JP5237625B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof Download PDF

Info

Publication number
JP5237625B2
JP5237625B2 JP2007332293A JP2007332293A JP5237625B2 JP 5237625 B2 JP5237625 B2 JP 5237625B2 JP 2007332293 A JP2007332293 A JP 2007332293A JP 2007332293 A JP2007332293 A JP 2007332293A JP 5237625 B2 JP5237625 B2 JP 5237625B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
substrates
display device
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007332293A
Other languages
Japanese (ja)
Other versions
JP2009156931A (en
Inventor
康夫 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2007332293A priority Critical patent/JP5237625B2/en
Priority to US12/131,317 priority patent/US8294849B2/en
Priority to CN2008101089267A priority patent/CN101320162B/en
Publication of JP2009156931A publication Critical patent/JP2009156931A/en
Application granted granted Critical
Publication of JP5237625B2 publication Critical patent/JP5237625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、液晶表示装置およびその製造方法に関し、特に低温環境下での使用に適した液晶表示装置およびその製造方法に関する。   The present invention relates to a liquid crystal display device and a manufacturing method thereof, and more particularly to a liquid crystal display device suitable for use in a low temperature environment and a manufacturing method thereof.

液晶表示装置(LCD)は、低温環境下において液晶粘度が高くなるために、そのレスポンスが極めて遅くなるという問題がある。レスポンスが遅いと動画像にボケが生じたり、前の画像が残ってしまったりし、表示品位を著しく損なう。特に車載、戸外表示板、携帯電話、携帯テレビなどに用いられる液晶表示装置において、低温環境下での応答速度の向上が望まれている。   A liquid crystal display device (LCD) has a problem that the response of the liquid crystal display becomes extremely slow because the viscosity of the liquid crystal increases in a low temperature environment. If the response is slow, the moving image may be blurred or the previous image may remain, and the display quality will be significantly impaired. In particular, in liquid crystal display devices used for in-vehicle, outdoor display boards, mobile phones, mobile TVs, etc., it is desired to improve the response speed in a low-temperature environment.

その対策として、特開2004−93841号公報には、ガラス基板上に設けた平面発熱源により、液晶セル全体を加熱するパネルヒータを採用した液晶表示装置が提案されている。また、特開2005−24866号公報には、熱源として赤外線LEDを採用し、ライトガイドでセル全面に対して照射を行う液晶表示装置が提案されている。   As a countermeasure, Japanese Patent Application Laid-Open No. 2004-93841 proposes a liquid crystal display device that employs a panel heater that heats the entire liquid crystal cell with a flat heat source provided on a glass substrate. Japanese Patent Laid-Open No. 2005-24866 proposes a liquid crystal display device that employs an infrared LED as a heat source and irradiates the entire cell surface with a light guide.

特開2004−93841号公報JP 2004-93841 A 特開2005−24866号公報Japanese Patent Laid-Open No. 2005-24866

特開2004−93841号公報に記載の提案では、本来加熱すべき液晶層を直接加熱することが出来ず、ガラス基板や偏光板を介して加熱を行うため、熱効率が低い。従って、電力の限られた携帯機器においては採用が難しい。   In the proposal described in Japanese Patent Application Laid-Open No. 2004-93841, the liquid crystal layer to be originally heated cannot be directly heated, but is heated through a glass substrate or a polarizing plate, so that the thermal efficiency is low. Therefore, it is difficult to adopt in portable devices with limited power.

特開2005−24866号公報に記載の提案では、照射された赤外線の吸収は主に偏光板で行われると考えられ、加熱すべき液晶層については液晶材料自身の赤外線吸収特性に依存するため、熱効率が低いと考えられる。   In the proposal described in Japanese Patent Laid-Open No. 2005-24866, it is considered that absorption of irradiated infrared rays is mainly performed by a polarizing plate, and the liquid crystal layer to be heated depends on the infrared absorption characteristics of the liquid crystal material itself, It is thought that thermal efficiency is low.

本発明の目的は、低温環境下での応答速度を向上させた液晶表示装置を提供することである。   An object of the present invention is to provide a liquid crystal display device with improved response speed in a low temperature environment.

本発明の一観点によれば、対向する一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板の各々の液晶層側に形成された電極パターンと、前記一対の基板の少なくとも一方において前記電極パターンよりも液晶層側に形成され、赤外波長の光を吸収する成分を含んだ機能性材料膜と、赤外波長の光を前記機能性材料膜に対して照射する装置とを含み、前記赤外波長の光を吸収する成分がベンゾジフラノン化合物、又はポリアニリンのいずれかである液晶表示装置が提供される。
According to one aspect of the present invention, a pair of opposing substrates, a liquid crystal layer sandwiched between the pair of substrates, an electrode pattern formed on each liquid crystal layer side of the pair of substrates, and the pair of substrates A functional material film that is formed on the liquid crystal layer side of the electrode pattern on at least one of the substrates and that contains a component that absorbs infrared wavelength light, and irradiates the functional material film with infrared wavelength light. the device and the viewing containing component which absorbs light of the infrared wavelength benzodifuranone compound, or a liquid crystal display device is any one of polyaniline is provided.

本発明の他の観点によれば、(a)各々が電極を備えた一対の基板を準備する工程と、(b)前記基板における各々の電極が形成された側に、赤外波長の光を吸収する成分を含んだ機能性材料膜を形成する工程と、(c)前記一対の基板を、前記機能性材料膜が形成された面同士を向かい合わせると共に、間隙を持って貼り合わせ、該間隙に液晶を狭持する工程とを含み、前記赤外波長の光を吸収する成分がベンゾジフラノン化合物、又はポリアニリンのいずれかである液晶表示装置の製造方法が提供される。 According to another aspect of the present invention, (a) a step of preparing a pair of substrates each having an electrode, and (b) infrared light on the side of the substrate on which each electrode is formed. A step of forming a functional material film containing a component to be absorbed; and (c) the pair of substrates are bonded to each other so that the surfaces on which the functional material film is formed face each other and have a gap. look including the step of holding the liquid crystal, components benzodifuranone compounds that absorb light of the infrared wavelength, or a method of manufacturing a liquid crystal display device is any one of polyaniline is provided.

低温環境下において、液晶表示装置の応答速度が向上する。   In a low temperature environment, the response speed of the liquid crystal display device is improved.

図1に、実施例による液晶表示装置の概略断面図を示す。本発明の実施例による液晶表示装置は、主に液晶表示部101と、ライトユニット102(ここではバックライトユニット)で構成される。ライトユニット102の光源は、例えば通常のバックライトで用いるLEDと、近赤外線を照射するIR(赤外)LEDとで構成される。液晶表示部101とライトユニット102との間に拡散板103を設ける。   FIG. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment. A liquid crystal display device according to an embodiment of the present invention mainly includes a liquid crystal display unit 101 and a light unit 102 (here, a backlight unit). The light source of the light unit 102 includes, for example, an LED used in a normal backlight and an IR (infrared) LED that irradiates near infrared rays. A diffusion plate 103 is provided between the liquid crystal display unit 101 and the light unit 102.

通常のLCDは液晶をガラス基板で挟む。ガラス基板の、波長3μm程度以上の赤外線透過率は低い。赤外線を用いて配向膜を加熱する場合、ガラス基板では吸収されず、配向膜で吸収されることが望ましい。   A normal LCD has a liquid crystal sandwiched between glass substrates. The infrared transmittance of the glass substrate having a wavelength of about 3 μm or more is low. When the alignment film is heated using infrared rays, it is desirable that the alignment film is not absorbed by the glass substrate.

発明者らは、ガラス基板での吸収を低減するために波長3μm以下の近赤外線を用い、さらに、配向膜に近赤外線を吸収する材料を添加して、約3μm以下の近赤外線を配向膜で吸収させ、液晶表示部の応答速度の向上を図ることを企図した。近赤外線を照射することにより、ガラス基板を透過した近赤外線が、配向膜に直接吸収され、その吸収された光のエネルギーによって液晶層に接する配向膜を加熱し、その熱で液晶層を加熱することが狙いである。従って、ライトユニット102には、少なくとも1種類の近赤外発光装置が含まれる。一般的な近赤外線発光装置としては、波長780nm〜960nmの近赤外LED(発光層:GaAs系化合物半導体等)が用いられる。ここでは、出力50mW、ピーク波長880nmの赤外LEDを用いる。   The inventors use near infrared rays having a wavelength of 3 μm or less in order to reduce absorption on the glass substrate, and further add a material that absorbs near infrared rays to the alignment film, so that near infrared rays of about 3 μm or less are applied to the alignment film. It was intended to improve the response speed of the liquid crystal display part by absorbing. By irradiating near-infrared rays, the near-infrared rays that have passed through the glass substrate are directly absorbed by the alignment film, and the alignment film in contact with the liquid crystal layer is heated by the energy of the absorbed light, and the liquid crystal layer is heated by the heat. The aim is. Therefore, the light unit 102 includes at least one kind of near-infrared light emitting device. As a general near infrared light emitting device, a near infrared LED (light emitting layer: GaAs compound semiconductor or the like) having a wavelength of 780 nm to 960 nm is used. Here, an infrared LED having an output of 50 mW and a peak wavelength of 880 nm is used.

図2に、液晶表示部101の断面図を示し、その作成方法について説明する。ここでは液晶セルがTN(ツイステッドネマチック)液晶セルである液晶表示部101の態様を述べる。   FIG. 2 is a cross-sectional view of the liquid crystal display unit 101, and a method for creating the same will be described. Here, an embodiment of the liquid crystal display unit 101 in which the liquid crystal cell is a TN (twisted nematic) liquid crystal cell will be described.

2つのガラス基板1A、1Bの各々の上に透明であるITO膜をCVD、蒸着、スパッタなどにより形成し、フォトリソグラフィーにて所望のITO電極パターン2および外部取出し配線2lを形成する。ITO電極パターン2が付いたガラス基板上にフレキソ印刷にて絶縁膜4を形成する。この絶縁膜4は必須では無いが、上下基板間の短絡防止のため形成することが望ましい。絶縁膜形成方法としてフレキソ印刷の他に、メタルマスクを用い、蒸着やスパッタなどの方法を行っても良い。   A transparent ITO film is formed on each of the two glass substrates 1A and 1B by CVD, vapor deposition, sputtering, or the like, and a desired ITO electrode pattern 2 and external extraction wiring 21 are formed by photolithography. An insulating film 4 is formed on the glass substrate with the ITO electrode pattern 2 by flexographic printing. The insulating film 4 is not essential, but is desirably formed to prevent a short circuit between the upper and lower substrates. As a method for forming the insulating film, a method such as vapor deposition or sputtering may be performed using a metal mask in addition to flexographic printing.

次に、絶縁膜4の上に絶縁膜4とほぼ同じパターンの配向膜5をスピンコートで形成する。この配向膜5形成の際に、固化する前の配向膜材料に近赤外線吸収材料を5wt%攪拌しながら添加する。近赤外線吸収材料については後述する。ここでは、スピンナー回転数:2000rpmで30秒スピンコートを行い、厚さ700Å程度の配向膜5を形成する。なお、配向膜5の形成はフレキソ印刷、インクジェット印刷等でも良い。配向膜材料として実施例1ではSE−410(日産化学製)を用いる。   Next, an alignment film 5 having substantially the same pattern as the insulating film 4 is formed on the insulating film 4 by spin coating. At the time of forming the alignment film 5, a near-infrared absorbing material is added to the alignment film material before solidification with stirring by 5 wt%. The near infrared absorbing material will be described later. Here, spin coating is performed at a spinner rotational speed of 2000 rpm for 30 seconds to form an alignment film 5 having a thickness of about 700 mm. The alignment film 5 may be formed by flexographic printing, ink jet printing, or the like. In Example 1, SE-410 (manufactured by Nissan Chemical Industries) is used as the alignment film material.

次にラビング処理を施す。ラビングは布を巻いた円筒状のロールを高速に回転させ、配向膜5上を擦る工程である。ラビングは、上下基板間の液晶3の捩れ角が90°(左捩れ)になるよう処理を行う。なお、TN−LCDの場合、プレチルト角が低い(基板平面に対して2°以下)ことが好ましい。   Next, a rubbing process is performed. The rubbing is a process in which a cylindrical roll wound with a cloth is rotated at high speed and rubbed on the alignment film 5. The rubbing is performed so that the twist angle of the liquid crystal 3 between the upper and lower substrates becomes 90 ° (left twist). In the case of TN-LCD, it is preferable that the pretilt angle is low (2 ° or less with respect to the substrate plane).

シール材6を所定のパターンにスクリーン印刷する。シール材6の形成にはスクリーン印刷の代わりにディスペンサを用いても良い。シール材には熱硬化性のES−7500(三井化学製)を用いるが、光硬化性のものや、光・熱併用型シール材でも良い。このシール材6には直径6μmの大きさのグラスファイバーを数%含んでいる。   The sealing material 6 is screen-printed in a predetermined pattern. A dispenser may be used for forming the sealing material 6 instead of screen printing. A thermosetting ES-7500 (manufactured by Mitsui Chemicals) is used as the sealing material, but a photo-curing material or a combined light / heat sealing material may be used. This sealing material 6 contains several percent of glass fibers having a diameter of 6 μm.

導通材7を所定の位置に印刷する。ここではシール材ES−7500に6.5μmのAu鍍金を施したスチレンボールを数%含んだものを導通材7として所定の位置にスクリーン印刷する。   The conductive material 7 is printed at a predetermined position. Here, screen material is printed at a predetermined position as a conductive material 7 containing a sealant ES-7500 containing several percent of styrene balls plated with 6.5 μm Au.

シール材パターン6及び導通材パターン7は上側の基板1Bにのみ形成し、下側の基板1Aにはギャップコントロール材を乾式散布法にて散布する。ギャップコントロール材には6μmのプラスチックボールを用いるが、シリカから成る真絲球を用いても良い。   The sealing material pattern 6 and the conductive material pattern 7 are formed only on the upper substrate 1B, and a gap control material is sprayed on the lower substrate 1A by a dry spraying method. A plastic ball of 6 μm is used as the gap control material, but a true sphere made of silica may be used.

2つの基板1A、1Bを、配向膜5が内側になるよう所定の位置で重ね合わせセル化し、プレスした状態で熱処理によりシール材6を硬化する。   The two substrates 1A and 1B are stacked into cells at predetermined positions so that the alignment film 5 is on the inside, and the sealing material 6 is cured by heat treatment in a pressed state.

次にスクライバー装置によりガラス基板に傷をつけ、ブレイキングにより所定の大きさ、形に分割して空セルを作成する。   Next, the glass substrate is scratched with a scriber device, and is divided into a predetermined size and shape by breaking to create empty cells.

上記の空セルに毛細管現象を利用した注入法で液晶3を注入し、その後エンドシール材で注入口を封止する。その後ガラス基板の面取りと洗浄を行い、液晶セル101cを作成する。上下ガラス基板外側にパラレルニコル又はクロスニコル配置の偏光板8を配置するとLCD101となる。   The liquid crystal 3 is injected into the empty cell by an injection method utilizing capillary action, and then the injection port is sealed with an end seal material. Thereafter, the glass substrate is chamfered and cleaned to form a liquid crystal cell 101c. When a polarizing plate 8 in parallel Nicol or crossed Nicol arrangement is disposed outside the upper and lower glass substrates, an LCD 101 is obtained.

配向膜に添加する近赤外線吸収材料について説明する。発明者らは、近赤外線吸収材料として、ベンゾジフラノン化合物(材料Aとする)およびポリアニリン(材料Bとする)をそれぞれ配向膜に添加した上記液晶表示装置のサンプルSA(材料Aを添加した配向膜を有する液晶セル)、SB(材料Bを添加した配向膜を有する液晶セル)を作製した。偏光板は配置してない。   The near-infrared absorbing material added to the alignment film will be described. The inventors have prepared a sample SA (the alignment film added with the material A) of the liquid crystal display device in which a benzodifuranone compound (referred to as a material A) and polyaniline (referred to as a material B) are respectively added to the alignment film as near-infrared absorbing materials. Liquid crystal cell) and SB (liquid crystal cell having an alignment film to which material B is added). A polarizing plate is not arranged.

これら液晶セル101cのサンプルSA、SBについて、分光透過率を測定した。   With respect to the samples SA and SB of the liquid crystal cell 101c, the spectral transmittance was measured.

図3Aに、測定系を示す。図示のように、液晶セル101cの下(背面)基板側に分光機能付き投光機9、上(前面)基板側に検光機10を配置する。電圧無印加時における液晶表示部101通過前の投光機9からの光強度を100%とした場合の検光機10で検出される光の強度を透過率(%)として測定した。   FIG. 3A shows a measurement system. As shown in the figure, a projector 9 with a spectroscopic function is disposed on the lower (rear) substrate side of the liquid crystal cell 101c, and an analyzer 10 is disposed on the upper (front) substrate side. The intensity of light detected by the analyzer 10 when the light intensity from the projector 9 before passing through the liquid crystal display unit 101 when no voltage is applied is defined as 100% was measured as transmittance (%).

図4に、サンプルの可視領域〜近赤外領域の分光透過率を示す。比較例として近赤外線吸収材料を添加していない配向膜を有する液晶セルの分光特性を示す。図4に示すように、配向膜に近赤外線吸収材料を添加した液晶セルSA、SBの方が、近赤外領域の透過率が低い。このデータから、材料Aおよび材料Bが近赤外線を吸収していることが分かる。   FIG. 4 shows the spectral transmittance of the sample from the visible region to the near infrared region. As a comparative example, the spectral characteristics of a liquid crystal cell having an alignment film to which no near-infrared absorbing material is added are shown. As shown in FIG. 4, the liquid crystal cells SA and SB in which a near-infrared absorbing material is added to the alignment film have lower transmittance in the near-infrared region. From this data, it can be seen that Material A and Material B absorb near infrared rays.

次に、上記の液晶セルのサンプルに偏光板8をパラレルニコル配置で貼り付け、TNモードの液晶表示部101を作製した。作製した液晶表示部101の低温(−30℃)下での電圧−透過率特性を測定した。   Next, the polarizing plate 8 was attached to the above liquid crystal cell sample in a parallel Nicol arrangement, and a TN mode liquid crystal display unit 101 was produced. The voltage-transmittance characteristics under low temperature (−30 ° C.) of the manufactured liquid crystal display unit 101 were measured.

図3Bに測定系を示す。測定にはLCD−5000(大塚電子製)を用いた。まず、液晶表示部101に印加する電圧を変化させると共にIR−LED(出力50mW、ピーク波長880nm)から近赤外線を照射した。液晶セルとIR−LEDとの距離は約50mmである。その状態で、投光機9から発せられ、液晶表示部101を通過した光を検光機10にて測定し、電圧−透過率特性の測定を行った。   FIG. 3B shows the measurement system. LCD-5000 (made by Otsuka Electronics) was used for the measurement. First, while changing the voltage applied to the liquid crystal display part 101, near infrared rays were irradiated from IR-LED (output 50mW, peak wavelength 880nm). The distance between the liquid crystal cell and the IR-LED is about 50 mm. In this state, the light emitted from the projector 9 and passed through the liquid crystal display unit 101 was measured by the analyzer 10, and the voltage-transmittance characteristics were measured.

図5に、電圧−透過率特性を示す。図示のように、近赤外線吸収材料を添加した配向膜を有する液晶表示部(SA、SB)と、そうでない液晶表示部との間に電圧−透過率特性の大きな差は見られなかった。   FIG. 5 shows voltage-transmittance characteristics. As shown in the figure, a large difference in voltage-transmittance characteristics was not observed between the liquid crystal display part (SA, SB) having an alignment film to which a near-infrared absorbing material was added and the liquid crystal display part that was not.

次に、上記電圧−透過率特性から最大コントラストを得られる最適電圧を求め、背面側から液晶表示部の液晶層に向けて近赤外線を照射しつつ、1/4Duty駆動、最適電圧でのレスポンス特性の測定を低温下(−30℃)で行った。レスポンスの測定は、近赤外線照射前(照射時間0)と照射後1分、2分、3分、4分、10分後にそれぞれ行った。   Next, the optimum voltage for obtaining the maximum contrast is obtained from the above voltage-transmittance characteristics, and the near duty infrared rays are irradiated from the back side toward the liquid crystal layer of the liquid crystal display unit, and 1/4 duty driving, response characteristics at the optimum voltage. Was measured at a low temperature (−30 ° C.). Response measurements were performed before near-infrared irradiation (irradiation time 0) and 1 minute, 2 minutes, 3 minutes, 4 minutes, and 10 minutes after irradiation, respectively.

図6に、サンプルのレスポンス特性を示す。縦軸は液晶の立ち上がり時間(msec)、横軸は近赤外線LEDの照射時間(分)である。図示のように、サンプルSA、SBの方が比較例より立ち上がり時間が短い。また、近赤外線LED照射時間1分程度まで急激に立ち上がり時間が短縮され、その後飽和していることから、液晶表示装置起動後短時間でレスポンス時間が短縮されると言える。   FIG. 6 shows sample response characteristics. The vertical axis represents the rise time (msec) of the liquid crystal, and the horizontal axis represents the irradiation time (minute) of the near infrared LED. As shown in the figure, samples SA and SB have a shorter rise time than the comparative example. Moreover, it can be said that the response time is shortened in a short time after activation of the liquid crystal display device because the rise time is rapidly shortened to near-infrared LED irradiation time of about 1 minute and then saturated.

発明者らは、近赤外線吸収材料を配向膜に添加することによって、配向膜中の近赤外線吸収材料が近赤外線を吸収し、吸収した近赤外線のエネルギーが熱エネルギーとなって配向膜、そして配向膜に接触する液晶層を加熱し、液晶の応答時間を短縮させたと考察した。
(近赤外線吸収材料の他の例)
なお、材料Aには有機溶剤などへの溶融性が良い、材料Bには耐熱性が高い(300℃程度)という特徴があり、類似する特徴を有する物質であれば近赤外吸収材料として適用可能であろう。実施例に適用できる近赤外吸収材料を列挙すると、ベンゾジフラノン化合物、ポリアニリン、シアニン系色素、ポリメチン系色素、フタロシアニン化合物、アミニウム化合物、ジイモニウム化合物、ニッケル−ジチオール化合物、アジド化合物、インモニウム系色素、ジインモニウム系色素、トリアリルメタン系色素、ナフトキノン系色素、アントラキノン系色素、スクアリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ニッケル−ジチオール錯体系色素が挙げられる。
The inventors have added a near-infrared absorbing material to the alignment film, so that the near-infrared absorbing material in the alignment film absorbs near-infrared light, and the absorbed near-infrared energy becomes thermal energy, and the alignment film is aligned. It was considered that the liquid crystal layer in contact with the film was heated to shorten the response time of the liquid crystal.
(Other examples of near-infrared absorbing materials)
Note that material A has a good meltability in an organic solvent and the like, and material B has a high heat resistance (about 300 ° C.), and any substance having similar characteristics can be used as a near-infrared absorbing material. It will be possible. Examples of near-infrared absorbing materials applicable to the examples are benzodifuranone compounds, polyanilines, cyanine dyes, polymethine dyes, phthalocyanine compounds, aminium compounds, diimonium compounds, nickel-dithiol compounds, azide compounds, immonium dyes, diimmonium. Dyes, triallylmethane dyes, naphthoquinone dyes, anthraquinone dyes, squarylium dyes, phthalocyanine dyes, naphthalocyanine dyes, nickel-dithiol complex dyes.

図7に、応用例として考えられる液晶表示装置を示す。図7に示した液晶表示装置は道路の戸外表示板である。戸外表示板は、低温環境下においても素早く表示を行う必要がある。例えば速度規制を超えている自動車に対して、速度超過をセンサで感知した後、「スピード落とせ」などの表示を行いたい場合、液晶の動作が遅いと、表示を行う前に車が通り過ぎてしまう可能性があるからである。本発明を適用すれば、液晶の動作速度が速くなり、寒冷地においても良好な表示機能が維持できるであろう。   FIG. 7 shows a liquid crystal display device considered as an application example. The liquid crystal display device shown in FIG. 7 is an outdoor display board for roads. The outdoor display board needs to display quickly even in a low temperature environment. For example, for a car that exceeds speed regulation, if you want to display a `` slow down '' after sensing the speed excess with a sensor, if the liquid crystal operation is slow, the car will pass before the display Because there is a possibility. If the present invention is applied, the operation speed of the liquid crystal is increased, and a good display function can be maintained even in a cold region.

さらに、低温下で液晶表示部101に印加する電圧がOFF時であっても、赤外LEDを点灯させておけば、液晶層は冷えることなく、液晶表示部101に表示信号入力があった際に速やかに応答することが出来るであろう。   Further, even when the voltage applied to the liquid crystal display unit 101 is OFF at a low temperature, if the infrared LED is turned on, the liquid crystal layer does not cool and a display signal is input to the liquid crystal display unit 101. Will be able to respond quickly.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto.

図8A、図8Bに、ライトユニット102の他の形態を示す。図8Aに示すように、ライトユニット102として、サイドライトユニット(冷陰極管等と赤外線光源を混在させたユニット)102の光を横方向から導光板103bに照射し、液晶表示部101のある上方向に光を導光させる形態でも良い。   8A and 8B show other forms of the light unit 102. FIG. As shown in FIG. 8A, as the light unit 102, the light of the side light unit (a unit in which a cold cathode tube or the like and an infrared light source are mixed) 102 is irradiated from the lateral direction to the light guide plate 103b, and the liquid crystal display unit 101 is provided. A form in which light is guided in a direction may be used.

また、図8Bに示すように、液晶表示部101の前面から導光板103bにてライトユニット(導光板の横に配置する。冷陰極管等と赤外線光源を混在させたユニット)102からの光を曲げて照射し、背面に反射板104を置き、光を反射させて液晶表示部101に照射させるフロントライトユニットの形態でも良い。通常、反射モードの液晶表示装置では、白熱灯のようなバックライトが無いことにより、液晶層が温まらない。しかしこの応用例のように、ライトユニットに赤外LEDを組み込めば、赤外光により機能性材料膜、そして温められた機能性材料膜により液晶層が温められるので、他の加熱装置を用いることなく、低消費電力で加温することが出来、応答性能を維持出来る。   Further, as shown in FIG. 8B, light from a light unit (a unit arranged with a cold cathode tube and an infrared light source) 102 is emitted from the front surface of the liquid crystal display unit 101 through a light guide plate 103b. It may be in the form of a front light unit in which the liquid crystal display unit 101 is irradiated by bending and irradiating and placing the reflector 104 on the back surface to reflect light. Usually, in the liquid crystal display device in the reflection mode, the liquid crystal layer does not warm because there is no backlight such as an incandescent lamp. However, if an infrared LED is incorporated in the light unit as in this application example, the functional material film is heated by infrared light and the liquid crystal layer is heated by the warmed functional material film, so use another heating device. It can be heated with low power consumption and response performance can be maintained.

液晶の液晶セルへの注入法は、真空注入法や滴下注入法(ODF)でも良い。真空注入法を用いる場合、注入口は1つで良い。滴下注入法の場合は注入口を設けず、上下基板を貼り合わせる前に液晶の滴下注入を行う。   The injection method of the liquid crystal into the liquid crystal cell may be a vacuum injection method or a drop injection method (ODF). When the vacuum injection method is used, one injection port is sufficient. In the case of the dropping injection method, the injection port is not provided, and the liquid crystal is dropped and injected before the upper and lower substrates are bonded together.

また、赤外線光源の光は、偏光スプリッタなどを利用して偏光板透過軸と平行な直線偏光とすることで、偏光板での吸収による熱効率の低下を抑制できるであろう。   In addition, the light from the infrared light source is converted into linearly polarized light parallel to the polarizing plate transmission axis using a polarization splitter or the like, so that a decrease in thermal efficiency due to absorption by the polarizing plate can be suppressed.

明細書中では配向膜に近赤外線吸収材料を添加したが、近赤外吸収のための膜(この膜も配向膜や絶縁膜同様に機能性材料膜と言えよう)を配向膜とは別に液晶セル中に形成しても良い。   In the specification, a near-infrared absorbing material is added to the alignment film, but a film for absorbing near infrared (this film can be said to be a functional material film as well as the alignment film and insulating film) is separated from the alignment film by liquid crystal. You may form in a cell.

さらに、液晶セルのモードがTNの場合について説明したが、S(スーパー)TN、垂直配向、IPS(In−Plane Switching)、OCB(Optical Compensated Bend)、PN(Polymaer Network)、GH(Guest Host)モード他全ての液晶セルのモードに実施例は適用可能であろう。   Furthermore, although the case where the mode of the liquid crystal cell is TN has been described, S (super) TN, vertical alignment, IPS (In-Plane Switching), OCB (Optical Compensated Bend), PN (Polymer Network), GH (Guest Host) The embodiments will be applicable to all other liquid crystal cell modes.

その他、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   It will be apparent to those skilled in the art that other various modifications, improvements, combinations, and the like can be made.

図1は、液晶表示装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a liquid crystal display device. 図2は、液晶表示部の断面図である。FIG. 2 is a cross-sectional view of the liquid crystal display unit. 図3A及び図3Bは、測定系の概略図である。3A and 3B are schematic diagrams of the measurement system. 図4は、波長に対する分光透過率のグラフである。FIG. 4 is a graph of spectral transmittance versus wavelength. 図5は、サンプルの電圧−透過率特性である。FIG. 5 shows the voltage-transmittance characteristics of the sample. 図6は、サンプルのレスポンス特性を示すグラフである。FIG. 6 is a graph showing the response characteristics of the sample. 図7は、液晶表示装置を適用した戸外表示板である。FIG. 7 shows an outdoor display panel to which a liquid crystal display device is applied. 図8Aおよび図8Bは、ライトユニットの例である。8A and 8B are examples of the light unit.

符号の説明Explanation of symbols

1A、1B 基板
2 電極
2l 配線
3 液晶
4 絶縁膜
5 配向膜
6 シール材
7 導通材
8 偏光板
9 投光機
10 検光機
101 液晶表示部
101c 液晶セル
102 ライトユニット
103 拡散板
103b 導光板
1A, 1B Substrate 2 Electrode 2l Wiring 3 Liquid crystal 4 Insulating film 5 Alignment film 6 Sealing material 7 Conductive material 8 Polarizing plate 9 Projector 10 Analyzer 101 Liquid crystal display unit 101c Liquid crystal cell 102 Light unit 103 Diffusion plate 103b Light guide plate

Claims (4)

対向する一対の基板と、
前記一対の基板間に挟持された液晶層と、
前記一対の基板の各々の液晶層側に形成された電極パターンと、
前記一対の基板の少なくとも一方において前記電極パターンよりも液晶層側に形成され、赤外波長の光を吸収する成分を含んだ機能性材料膜と、
赤外波長の光を前記機能性材料膜に対して照射する装置とを含み、
前記赤外波長の光を吸収する成分がベンゾジフラノン化合物、又はポリアニリンのいずれかである液晶表示装置。
A pair of opposing substrates;
A liquid crystal layer sandwiched between the pair of substrates;
An electrode pattern formed on the liquid crystal layer side of each of the pair of substrates;
A functional material film that includes a component that absorbs light of an infrared wavelength, and is formed closer to the liquid crystal layer than the electrode pattern in at least one of the pair of substrates;
A device for irradiating a light in the infrared wavelength to the functional material film seen including,
A liquid crystal display device, wherein the component that absorbs light of the infrared wavelength is either a benzodifuranone compound or polyaniline .
前記機能性材料膜が、前記一対の基板の両方に形成された配向膜である請求項記載の液晶表示装置。 The functional material films, the liquid crystal display device according to claim 1, wherein the alignment layer formed on both of the pair of substrates. (a)各々が電極を備えた一対の基板を準備する工程と、
(b)前記基板における各々の電極が形成された側に、赤外波長の光を吸収する成分を含んだ機能性材料膜を形成する工程と、
(c)前記一対の基板を、前記機能性材料膜が形成された面同士を向かい合わせると共に、間隙を持って貼り合わせ、該間隙に液晶を狭持する工程とを含み、
前記赤外波長の光を吸収する成分がベンゾジフラノン化合物、又はポリアニリンのいずれかである液晶表示装置の製造方法。
(A) preparing a pair of substrates each having an electrode;
(B) forming a functional material film containing a component that absorbs light of infrared wavelengths on the side of the substrate on which each electrode is formed;
(C) said pair of substrates, said with functional material film face each other surfaces to each other which are formed, bonded together with a gap, it viewed including the step of sandwiching a liquid crystal in the gap,
A method for producing a liquid crystal display device, wherein the component that absorbs light of the infrared wavelength is either a benzodifuranone compound or polyaniline .
前記機能性材料膜が、前記一対の基板の両方に形成された配向膜である請求項記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to claim 3 , wherein the functional material film is an alignment film formed on both of the pair of substrates.
JP2007332293A 2007-06-06 2007-12-25 Liquid crystal display device and manufacturing method thereof Active JP5237625B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007332293A JP5237625B2 (en) 2007-12-25 2007-12-25 Liquid crystal display device and manufacturing method thereof
US12/131,317 US8294849B2 (en) 2007-06-06 2008-06-02 Liquid crystal display device capable of low temperature use and having rod-shaped gold particles of nanometer order dispersed in the liquid crystal layer
CN2008101089267A CN101320162B (en) 2007-06-06 2008-06-06 Liquid crystal display device capable of low temperature use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332293A JP5237625B2 (en) 2007-12-25 2007-12-25 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009156931A JP2009156931A (en) 2009-07-16
JP5237625B2 true JP5237625B2 (en) 2013-07-17

Family

ID=40961063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332293A Active JP5237625B2 (en) 2007-06-06 2007-12-25 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5237625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399896A (en) * 2018-03-07 2018-08-14 京东方科技集团股份有限公司 A kind of display device and its driving method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787681B2 (en) * 2016-03-30 2020-11-18 シチズンファインデバイス株式会社 Liquid crystal display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162024A (en) * 1985-01-11 1986-07-22 Nec Corp Reflection type liquid crystal light valve
JPS63259623A (en) * 1987-04-17 1988-10-26 Canon Inc High molecular liquid crystal element
JP2005024866A (en) * 2003-07-02 2005-01-27 Casio Comput Co Ltd Liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399896A (en) * 2018-03-07 2018-08-14 京东方科技集团股份有限公司 A kind of display device and its driving method
CN108399896B (en) * 2018-03-07 2021-01-08 京东方科技集团股份有限公司 Display device and driving method thereof

Also Published As

Publication number Publication date
JP2009156931A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4942037B2 (en) Liquid crystal display
JP6667983B2 (en) Laminate and manufacturing method thereof, polarizing plate, liquid crystal display, organic EL display
JP4695101B2 (en) Polarizer and liquid crystal display device using the same
US8922738B2 (en) Display device and thin film polarizer used for display device
KR101941440B1 (en) Cotalable polarizer and method of fabricating thereof
US20110063547A1 (en) Elliptical polarizer and vertical alignment type liquid crystal display device using the same
JP2010134349A (en) Liquid crystal display device
CN105229500A (en) Local has the Polarizer in the region that depolarizes and preparation method thereof
JP2017021097A (en) Dimming film
KR102016958B1 (en) Liquid crystal display and method for fabricating the same
JP2004034002A (en) Method for producing film coated sheet, optical function layer, optical element and image display device
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
TW201106067A (en) Optical film, polarizing plate, liquid crystal panel, liquid crystal display, and method for producing optical film
US8294849B2 (en) Liquid crystal display device capable of low temperature use and having rod-shaped gold particles of nanometer order dispersed in the liquid crystal layer
JP5253981B2 (en) Liquid crystal display
JP5237625B2 (en) Liquid crystal display device and manufacturing method thereof
JP2007072213A (en) Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
US8203688B2 (en) Liquid crystal display
JP5274929B2 (en) Liquid crystal panel and liquid crystal display device
KR102009821B1 (en) polarizer, manufacturing method thereof, and liquid crystal display including the same
CN110346979A (en) Liquid Crystal Module
KR980010972A (en) Reflective Liquid Crystal Display
JP2001318373A (en) Liquid crystal display device
KR20120072197A (en) Guest-host mode liquid crystal display device including uniaxial dye layer
JP4233443B2 (en) Optical film and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250