JP5235598B2 - Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating - Google Patents
Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating Download PDFInfo
- Publication number
- JP5235598B2 JP5235598B2 JP2008266591A JP2008266591A JP5235598B2 JP 5235598 B2 JP5235598 B2 JP 5235598B2 JP 2008266591 A JP2008266591 A JP 2008266591A JP 2008266591 A JP2008266591 A JP 2008266591A JP 5235598 B2 JP5235598 B2 JP 5235598B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- compound
- thermal spray
- thermal spraying
- spray coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Coating By Spraying Or Casting (AREA)
Description
本発明は、溶射用粉末の製造方法とその製造方法により作成された溶射用粉末、並びに前記溶射用粉末を溶射することにより基材表面に形成された溶射皮膜並びに、該溶射皮膜が被覆された基材に係り、特に高速フレーム溶射により石炭焚きボイラの伝熱管および水壁管の表面に耐腐食性および摩耗性に優れた溶射皮膜を形成するのに好適な溶射用粉末及びその製造方法に関する。 The present invention relates to a method for producing a thermal spraying powder, a thermal spraying powder produced by the production method, a thermal spray coating formed on a substrate surface by spraying the thermal spraying powder, and the thermal spray coating coated More particularly, the present invention relates to a thermal spraying powder suitable for forming a thermal spray coating excellent in corrosion resistance and wear on the surface of a heat transfer tube and a water wall tube of a coal fired boiler by high-speed flame spraying and a method for producing the same.
従来石炭焚きボイラの火炉内や火炉からの燃焼ガスが流れる流路内に使用される部材においては、高温腐食や、石炭の燃焼ガス中に含まれる燃焼灰によって摩耗減肉が生じることから、耐食性および耐摩耗性に優れたクロムカーバイドやタングステンカーバイド等のサーメット系の造粒焼結粉末が溶射用粉末として使用されている。また、比較的安価でサーメット系材料と同等の耐食性や耐摩耗性が得られる溶射用粉末として鉄基材料であるフェロシリコン系材料が石炭焚きボイラではないが、ごみ焼却炉において使用されている。 Corrosion resistance of members used in the furnaces of conventional coal-fired boilers and in the passages through which combustion gas from the furnace flows is due to high temperature corrosion and wear thinning caused by the combustion ash contained in the coal combustion gas. Further, cermet granulated and sintered powders such as chromium carbide and tungsten carbide having excellent wear resistance are used as thermal spraying powders. In addition, ferrosilicon-based materials, which are iron-based materials, are not coal-fired boilers but are used in waste incinerators as thermal spraying powders that are relatively inexpensive and have the same corrosion resistance and wear resistance as cermet-based materials.
溶射法においては、プラズマや燃焼炎など、種々の熱源を使用する。これらの熱源によって、溶射用粉末が加熱され、半溶融化して軟化した状態で高速度で被溶射材(以下基材と称することにする)に衝突させることで溶射用粉末が溶射皮膜となると考えられている。なお溶射被覆された部材が一定の運用期間を安全に運用するために必要とされる溶射皮膜の積層厚(以下、膜厚と称することにする)を形成するには一度の積層(パス)では不可能であり、多パスでの積層が必要となるが、連続して積層を行なうと基材の温度が過熱する。過熱による基材の変形などを防止するために、複数回のパスによる積層が必要な場合には、パスの間で基材を冷却する必要がある。 In the thermal spraying method, various heat sources such as plasma and a combustion flame are used. The thermal spraying powder is heated by these heat sources, and it is considered that the thermal spraying powder becomes a thermal spray coating by colliding with the sprayed material (hereinafter referred to as the base material) at a high speed in a semi-molten and softened state. It has been. In order to form a laminate thickness of a thermal spray coating (hereinafter referred to as a film thickness) that is necessary for a thermally sprayed member to operate safely for a certain period of operation, a single laminate (pass) is required. Although it is impossible and lamination in multiple passes is necessary, the temperature of the base material is overheated if the lamination is performed continuously. In order to prevent deformation of the base material due to overheating and the like, when lamination by a plurality of passes is necessary, it is necessary to cool the base material between passes.
溶射法の1つである高速フレーム溶射法は、ケロシンやプロピレン、エチレンなどの燃料と酸化剤である純酸素とを混合した燃焼炎を用いて溶射用粉末を加熱および加速して基材に衝突・付着させる方法であり、溶射皮膜中に含まれる気孔が少なく、優れた耐食性を有する溶射皮膜が得られることから石炭焚きボイラの火炉内や火炉からの燃焼ガスが流れる流路内に使用される部材への溶射に使用される溶射法として一般的に使用されている。 High-speed flame spraying, which is one of the thermal spraying methods, heats and accelerates the thermal spraying powder using a combustion flame that is a mixture of fuels such as kerosene, propylene, and ethylene and pure oxygen, which is an oxidizer, and collides with the substrate.・ It is a method of adhesion, and it is used in the furnaces of coal-fired boilers and in the flow channels through which combustion gas flows from the furnace because there are few pores contained in the sprayed coating and it has excellent corrosion resistance. It is generally used as a thermal spraying method used for thermal spraying on members.
しかしながら、クロムカーバイドやタングステンカーバイド等のサーメット系溶射用材料は、高速フレーム溶射の燃焼炎による加熱だけでは燃焼炎の熱容量が小さいこと、溶射用粉末が溶射炎を高速で通過してしまうために、加熱が不十分になりやすいこと、また、サーメット系材料は高温でも硬く、半溶融軟化が生じにくいことから、十分に軟化されない状態で基材に至るため付着しにくい。さらに、サーメット系材料は多パスで積層する場合には、前パスにおいて折角積層できた粒子が、新しく供給した溶射用粉末によって除去されてしまうという問題がある。このため、サーメット系溶射用材料の付着歩留りは10%程度と低いという問題がある。 However, cermet-based thermal spray materials such as chrome carbide and tungsten carbide have a small heat capacity of the combustion flame only by heating with the flame flame of high-speed flame spraying, and the thermal spray powder passes through the thermal spray flame at high speed. Heating tends to be insufficient, and cermet materials are hard even at high temperatures and are not easily melted and melted. Therefore, they do not adhere sufficiently because they reach the base material in a state that is not sufficiently softened. Further, when the cermet material is laminated in multiple passes, there is a problem that particles that have been folded in the previous pass are removed by the newly supplied thermal spraying powder. For this reason, there exists a problem that the adhesion yield of the cermet type thermal spray material is as low as about 10%.
フェロシリコン系溶射材料についてもサーメット系材料と同様に、加熱による半溶融軟化が生じにくい材料である。このため、本発明者らはフェロシリコン系溶射粉末の付着性を改善する方法として、粒子径を制限することによって個々の粉末の温度を上昇しやすくして付着性を確保するとともに、Siの含有量を制限して付着性を確保する技術を開発し、特許出願している(特願2007−237577号)。しかし、前記特許出願の方法における微粉末は製造時の歩留まりが低く、粉末が高価となってしまうという問題があった。 As with the cermet material, the ferrosilicon-based thermal spray material is a material that is unlikely to be semi-melt softened by heating. For this reason, as a method for improving the adhesion of the ferrosilicon-based spray powder, the present inventors can easily increase the temperature of each powder by restricting the particle diameter to ensure adhesion, and contain Si. A technology for restricting the amount to ensure adhesion has been developed and a patent application has been filed (Japanese Patent Application No. 2007-237577). However, the fine powder in the method of the patent application has a problem in that the yield during production is low and the powder becomes expensive.
フェロシリコン系溶射材料の付着性向上方法としては、他の材料粉末を混合して付着性を改善する方法が提案されている。例えば、特許第3356959号公報に開示されているように、低融点のAl−Si系合金粉末と混合する方法が提案されている。Al−Si系合金粉末は、溶射時の加熱によって溶融するので、付着性が著しく改善される効果がある。 As a method for improving adhesion of a ferrosilicon-based thermal spray material, a method for improving adhesion by mixing other material powders has been proposed. For example, as disclosed in Japanese Patent No. 3356959, a method of mixing with a low melting point Al—Si based alloy powder has been proposed. Since the Al—Si based alloy powder is melted by heating at the time of thermal spraying, there is an effect that the adhesion is remarkably improved.
また、特開2005−272927号公報に示されているように、基材と同等成分の粉末と混合した粉末を用いる方法が提案されている。
前記特許第3356959号公報に開示された方法は、低温での腐食防止を想定した方法であって、常時400℃以上の高温環境に晒されるようなボイラ内環境においてはAl−Si系合金は溶融してしまうため、適用することはできない。 The method disclosed in Japanese Patent No. 3356959 is a method assuming corrosion prevention at a low temperature, and in an environment in a boiler that is constantly exposed to a high temperature environment of 400 ° C. or higher, the Al—Si alloy is melted. Therefore, it cannot be applied.
さらに特開2005−272927号公報に開示された方法では、皮膜内に耐食性の低い粒子が存在し、優先的に腐食されるという問題がある。この問題を回避するためには混合する基材と同組成の粉末の混合割合を減らす必要があるが、これにより溶射時の付着性が低下するという問題がある。 Furthermore, the method disclosed in Japanese Patent Application Laid-Open No. 2005-272927 has a problem that particles having low corrosion resistance exist in the coating and are preferentially corroded. In order to avoid this problem, it is necessary to reduce the mixing ratio of the powder having the same composition as the base material to be mixed. However, this causes a problem that adhesion during thermal spraying is lowered.
本発明者らは上記に鑑み、高価な造粒焼結法、微粉末化、あるいは耐食性低下のおそれがある粉末混合によらない、耐食・耐摩耗溶射材料の付着性改善方法の提供を目的として鋭意研究を行った結果、重量比で18%〜22%のSiを含有し、残部がFeおよび不可避不純物を含む溶湯をアトマイズ処理して得た一次粉末を適当な温度範囲で熱処理して微細なFe−Si系化合物を析出させることにより、個々の溶射用粉末粒子の硬さが低下し、溶射皮膜形成に不可欠な粒子の半溶融軟化が生じやすくなり溶射付着歩留りが改善されることを見出した。 In view of the above, the present inventors aim to provide a method for improving the adhesion of an anti-corrosion / anti-abrasion spray material that is not based on an expensive granulation sintering method, pulverization, or powder mixing that may cause a decrease in corrosion resistance. As a result of earnest research, the primary powder obtained by atomizing a molten metal containing 18% to 22% Si by weight and the balance containing Fe and unavoidable impurities is heat-treated in an appropriate temperature range to obtain fine particles. It has been found that by depositing an Fe-Si compound, the hardness of each thermal spraying powder particle is lowered, and the semi-melt softening of particles essential for thermal spray coating formation is likely to occur and the thermal spray adhesion yield is improved. .
本発明は次のような解決手段からなる。
請求項1記載の発明は、重量比で18%〜22%のSiを含有し、残部がFeおよび不可避不純物からなる溶湯をアトマイズ処理によりFe−Si系金属間化合物であるFe2Siを主成分とする一次粉末粒子を作成し、該一次粉末を真空中または不活性ガス中で825℃〜400℃の温度で一定時間以上保持することにより、前記一次粉末粒子内にFe−Si系金属間化合物であるFe3Si化合物、FeSi化合物、Fe5Si3化合物およびFe2Si化合物の少なくとも一以上を微細析出させた二次粉末粒子を作成することを特徴とする溶射用粉末の製造方法である。
The present invention comprises the following means.
The invention according to
請求項2記載の発明は、請求項1記載の溶射用粉末の製造方法により作成された溶射用粉末であって、重量比で18%〜22%のSiを含有し、残部がFeおよび不可避不純物からなり、粒子の内部にFe−Si系金属間化合物であるFe3Si化合物、FeSi化合物、Fe5Si3化合物、およびFe2Si化合物の少なくとも一以上が微細に析出した組織を有する溶射用粉末である。
The invention according to
請求項3記載の発明は、請求項2記載の溶射用粉末を溶射することにより基材表面に形成された高温での耐摩耗性に優れた溶射被膜である。
The invention described in
請求項4記載の発明は、請求項3記載の前記溶射皮膜が被覆された高温での耐摩耗性に優れた基材である。 A fourth aspect of the present invention is a substrate excellent in wear resistance at high temperatures coated with the thermal spray coating according to the third aspect.
(作用)
以下に、本発明の溶射用粉末の成分組成(重量%)、結晶の化学組成、平均結晶粒径、製造方法を上記の請求の範囲に限定した理由について述べる。
FeおよびSiは豊富に存在する元素であり、原料の入手が容易である。さらに、図1のFe−Si系合金状態図より明らかなように、Siを重量比で18%〜22%とし、残部がFeおよび不可避不純物からなる溶湯をアトマイズ処理することによりFe2Si化合物を主成分とする一次粉末が得られる。Fe2Si自体は表4の一次粉末Bに示すように硬さが約HV980あり、これをそのまま溶射被膜として積層させようとすると、表3の比較粉末3、6に示すように積層効率が悪いかまたは皮膜の形成が困難となる。
(Function)
The reasons why the component composition (% by weight), the chemical composition of the crystal, the average crystal grain size, and the production method of the thermal spraying powder of the present invention are limited to the above claims will be described below.
Fe and Si are abundant elements, and it is easy to obtain raw materials. Further, as apparent from the Fe—Si based alloy phase diagram of FIG. 1, the Fe 2 Si compound is formed by atomizing a molten metal containing 18 to 22% by weight and the balance being Fe and inevitable impurities. A primary powder comprising the main component is obtained. Fe 2 Si itself has a hardness of about HV980 as shown in the primary powder B in Table 4, and when it is directly laminated as a thermal spray coating, the lamination efficiency is poor as shown in
従って、本発明は、さらにこの一次粉末を適切な温度で加熱保持することにより付着性を改善し、基材表面に耐腐食性および耐摩耗性に優れた溶射皮膜を形成するのに好適な二次粉末を得るものである。 Therefore, the present invention further improves adhesion by holding the primary powder at an appropriate temperature, and is suitable for forming a sprayed coating excellent in corrosion resistance and abrasion resistance on the substrate surface. The next powder is obtained.
Siの含有量が18%未満の溶湯をアトマイズ処理した場合は、一次粉末の主成分はFe−Si系金属間化合物であるFe3Si化合物となるが、Fe3Si化合物は、表1のA、表4の比較粉末1、2に示すように硬度がHV350程度と柔らかく、付着性が良好な反面、耐食性・耐摩耗性が劣るため、Siの含有量は18%以上が好ましい。
If the content of Si is atomization of the molten metal less than 18%, although the main component of the primary powder is a Fe 3 Si compound is Fe-Si-based intermetallic compound, Fe 3 Si compounds of Table 1 A As shown in
また、Siの含有量が22%〜34%の溶湯をアトマイズ処理した場合は、一次粉末の主成分はFe−Si系金属間化合物であるFe2Si化合物に加えて、FeSi化合物、Fe5Si3化合物が生成される。 Further, if the content of Si was atomization 22% to 34% of the molten metal, the main component of the primary powder, in addition to Fe 2 Si compound is FeSi-based intermetallic compound, FeSi compounds, Fe 5 Si Three compounds are produced.
また、Si量が34%以上の溶湯をアトマイズ処理した場合は、一次粉末中にFeSi化合物とαFeSi2化合物の結晶が析出する。これら、一次粉末に析出したFeSi化合物、αFeSi2化合物は、ともに硬さがHV900以上であり、Fe2Si化合物と同様に硬く溶射時の付着性が低い。 Further, when an atomizing treatment is performed on a molten metal having a Si content of 34% or more, crystals of FeSi compound and αFeSi 2 compound are precipitated in the primary powder. These FeSi compound and αFeSi 2 compound deposited on the primary powder both have a hardness of HV900 or higher, and are hard as in the case of the Fe 2 Si compound and have low adhesion during thermal spraying.
さらに、図1のFe−Si系合金状態図から明らかなように、FeSi化合物は1410℃以下、αFeSi2化合物は982℃以下の温度域では安定であり、熱処理による組成の変化と軟化が起きないため、付着性向上効果が得られないという問題がある。 Further, as is apparent from the Fe—Si based alloy phase diagram of FIG. 1, the FeSi compound is stable in the temperature range of 1410 ° C. or less and the αFeSi 2 compound is stable in the temperature range of 982 ° C. or less, and the composition change and softening due to heat treatment do not occur. Therefore, there is a problem that the effect of improving adhesion cannot be obtained.
前記したように、本発明の溶射用粉末を製造するための一次粉末は、Siを重量比で18%〜22%とし、残部がFeおよび不可避不純物からなる溶湯を出発材料とする必要がある。この理由は、このSiの範囲でのみ得られるFe2Si化合物がその後の熱処理によって他のFe−Si系化合物、すなわちFe3Si化合物、Fe2Si化合物、Fe5Si3化合物、FeSi化合物に変化して軟化し得るからである。 As described above, the primary powder for producing the thermal spraying powder of the present invention needs to start with a molten metal containing Si in a weight ratio of 18% to 22% and the balance of Fe and inevitable impurities. The reason for this is that the Fe 2 Si compound obtained only in this Si range is changed to other Fe—Si compounds by the subsequent heat treatment, that is, Fe 3 Si compound, Fe 2 Si compound, Fe 5 Si 3 compound, and FeSi compound. This is because it can be softened.
図1の合金状態図よりFe3Si化合物は高温でのみ安定な化合物であり、一次粉末の製造には、溶湯の急冷凝固を伴う製造プロセスであるガスアトマイズ法が最適である。図2は熱処理前の一次粉末粒子の断面の光学顕微鏡写真を示したものであり、粉末粒子は一様なFe2Siによって形成されている。なお、この一次粉末はSi含有量が18%から22%までのSiを含有する溶湯を徐冷し、Fe2Si化合物が安定となる1060℃以上に保持した後に水中投入やブロアによる空気の吹きつけによって急冷して得たFe2Si化合物の鋳塊を粉砕することによっても得ることができる。 From the alloy phase diagram of FIG. 1, the Fe 3 Si compound is a stable compound only at high temperatures, and the gas atomization method, which is a manufacturing process involving rapid solidification of the molten metal, is optimal for the production of the primary powder. FIG. 2 shows an optical micrograph of a cross section of the primary powder particles before the heat treatment, and the powder particles are formed of uniform Fe 2 Si. This primary powder is obtained by gradually cooling a molten metal containing Si having a Si content of 18% to 22% and maintaining the Fe 2 Si compound at 1060 ° C. or higher after which the Fe 2 Si compound becomes stable. It can also be obtained by pulverizing an ingot of Fe 2 Si compound obtained by quenching by attaching.
次に、二次粉末を製造するための熱処理の保持時間を1時間以上としている。
この理由は、溶射用粉末は、粒子径が100μm以下(10μm〜100μm程度)と小さいため、熱処理の保持時間が1時間以上であれば粒子内の原子の拡散および再配置が完全に終了することによる。
Next, the heat treatment holding time for producing the secondary powder is set to 1 hour or longer.
This is because the thermal spraying powder has a particle size as small as 100 μm or less (about 10 μm to 100 μm), so that the diffusion and rearrangement of atoms in the particles is completely completed if the heat treatment is held for 1 hour or longer. by.
図3は熱処理後の二次粉末の断面の光学顕微鏡写真であり、種々のFe−Si系金属間化合物が析出した組織に変化させることができる。粉末粒子にFe3Si化合物、Fe2Si化合物、Fe5Si3化合物、FeSi化合物が大量に析出した組織である。なお、1時間以上の熱処理を行ったとしても二次粉末の結晶組織には変化がない。このような種々のFe−Si系金属間化合物が析出した微細組織が粉末内部に形成されるため、二次粉末の溶射時の急加熱および基材と衝突時の衝撃によって、図4に示されるように溶射粒子の変形および割れが誘起されやすくなり、付着性向上効果が得られるものと考えられる。 FIG. 3 is an optical micrograph of the cross-section of the secondary powder after the heat treatment, and can be changed to a structure in which various Fe—Si intermetallic compounds are precipitated. This is a structure in which a large amount of Fe 3 Si compound, Fe 2 Si compound, Fe 5 Si 3 compound, and FeSi compound is precipitated on the powder particles. In addition, even if it heat-processes for 1 hour or more, there is no change in the crystal structure of secondary powder. Since a fine structure in which such various Fe—Si intermetallic compounds are deposited is formed inside the powder, it is shown in FIG. 4 due to rapid heating during thermal spraying of the secondary powder and impact during collision with the base material. Thus, it is considered that deformation and cracking of the thermal spray particles are easily induced, and an effect of improving adhesion is obtained.
前記一次粉末から二次粉末を形成する際の熱処理温度の範囲は次のように設定することができる。まず、熱処理温度の上限についてであるが、熱処理温度が800℃以上では粗大なFe5Si3化合物が大量に析出して、本発明の特徴である付着性向上の効果が得られない上に、粒子が焼結してしまうので、熱処理温度は800℃未満とする必要がある。一方、温度範囲の下限については、図5の熱処理後の粒子の室温での断面硬さと、その熱処理温度の関係より、200℃から400℃の間で熱処理による軟化の影響が見られるようになり、600℃以上で特に軟化の程度が著しいことから、熱処理温度の範囲は600℃〜800℃の範囲が望ましいと考えられる。 The range of the heat treatment temperature when forming the secondary powder from the primary powder can be set as follows. First, regarding the upper limit of the heat treatment temperature, when the heat treatment temperature is 800 ° C. or higher, a large amount of coarse Fe 5 Si 3 compound is precipitated, and the effect of improving the adhesion characteristic of the present invention cannot be obtained. Since the particles are sintered, the heat treatment temperature needs to be less than 800 ° C. On the other hand, as for the lower limit of the temperature range, the influence of softening due to heat treatment is seen between 200 ° C. and 400 ° C. from the relationship between the cross-sectional hardness of the particles after heat treatment in FIG. 5 and the heat treatment temperature. Since the degree of softening is particularly remarkable at 600 ° C. or higher, it is considered that the heat treatment temperature range is preferably 600 ° C. to 800 ° C.
また、熱処理による溶射粉末の軟化は大気中でも生じるものの、粒子の酸化によるSi消耗、酸化物の巻き込みによる付着性低下、あるいは酸化皮膜による付着性低下を防止する観点から、真空中またはアルゴン、窒素等の不活性ガス雰囲気中で行うことが好ましい。なお、真空中・不活性ガス中、どちらの雰囲気でも得られる効果は同じである。 In addition, although the thermal spray powder softening due to heat treatment occurs in the atmosphere, from the viewpoint of preventing Si consumption due to oxidation of particles, deterioration of adhesion due to oxide entrapment, or deterioration of adhesion due to oxide film, in vacuum or argon, nitrogen, etc. It is preferable to carry out in an inert gas atmosphere. Note that the same effects can be obtained in both atmospheres in vacuum and in an inert gas.
本発明によって、従来では高速フレーム溶射用材料として用いた場合に積層することができなかった、粗大なフェロシリコン粒子を、耐食性を低下させることなしに付着させることができる基材への溶射用粉末が得られる。さらに、本発明によれば、皮膜断面の硬さが微粉末を用いた場合よりも高くなり溶射皮膜の耐摩耗性が向上する。 According to the present invention, a powder for thermal spraying onto a base material, which can adhere coarse ferrosilicon particles without reducing corrosion resistance, which could not be laminated when used as a high-speed flame spraying material in the past. Is obtained. Furthermore, according to the present invention, the hardness of the cross section of the coating is higher than when fine powder is used, and the wear resistance of the thermal spray coating is improved.
本発明の実施例を図面とともに説明する。
半導体用高純度Siウェハの端材と高純度電解鉄を高周波溶解して表1に示す3種類のSi含有量の溶湯を作成した。この溶湯をアトマイズ処理して特定の粒径範囲で正規分布となるように分級し、一次粉末A〜Dを得た。これらの粉末をアルミナ製の坩堝に入れて真空熱処理した二次粉末を、高速フレーム溶射装置:SulzerMetco社製DJ−2700を用い、ショットブラストによって十点平均粗さ(Rz)を約80/μmとしたφ38mmの低合金鋼の管(STBA20:0.5Cr0.5Mo)の外表面に皮膜を形成した。具体的な成膜条件は、プロピレン流量:35scfh、酸素流量:30scfh、空気流量:50scfh、粉末供給量:35g/min、ガン速度:1000mm/sec、送りピッチ:3mmである。
Embodiments of the present invention will be described with reference to the drawings.
The ends of the high-purity Si wafer for semiconductors and high-purity electrolytic iron were melted at high frequency to prepare three types of Si-containing melts shown in Table 1. The molten metal was atomized and classified so as to have a normal distribution in a specific particle size range to obtain primary powders A to D. A secondary powder obtained by placing these powders in an alumina crucible and heat-treating them in a vacuum using a high-speed flame spraying apparatus: DJ-2700 manufactured by SulzerMetco, with a 10-point average roughness (Rz) of about 80 / μm by shot blasting. A film was formed on the outer surface of a low alloy steel pipe having a diameter of 38 mm (STBA20: 0.5Cr0.5Mo). Specific film forming conditions are: propylene flow rate: 35 scfh, oxygen flow rate: 30 scfh, air flow rate: 50 scfh, powder supply amount: 35 g / min, gun speed: 1000 mm / sec, feed pitch: 3 mm.
表1に示す一次粉末Aについて、200℃から900℃までの温度で各1時間の熱処理を施した後の粒子断面の硬さをマイクロビッカース硬さ試験装置で測定した。測定条件として、荷重50gf、粒子5個の硬さの平均を用いた。測定の結果を図5に示す。
図5に示すように、熱処理前には約HV980であったものが、熱処理温度が点3に示すように200℃以上で軟化し、また点4に示すように熱処理温度750℃で約HV650となった。さらに点5に示すように熱処理温度800℃では、粒子の硬さが上昇し、さらに粒子は焼結した。
As shown in FIG. 5, what was about HV980 before the heat treatment softens at a heat treatment temperature of 200 ° C. or higher as indicated by
表1に示す一次粉末A〜Dについて、熱処理よる粉末粒子を構成する化合物の変化について表2に示す。なお、化合物の同定には、広角X線回折法を用いた。本発明粉末1〜4においては、熱処理前にFe2Si化合物であったものが、熱処理後には、Fe3Si化合物、Fe2Si化合物、Fe5Si3化合物、FeSi化合物となった。これに対し、一次粉末のSiの含有量が15%である、比較粉末1、2は、熱処理によらずFe3Siのみが検出された。
Regarding the primary powders A to D shown in Table 1, changes in the compounds constituting the powder particles by heat treatment are shown in Table 2. In addition, the wide angle X-ray diffraction method was used for the identification of a compound. In the present invention powders 1-4, what was an Fe 2 Si compound before the heat treatment became an Fe 3 Si compound, an Fe 2 Si compound, an Fe 5 Si 3 compound, and an FeSi compound after the heat treatment. On the other hand, only Fe 3 Si was detected in the
一次粉末のSi含有量が20%である比較粉末3〜8においては、熱処理温度200℃以下では組成が変化せず、900℃では、本発明と同様に、Fe3Si化合物 Fe2Si化合物、Fe5Si3化合物、FeSi化合物が検出された。さらにSi含有量が30%である比較粉末9、10においては、熱処理の前後で、γ粉末粒子からはFe5Si3化合物のみが検出されており、変化は見られなかった。
In the
なお、本来であれば図1のFe−Si系合金状態図より、熱処理によってFe5Si3はFe3SiとFeSiに分解されるはずであるが、安定な温度の下限が825℃と比較的低いため、分解されにくいと考えられる。以上より、Fe2Si化合物のみが、本発明の熱処理によって他の化合物に変化しうることが実験的に確かめられた。
表1に示す一次粉末について、各熱処理条件で処理した粉末を溶射した結果を表3に示す。成膜速度の指標として、ボイラ用の溶射皮膜の厚さとして、一般的に採用されている膜厚200μmの溶射皮膜を得るのに要したパス数を示した。一次粉末Cについて、比較粉末6、7、8では所定の積層ができなかったのに対し、本発明粉末3、4においては200μm以上の積層が可能であった。
Table 3 shows the results of thermal spraying the powders treated under the respective heat treatment conditions for the primary powders shown in Table 1. As an index of the film formation rate, the number of passes required to obtain a sprayed film having a thickness of 200 μm that is generally employed is shown as the thickness of the sprayed film for the boiler. Regarding the primary powder C, the
また、一次粉末Bについても比較粉末3、4で所定の膜厚を得たが20以上の積層数となり効率が低かったのに対し、本発明粉末1、2では13、15の積層となり、かなりのパス数の低減効果が認められた。なお、比較粉末8は、粒子が焼結しており溶射できなかった。その他、Si含有量の範囲が本発明の範囲よりも高い一次粉末Dについては、熱処理の有無にかかわらず、溶射により付着しなかった。また、一次粉末Aについては、熱処理の有無にかかわらず、付着性は良好であった。
In addition, for the primary powder B, a predetermined film thickness was obtained with the
次に本発明粉末3、比較粉末3、6のパスごとに直径の変化をノギスにて測定したものを図6に示す。比較粉末3、6は成分範囲については本発明の範囲に入っているが、一次粉末のままで、熱処理を行っていないものである。点6で示す本発明粉末3では7パスで約250μmの膜厚が得られたのに対し、点7で示す比較粉末3では、7パスで約140μm、点8で示す比較粉末6については、以前のパスで積層された皮膜が、その次のパスで皮膜に吹きつけられる溶射粒子によって破壊されるために100μm以上には膜厚は増加しなかった。
表4は、表3で溶射粒子の積層が可能であった本発明粉末1〜4、および比較粉末1〜4について、溶射皮膜の評価を行った結果である。溶射皮膜の耐摩耗性は,皮膜断面の硬さで評価でき,約HV700以上であれば,ボイラ内での使用に際して実用上十分な耐摩耗性が得られることがわかっている。そこで,マイクロビッカース硬さ試験装置を用い、10点での測定値の平均を代表値として評価した。測定の結果、溶射皮膜の硬さは、本発明粉末による溶射皮膜ではHV730以上であったのに対し、比較粉末では一次粉末Aを用いたもので熱処理無しのものでHV300、750℃×1時間の熱処理のものでHV280、一次粉末Bを熱処理無しで溶射したものでHV560、200℃×1時間の熱処理のものでHV520に留まった。
Table 4 shows the results of evaluating the thermal spray coatings of the present invention powders 1 to 4 and the
以上より、本発明粉末熱処理を行わない従来法よりも高い耐摩耗性が期待される。さらに、耐食性の評価として、溶射した鋼管を切断して10mm×10mm×5mmtのクーポン試験片を作製し、これを雰囲気置換型の横置き型電気炉内に設置し、石炭燃焼雰囲気を模擬し、ガス組成(体積%):0.22%H2S−14%SO2−6.3%CO−13.0%CO2−1.8%H2−10%H2O−bal.N2の硫化腐食性ガスを用い、500℃×300hの条件で実験室レベルの腐食試験を実施した。試験後の試験片断面の腐食状況を観察した結果、本発明粉末1〜4、比較粉末3、4は健全であったのに対して、比較粉末1、2は皮膜が腐食された。以上の結果より、本発明粉末は、摩耗と腐食の両方に対して従来よりも高い耐性が得られることを確認した。
From the above, higher wear resistance is expected than in the conventional method in which the powder heat treatment of the present invention is not performed. Furthermore, as an evaluation of corrosion resistance, the sprayed steel pipe was cut to produce a coupon test piece of 10 mm × 10 mm × 5 mmt, and this was installed in an atmosphere replacement type horizontal electric furnace to simulate a coal combustion atmosphere, Gas composition (volume%): 0.22% H 2 S-14% SO 2 -6.3% CO-13.0% CO 2 -1.8% H 2 -10% H 2 O-bal. A laboratory level corrosion test was carried out using a sulfide corrosive gas of
図7は、本発明の溶射用粉末による皮膜の好適な適用範囲である。近年の石炭焚きボイラでは、ボイラのバーナー12とアフターエアーポート11を組み合わせた二段燃焼システムにより排ガスの低NOx化がおこなわれている。このような燃焼方法においては、ボイラ内の領域9で強い還元雰囲気となるので、火炉壁が腐食されるとともに、腐食生成物が灰によって摩耗されるので、高い減肉速度となることが問題となっている。この部位に、本発明の溶射用粉末を適用することで、減肉が抑制される。また、ボイラ内の領域10は、ホッパと呼ばれる部位である。この領域10では燃焼によって生じる大量の灰が雪崩のようにして部材表面を流れるため、厳しい摩耗環境となる。この部位に本発明の溶射用粉末を適用することによって、部材の摩耗減肉が抑制されて部材寿命の延伸によりプラントの安定化に寄与する。
FIG. 7 shows a preferred range of application of the coating with the thermal spraying powder of the present invention. In recent coal-fired boilers, NOx reduction in exhaust gas is performed by a two-stage combustion system in which a boiler burner 12 and an after air port 11 are combined. In such a combustion method, since a strong reducing atmosphere is generated in the region 9 in the boiler, the furnace wall is corroded and the corrosion products are worn by the ash, so that there is a problem that a high thinning rate is obtained. It has become. By applying the thermal spraying powder of the present invention to this part, the thinning is suppressed. Moreover, the area |
Si含有量を重量比で20%となるように、JISフェロシリコン(FeSi30)と高純度電解鉄をアルミナ坩堝にいれて高周波溶解した溶湯を1100℃で1時間保持した後にブロアで空冷してFe2Si化合物からなる鋳塊を得た。この鋳塊をボールミルで粉砕した後に粒子径範囲20〜140μmの範囲で一次粉末を得た。この一次粉末に対して750℃×1hの条件で熱処理を施して、STBA20鋼管の外面に溶射した結果、表3における本発明粉末3と同様に、膜厚200μmの以上を得るために必要な積層回数は5パスとなり、かつ溶射皮膜の硬さはHV850であり、腐食試験後の皮膜も健全で、アトマイズ粉末と同等の溶射用粉末が粉砕法によって作成できることを確認した。
The molten metal obtained by high frequency melting JIS ferrosilicon (FeSi 30 ) and high purity electrolytic iron in an alumina crucible was held at 1100 ° C. for 1 hour so that the Si content was 20% by weight, and then air-cooled with a blower. An ingot made of Fe 2 Si compound was obtained. After the ingot was pulverized with a ball mill, a primary powder was obtained in a particle size range of 20 to 140 μm. As a result of heat-treating this primary powder under the condition of 750 ° C. × 1 h and spraying on the outer surface of the STBA20 steel pipe, as in the case of the
本発明によって、従来では高速フレーム溶射用材料として用いた場合に積層することができなかった、粗大なフェロシリコン粒子を、耐食性を低下させることなしに付着させることができるようになる。さらに、本発明によれば、皮膜断面の硬さが微粉末を用いた場合よりも高くなり、溶射皮膜の耐摩耗性が向上する。 According to the present invention, coarse ferrosilicon particles, which could not be laminated when used as a high-speed flame spraying material in the past, can be attached without reducing the corrosion resistance. Furthermore, according to the present invention, the hardness of the coating cross section becomes higher than when fine powder is used, and the wear resistance of the thermal spray coating is improved.
1 熱処理粉末
2 基材
9 本発明の溶射用粉末による皮膜が適用される領域
10 本発明の溶射用粉末による皮膜が適用される領域
11 アフターエアーポート
12 バーナー
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266591A JP5235598B2 (en) | 2008-10-15 | 2008-10-15 | Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266591A JP5235598B2 (en) | 2008-10-15 | 2008-10-15 | Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010095748A JP2010095748A (en) | 2010-04-30 |
JP5235598B2 true JP5235598B2 (en) | 2013-07-10 |
Family
ID=42257633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008266591A Expired - Fee Related JP5235598B2 (en) | 2008-10-15 | 2008-10-15 | Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5235598B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6914716B2 (en) * | 2017-04-28 | 2021-08-04 | 三菱パワー株式会社 | Boiler and its manufacturing method, and repair method |
CA3070662A1 (en) * | 2017-07-21 | 2019-01-24 | National Research Council Of Canada | Method for preparing powders for a cold spray process, and powders therefor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0790534A (en) * | 1993-07-19 | 1995-04-04 | Mitsubishi Materials Corp | Corrosion resisting member for sulfuric acid dew point corrosion |
JPH093616A (en) * | 1995-04-18 | 1997-01-07 | Mitsubishi Materials Corp | Powder mixture for thermal spraying |
JP3356959B2 (en) * | 1997-03-12 | 2002-12-16 | 株式会社クボタ | Thermal spray material for outer corrosion resistant pipe |
JP2000034552A (en) * | 1998-05-11 | 2000-02-02 | Hitachi Ltd | Hot dip metal coating device |
JP2000045025A (en) * | 1998-05-29 | 2000-02-15 | Sumitomo Special Metals Co Ltd | Production of rolled silicon steel |
JP2000212679A (en) * | 1999-01-22 | 2000-08-02 | Daido Steel Co Ltd | Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member |
JP5171176B2 (en) * | 2007-09-13 | 2013-03-27 | バブコック日立株式会社 | Thermal spraying material coated on metal substrate surface and high temperature corrosion resistant member coated with the material |
-
2008
- 2008-10-15 JP JP2008266591A patent/JP5235598B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010095748A (en) | 2010-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6641917B2 (en) | Spray powder and method for its production | |
JP4653721B2 (en) | Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder | |
US4075392A (en) | Alloy-coated ferrous metal substrate | |
US11597992B2 (en) | Ni-based thermal spraying alloy powder and method for manufacturing alloy coating | |
JP6698280B2 (en) | Alloy powder | |
CA2454883C (en) | Wear-resistant, corrosion-resistant ni-cr-mo thermal spray method and component coated thereby | |
JP2008248280A (en) | Coating material, manufacturing method thereof, coating method, and moving blade with shroud | |
CN113174525A (en) | High-entropy alloy powder and preparation and application thereof | |
JP5235598B2 (en) | Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating | |
CN109234729A (en) | A kind of laser cladding powder | |
CN110004372B (en) | High-temperature-resistant, oxidation-resistant and wear-resistant metallurgical roller and preparation method thereof | |
JP4328715B2 (en) | Ni-based self-fluxing alloy powder for thermal spraying and manufacturing method thereof | |
JP2010255044A (en) | Coating material, coating method, and moving blade with shroud | |
JP4762583B2 (en) | Ni-based self-fluxing alloy powder and corrosion and wear resistant parts using the powder | |
CN112689685B (en) | Ni-Fe-based alloy powder and method for producing alloy coating film using same | |
JP5292007B2 (en) | Thermal spray alloy, member provided with surface layer and method for manufacturing the same | |
JP2021080524A (en) | Corrosive wear resistant and wear resistant alloy film and heat transfer pipe, method for manufacturing the same and method for repairing heat transfer pipe | |
JP2005199278A (en) | Overlaying copper alloy powder excellent in cladding and wear resistance | |
JP2010150573A (en) | Powder of self-fluxing composite alloy having wc grain dispersed therein, and method for producing the same | |
JP4774786B2 (en) | Thermal spray coating for furnace structure coating and method for forming the same | |
JP4827047B2 (en) | Steel structure with corrosion resistance, wear resistance and heat crack resistance | |
JP4652792B2 (en) | Co-based self-fluxing alloy powder for thermal spraying | |
US11828342B2 (en) | Devitrified metallic alloy coating for rotors | |
JPH08120397A (en) | Wear resistant thermal spraying material | |
JP2024027860A (en) | EASILY FUSIBLE Fe-BASED ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5235598 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |