10 2003-01-29 Murata Mfg Co Ltd Vibrator driving method, vibrator driving circuit, vibration detection circuit for vibrator and angular velocity sensor having vibrator
JP4032681B2 (en) * 2001-08-27 2008-01-16 株式会社デンソー Synchronous detection method and apparatus, and sensor signal detection apparatus

Also Published As

Publication number Publication date
JP2010256136A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5240045B2 (en) Driving method and driving circuit for vibrator, and inertial force detection device including the driving circuit
US8302476B2 (en) Angular velocity measuring device
JP4899781B2 (en) Capacitive mechanical quantity detector
JP2010505102A (en) Device for measuring yaw rate using vibration sensor
JP5458462B2 (en) Vibration type inertial force detection sensor
JP2008185429A (en) Electric potential measuring apparatus and image forming apparatus
US6526826B2 (en) Angular speed sensor device
JP2007107909A5 (en)
JP2018021850A (en) Vibration type gyro having bias correction function and method for using vibration type gyro
JP3812543B2 (en) Angular velocity sensor device and adjustment method thereof
Zhang et al. Amplitude-modulated resonant accelerometer employing parametric pump
JP2004294218A (en) Measuring method of physical property value and scanning probe microscope
JP2009198265A (en) Electrostatic capacitance type detection device and acceleration and angular velocity detection device using the same
JP2003028642A (en) Vibrator driving method, vibrator driving circuit, vibration detection circuit for vibrator and angular velocity sensor having vibrator
JP2017156313A (en) Angular velocity detection circuit, angular velocity detection device, electronic apparatus and mobile body
JP2001091535A (en) Capacitor type physical-quantity detecting apparatus
JP2012242201A (en) Capacity type physical quantity detector
JP2010169522A (en) Capacitance type detection device and acceleration/angular velocity detection device using same
CN104977473A (en) MEMS device capacitance detection method
JP2006010408A (en) Vibratory gyro
CN111183112B (en) MEMS device with suppression of interference modes and corresponding method of operation
JP6546576B2 (en) Voltage sensor
JP2017156312A (en) Angular velocity detection circuit, angular velocity detection device, electronic apparatus and mobile body
JP2000131072A (en) Capacity change detection circuit device
JP2001264355A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350