JP5239784B2 - Piezoelectric vibration device - Google Patents

Piezoelectric vibration device Download PDF

Info

Publication number
JP5239784B2
JP5239784B2 JP2008303436A JP2008303436A JP5239784B2 JP 5239784 B2 JP5239784 B2 JP 5239784B2 JP 2008303436 A JP2008303436 A JP 2008303436A JP 2008303436 A JP2008303436 A JP 2008303436A JP 5239784 B2 JP5239784 B2 JP 5239784B2
Authority
JP
Japan
Prior art keywords
bonding
lid member
main surface
electrode
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008303436A
Other languages
Japanese (ja)
Other versions
JP2010130400A (en
Inventor
直樹 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2008303436A priority Critical patent/JP5239784B2/en
Publication of JP2010130400A publication Critical patent/JP2010130400A/en
Application granted granted Critical
Publication of JP5239784B2 publication Critical patent/JP5239784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子機器等に用いられる圧電振動デバイスに関するものである。   The present invention relates to a piezoelectric vibration device used for electronic equipment and the like.

近年、各種電子機器の小型化・薄型化が急速に進んでおり、これに伴って、圧電振動デバイス(例えば水晶振動子等)も超小型化対応が求められている。しかしながら、例えば従来のようなセラミックからなる容器体の内部に圧電振動板を搭載し、蓋体で気密封止した形態の圧電振動デバイスでは、容器体の成形精度の問題から超小型化への対応が困難になってきている。これに対し、容器体および蓋体を例えば水晶やガラスなどで構成し、圧電振動板の両主面に形成された励振電極を封止するように、圧電振動板の両主面に対して容器体および蓋体を接合すする形態の圧電振動デバイスがある(例えば、下記する特許文献1および特許文献2をご参照)。このような圧電振動デバイスの製造においては、例えば圧電振動板、容器体、蓋体のいずれかの部材を、多数個が連なって形成された基板で取り扱うことによって、取扱いを簡便にし、生産効率を向上させるようにしている。   In recent years, miniaturization and thinning of various electronic devices are rapidly progressing, and accordingly, piezoelectric vibration devices (for example, crystal resonators) are required to be ultra-miniaturized. However, for example, in the case of a piezoelectric vibration device in which a piezoelectric vibration plate is mounted inside a conventional ceramic container body and hermetically sealed with a lid body, it is necessary to cope with ultra-miniaturization due to the problem of molding accuracy of the container body. Has become difficult. On the other hand, the container body and the cover body are made of, for example, crystal or glass, and the container is formed on both main surfaces of the piezoelectric diaphragm so as to seal the excitation electrodes formed on both main surfaces of the piezoelectric diaphragm. There is a piezoelectric vibration device that joins a body and a lid (see, for example, Patent Document 1 and Patent Document 2 below). In the manufacture of such a piezoelectric vibration device, for example, any member of a piezoelectric vibration plate, a container body, and a lid body is handled by a substrate formed by connecting a plurality of elements, thereby simplifying the handling and improving the production efficiency. I try to improve.

特許3390348号公報Japanese Patent No. 3390348 特開2001−119264号公報JP 2001-119264 A

また、近年の各種電子機器の動作周波数の高周波化に伴って、圧電振動デバイスも高周波化対応が必要となっている。例えば圧電振動板にATカット水晶板を用いた場合、その厚さは周波数に反比例する関係にあるため、高周波帯では非常に薄くなる。このように水晶板の厚さが非常に薄くなると機械的に脆弱となるため、薄肉領域の周囲に、該薄肉領域よりも厚肉の補強部を一体成形することによって、水晶板の機械的強度を高める構造が一般的に用いられている(所謂、逆メサ構造)。   In addition, with the recent increase in operating frequency of various electronic devices, piezoelectric vibration devices are also required to support higher frequencies. For example, when an AT-cut quartz plate is used as the piezoelectric diaphragm, the thickness thereof is inversely proportional to the frequency, so that it becomes very thin in the high frequency band. In this way, when the thickness of the quartz plate becomes very thin, it becomes mechanically fragile. Therefore, the mechanical strength of the quartz plate is obtained by integrally forming a reinforcing portion thicker than the thin region around the thin region. In general, a structure that enhances the so-called “reverse mesa structure” is used.

上記した特許文献1および特許文献2では、圧電振動板の表裏主面の外周部の各々に、金属膜を介して蓋(蓋部材)が接合された構造となっている。圧電振動板には水晶板が使用されており、所謂、逆メサ構造が開示されている。このような構造において、水晶板とその上下の蓋との接合は金属膜の溶融によって行われている。しかし、上記構造では前記接合後の金属膜の収縮応力等の応力が、水晶板の外周部分(厚肉部)から内側部分(薄肉部)へ伝搬し、当該応力によって圧電振動デバイスの発振周波数が変化してしまうことが懸念される。また、前記応力は圧電振動デバイスの諸特性にも悪影響を及ぼすことになる。さらに、上記した特許文献1および特許文献2では、圧電振動板とその上下の蓋との接合に寄与する接合材(金属膜)と、励振電極と圧電振動デバイス底面の外部接続とを電気的に接続するための電極(接続電極と略記)とが、各部材の外周付近に近接して形成されている。このように近接した状態では例えば前記接合材を加熱溶融させるときに溶融金属が圧電振動デバイスの内側方向へ(あるいは前記接続電極形成時に溶融した金属が圧電振動デバイスの外側方向へ)流出して、接合材と接続電極とが接触し、絶縁不良を発生させる危険性が増大することになる。   In Patent Document 1 and Patent Document 2 described above, a lid (lid member) is joined to each of the outer peripheral portions of the front and back main surfaces of the piezoelectric diaphragm via a metal film. A quartz plate is used as the piezoelectric diaphragm, and a so-called inverted mesa structure is disclosed. In such a structure, the crystal plate and the upper and lower lids are joined by melting the metal film. However, in the above structure, stress such as shrinkage stress of the metal film after the bonding propagates from the outer peripheral part (thick part) of the quartz plate to the inner part (thin part), and the oscillation frequency of the piezoelectric vibration device is caused by the stress. There is concern about changes. The stress also adversely affects various characteristics of the piezoelectric vibration device. Further, in Patent Document 1 and Patent Document 2 described above, the bonding material (metal film) that contributes to the bonding of the piezoelectric diaphragm and the upper and lower lids thereof, and the external connection of the excitation electrode and the bottom surface of the piezoelectric vibration device are electrically connected. Electrodes for connection (abbreviated as connection electrodes) are formed in the vicinity of the outer periphery of each member. In such a close state, for example, when the bonding material is heated and melted, the molten metal flows out toward the inner side of the piezoelectric vibration device (or the molten metal at the time of forming the connection electrode flows toward the outer side of the piezoelectric vibration device), The bonding material and the connection electrode come into contact with each other, increasing the risk of causing an insulation failure.

本発明は、かかる点に鑑みてなされたものであり、圧電振動板に発生する応力を緩和しつつ、絶縁不良を防止して、安定した特性を得ることができる圧電振動デバイスを提供することを目的とするものである。   The present invention has been made in view of the above points, and provides a piezoelectric vibration device capable of preventing insulation failure and obtaining stable characteristics while relaxing stress generated in the piezoelectric diaphragm. It is the purpose.

上記目的を達成するために、請求項1の発明は、表裏一対の励振電極を有する圧電振動板と、該圧電振動板の表裏外周に接合材を介して各々接合され、前記励振電極を気密封止する蓋部材とで構成された圧電振動デバイスであって、前記圧電振動板は、励振電極が形成された振動部と、該振動部を包囲し、該振動部よりも厚肉に形成された枠部と、振動部と枠部との間に、振動部よりも薄肉に形成された薄肉部あるいは貫通部、または前記薄肉部と前記貫通部の組合せ構成とが一体成形されており、前記振動部の表裏主面のうち、少なくとも一方の主面には振動部と同材料からなる突起部が該振動部と一体的に成形され、該突起部には前記励振電極から振動部の一主面側に引き出された第1接合電極が形成されてなり、前記突起部は、該突起部の上面が前記枠部の一主面と略同一平面となる厚さで形成され、一方の蓋部材の一主面には、該蓋部材の他主面に形成された外部接続端子と電気的に繋がった第2接合電極が形成されてなり、第1接合電極と第2接合電極とが金属ロウ材を介して一体化接合されることによって、励振電極が外部接続端子と電気的に繋がっている。このような構造の圧電振動デバイスであれば、接合後に圧電振動体に生じる各種応力を効果的に緩和することができる。 In order to achieve the above object, the invention of claim 1 is characterized in that a piezoelectric diaphragm having a pair of front and back excitation electrodes and a front and back outer periphery of the piezoelectric diaphragm are bonded to each other via a bonding material, and the excitation electrodes are hermetically sealed. A piezoelectric vibration device configured with a lid member to be stopped, wherein the piezoelectric vibration plate surrounds the vibration part on which an excitation electrode is formed and is thicker than the vibration part. A thin portion or a through portion formed thinner than the vibrating portion or a combined configuration of the thin portion and the penetrating portion is integrally formed between the frame portion and the vibrating portion and the frame portion, and the vibration A protrusion made of the same material as that of the vibration portion is formed integrally with the vibration portion on at least one main surface of the front and back main surfaces of the vibration portion. A first bonding electrode drawn out to the side is formed, and the protrusion is formed of the protrusion Is formed to a thickness upper surface of the one main surface substantially flush with the frame portion is, in the one main surface of one of the lid member, the external connection terminal electrically formed on the other main surface of the lid member The second bonding electrode connected to the first bonding electrode is formed, and the first bonding electrode and the second bonding electrode are integrally bonded via the metal brazing material, so that the excitation electrode is electrically connected to the external connection terminal. Yes. With the piezoelectric vibration device having such a structure, various stresses generated in the piezoelectric vibration member after bonding can be effectively relieved.

具体的に、圧電振動体の表裏外周部に接合材を介して蓋部材を各々接合する際、接合によって発生する各種応力(接合材の収縮応力等)を、前記薄肉部によって緩和することができる。また、振動部と枠部との間に前記薄肉部を形成せず、貫通部を形成してもよい。前記貫通部を形成することによって、前述の各種応力は緩和することができる。さらには、振動部と枠部との間に薄肉部と貫通部の両方を形成してもよい。上記構造によって、励振電極が形成された振動部に伝搬する応力が緩和され、圧電振動デバイスの発振周波数の変化を抑制することができる。また、前記応力緩和により、圧電振動デバイスの特性劣化を防止することができる。   Specifically, when the lid members are bonded to the front and back outer peripheral portions of the piezoelectric vibrating body via the bonding material, various stresses (such as shrinkage stress of the bonding material) generated by the bonding can be relieved by the thin portion. . Further, the through portion may be formed without forming the thin portion between the vibrating portion and the frame portion. By forming the penetrating portion, the various stresses described above can be relaxed. Furthermore, you may form both a thin part and a penetration part between a vibration part and a frame part. With the above structure, the stress propagating to the vibration part where the excitation electrode is formed is relieved, and a change in the oscillation frequency of the piezoelectric vibration device can be suppressed. In addition, due to the stress relaxation, it is possible to prevent deterioration of the characteristics of the piezoelectric vibrating device.

また、上記構成によれば、前記励振電極と前記外部接続端子を電気的に接続するため導通路(金属ロウ材を介して一体化接合される第1接合電極と第2接合電極等)は、枠部から独立して離間した位置、すなわち振動部に形成されている。これにより、前記導通路形成のために金属膜(金属ロウ材)を加熱溶融させる際に、溶融金属が圧電振動デバイスの外側方向へ移動したとしても、前記薄肉部が“溝”として機能するため、溶融金属を薄肉部に滞留させることができる。これにより、圧電振動デバイスの外周領域に形成された接合材と、前記導通路と接触による絶縁不良を防止することができる。   In addition, according to the above configuration, the conduction path (the first joint electrode and the second joint electrode etc. that are integrally joined via the metal brazing material) for electrically connecting the excitation electrode and the external connection terminal, It is formed at a position separated from the frame portion, that is, at the vibration portion. Thus, when the metal film (metal brazing material) is heated and melted to form the conduction path, the thin portion functions as a “groove” even if the molten metal moves outward of the piezoelectric vibrating device. The molten metal can be retained in the thin part. Thereby, it is possible to prevent insulation failure caused by contact with the bonding material formed in the outer peripheral region of the piezoelectric vibration device and the conduction path.

また、上記目的を達成するために請求項の発明によると、前記振動部の表裏主面のうち、少なくとも一方の主面には振動部と同材料からなる突起部が該振動部と一体的に成形され、該突起部には前記第1接合電極が形成されてなり、前記突起部は、該突起部の上面が前記枠部の一主面と略同一平面となる厚さで形成されている。 In order to achieve the above object, according to the first aspect of the present invention, at least one main surface of the front and back main surfaces of the vibration portion has a protrusion made of the same material as that of the vibration portion. The protrusion is formed with the first bonding electrode, and the protrusion has a thickness such that the upper surface of the protrusion is substantially flush with one main surface of the frame. Yes.

上記構成によれば、前記突起部の厚さ(高さ)は、前記枠部の一主面と略同一平面となる厚さ(高さ)で形成されている。これにより、例えば電解メッキ法によって、枠部に形成する接合材の上面と、突起部に形成する金属膜(金属ロウ材)の上面とを概ね揃えて形成する場合、膜厚管理を行い易くすることができる。つまり、枠部の主面外周の接合材と、突起部上の金属膜の電解メッキによる成膜を一括同時に行うことができる。これは、前記枠部の一主面と前記振動部の一主面とが非同一面である場合、枠部の接合材の上面と、突起部上の金属膜の上面とを概ね揃えて形成するには、枠部と突起部に形成する接合材および金属膜の厚さが異なるため、略同一平面に制御するための膜厚管理が煩雑となる。これに比べて本発明の構成であれば、一括電解メッキで膜厚を管理することができる。また、前記突起部の厚さ(高さ)が、前記枠部の一主面と略同一平面となる厚さ(高さ)で形成されているため、金属使用量も低減させることができる。   According to the said structure, the thickness (height) of the said projection part is formed in the thickness (height) used as the substantially same plane as the one main surface of the said frame part. Thereby, for example, when the upper surface of the bonding material formed on the frame portion and the upper surface of the metal film (metal brazing material) formed on the projection portion are formed substantially aligned by an electrolytic plating method, the film thickness can be easily managed. be able to. That is, film formation by electrolytic plating of the bonding material on the outer periphery of the main surface of the frame portion and the metal film on the protrusion can be performed simultaneously. When the one principal surface of the frame portion and the one principal surface of the vibration portion are non-identical, the upper surface of the bonding material of the frame portion and the upper surface of the metal film on the protrusion portion are substantially aligned. Therefore, since the thicknesses of the bonding material and the metal film formed on the frame portion and the projection portion are different, the film thickness management for controlling the substantially same plane becomes complicated. Compared with this, if it is the structure of this invention, a film thickness can be managed by collective electrolytic plating. Moreover, since the thickness (height) of the protrusion is formed with a thickness (height) that is substantially flush with one main surface of the frame, the amount of metal used can also be reduced.

また、上記目的を達成するために請求項の発明によると、前記圧電振動板が平面視矩形状のATカット水晶板からなり、該圧電振動板の長辺側をX軸、該圧電振動板の短辺側をZ’軸としたとき、前記薄肉部の領域のうち、Z’軸方向の一部領域に貫通部が形成されてなり、前記貫通部の上端と下端を繋ぐ壁面導体が、該貫通部の内壁面に部分的に被着され、前記振動部の一主面側の励振電極は、前記壁面導体を経由して他主面側へ引き回され、前記第1接合電極と電気的に繋がっている。 In order to achieve the above object, according to the invention of claim 2 , the piezoelectric diaphragm is made of an AT-cut quartz plate having a rectangular shape in plan view, the long side of the piezoelectric diaphragm is the X axis, and the piezoelectric diaphragm When the Z ′ axis is the short side of the thin wall portion, a through-hole is formed in a partial region in the Z′-axis direction of the thin-walled region, and a wall conductor connecting the upper end and the lower end of the through-portion, The excitation electrode on one main surface side of the vibrating portion is partially attached to the inner wall surface of the penetrating portion, and is routed to the other main surface side via the wall surface conductor, and is electrically connected to the first joint electrode. Connected.

水晶振動板を用いて、前記薄肉部をウエットエッチング(化学的溶解)によって成形する場合、水晶は異方性結晶であるため、軸方向の相違によって水晶の深さ方向の侵食角度に差異が生じる。つまり、前記侵食角度の相違によって、溶解部分の開口角度に差異が生じてしまう。具体的に、Z’軸方向の方がX軸方向よりも水晶の深さ方向の侵食角度が大きいため開口角度が大きくなる。このような開口角度の相違により、エッチング後の薄肉部の機械的強度は、X軸方向の方がZ’軸方向よりも機械的強度が劣ることになる。しかしながら本発明の構造であれば、Z’軸方向の一部領域に貫通孔を形成し、X軸方向は薄肉部を境界に枠部および振動部と繋がっている。つまりX軸方向を水晶振動板の長辺方向とすることによって、X軸方向に貫通部を形成する場合よりも水晶振動板の強度低下を抑制することができる。   When the thin-walled portion is formed by wet etching (chemical dissolution) using a quartz crystal plate, the quartz crystal is an anisotropic crystal, and therefore the erosion angle in the crystal depth direction varies depending on the axial direction. . That is, due to the difference in the erosion angle, a difference occurs in the opening angle of the melted portion. Specifically, since the erosion angle in the crystal depth direction is larger in the Z′-axis direction than in the X-axis direction, the opening angle becomes larger. Due to the difference in the opening angle, the mechanical strength of the thin portion after etching is inferior in the X-axis direction to the Z′-axis direction. However, according to the structure of the present invention, a through hole is formed in a partial region in the Z′-axis direction, and the X-axis direction is connected to the frame portion and the vibration portion with a thin portion as a boundary. That is, by setting the X-axis direction as the long side direction of the crystal diaphragm, it is possible to suppress a decrease in the strength of the crystal diaphragm compared to the case where the penetrating portion is formed in the X-axis direction.

一方、水晶板に表裏いずれか一方向(例えば表面側)からのウエットエッチングによって貫通孔を形成する場合、水晶は異方性結晶であるために、深くエッチングするほど最深部の孔径が狭小となり、侵食孔の形状は概ね逆三角錐形状に近づいてくる。つまり貫通孔は表裏で開口寸法に相違が生じてしまう。これは高周波帯の水晶板に比べて厚さが厚い低周波帯(ATカット水晶板は厚さが周波数に反比例するため)に近づくほど、前記開口寸法の相違が顕在化してくる。したがって、貫通孔内部に導体を充填して該貫通孔の上下接続を確実に行うのに充分な孔径を確保するためには、水晶の異方性により、少なくとも水晶の一主面側にはある程度の大きさの開口領域が必要となる。つまり前記開口領域の確保が振動領域の減少に繋がってしまう。しかしながら、本発明の構造であれば、前記薄肉部の領域のうち、Z’軸方向の一部領域に貫通部が形成され、前記貫通部の上端と下端を繋ぐ壁面導体が、該貫通部の内壁面に部分的に被着されている。つまり、前記壁面導体を経由することによって、貫通孔を形成することなく、前記振動部の一主面側から他主面側への導通を確保することができる。したがって、貫通孔を形成する構造に比べて振動領域を広く確保することができる。これにより、圧電振動デバイスの設計自由度を増すことができる。   On the other hand, when the through hole is formed by wet etching from either the front or back side (for example, the front side) of the quartz plate, the quartz is an anisotropic crystal. The shape of the erosion hole almost approaches an inverted triangular pyramid shape. That is, the through hole has a difference in opening size between the front and back sides. This is because the difference in the opening dimension becomes more apparent as it approaches a low frequency band that is thicker than a high-frequency band quartz plate (the thickness of an AT-cut quartz plate is inversely proportional to the frequency). Therefore, in order to ensure a sufficient hole diameter for filling the through hole with a conductor and to ensure the vertical connection of the through hole, at least to one principal surface side of the crystal due to the anisotropy of the crystal An opening area having a size of 2 mm is required. That is, securing the opening area leads to a decrease in the vibration area. However, according to the structure of the present invention, a through-hole is formed in a partial region in the Z′-axis direction of the thin-walled region, and a wall surface conductor connecting the upper end and the lower end of the through-portion is formed on the through-hole. It is partially attached to the inner wall surface. That is, by passing through the wall conductor, it is possible to ensure conduction from one main surface side to the other main surface side of the vibrating portion without forming a through hole. Therefore, it is possible to ensure a wide vibration region as compared with the structure in which the through hole is formed. Thereby, the design freedom of a piezoelectric vibration device can be increased.

以上のように、本発明によれば、本発明は、かかる点に鑑みてなされたものであり、圧電振動板に発生する応力を緩和しつつ、絶縁不良を防止して、安定した特性を得ることができる圧電振動デバイスを提供することができる。   As described above, according to the present invention, the present invention has been made in view of such a point, and while suppressing stress generated in the piezoelectric diaphragm, it prevents insulation failure and obtains stable characteristics. A piezoelectric vibration device that can be provided can be provided.

−第1の実施形態−
以下、本発明の実施形態について図面を参照して説明する。なお、以下に示す実施例では、圧電振動デバイスとして水晶振動子を本発明に適用した場合を示す。図1は本発明の第1の実施形態を示す水晶振動子の長辺方向の断面模式図であり、図2は図1で各部材に分解した図である。以下、まず水晶振動子の主要構成部材について説明した後、その製造方法について説明する。
-First embodiment-
Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, a case where a crystal resonator is applied to the present invention as a piezoelectric vibration device is shown. FIG. 1 is a schematic cross-sectional view in the long side direction of a crystal resonator showing a first embodiment of the present invention, and FIG. 2 is an exploded view of each member in FIG. Hereinafter, first, main components of the crystal resonator will be described, and then a manufacturing method thereof will be described.

本実施形態にかかる水晶振動子1は、図1に示すように、水晶振動板2(本発明でいう圧電振動板)と、この水晶振動板2の一主面21に形成された励振電極23を気密封止する第1蓋部材3と、この水晶振動板2の他主面22に形成された励振電極23を気密封止する第2蓋部材4が主要構成部材となっている。水晶振動子1は、水晶振動板2と第1蓋部材3とが接合材5によって接合され、かつ、水晶振動板2と第2蓋部材4とが接合材5によって接合されてパッケージ11が構成される。そして、水晶振動板2を介して第1蓋部材3と第2蓋部材4とが接合されることで、パッケージ11の内部空間12が2箇所形成され、このパッケージ11の内部空間12に水晶振動板2の両主面21,22に形成された励振電極23がそれぞれの内部空間12で気密封止されている。なお、第1蓋部材と第2蓋部材とは略同一形状および略同一外形寸法となっており、第1蓋部材3には、当該蓋部材の底面(他主面)37に形成される外部接続端子34と電気的に繋がった導通路(ビア)35が当該蓋部材の厚さ方向に貫通形成されている。   As shown in FIG. 1, the crystal resonator 1 according to the present embodiment includes a crystal diaphragm 2 (a piezoelectric diaphragm in the present invention) and an excitation electrode 23 formed on one main surface 21 of the crystal diaphragm 2. The first lid member 3 that hermetically seals and the second lid member 4 that hermetically seals the excitation electrode 23 formed on the other main surface 22 of the crystal diaphragm 2 are main constituent members. In the crystal resonator 1, the crystal diaphragm 2 and the first lid member 3 are joined by the joining material 5, and the crystal diaphragm 2 and the second lid member 4 are joined by the joining material 5, thereby forming the package 11. Is done. Then, the first lid member 3 and the second lid member 4 are joined to each other through the crystal diaphragm 2, thereby forming two internal spaces 12 of the package 11, and crystal vibrations in the internal space 12 of the package 11. Excitation electrodes 23 formed on both main surfaces 21 and 22 of the plate 2 are hermetically sealed in the respective internal spaces 12. The first lid member and the second lid member have substantially the same shape and substantially the same outer dimensions, and the first lid member 3 has an external formed on the bottom surface (other main surface) 37 of the lid member. A conduction path (via) 35 electrically connected to the connection terminal 34 is formed penetrating in the thickness direction of the lid member.

図2において水晶振動板2は、所定の角度で切り出されたATカット水晶板である。水晶振動板2は、励振電極23が形成された振動部20と、枠部29と薄肉部28とを有しており、これらは一体的に成形されている。ここで枠部29は振動部20を環状に包囲し、該振動部よりも厚肉に形成されている。また、薄肉部28は振動部20と枠部29との間に形成され、振動部(土手部27)よりも薄肉に形成されている。なお、本発明でいう、振動部は励振電極が形成された領域のみに限定されるものではない。本実施形態の説明においては、「振動部」は枠部の内側に形成される薄肉部または貫通孔よりも内側の領域(具体的に凹部26および土手部27)としている。本実施形態において振動部20は、表裏に励振電極23が形成される凹部26と、凹部26を環状に包囲する土手部27とからなっている(所謂、「逆メサ」形状の振動部となっている)。なお、振動部20の構造は上記構造に限定されるものではなく、平板状であってもよい。また、本実施形態では「逆メサ」形状の振動部の外周に薄肉部を形成した構造となっているが、枠部の内側の領域に薄肉部を形成せず、平板状として貫通部を部分的に形成してもよい。なお、これらの構造においても、振動部の厚さは枠部よりも薄くなる。   In FIG. 2, a quartz crystal plate 2 is an AT-cut quartz plate cut out at a predetermined angle. The crystal diaphragm 2 has a vibration part 20 on which an excitation electrode 23 is formed, a frame part 29 and a thin part 28, which are integrally formed. Here, the frame part 29 surrounds the vibration part 20 in an annular shape and is formed thicker than the vibration part. The thin portion 28 is formed between the vibrating portion 20 and the frame portion 29 and is formed thinner than the vibrating portion (bank portion 27). In the present invention, the vibrating part is not limited to the region where the excitation electrode is formed. In the description of the present embodiment, the “vibrating part” is a thin part formed inside the frame part or a region inside the through hole (specifically, the concave part 26 and the bank part 27). In the present embodiment, the vibration unit 20 includes a concave portion 26 in which the excitation electrode 23 is formed on the front and back sides, and a bank portion 27 that surrounds the concave portion 26 in a ring shape (a so-called “reverse mesa” -shaped vibration portion. ing). In addition, the structure of the vibration part 20 is not limited to the said structure, A flat plate shape may be sufficient. In the present embodiment, the thin portion is formed on the outer periphery of the “reverse mesa” -shaped vibrating portion, but the thin portion is not formed in the inner region of the frame portion, and the through portion is partially formed as a flat plate. It may be formed automatically. In these structures as well, the thickness of the vibration part is thinner than that of the frame part.

前記凹部26および土手部27、薄肉部28はウエットエッチングによって成形されている。そして凹部26の表裏面(一主面21と他主面22)に励振電極23が蒸着法によって対向形成されている。本実施形態では励振電極23は水晶振動板2の表裏主面に、下から順に、クロム,金の膜構成で成膜されている。なお、前記電極の膜構成はこれに限定されるものではなく、その他の膜構成であってもよい。励振電極23からは引出電極24が導出形成されており、他主面22から引き出された引出電極24は、凹部26と土手部27の境界部分から振動部を厚さ方向に貫いて一主面21側へ導出されている。そして、引出電極24の終端部分には第1接合電極25が形成されている。第1接合電極25の上部には金(Au)メッキ層50が形成されている。   The concave portion 26, the bank portion 27, and the thin portion 28 are formed by wet etching. Excitation electrodes 23 are formed opposite to each other on the front and back surfaces (one main surface 21 and the other main surface 22) of the recess 26 by vapor deposition. In the present embodiment, the excitation electrode 23 is formed on the front and back main surfaces of the crystal diaphragm 2 in order from the bottom in a chromium and gold film configuration. The film configuration of the electrode is not limited to this, and other film configurations may be used. An extraction electrode 24 is led out from the excitation electrode 23, and the extraction electrode 24 extracted from the other main surface 22 penetrates the vibration portion in the thickness direction from the boundary portion between the recess 26 and the bank portion 27, and has one main surface. 21 side. A first bonding electrode 25 is formed at the terminal portion of the extraction electrode 24. A gold (Au) plating layer 50 is formed on the first bonding electrode 25.

水晶振動板2の両主面21,22は鏡面加工仕上げとなっており、平坦平滑面として成形されている。水晶振動板2では、枠部29の両主面201,202は第1蓋部材3と第2蓋部材4との接合面として構成され、振動部20が振動領域として構成される。枠部29の一主面201には第1蓋部材3と接合するための第1接合材51が形成されている。また、枠部29の一主面201には第2蓋部材4と接合するための第2接合材52が形成されている。ここで前記第1接合材51と第2接合材52の形成幅は略同一となっている。また、第1接合材51と第2接合材52とは同一構成からなっている。これら第1接合材51および第2接合材52は、複数の層が枠部29の両主面201,202に積層して構成されている。本実施形態では、第1接合材および第2接合材は、最下層側からクロム(Cr)層(図示省略)と金(Au)層(図示省略)とが蒸着法によって形成され、その上に金メッキ層(図示省略)が電解メッキ法によって積層された構成となっている。   Both main surfaces 21 and 22 of the crystal diaphragm 2 have a mirror finish and are formed as flat smooth surfaces. In the crystal diaphragm 2, both main surfaces 201 and 202 of the frame portion 29 are configured as a joint surface between the first lid member 3 and the second lid member 4, and the vibration portion 20 is configured as a vibration region. A first bonding material 51 for bonding to the first lid member 3 is formed on one main surface 201 of the frame portion 29. A second bonding material 52 for bonding to the second lid member 4 is formed on one main surface 201 of the frame portion 29. Here, the formation widths of the first bonding material 51 and the second bonding material 52 are substantially the same. The first bonding material 51 and the second bonding material 52 have the same configuration. The first bonding material 51 and the second bonding material 52 are configured by laminating a plurality of layers on both main surfaces 201 and 202 of the frame portion 29. In the present embodiment, the first bonding material and the second bonding material are formed by forming a chromium (Cr) layer (not shown) and a gold (Au) layer (not shown) from the lowermost layer side by vapor deposition. A gold plating layer (not shown) is laminated by an electrolytic plating method.

図2において第1蓋部材3は平面視矩形状の平板であり、Z板水晶が使用されている。平面視において第1蓋部材3の外形寸法は水晶振動板2の外形寸法と略同一となっており、第1蓋部材3の一主面31(下記する水晶振動板2との接合面32)は平坦平滑面(鏡面加工)として成形されている。そして、第1蓋部材3の水晶振動板2との接合面側の周縁には、第3接合材53が周状に形成されている。ここで、第3接合材53の形成幅は第1接合材51の形成幅と略同一となるように形成されている。   In FIG. 2, the first lid member 3 is a flat plate having a rectangular shape in plan view, and a Z-plate crystal is used. In plan view, the outer dimensions of the first lid member 3 are substantially the same as the outer dimensions of the crystal diaphragm 2, and one main surface 31 of the first lid member 3 (joint surface 32 with the crystal diaphragm 2 described below). Is formed as a flat smooth surface (mirror finish). A third bonding material 53 is formed in a circumferential shape on the periphery of the first lid member 3 on the side of the bonding surface with the crystal diaphragm 2. Here, the formation width of the third bonding material 53 is formed to be substantially the same as the formation width of the first bonding material 51.

第1蓋部材3には、水晶振動板2の第1接合電極25と金属膜(金属ロウ材)を介して接合される第2接合電極33と、水晶振動板2と接合する接合部(具体的に接合面32)と、外部と電気的に接続する外部接続端子34とが設けられている。水晶振動板2との接合面32は、第1蓋部材3の一主面31の平面視主面外周に設けられている。   The first lid member 3 includes a second bonding electrode 33 bonded to the first bonding electrode 25 of the crystal vibrating plate 2 via a metal film (metal brazing material), and a bonding portion (specifically) bonded to the crystal vibrating plate 2. In particular, a joint surface 32) and an external connection terminal 34 electrically connected to the outside are provided. The joint surface 32 with the crystal diaphragm 2 is provided on the outer periphery of the main surface 31 of the first lid member 3 in plan view.

第1蓋部材3の接合面32には、水晶振動板2と接合するための第3接合材53が形成されている。具体的に、第3接合材53は複数の層が接合面32に積層され、その最下層側からクロム(Cr)層(図示省略)と金(Au)層531とが蒸着形成され、その上にAu−Sn合金層532が積層して形成され、その上にAuフラッシュメッキ層533が積層して形成されている。もしくは、第3接合材53は、その下面側からCr層とAu層とが蒸着形成され、その上にSnメッキ層とAuメッキ層が順に積層して形成されていてもよい。なお、第3接合材53と第2接合電極33とは同時に形成され、第2接合電極33も第3接合材53と同一の構成となる。また、第1蓋部材3には、図2に示すように、水晶振動板2の励振電極23を外部と導通させるためのスルーホール35が形成されている。そして、このスルーホール35を介して、電極パターン36が第1蓋部材3の一主面31の第2接合電極33から第1蓋部材3の他主面37の外部接続端子34にかけてパターン形成されている。   On the bonding surface 32 of the first lid member 3, a third bonding material 53 for bonding to the crystal diaphragm 2 is formed. Specifically, a plurality of layers of the third bonding material 53 are laminated on the bonding surface 32, and a chromium (Cr) layer (not shown) and a gold (Au) layer 531 are formed by vapor deposition from the lowermost layer side. An Au—Sn alloy layer 532 is formed on the substrate, and an Au flash plating layer 533 is formed thereon. Alternatively, the third bonding material 53 may be formed by vapor-depositing a Cr layer and an Au layer from the lower surface side, and sequentially laminating an Sn plating layer and an Au plating layer thereon. The third bonding material 53 and the second bonding electrode 33 are formed at the same time, and the second bonding electrode 33 has the same configuration as the third bonding material 53. Further, as shown in FIG. 2, the first lid member 3 is formed with a through hole 35 for electrically connecting the excitation electrode 23 of the crystal diaphragm 2 to the outside. Then, an electrode pattern 36 is formed through the through hole 35 from the second joint electrode 33 on the one principal surface 31 of the first lid member 3 to the external connection terminal 34 on the other principal surface 37 of the first lid member 3. ing.

図2において第2蓋部材4は平面視矩形状の平板であり、第1蓋部材3と同様にZ板水晶が使用されている。平面視において第2蓋部材4の外形寸法は水晶振動板2の外形寸法と略同一となっている。第2蓋部材4の一主面41(下記する水晶振動板2との接合面42)は平坦平滑面(鏡面加工)として成形されている。そして、第2蓋部材4の水晶振動板2との接合面側の周縁には、第4接合材54が周状に形成されている。ここで、第4接合材54の形成幅は第2接合材52の形成幅と略同一となっている。   In FIG. 2, the second lid member 4 is a flat plate having a rectangular shape in plan view, and a Z-plate crystal is used similarly to the first lid member 3. The external dimensions of the second lid member 4 in plan view are substantially the same as the external dimensions of the crystal diaphragm 2. One main surface 41 of the second lid member 4 (a bonding surface 42 with the crystal diaphragm 2 described below) is formed as a flat smooth surface (mirror finish). A fourth bonding material 54 is formed on the periphery of the second lid member 4 on the side of the bonding surface with the crystal diaphragm 2. Here, the formation width of the fourth bonding material 54 is substantially the same as the formation width of the second bonding material 52.

この第2蓋部材4には、水晶振動板2と接合する接合部(具体的に接合面42)が設けられている。接合面42は、第2蓋部材4の一主面41の平面視主面外周に設けられている。また、第2蓋部材4の接合面42には、水晶振動板2と接合するための第4接合材54が形成されている。具体的に、第4接合材54は、複数の層が接合面42に積層され、その最下層側からCr層(図示省略)とAu層541とが蒸着形成され、その上にAu−Sn合金層542が積層して形成され、その上にAuフラッシュメッキ層543が積層して形成されている。もしくは、第4接合材54は、その下面側からCr層とAu層とが蒸着形成され、その上にSnメッキ層とAuメッキ層が順に積層して形成されていてもよい。   The second lid member 4 is provided with a joint portion (specifically, a joint surface 42) that joins the crystal diaphragm 2. The joint surface 42 is provided on the outer periphery of the main surface 41 of the second lid member 4 in plan view. A fourth bonding material 54 for bonding to the crystal diaphragm 2 is formed on the bonding surface 42 of the second lid member 4. Specifically, in the fourth bonding material 54, a plurality of layers are laminated on the bonding surface 42, a Cr layer (not shown) and an Au layer 541 are formed by vapor deposition from the lowermost layer side, and an Au—Sn alloy is formed thereon. The layer 542 is laminated and formed, and the Au flash plating layer 543 is laminated thereon. Alternatively, the fourth bonding material 54 may be formed by vapor-depositing a Cr layer and an Au layer from the lower surface side, and sequentially laminating an Sn plating layer and an Au plating layer thereon.

上記した水晶振動板2の接合面(枠部29の一主面201)における第1接合材51の接合領域(シールパス)と、第1蓋部材3の接合面32における第3接合材53の接合領域(シールパス)は同じ幅を有している。また、水晶振動板2の接合面(枠部29の他主面202)における第2接合材52の接合領域(シールパス)と、第2蓋部材3の接合面42における第4接合材54の接合領域(シールパス)は同じ幅を有している。以上が水晶振動子1を構成する主要部材の説明である。   Bonding of the bonding region (seal path) of the first bonding material 51 on the bonding surface (one main surface 201 of the frame portion 29) of the crystal vibrating plate 2 and bonding of the third bonding material 53 on the bonding surface 32 of the first lid member 3. The region (seal path) has the same width. Further, the bonding region (seal path) of the second bonding material 52 on the bonding surface (the other main surface 202 of the frame portion 29) of the crystal diaphragm 2 and the bonding of the fourth bonding material 54 on the bonding surface 42 of the second lid member 3. The region (seal path) has the same width. The above is the description of the main members constituting the crystal unit 1.

次に、水晶振動子1の製造方法について図2を用いて説明する。本実施形態では、個片状態の第1蓋部材3に対して、ウエハに多数個が一括形成された状態の水晶振動板2を配し、さらにその上に個片状態の第2蓋部材4を配した後、ウエハ(水晶振動板)をダイシングによって多数個の水晶振動子に個片化する製造方法について説明する。しかしながら、本発明は、本実施形態で説明する方法に限定されるものではなく、ウエハに多数個が一括形成された状態の第1蓋部材3の上に、水晶ウエハに多数個が一括形成された状態の水晶振動板2を配し、さらにその上にウエハに多数個形成された状態の第2蓋部材4を配して、これら水晶振動板2と第1蓋部材3と第2蓋部材4とを接合し、その後に個片化を行う方法であってもよく、この場合、水晶振動子1の量産に好適である。   Next, a manufacturing method of the crystal unit 1 will be described with reference to FIG. In the present embodiment, the quartz crystal diaphragm 2 in a state where a large number of pieces are collectively formed on the wafer is arranged on the first lid member 3 in the individual piece state, and the second lid member 4 in the individual piece state is further provided thereon. A manufacturing method for separating a wafer (quartz crystal plate) into a large number of crystal units by dicing will be described. However, the present invention is not limited to the method described in the present embodiment, and a large number of crystal wafers are collectively formed on the first lid member 3 in a state where a large number of wafers are collectively formed. The quartz crystal plate 2 in a state of being placed is disposed, and a plurality of second lid members 4 are formed on the wafer, and the quartz plate 2, the first lid member 3 and the second lid member are disposed thereon. 4 may be used, followed by singulation. In this case, the crystal resonator 1 is suitable for mass production.

まず、多数個の第1蓋部材3をパレット(図示省略)に収納する。前記パレットは隣接する第1蓋部材3との間に所定間隔が設けられており、一定間隔で第1蓋部材を整列収容できるように設計されている。そして、第1蓋部材3の一主面31上に、ウエハ状態の水晶振動板2を画像認識手段により設定した位置に、水晶振動板2の一主面21が第1蓋部材3の一主面31と対向するように配する。このとき、第1蓋部材3の接合面32に形成された第3接合材53と、水晶振動板2の枠部29の一主面201に形成された第1接合材51とは平面視で略一致するように配されている。また、第1蓋部材3の一主面31に形成された第2接合電極33と、水晶振動板2の第1接合電極25に形成された金メッキ層50とは平面視で略平面視で略一致するように配されている。   First, a large number of first lid members 3 are stored in a pallet (not shown). The pallet has a predetermined interval between the adjacent first lid members 3 and is designed so that the first lid members can be aligned and accommodated at a constant interval. Then, the main surface 21 of the crystal diaphragm 2 is the main surface of the first lid member 3 on the main surface 31 of the first lid member 3 at the position where the crystal resonator plate 2 in the wafer state is set by the image recognition means. It arrange | positions so that the surface 31 may be opposed. At this time, the third bonding material 53 formed on the bonding surface 32 of the first lid member 3 and the first bonding material 51 formed on the one main surface 201 of the frame portion 29 of the crystal diaphragm 2 are viewed in a plan view. They are arranged so that they are almost identical. In addition, the second bonding electrode 33 formed on the one main surface 31 of the first lid member 3 and the gold plating layer 50 formed on the first bonding electrode 25 of the quartz crystal vibration plate 2 are substantially the same in a plan view. They are arranged to match.

水晶振動板2を第1蓋部材3に配した後に、水晶振動板2の他主面22上に、個片状態の第2蓋部材4を、画像認識手段により設定した位置に第2蓋部材4の一主面41が水晶振動板2の他主面22と対向するように配して積層する。このとき、水晶振動板2の枠部29の他主面202に形成された第2接合材52と、第2蓋部材4の接合面42に形成された第4接合材54とは平面視で略一致するように配されている。   After the quartz diaphragm 2 is arranged on the first lid member 3, the second lid member 4 in the individual state is placed on the other main surface 22 of the quartz diaphragm 2 at the position set by the image recognition means. 4 are laminated so that one principal surface 41 faces the other principal surface 22 of the crystal diaphragm 2. At this time, the second bonding material 52 formed on the other main surface 202 of the frame portion 29 of the crystal diaphragm 2 and the fourth bonding material 54 formed on the bonding surface 42 of the second lid member 4 are viewed in plan view. They are arranged so that they are almost identical.

第1蓋部材3と水晶振動板2と第2蓋部材4とを積層した後に、超音波を用いた接合により、これら第1蓋部材3と水晶振動板2と第2蓋部材4の超音波を用いた仮止接合を行う。第1蓋部材3と水晶振動板2と第2蓋部材4の仮止接合を行なった後に、他の製造工程(内部空間12内のガス抜きや発振周波数調整など)を行ない、その後に加熱溶融接合を行う。なお、本実施形態では真空雰囲気下において第1蓋部材3と水晶振動板2と第2蓋部材4との接合を行っているが、これに限定されるものではなく、窒素などの不活性ガスを用いてもよい。   After laminating the first lid member 3, the crystal diaphragm 2 and the second lid member 4, the ultrasonic waves of the first lid member 3, the quartz diaphragm 2 and the second lid member 4 are bonded by using ultrasonic waves. Temporary joining is performed. After temporarily bonding the first lid member 3, the crystal diaphragm 2, and the second lid member 4, other manufacturing processes (such as degassing the internal space 12 and adjusting the oscillation frequency) are performed, followed by heating and melting. Join. In the present embodiment, the first lid member 3, the crystal diaphragm 2 and the second lid member 4 are joined in a vacuum atmosphere. However, the present invention is not limited to this, and an inert gas such as nitrogen is used. May be used.

次に、仮止接合された第1蓋部材3と水晶振動板2と第2蓋部材4を、所定温度に昇温された環境下に置き、各部材に形成された各接合材を溶融させることで本接合を行う。具体的に、第1接合材51と第3接合材53とを接合することで接合材5を構成し、この接合材5によって水晶振動板2と第1蓋部材3を接合する。この接合材5による水晶振動板2と第1蓋部材3との接合により、図1に示すように、水晶振動板2の一主面21に形成された励振電極23が気密封止される。また、第1接合材51と第3接合材53との接合と同時に加熱溶融接合を行い、第2接合材52と第4接合材54とを接合することで接合材5を構成し、この接合材5によって水晶振動板2と第2蓋部材4を接合する。この接合材5による水晶振動板2と第2蓋部材4との接合により、図1に示すように、水晶振動板2の他主面22に形成した励振電極23が気密封止される。   Next, the first lid member 3, the crystal diaphragm 2, and the second lid member 4 that are temporarily joined are placed in an environment where the temperature is raised to a predetermined temperature, and each joining material formed on each member is melted. This is the main joining. Specifically, the bonding material 5 is configured by bonding the first bonding material 51 and the third bonding material 53, and the crystal vibrating plate 2 and the first lid member 3 are bonded by the bonding material 5. As shown in FIG. 1, the excitation electrode 23 formed on one main surface 21 of the quartz crystal plate 2 is hermetically sealed by joining the crystal plate 2 and the first lid member 3 with the bonding material 5. Also, the bonding material 5 is formed by performing heat-melt bonding simultaneously with the bonding of the first bonding material 51 and the third bonding material 53 and bonding the second bonding material 52 and the fourth bonding material 54. The crystal diaphragm 2 and the second lid member 4 are joined by the material 5. As shown in FIG. 1, the excitation electrode 23 formed on the other main surface 22 of the crystal vibrating plate 2 is hermetically sealed by bonding the crystal vibrating plate 2 and the second lid member 4 with the bonding material 5.

上記したように、本実施形態にかかる水晶振動子1によれば、接合後に水晶振動子板2に生じる各種応力を効果的に緩和することができる。具体的に、水晶振動子板の表裏外周部に接合材を介して蓋部材3,4を各々接合する際、接合によって発生する各種応力(接合材の収縮応力等)を、薄肉部28によって緩和することができる。これにより、励振電極23が形成された振動部20に伝搬する応力が緩和され、水晶振動子の発振周波数の変化を抑制することができる。また、前記応力緩和により、水晶振動子の特性劣化を防止することができる。   As described above, according to the crystal resonator 1 according to the present embodiment, various stresses generated in the crystal resonator plate 2 after bonding can be effectively relaxed. Specifically, when the lid members 3 and 4 are joined to the front and back outer peripheral parts of the crystal resonator plate via the joining material, various stresses (such as shrinkage stress of the joining material) generated by the joining are relieved by the thin portion 28. can do. Thereby, the stress which propagates to the vibration part 20 with which the excitation electrode 23 was formed is relieved, and the change of the oscillation frequency of a crystal oscillator can be suppressed. Further, the stress relaxation can prevent the characteristic deterioration of the crystal resonator.

また、本実施形態にかかる水晶振動子1によれば、励振電極23と外部接続端子34を電気的に接続するため導通路(金属ロウ材を介して一体化接合される第1接合電極と第2接合電極等)は、枠部29から独立して離間した位置、すなわち振動部20に形成されている。これにより、前記導通路形成のために金属膜(金属ロウ材)を加熱溶融させる際に、溶融金属が水晶振動子の外側方向へ移動したとしても、薄肉部28が“溝”として機能するため、溶融金属を薄肉部に滞留させることができる。これにより、圧電振動デバイスの外周領域に形成された接合材と、前記導通路と接触による絶縁不良を防止することができる。   Further, according to the crystal resonator 1 according to the present embodiment, the conductive path (the first bonding electrode and the first bonding electrode that are integrally bonded via the metal brazing material and the first bonding electrode) are electrically connected to the excitation electrode 23 and the external connection terminal 34. 2 junction electrodes and the like) are formed at positions separated from the frame portion 29, that is, at the vibration portion 20. As a result, when the metal film (metal brazing material) is heated and melted to form the conduction path, the thin portion 28 functions as a “groove” even if the molten metal moves to the outside of the crystal resonator. The molten metal can be retained in the thin part. Thereby, it is possible to prevent insulation failure caused by contact with the bonding material formed in the outer peripheral region of the piezoelectric vibration device and the conduction path.

本実施形態において振動部20は、凹部26の外周に土手部27が形成された逆メサ形状であり、振動部20の外側に薄肉部28が形成された構造となっている。しかしながら、本発明は前記構造に限定されるものではない。例えば図3の第1の実施形態の変形例に示すように、薄肉部を形成せず、枠部の内側を平板とし、部分的に貫通孔を設けた形状であってもよい。   In the present embodiment, the vibration part 20 has a reverse mesa shape in which a bank part 27 is formed on the outer periphery of the recess 26, and has a structure in which a thin part 28 is formed outside the vibration part 20. However, the present invention is not limited to the above structure. For example, as shown in the modification of the first embodiment in FIG. 3, a shape in which the thin portion is not formed, the inside of the frame portion is a flat plate, and a through hole is partially provided may be used.

なお、本発明の実施形態では、接合材5として、CrとAuとSnを用いているが、これに限定されるものではなく、接合材5を例えばCrとAuとGeとから構成してもよい。また、圧電振動板側にAuとSnなどのメッキ積層膜やAuSnなどのメッキ合金層を形成し、蓋部材側にAuメッキ層(単一金属元素のメッキ層)を形成してもよい。さらに、本発明の実施形態では、2つのパッケージ基材の材料として水晶が使用されているが、水晶以外にガラスやサファイアを使用してもよい。   In the embodiment of the present invention, Cr, Au, and Sn are used as the bonding material 5. However, the present invention is not limited to this, and the bonding material 5 may be composed of, for example, Cr, Au, and Ge. Good. Also, a plated laminated film such as Au and Sn or a plated alloy layer such as AuSn may be formed on the piezoelectric diaphragm side, and an Au plated layer (single metal element plated layer) may be formed on the lid member side. Furthermore, in the embodiment of the present invention, quartz is used as the material for the two package substrates, but glass or sapphire may be used in addition to quartz.

−第2の実施形態−
本実施形態における第2の実施形態を、第1の実施形態と同様に圧電振動板として水晶振動板を用いた水晶振動子を例に挙げて図4乃至6を用いて説明する。図4は本発明の第2の実施形態を示す水晶振動板の平面図である。図5は本発明の第2の実施形態を示す水晶振動板の長辺方向の断面模式図で、図6は図4のA部の拡大斜視図である。なお、第1の実施形態と同様の構成については同番号を付して説明の一部を割愛するとともに、前述の実施形態と同様の効果を有する。以下、第1の実施形態との相違点を中心に説明する。
-Second Embodiment-
A second embodiment of the present embodiment will be described with reference to FIGS. 4 to 6 by taking as an example a crystal resonator using a crystal diaphragm as a piezoelectric diaphragm as in the first embodiment. FIG. 4 is a plan view of a crystal diaphragm showing a second embodiment of the present invention. FIG. 5 is a schematic cross-sectional view in the long side direction of a quartz crystal diaphragm showing a second embodiment of the present invention, and FIG. 6 is an enlarged perspective view of a portion A in FIG. In addition, about the structure similar to 1st Embodiment, while attaching | subjecting the same number and omitting a part of description, it has an effect similar to the above-mentioned embodiment. Hereinafter, a description will be given focusing on differences from the first embodiment.

図4に示すように、本実施形態において水晶振動板2の薄肉部28には、2箇所の貫通部6が形成されている。前記貫通部6は薄肉部28の領域のうち、Z’軸方向の一部領域に形成されている。このように貫通部を振動部の両側に形成することによって、水晶振動板と蓋部材との接合材の硬化後の収縮応力等の各種応力を薄肉部28に加え、さらに効果的に分散させることができる。   As shown in FIG. 4, in the present embodiment, two through portions 6 are formed in the thin portion 28 of the crystal diaphragm 2. The penetrating portion 6 is formed in a partial region in the Z′-axis direction in the region of the thin portion 28. In this way, by forming the penetrating portions on both sides of the vibrating portion, various stresses such as shrinkage stress after curing of the bonding material between the quartz crystal plate and the lid member are applied to the thin-walled portion 28 and further effectively dispersed. Can do.

水晶振動板を用いて、薄肉部をウエットエッチング(化学的溶解)によって成形する場合、水晶は異方性結晶であるため、軸方向の相違によって水晶の深さ方向の侵食角度に差異が生じる。つまり、前記侵食角度の相違によって、溶解部分の開口角度に差異が生じてしまう。具体的に、Z’軸方向の方がX軸方向よりも水晶の深さ方向の侵食角度が大きいため開口角度が大きくなる。このような開口角度の相違により、エッチング後の薄肉部の機械的強度は、X軸方向の方がZ’軸方向よりも機械的強度が劣ることになる。しかしながら本発明の構造であれば、Z’軸方向の一部領域に貫通孔を形成し、X軸方向は薄肉部を境界に枠部および振動部と繋がっている。つまりX軸方向を水晶振動板の長辺方向とすることによって、X軸方向に貫通部を形成する場合よりも水晶振動板の強度低下を抑制することができる。   When a thin-walled portion is formed by wet etching (chemical dissolution) using a quartz diaphragm, the quartz is an anisotropic crystal, and therefore the erosion angle in the depth direction of the quartz varies depending on the difference in the axial direction. That is, due to the difference in the erosion angle, a difference occurs in the opening angle of the melted portion. Specifically, since the erosion angle in the crystal depth direction is larger in the Z′-axis direction than in the X-axis direction, the opening angle becomes larger. Due to the difference in the opening angle, the mechanical strength of the thin portion after etching is inferior in the X-axis direction to the Z′-axis direction. However, according to the structure of the present invention, a through hole is formed in a partial region in the Z′-axis direction, and the X-axis direction is connected to the frame portion and the vibration portion with a thin portion as a boundary. That is, by setting the X-axis direction as the long side direction of the crystal diaphragm, it is possible to suppress a decrease in the strength of the crystal diaphragm compared to the case where the penetrating portion is formed in the X-axis direction.

図4乃至5において、振動部20は平面視矩形状の平板形状であり、一短辺の両端付近にはと一対の突起部8が形成されている。突起部8は振動部と同材料で一体成形されており、その厚さ(高さ)は、枠部29の一主面201と略同一平面となる厚さ(高さ)で形成されている。突起部8は励振電極23から引き出された引出電極24と繋がっており、突起部8の表面は第1接合電極で被覆されている。なお、第1接合電極は引出電極および励振電極と同一材料および同一の膜構成で構成されている。   4 to 5, the vibration part 20 has a rectangular plate shape in plan view, and a pair of protrusions 8 are formed near both ends of one short side. The protrusion 8 is integrally formed of the same material as that of the vibration part, and the thickness (height) thereof is formed with a thickness (height) that is substantially flush with the one main surface 201 of the frame part 29. . The protrusion 8 is connected to the extraction electrode 24 extracted from the excitation electrode 23, and the surface of the protrusion 8 is covered with the first bonding electrode. The first junction electrode is made of the same material and the same film configuration as the extraction electrode and the excitation electrode.

本実施形態にかかる水晶振動子1によれば、突起部8の厚さ(高さ)は、枠部29の一主面と略同一平面となる厚さ(高さ)で形成されている。これにより、例えば電解メッキ法によって、枠部に形成する接合材の上面と、突起部に形成する金属膜(金属ロウ材)の上面とを概ね揃えて形成する場合、膜厚管理を行い易くすることができる。つまり、枠部29の主面外周の接合材と、突起部8上の金属膜の電解メッキによる成膜を一括同時に行うことができる。これは、前記枠部の一主面と前記振動部の一主面とが非同一面である場合、枠部の接合材の上面と、突起部上の金属膜の上面とを概ね揃えて形成するには、枠部と突起部に形成する接合材および金属膜の厚さが異なるため、略同一平面に制御するための膜厚管理が煩雑となる。これに比べて本発明の構成であれば、一括電解メッキで膜厚を管理することができる。また、前記突起部の厚さ(高さ)が、前記枠部の一主面と略同一平面となる厚さ(高さ)で形成されているため、金属使用量も低減させることができる。   According to the crystal resonator 1 according to the present embodiment, the thickness (height) of the protrusion 8 is formed with a thickness (height) that is substantially flush with one main surface of the frame portion 29. Thereby, for example, when the upper surface of the bonding material formed on the frame portion and the upper surface of the metal film (metal brazing material) formed on the projection portion are formed substantially aligned by an electrolytic plating method, the film thickness can be easily managed. be able to. That is, film formation by electrolytic plating of the bonding material on the outer periphery of the main surface of the frame portion 29 and the metal film on the protruding portion 8 can be performed simultaneously. When the one principal surface of the frame portion and the one principal surface of the vibration portion are non-identical, the upper surface of the bonding material of the frame portion and the upper surface of the metal film on the protrusion portion are substantially aligned. Therefore, since the thicknesses of the bonding material and the metal film formed on the frame portion and the projection portion are different, the film thickness management for controlling the substantially same plane becomes complicated. Compared with this, if it is the structure of this invention, a film thickness can be managed by collective electrolytic plating. Moreover, since the thickness (height) of the protrusion is formed with a thickness (height) that is substantially flush with one main surface of the frame, the amount of metal used can also be reduced.

図6は図4におけるA部の拡大斜視図であり、枠部の一部を取り払って、貫通部の内壁面が見えるように表した図である。貫通部6は水晶振動板の表裏両方向からウエットエッチングを行うことによって形成されており、貫通部6の内壁面には壁面導体7が部分的に被着されている。具体的に、壁面導体7は貫通部6の内壁面のうち、薄肉部の領域61に形成されており、振動部の側面部分62は水晶素地が露出した状態となっている。前記壁面導体7は、まず貫通部6を形成した後、蒸着法によって、励振電極と同一材料および同一膜構成からなる金属膜を貫通部の内壁面全体に被着させる。次に、レジストを前記薄肉部の領域61に形成して露光・現像を行う。そして金属エッチングおよびレジストを除去することによって壁面導体7が形成される。   FIG. 6 is an enlarged perspective view of a portion A in FIG. 4 and is a view showing a part of the frame portion removed so that the inner wall surface of the penetrating portion can be seen. The penetrating portion 6 is formed by wet etching from both the front and back sides of the crystal diaphragm, and a wall conductor 7 is partially attached to the inner wall surface of the penetrating portion 6. Specifically, the wall surface conductor 7 is formed in the thin-walled region 61 in the inner wall surface of the penetrating portion 6, and the side surface portion 62 of the vibrating portion is in a state where the quartz substrate is exposed. The wall conductor 7 first forms the penetrating portion 6 and then deposits a metal film made of the same material and the same film structure as the excitation electrode on the entire inner wall surface of the penetrating portion by vapor deposition. Next, a resist is formed in the thin-walled region 61, and exposure and development are performed. Then, the wall conductor 7 is formed by removing the metal etching and the resist.

他主面22側(図6では振動部20の下面側)の励振電極23は、他主面側の引出電極24を経て、これと繋がった壁面導体7を介して一主面21側(図6では振動部20の上面側)の第1接合電極と繋がっている。そして、第1接合電極は、第1の実施形態で前述したように第1蓋部材3の他主面31に形成された第2接合電極33と、金属ロウ材を介して一体化接合されることにより、最終的に第1蓋部材3の他主面37に形成された外部接続端子34と電気的に接続される。   The excitation electrode 23 on the other main surface 22 side (the lower surface side of the vibrating portion 20 in FIG. 6) passes through the lead electrode 24 on the other main surface side and passes through the wall conductor 7 connected to the other main surface 21 side (FIG. 6 is connected to the first bonding electrode on the upper surface side of the vibration unit 20. The first bonding electrode is integrally bonded to the second bonding electrode 33 formed on the other main surface 31 of the first lid member 3 through the metal brazing material as described above in the first embodiment. As a result, the external connection terminal 34 formed on the other main surface 37 of the first lid member 3 is finally electrically connected.

水晶板に表裏いずれか一方向(例えば表面側)からのウエットエッチングによって貫通孔を形成する場合、水晶は異方性結晶であるために、深くエッチングするほど最深部の孔径が狭小となり、侵食孔の形状は概ね逆三角錐形状に近づいてくる。つまり貫通孔は表裏で開口寸法に相違が生じてしまう。これは高周波帯の水晶板に比べて厚さが厚い低周波帯(ATカット水晶板は厚さが周波数に反比例するため)に近づくほど、前記開口寸法の相違が顕在化してくる。したがって、貫通孔内部に導体を充填して該貫通孔の上下接続を確実に行うのに充分な孔径を確保するためには、水晶の異方性により、少なくとも水晶の一主面側にはある程度の大きさの開口領域が必要となる。つまり前記開口領域の確保が振動領域の減少に繋がってしまう。しかしながら、本発明の構造であれば、薄肉部28の領域のうち、Z’軸方向の一部領域に貫通部6が形成され、前記貫通部6の上端と下端を繋ぐ壁面導体7が、貫通部6の内壁面に部分的に被着されている。つまり、壁面導体7を経由することによって、貫通孔を形成することなく、振動部20の一主面側から他主面側への導通を確保することができる。したがって、貫通孔を形成する構造に比べて振動領域を広く確保することができる。これにより、圧電振動デバイスの設計自由度を増すことができる。   When a through-hole is formed in a quartz plate by wet etching from either the front or back (for example, the front side), the quartz is an anisotropic crystal, so the deeper the etching, the narrower the hole diameter becomes narrower, and the erosion hole The shape of the shape approaches an inverted triangular pyramid shape. That is, the through hole has a difference in opening size between the front and back sides. This is because the difference in the opening dimension becomes more apparent as it approaches a low frequency band that is thicker than a high-frequency band quartz plate (the thickness of an AT-cut quartz plate is inversely proportional to the frequency). Therefore, in order to ensure a sufficient hole diameter for filling the through hole with a conductor and to ensure the vertical connection of the through hole, at least to one principal surface side of the crystal due to the anisotropy of the crystal An opening area having a size of 2 mm is required. That is, securing the opening area leads to a decrease in the vibration area. However, according to the structure of the present invention, the through portion 6 is formed in a partial region in the Z′-axis direction in the thin portion 28, and the wall surface conductor 7 connecting the upper end and the lower end of the through portion 6 is penetrated. It is partially attached to the inner wall surface of the part 6. That is, by passing through the wall surface conductor 7, conduction from one main surface side to the other main surface side of the vibration unit 20 can be ensured without forming a through hole. Therefore, it is possible to ensure a wide vibration region as compared with the structure in which the through hole is formed. Thereby, the design freedom of a piezoelectric vibration device can be increased.

なお、本発明の第2の実施形態の変形例として、水晶振動板を図7乃至8に示すような構造にしてもよい。例えば図7では、突起部8を被覆する第1接合電極の全周に金属ロウ材が形成されている。このような構造であれば、金メッキ層50の幅(径)は、図2に示す蓋部材の第2接合電極33の幅(径)よりも幅広(大径)の状態となり、水晶振動板2と第1蓋部材3との仮止接合時に、位置決め載置が行いやすくなる。また、このような構成であれば、水晶振動板と第1蓋部材の仮止接合で僅かな位置ずれが生じたとしても、接合材の加熱溶融によって水晶振動板側に第1蓋部材が追従して自己補正(セルフアライメント効果)されやすくなる。   As a modification of the second embodiment of the present invention, the crystal diaphragm may be structured as shown in FIGS. For example, in FIG. 7, a metal brazing material is formed on the entire circumference of the first bonding electrode that covers the protrusion 8. With such a structure, the width (diameter) of the gold plating layer 50 is wider (larger diameter) than the width (diameter) of the second bonding electrode 33 of the lid member shown in FIG. It becomes easy to perform positioning and mounting at the time of temporary bonding between the first lid member 3 and the first lid member 3. Further, with such a configuration, even if a slight positional deviation occurs in the temporary bonding of the crystal diaphragm and the first lid member, the first lid member follows the crystal diaphragm side by heating and melting of the bonding material. Thus, self-correction (self-alignment effect) is easily performed.

また、図8のように薄肉部が途切れている、つまり貫通している領域を利用し、引出電極を振動部を貫通させないで振動部の側面を介して第1接合電極にまで引き回す構造としてもよい。このような構造の場合、振動部の側面を経由することによって、貫通孔を形成することなく、振動部の一主面側から他主面側への導通を確保することができる。したがって、貫通孔を形成する構造に比べて振動領域を広く確保することができる。これにより、圧電振動デバイスの設計自由度を増すことができる。   Further, as shown in FIG. 8, a structure in which the thin-walled portion is interrupted, that is, through the penetrating region, and the extraction electrode is routed to the first bonding electrode through the side surface of the vibrating portion without penetrating the vibrating portion. Good. In the case of such a structure, conduction from one main surface side of the vibration unit to the other main surface side can be ensured without forming a through hole by passing through the side surface of the vibration unit. Therefore, it is possible to ensure a wide vibration region as compared with the structure in which the through hole is formed. Thereby, the design freedom of a piezoelectric vibration device can be increased.

また、本発明の実施形態では、平面視矩形状で平板状の2つの蓋部材が用いられているが、これに限定されるものではなく、2つの蓋部材によって水晶振動板に形成された励振電極を気密封止できれば、蓋部材の形状は任意に設定してもよい。例えば、凹状に形成された2つの蓋部材の凹部分が、水晶振動板に対向するようにして気密接合された形態であってもよい。   Further, in the embodiment of the present invention, two lid members having a rectangular shape in plan view and a flat plate shape are used. However, the present invention is not limited to this, and the excitation formed on the crystal diaphragm by the two lid members. The shape of the lid member may be arbitrarily set as long as the electrode can be hermetically sealed. For example, a form in which the concave portions of the two lid members formed in a concave shape are hermetically joined so as to face the crystal diaphragm.

本発明の実施形態では表面実装型水晶振動子を例にしているが、水晶フィルタ、集積回路等の電子部品に水晶振動子を組み込んだ水晶発振器など、電子機器等に用いられる他の表面実装型の圧電振動デバイスの製造方法にも適用可能である。   In the embodiment of the present invention, a surface-mount type crystal resonator is taken as an example, but other surface-mount type used in electronic devices such as a crystal oscillator in which a crystal resonator is incorporated in an electronic component such as a crystal filter or an integrated circuit. This method can also be applied to a method for manufacturing a piezoelectric vibration device.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

圧電振動デバイスの量産に適用できる。   It can be applied to mass production of piezoelectric vibration devices.

本発明の第1の実施形態を示す水晶振動子の長辺方向の断面模式図。The cross-sectional schematic diagram of the long side direction of the crystal oscillator which shows the 1st Embodiment of this invention. 図1の分解断面図。The exploded sectional view of FIG. 本発明の第1の実施形態の変形例を示す水晶振動板の長辺方向の断面模式図。The cross-sectional schematic diagram of the long side direction of the crystal diaphragm which shows the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態を示す水晶振動板の平面図The top view of the crystal diaphragm which shows the 2nd Embodiment of this invention 本発明の第2の実施形態を示す水晶振動板の長辺方向の断面模式図。The cross-sectional schematic diagram of the long side direction of the quartz-crystal diaphragm which shows the 2nd Embodiment of this invention. 図4のA部の拡大斜視図。The expansion perspective view of the A section of FIG. 本発明の第2の実施形態の変形例を示す水晶振動板の長辺方向の断面模式図。The cross-sectional schematic diagram of the long side direction of the crystal diaphragm which shows the modification of the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例を示す水晶振動板の長辺方向の断面模式図。The cross-sectional schematic diagram of the long side direction of the crystal diaphragm which shows the modification of the 2nd Embodiment of this invention.

1 水晶振動子
2 水晶振動板
20 振動部
23 励振電極
24 引出電極
25 第1接合電極
28 薄肉部
29 枠部
3 第1蓋部材
33 第2接合電極
34 外部接続端子
4 第2蓋部材
5 接合材
50 金メッキ層
51 第1接合材
52 第2接合材
53 第3接合材
54 第4接合材
6 貫通部
7 壁面導体
8 突起部
DESCRIPTION OF SYMBOLS 1 Crystal resonator 2 Crystal diaphragm 20 Vibrating part 23 Excitation electrode 24 Extraction electrode 25 1st joining electrode 28 Thin part 29 Frame part 3 1st cover member 33 2nd joining electrode 34 External connection terminal 4 2nd cover member 5 Bonding material 50 Gold-plated layer 51 1st bonding material 52 2nd bonding material 53 3rd bonding material 54 4th bonding material 6 penetration part 7 wall surface conductor 8 protrusion part

Claims (2)

表裏一対の励振電極を有する圧電振動板と、該圧電振動板の表裏外周に接合材を介して各々接合され、前記励振電極を気密封止する蓋部材とで構成された圧電振動デバイスであって、
前記圧電振動板は、励振電極が形成された振動部と、
該振動部を包囲し、該振動部よりも厚肉に形成された枠部と、
振動部と枠部との間に、振動部よりも薄肉に形成された薄肉部あるいは貫通部、または前記薄肉部と前記貫通部の組合せ構成とが一体成形されており、
前記振動部の表裏主面のうち、少なくとも一方の主面には振動部と同材料からなる突起部が該振動部と一体的に成形され、該突起部には前記励振電極から振動部の一主面側に引き出された第1接合電極が形成されてなり、
前記突起部は、該突起部の上面が前記枠部の一主面と略同一平面となる厚さで形成され、
一方の蓋部材の一主面には、該蓋部材の他主面に形成された外部接続端子と電気的に繋がった第2接合電極が形成されてなり、
第1接合電極と第2接合電極とが金属ロウ材を介して一体化接合されることによって、励振電極が外部接続端子と電気的に繋がっていることを特徴とする圧電振動デバイス。
A piezoelectric vibration device comprising a piezoelectric diaphragm having a pair of front and back excitation electrodes, and a lid member that is bonded to the front and back outer circumferences of the piezoelectric diaphragm via a bonding material and hermetically seals the excitation electrodes. ,
The piezoelectric diaphragm includes a vibrating portion on which an excitation electrode is formed;
A frame part surrounding the vibration part and formed thicker than the vibration part;
Between the vibrating part and the frame part, a thin part or a penetrating part formed thinner than the vibrating part, or a combined configuration of the thin part and the penetrating part is integrally formed,
A protrusion made of the same material as that of the vibration part is formed integrally with the vibration part on at least one main surface of the front and back main surfaces of the vibration part. A first joining electrode drawn out to the main surface side is formed;
The protruding portion is formed with a thickness such that the upper surface of the protruding portion is substantially flush with one main surface of the frame portion,
One main surface of one lid member is formed with a second bonding electrode electrically connected to an external connection terminal formed on the other main surface of the lid member,
A piezoelectric vibration device characterized in that an excitation electrode is electrically connected to an external connection terminal by integrally bonding a first bonding electrode and a second bonding electrode via a metal brazing material.
前記圧電振動板が平面視矩形状のATカット水晶板からなり、該圧電振動板の長辺側をX軸、該圧電振動板の短辺側をZ’軸としたとき、前記薄肉部の領域のうち、Z’軸方向の一部領域に貫通部が形成されてなり、
前記貫通部の上端と下端を繋ぐ壁面導体が、該貫通部の内壁面に部分的に被着され、
前記振動部の一主面側の励振電極は、前記壁面導体を経由して他主面側へ引き回され、前記第1接合電極と電気的に繋がっていることを特徴とする請求項に記載の圧電振動デバイス。
When the piezoelectric diaphragm is made of an AT-cut quartz plate having a rectangular shape in plan view, the long side of the piezoelectric diaphragm is the X axis and the short side of the piezoelectric diaphragm is the Z ′ axis, the region of the thin portion Among them, a through portion is formed in a partial region in the Z′-axis direction,
A wall conductor connecting the upper end and the lower end of the penetrating part is partially attached to the inner wall surface of the penetrating part,
Excitation electrode of one main surface side of the vibrating portion, via the wall conductor routed to the other main surface, to claim 1, characterized in that connected to the first junction electrode and the electrically The piezoelectric vibration device as described.
JP2008303436A 2008-11-28 2008-11-28 Piezoelectric vibration device Active JP5239784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303436A JP5239784B2 (en) 2008-11-28 2008-11-28 Piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303436A JP5239784B2 (en) 2008-11-28 2008-11-28 Piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2010130400A JP2010130400A (en) 2010-06-10
JP5239784B2 true JP5239784B2 (en) 2013-07-17

Family

ID=42330443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303436A Active JP5239784B2 (en) 2008-11-28 2008-11-28 Piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP5239784B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180572A (en) * 2015-03-11 2020-05-19 株式会社大真空 Piezoelectric device
CN111566931B (en) * 2018-03-28 2024-04-19 株式会社大真空 Piezoelectric vibration device
JP7207146B2 (en) * 2019-05-13 2023-01-18 Tdk株式会社 Vibration device and electronic equipment
CN117559943A (en) * 2022-08-05 2024-02-13 天津大学 Quartz resonator with sandwich structure formed by double substrates and piezoelectric layers and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577362B1 (en) * 1985-02-13 1987-04-17 Ebauchesfabrik Eta Ag METHOD FOR MANUFACTURING HIGH FREQUENCY QUARTZ RESONATORS
JP3589211B2 (en) * 2001-09-19 2004-11-17 株式会社大真空 Piezoelectric vibration device
JP2007214941A (en) * 2006-02-10 2007-08-23 Epson Toyocom Corp Piezoelectric vibration chip and piezoelectric device
JP4635917B2 (en) * 2006-03-09 2011-02-23 株式会社大真空 Surface mount type piezoelectric vibration device
JP4967707B2 (en) * 2006-05-01 2012-07-04 セイコーエプソン株式会社 Piezoelectric vibrator and manufacturing method thereof
WO2008102900A1 (en) * 2007-02-20 2008-08-28 Nihon Dempa Kogyo Co., Ltd Package type piezoelectric vibrator and method for manufacturing package type piezoelectric vibrator

Also Published As

Publication number Publication date
JP2010130400A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5370371B2 (en) Method for manufacturing piezoelectric vibration device, and method for etching constituent member constituting piezoelectric vibration device
WO2010079803A1 (en) Method of manufacturing a piezoelectric vibratory device
JP5482788B2 (en) Package member assembly, method for manufacturing package member assembly, package member, and method for manufacturing piezoelectric vibration device using package member
US8810112B2 (en) Piezoelectric devices and methods for manufacturing piezoelectric substrates used in such devices
JP4864152B2 (en) Surface mount crystal unit
JP6252209B2 (en) Piezoelectric vibrating piece and piezoelectric device using the piezoelectric vibrating piece
JP5824967B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP5239784B2 (en) Piezoelectric vibration device
JP5397336B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP2006332727A (en) Piezoelectric device
JP5278044B2 (en) Package member, method for manufacturing the package member, and piezoelectric vibration device using the package member
JP5251224B2 (en) Method for manufacturing piezoelectric vibration device and piezoelectric vibration device
JP5742620B2 (en) Quartz crystal resonator and crystal resonator manufacturing method
US10938368B2 (en) Piezoelectric-resonator-mounting substrate, and piezoelectric resonator unit and method of manufacturing the piezoelectric resonator unit
JP2017153033A (en) Crystal diaphragm, and crystal vibration device
JP2013098594A (en) Piezoelectric vibration device and method for manufacturing the same
JP6015010B2 (en) Vibration element, vibrator, oscillator and electronic equipment
JP2010021613A (en) Piezoelectric vibration device
WO2021059731A1 (en) Piezoelectric vibration plate, piezoelectric vibration device, and method for manufacturing piezoelectric vibration device
JP6295835B2 (en) Piezoelectric vibrating piece and piezoelectric device using the piezoelectric vibrating piece
JP2013009280A (en) Lid for piezoelectric vibration device and piezoelectric vibration device using the same
JP2009124587A (en) Piezoelectric vibrating chip, piezoelectric vibration device, and method of manufacturing piezoelectric vibrating chip
JP2009060260A (en) Package for electronic component and piezoelectric vibration device using the same
WO2020195144A1 (en) Crystal vibration device
JP2009201067A (en) Crystal oscillator and method of manufacturing crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250