JP5235521B2 - Optical deflection apparatus, optical scanning apparatus, and image forming apparatus - Google Patents

Optical deflection apparatus, optical scanning apparatus, and image forming apparatus Download PDF

Info

Publication number
JP5235521B2
JP5235521B2 JP2008157017A JP2008157017A JP5235521B2 JP 5235521 B2 JP5235521 B2 JP 5235521B2 JP 2008157017 A JP2008157017 A JP 2008157017A JP 2008157017 A JP2008157017 A JP 2008157017A JP 5235521 B2 JP5235521 B2 JP 5235521B2
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary polygon
annular
rotating
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008157017A
Other languages
Japanese (ja)
Other versions
JP2009300885A (en
JP2009300885A5 (en
Inventor
章宏 福冨
康孝 成毛
健太 矢野
潤 永利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008157017A priority Critical patent/JP5235521B2/en
Publication of JP2009300885A publication Critical patent/JP2009300885A/en
Publication of JP2009300885A5 publication Critical patent/JP2009300885A5/ja
Application granted granted Critical
Publication of JP5235521B2 publication Critical patent/JP5235521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、レーザビームプリンタやレーザファクシミリ等の画像形成装置に用いられる光偏向装置、光学走査装置及び画像形成装置に関するものである。   The present invention relates to an optical deflecting device, an optical scanning device, and an image forming apparatus used in an image forming apparatus such as a laser beam printer or a laser facsimile.

従来、レーザビームプリンタやレーザファクシミリ等の画像形成装置に用いられる光学走査装置は、高速回転する回転多面鏡によってレーザビームを偏向走査する。得られた走査光を回転ドラム上の感光体に結像させて静電潜像を形成する。ついで、感光体の静電潜像を現像装置によってトナー像に顕在化し、これを記録シート等の記録媒体に転写して定着装置へ送り、記録媒体上のトナーを加熱定着させることで印刷(プリント)が行われる。   Conventionally, an optical scanning device used in an image forming apparatus such as a laser beam printer or a laser facsimile deflects and scans a laser beam with a rotating polygon mirror that rotates at high speed. The obtained scanning light is imaged on a photoconductor on a rotating drum to form an electrostatic latent image. Next, the electrostatic latent image on the photosensitive member is visualized as a toner image by a developing device, transferred to a recording medium such as a recording sheet, sent to a fixing device, and the toner on the recording medium is heated and fixed to print (print ) Is performed.

レーザビームの偏向走査に用いられる光偏向装置には回転多面鏡が搭載されている。回転多面鏡の形状については、用途によって特許文献1乃至3に記載の発明のように多種多様の提案がなされている。   A rotary polygon mirror is mounted on an optical deflection apparatus used for laser beam deflection scanning. Regarding the shape of the rotary polygon mirror, various proposals have been made as in the inventions described in Patent Documents 1 to 3 depending on the application.

特許文献1に記載の回転多面鏡には、動的不均衡を高精度かつ高速に修正するために、バランスウエイト塗布用の環状の凹部が複数設けられている。これによりバランスを1回目修正して目標とするバランスに入らずに再修正を行う場合でも、半径方向に離間した凹部にバランスウエイトを塗布するので重ね塗りを防止できる。同時に、軸方向の不釣合いの発生を低減しながら高精度且つ高速なバランス修正を実現するなどの工夫がなされている。   The rotating polygon mirror described in Patent Document 1 is provided with a plurality of annular recesses for applying balance weight in order to correct dynamic imbalance with high accuracy and high speed. Accordingly, even when the balance is corrected for the first time and re-correction is performed without entering the target balance, the balance weight is applied to the concave portions separated in the radial direction, so that overcoating can be prevented. At the same time, such measures as realizing high-accuracy and high-speed balance correction while reducing the occurrence of axial imbalance have been made.

特許文献2に記載の回転多面鏡の上面中央には凹部が形成されている。この凹部の空間を利用して押圧部材により回転多面鏡を回転体に保持している。これにより光偏向装置の軸方向の高さ寸法を低減し光学走査装置を小型化するなどの工夫がなされている。   A concave portion is formed at the center of the upper surface of the rotary polygon mirror described in Patent Document 2. The rotary polygon mirror is held on the rotating body by the pressing member using the space of the recess. In this way, contrivances are made such as reducing the height dimension in the axial direction of the optical deflecting device and miniaturizing the optical scanning device.

特許文献3に記載の回転多面鏡の上下面両方には複数の環状溝が設けられて肉抜きが施されている。これにより回転体のイナーシャを低減し、装置の立ち上がり時間を短縮するなどの工夫がなされている。   A plurality of annular grooves are provided on both the upper and lower surfaces of the rotary polygonal mirror described in Patent Document 3, and are thinned. As a result, the inertia of the rotating body is reduced, and the rise time of the apparatus is shortened.

一方、回転多面鏡の表面に非結晶フッ素樹脂膜を回転湿式成膜法で施して耐久性を上げる特許文献4に記載の発明のような提案もなされている。   On the other hand, there has also been a proposal as in the invention described in Patent Document 4 in which an amorphous fluororesin film is applied to the surface of a rotating polygon mirror by a rotating wet film forming method to increase durability.

特許文献4に記載の回転多面鏡には所定の膜厚の非結晶フッ素樹脂膜が形成される。こうした手法によれば、陽極酸化膜が不要となり、大規模な洗浄工程が不要となり、生産性が向上し、ひいてはコストが低減される。   An amorphous fluororesin film having a predetermined thickness is formed on the rotary polygon mirror described in Patent Document 4. According to such a method, an anodic oxide film is not required, a large-scale cleaning process is not required, productivity is improved, and cost is reduced.

特開平6−208075号公報JP-A-6-208075 特開平11−231248号公報JP-A-11-231248 特開2000−292733号公報JP 2000-292733 A 特開2002−131682号公報JP 2002-131682 A

しかしながら、特許文献1乃至4に記載の発明では、以下のような課題があった。例えば特許文献1に記載の回転多面鏡に対して、特許文献4に記載の回転湿式成膜法によって塗布液が塗布されると、次のような課題がある。   However, the inventions described in Patent Documents 1 to 4 have the following problems. For example, when the coating liquid is applied to the rotary polygon mirror described in Patent Document 1 by the rotary wet film forming method described in Patent Document 4, there are the following problems.

一般に、回転多面鏡に非晶質フッ素樹脂を塗布した後には、基本的に非晶質フッ素樹脂膜の上にバランスウエイトを塗布することができない。バランスウエイトが紫外線硬化型樹脂の場合には、バランスウエイトが塗布された後に紫外線の照射で硬化しても、紫外線硬化型樹脂及び非晶質フッ素樹脂膜の間が強固に結合されず、容易に剥離してしまう。   In general, after applying an amorphous fluororesin to a rotating polygon mirror, it is basically impossible to apply a balance weight on the amorphous fluororesin film. When the balance weight is an ultraviolet curable resin, the ultraviolet curable resin and the amorphous fluororesin film are not firmly bonded even if the balance weight is applied and cured by irradiation with ultraviolet rays. It will peel off.

もしバランスが高精度に調整された光偏向装置からバランスウエイトが剥離すると、回転体のバランスが崩れ、大きな振動や騒音が発生するほか、回転軸の大きな振れ回りにより駆動するモータの軸受との間に摩擦が生じている。そして、最悪の場合には軸受が損傷して最終的にモータが回転できなくなる所謂軸ロックに至り、画像形成装置として重故障となる虞がある。   If the balance weight is peeled off from the light deflector with the balance adjusted with high precision, the balance of the rotating body will be lost, generating large vibrations and noise, and the motor bearing driven by the large swing of the rotating shaft. There is friction. In the worst case, the bearing is damaged and eventually the motor cannot be rotated, so-called shaft lock is reached, which may cause a serious failure as the image forming apparatus.

そのために、特許文献1の回転多面鏡の溝にバランスウエイトが塗布された後に特許文献4の回転湿式成膜法で塗布液が塗布される方法も想定することができる。ただし、この方法では、特許文献1の回転多面鏡の溝に塗布液が浸漬されないようにしなければならない。   For this purpose, a method in which the coating liquid is applied by the rotary wet film forming method of Patent Document 4 after the balance weight is applied to the grooves of the rotary polygon mirror of Patent Document 1 can be assumed. However, in this method, it is necessary to prevent the coating liquid from being immersed in the grooves of the rotary polygon mirror of Patent Document 1.

特許文献1の回転多面鏡を特許文献4の図4のように串刺しにした状態で積み重ねて塗布液に浸漬させ、その後に回転多面鏡を塗布液から取り出して串毎に回転させ、所謂擬似的なスピンコートを鏡面に施す。このときに、液面高さや浸漬量を十分に管理したとしても、積み重ねた回転多面鏡の隙間にあたかも毛細管現象のように塗布液が浸入してしまい、少なくとも外側の溝には非晶質フッ素樹脂膜が付着してしまう。   The rotating polygon mirrors of Patent Document 1 are stacked in a skewered state as shown in FIG. 4 of Patent Document 4 and immersed in the coating solution, and then the rotating polygon mirror is taken out of the coating solution and rotated for each skewer, so-called pseudo Apply a special spin coat to the mirror surface. At this time, even if the liquid surface height and the amount of immersion are sufficiently controlled, the coating liquid enters the gap between the stacked rotary polygon mirrors as if it is a capillary phenomenon, and at least the outer groove has amorphous fluorine. A resin film will adhere.

溝を深くすれば外側の溝で毛細管現象が途切れるので、少なくとも内側の溝までの浸入は防げる可能性があるが、外側の溝はバランスウエイトの塗布に用いることはできない。   If the groove is deepened, the capillary phenomenon is interrupted in the outer groove, so that at least the inner groove may be prevented from entering, but the outer groove cannot be used for application of the balance weight.

近年では回転多面鏡が薄型化されてきており、あまりに溝を深くしていくと鏡面加工時のワーク剛性が足りず鏡面の平面性が損なわれる。また、高速化が進んでいる画像形成装置では回転多面鏡の高速回転化も図られており、薄型で高速回転した場合には、回転時に発生する大きな遠心力によって回転多面鏡が変形する。そのような中で溝を深くしていくと、この遠心力による面変形量が増大してしまう。   In recent years, rotating polygonal mirrors have been made thinner, and if the groove is made too deep, the rigidity of the workpiece during mirror surface processing is insufficient and the flatness of the mirror surface is impaired. Further, in an image forming apparatus that is increasing in speed, the rotating polygon mirror is also rotated at a high speed. When the rotating polygon mirror is thin and rotated at a high speed, the rotating polygon mirror is deformed by a large centrifugal force generated at the time of rotation. If the groove is deepened in such a situation, the amount of surface deformation due to the centrifugal force increases.

面変形量が増大すると、感光体上での結像性能や、毎走査ごとの走査時間が鏡面毎に異なる所謂ジッタ性能が悪化する虞があり、ひいては画像形成装置の印字品質低下に繋がる虞がある。   When the amount of surface deformation increases, there is a risk that the imaging performance on the photosensitive member and the so-called jitter performance, in which the scanning time for each scan differs for each mirror surface, may deteriorate, leading to a decrease in print quality of the image forming apparatus. is there.

次に、例えば特許文献2に記載の回転多面鏡に対して、特許文献4に記載の回転湿式成膜法によって塗布液が塗布されると、次のような課題がある。この課題は、特許文献1に記載の回転多面鏡に対して、特許文献4に記載の回転湿式成膜法で塗布される場合にも言える課題である。   Next, for example, when the coating liquid is applied to the rotary polygon mirror described in Patent Document 2 by the rotary wet film forming method described in Patent Document 4, there are the following problems. This problem can also be said when the rotating polygon mirror described in Patent Document 1 is applied by the rotating wet film forming method described in Patent Document 4.

特許文献2の回転多面鏡に非晶質フッ素樹脂等の保護膜が施される場合には、特許文献4に示されるように回転多面鏡が積み重ねられた状態で串に刺されて塗布液に浸漬される。その後に、回転多面鏡は、塗布液から取り出されて串ごとに回転させられる。所謂擬似的なスピンコートが鏡面に施されて、その後、回転多面鏡はは170℃程度の環境で焼成されている。   When a protective film such as amorphous fluororesin is applied to the rotary polygon mirror of Patent Document 2, as shown in Patent Document 4, the rotary polygon mirror is stacked and stabbed into a skewer and immersed in a coating solution. Is done. Thereafter, the rotary polygon mirror is taken out of the coating solution and rotated for each skewer. A so-called pseudo spin coating is applied to the mirror surface, and then the rotary polygon mirror is fired in an environment of about 170 ° C.

こうした焼成後に串から1つ1つの回転多面鏡を分離しようとする際に、重ね合わせた回転多面鏡は、当接する部分である程度の固着力で互いにくっついてしまっている。回転多面鏡同士が当接する面積が大きい程に、分離に要する力は大きく必要となり、分離は困難である。ヘラ等を差し込んで分離するにしても、あまりに大きな力が加わると差し込んだヘラなどの工具が破損したり、或いは、回転多面鏡自体に大きな力が加わって変形が生じ、鏡面品質に影響する虞がある。無理に剥がすと鏡面にキズをつけてしまい、感光体上でスポットが崩れて結像性能が低下する恐れもある。   When trying to separate each rotating polygonal mirror from the skewer after such firing, the overlapping rotary polygonal mirrors stick to each other with a certain amount of fixing force at the abutting portion. The larger the area where the rotating polygon mirrors are in contact with each other, the greater the force required for separation, and separation is difficult. Even if a spatula is inserted and separated, if too much force is applied, the inserted spatula or other tool may be damaged, or a large force may be applied to the rotating polygon mirror itself to cause deformation and affect the mirror surface quality. There is. If it is peeled off forcibly, the mirror surface may be scratched, and the spot on the photoconductor may collapse and the imaging performance may deteriorate.

また、特許文献2の回転多面鏡では、鏡面近傍では厚みが確保できていてワーク剛性は高いのだが、中央部分の肉を抜いても回転体としてのイナーシャは回転軸から遠ざかるほど影響が大きい。したがって、イナーシャは下がりにくく、回転体が所定の定格回転数に至るまでの所謂立ち上がり時間が下がらず、画像形成装置の最初の一枚の印字までに要する時間、所謂FPOT(First Print Out Time)が長くなる、という問題もある。   In the rotary polygon mirror disclosed in Patent Document 2, the thickness is secured in the vicinity of the mirror surface and the work rigidity is high. However, even if the center portion is removed, the inertia as the rotating body increases as the distance from the rotation axis increases. Therefore, the inertia is not easily lowered, and the so-called rise time until the rotating body reaches a predetermined rated rotation speed does not decrease, and the time required for printing the first sheet of the image forming apparatus, the so-called FPOT (First Print Out Time). There is also the problem of lengthening.

次に、特許文献3に記載の回転多面鏡は、回転多面鏡の表面及び裏面に多数本の溝が形成されて肉抜きされる。こうした溝を多く形成することは溝を深くすることと同様に、鏡面加工時のワーク剛性が低減し、又、鏡面の平面性が損なわれる。その他、遠心力による面変形量が増大してしまい、感光体上での結像性能や、上述のジッタ性能が悪化する虞があり、ひいては画像形成装置の印字品質低下に繋がる虞がある。   Next, the rotating polygonal mirror described in Patent Document 3 is formed with a large number of grooves on the front and back surfaces of the rotating polygonal mirror, and is thinned. Forming many such grooves reduces the rigidity of the workpiece during mirror surface processing, as well as deepening the grooves, and impairs the flatness of the mirror surface. In addition, the amount of surface deformation due to centrifugal force increases, and there is a possibility that the image forming performance on the photosensitive member and the above-described jitter performance are deteriorated, which may lead to a decrease in print quality of the image forming apparatus.

そこで、本発明は、積み重ねられた回転多面鏡同士の間では環状凸部で囲まれた領域に塗布液が浸入することを抑制し、環状凹部では、塗布液の浸入によるバランスウエイトの剥離が抑制される光偏向装置を提供することを課題とする。   Therefore, the present invention suppresses that the coating liquid enters the area surrounded by the annular convex portion between the stacked rotary polygon mirrors, and the annular concave portion suppresses separation of the balance weight due to the penetration of the coating liquid. It is an object of the present invention to provide an optical deflection device.

上記課題を解決するために、本発明の回転多面鏡は、回転軸の半径方向の端部に複数の反射面が形成された本体部を有し、前記本体部はバランスウェイトが塗布される前記回転軸方向に凹んだ凹部を備え、回転して前記複数の反射面で光ビームを偏向走査する回転多面鏡であって、回転湿式法により前記複数の反射面にフッ素樹脂が塗布される回転多面鏡において前記本体部は、前記回転軸の半径方向に関して記凹部よりも外側で前記複数の反射面よりも内側に前記回転軸方向に突出し上面が平坦環状凸部と、前記本体部の前記環状凸部の裏側の前記環状凸部に対応する位置に形成された平坦面と、前記回転軸の半径方向に関して前記環状凸部よりも外側に形成され、前記回転軸方向の肉厚が前記環状凸部よりも薄い薄肉部と、を備えることを特徴とする。
また、本発明の回転多面鏡の製造方法は、回転軸の半径方向の端部に複数の反射面が形成された本体部を有し、前記本体部は前記回転軸方向に凹んだ凹部を備え、回転して前記複数の反射面で光ビームを偏向走査する回転多面鏡の製造方法において、前記本体部は、前記回転軸の半径方向に関して前記凹部よりも外側で前記複数の反射面よりも内側に、前記回転軸方向に突出し上面が平坦な環状凸部と、前記本体部の前記環状凸部の裏側の前記環状凸部に対応する位置に形成された平坦面と、前記回転軸の半径方向に関して前記環状凸部よりも外側に形成され、前記回転軸方向の肉厚が前記環状凸部よりも薄い薄肉部と、を備え、前記本体部を前記回転軸方向で重ねた状態で回転湿式法により前記複数の反射面にフッ素樹脂が塗布した後、前記凹部にバランスウェイトが塗布されることを特徴とする。
In order to solve the above-mentioned problem, the rotary polygon mirror of the present invention has a main body portion in which a plurality of reflecting surfaces are formed at a radial end portion of a rotation shaft, and the main body portion is coated with a balance weight. A rotary polygon mirror having a concave portion recessed in a rotation axis direction and rotating and deflecting and scanning a light beam with the plurality of reflection surfaces, wherein the plurality of reflection surfaces are coated with fluororesin by a rotary wet method in the mirror, the main body portion, said Ki凹 portion inner than the plurality of reflecting surfaces outside than before with respect to the radial direction of the rotating shaft, the rotating shaft direction projecting upper surface flat annular protrusion, said body a flat surface which is made form the positions corresponding to the annular protrusion of the back side of the annular projection parts are formed on the outer side than the annular projection with respect to the radial direction of the rotary shaft, the rotation axis direction Bei wall thickness and a thin walled portion than the annular projection And wherein the Rukoto.
The rotating polygon mirror manufacturing method of the present invention includes a main body portion having a plurality of reflecting surfaces formed at the radial end portion of the rotating shaft, and the main body portion includes a concave portion recessed in the rotating shaft direction. In the manufacturing method of the rotary polygon mirror that rotates and deflects and scans the light beam with the plurality of reflection surfaces, the main body portion is outside the concave portion and inside the plurality of reflection surfaces in the radial direction of the rotation axis. An annular convex portion protruding in the direction of the rotational axis and having a flat upper surface, a flat surface formed at a position corresponding to the annular convex portion on the back side of the annular convex portion of the main body portion, and a radial direction of the rotational shaft And a thin-walled portion formed on the outer side of the annular convex portion and having a thinner thickness in the rotational axis direction than the annular convex portion, and the rotary wet method in a state where the main body portion is overlapped in the rotational axis direction. After the fluororesin is applied to the plurality of reflective surfaces, Wherein the balance weight is applied to the recess.

本発明によれば、基準肉厚部の表面で環状凸部が環状凹部よりも回転中心から遠い位置に形成されるから、環状凹部にバランスウエイトが塗布された後に回転多面鏡が塗布液に浸漬される場合には、塗布液が環状凹部に浸入するのを環状凸部は阻むことができる。特に、環状凸部の上面及び基準肉厚部の裏面が平坦に形成されることから、回転多面鏡を複数枚で積み重ねると、環状凸部の上面及び基準肉厚部の裏面が確実に接触することができる。環状凸部で囲まれた領域は閉塞される。したがって、回転多面鏡同士の間では環状凸部で囲まれた領域に塗布液が浸入することは抑制される。その結果、環状凹部では、塗布液の浸入によるバランスウエイトの剥離は抑制される。   According to the present invention, since the annular convex portion is formed at a position farther from the rotation center than the annular concave portion on the surface of the reference thick portion, the rotary polygon mirror is immersed in the coating liquid after the balance weight is applied to the annular concave portion. In this case, the annular convex portion can prevent the coating liquid from entering the annular concave portion. In particular, since the upper surface of the annular convex portion and the back surface of the reference thick portion are formed flat, the upper surface of the annular convex portion and the rear surface of the reference thick portion are surely contacted when a plurality of rotating polygon mirrors are stacked. be able to. The area surrounded by the annular protrusion is closed. Accordingly, it is possible to prevent the coating liquid from entering the region surrounded by the annular convex portion between the rotating polygon mirrors. As a result, in the annular recess, separation of the balance weight due to the penetration of the coating liquid is suppressed.

(第1実施形態)
図1は、光学走査装置を備える画像形成装置110の構成を示す断面図である。図1に示すように、画像情報に基づいて変調されたレーザビームLは、光学箱131から出射し、『感光体』である感光ドラム132の面上を走査して潜像を形成する。この潜像は、一次帯電器133によって一様に帯電している感光ドラム132の面上に形成され、現像器134によって可視像化され、感光ドラム132面上に形成された画像が順に転写帯電ローラ135によって転写材136の上に転写されて画像が形成される。転写材136の上に形成された画像は、定着器137によって熱定着された後、排出ローラ138等によって装置外に出力される。なお、感光ドラム132、一次帯電器133、転写帯電ローラ135を含んで『画像形成部』は構成される。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a configuration of an image forming apparatus 110 including an optical scanning device. As shown in FIG. 1, a laser beam L modulated based on image information is emitted from an optical box 131 and scans the surface of a photosensitive drum 132 which is a “photosensitive member” to form a latent image. This latent image is formed on the surface of the photosensitive drum 132 that is uniformly charged by the primary charger 133, visualized by the developing device 134, and the images formed on the surface of the photosensitive drum 132 are sequentially transferred. The image is formed by being transferred onto the transfer material 136 by the charging roller 135. The image formed on the transfer material 136 is heat-fixed by the fixing device 137 and then output to the outside of the apparatus by the discharge roller 138 and the like. The “image forming unit” includes the photosensitive drum 132, the primary charger 133, and the transfer charging roller 135.

図2は、光学走査装置111の構成を示す斜視図である。『光源装置』であるレーザユニット41より取り出されたコリメート光は、光偏向装置(「スキャナモータユニット」ともいう)1に具備され回転する回転多面鏡(「ポリゴンミラー」ともいう)3により反射偏向走査される。そして、コリメート光は、順にFθレンズ43、折り返しミラー44を通過して最終的には感光ドラム132の表面に到達する。なお、Fθレンズ43は結像光学系に含まれる。コリメート光は、感光ドラム132の幅内で最適に絞り込んだビームとして走査されるようにFθレンズ43により成形される。これと共に、コリーメント光は、走査ビームの一部はBDミラー45で反射されBDセンサ46により光検知し、BDセンサ46からの出力信号を基準に走査回毎の書き込み信号を同期させ、ビームの書き込み位置ズレを防止する作用もなされている。また、回転多面鏡3の反射面の倒れ誤差による感光ドラム132上の副走査方向(光軸方向とビームの走査方向の両方に直角をなす方向)のビームの位置ズレを防止するために、シリンダレンズ47が用いられる。シリンダレンズ47は、レーザユニット41から取り出されたビームを回転多面鏡3の反射面上では副走査方向に圧縮して結像した線像とする。これと共に、シリンダレンズ47は、回転多面鏡3の反射面と感光ドラム132の面上は副走査方向では共役関係とする構成が取られている。更にこれら構成部材は図示しない光学箱131に組みつけられており、光学箱131には基準ピン等が具備され寸法公差内に入るように精度良く組付がなされている。   FIG. 2 is a perspective view showing the configuration of the optical scanning device 111. The collimated light extracted from the laser unit 41, which is a “light source device”, is reflected and deflected by a rotating polygon mirror (also referred to as “polygon mirror”) 3 provided in an optical deflection device (also referred to as “scanner motor unit”) 1. Scanned. Then, the collimated light sequentially passes through the Fθ lens 43 and the folding mirror 44 and finally reaches the surface of the photosensitive drum 132. The Fθ lens 43 is included in the imaging optical system. The collimated light is shaped by the Fθ lens 43 so as to be scanned as a beam that is optimally narrowed within the width of the photosensitive drum 132. At the same time, a part of the scanning beam is reflected by the BD mirror 45 and is detected by the BD sensor 46, and the writing signal for each scanning time is synchronized with the output signal from the BD sensor 46 as a reference. There is also an effect of preventing the write position deviation. In addition, in order to prevent the displacement of the beam in the sub-scanning direction (the direction perpendicular to both the optical axis direction and the beam scanning direction) on the photosensitive drum 132 due to the tilt error of the reflecting surface of the rotary polygon mirror 3, A lens 47 is used. The cylinder lens 47 compresses the beam extracted from the laser unit 41 on the reflection surface of the rotary polygon mirror 3 in the sub-scanning direction to form a line image. At the same time, the cylinder lens 47 has a configuration in which the reflecting surface of the rotary polygon mirror 3 and the surface of the photosensitive drum 132 have a conjugate relationship in the sub-scanning direction. Further, these components are assembled in an optical box 131 (not shown), and the optical box 131 is provided with a reference pin or the like, and is assembled with high accuracy so as to fall within a dimensional tolerance.

図3は、本発明の第1実施形態に係る回転多面鏡3を備える光偏向装置1の断面図である。図3に示されるように、光偏向装置1は、図示しない光源からの光ビーム2を図示しない走査レンズへ反射する回転多面鏡3を備える。また、光偏向装置1は、回転多面鏡3を搭載し回転多面鏡3と一体に回転するフランジ4と、回転多面鏡3をフランジ4に押圧固定するバネ5と、バネ5とフランジ4を締結するためのビス6とを備える。さらに、光偏向装置1は、フランジ4に圧入等で一体に結合されて回転中心Pに沿う回転軸7と、加締めなどによってフランジ4に一体に結合されたロータフレーム8と、駆動用コイル9からなるステータ10とを備える。また、光偏向装置1は、回転軸7を保持する流体軸受12と、ステータ10と流体軸受12が一体に結合された回路基板13とを備える。こうした光偏向装置1では、駆動回路14から駆動電流が供給され、ステータ10が励磁されることによって、一体に結合された回転軸7、ロータフレーム8、フランジ4、回転多面鏡3、バネ5、ビス6を有する『回転体』が回転する。このうち、回転軸7、ロータフレーム8、フランジ4、バネ5、ビス6を有して『回転部材』が構成され、この『回転部材』及び回転多面鏡3は一体的に回転する。なお、『回転部材』や『回転体』を構成する部材は、前述の部材の全部でなくとも、一部を含むのみでも良い。   FIG. 3 is a cross-sectional view of the optical deflection apparatus 1 including the rotary polygon mirror 3 according to the first embodiment of the present invention. As shown in FIG. 3, the light deflection apparatus 1 includes a rotating polygon mirror 3 that reflects a light beam 2 from a light source (not shown) to a scanning lens (not shown). Further, the optical deflecting device 1 includes a rotating polygon mirror 3 and a flange 4 that rotates integrally with the rotating polygon mirror 3, a spring 5 that presses and fixes the rotating polygon mirror 3 to the flange 4, and the spring 5 and the flange 4 are fastened. And a screw 6 for the purpose. Further, the optical deflecting device 1 includes a rotating shaft 7 that is integrally coupled to the flange 4 by press-fitting or the like and extends along the rotation center P, a rotor frame 8 that is integrally coupled to the flange 4 by caulking or the like, and a driving coil 9. The stator 10 which consists of these. In addition, the optical deflection apparatus 1 includes a fluid bearing 12 that holds the rotating shaft 7, and a circuit board 13 that is integrally coupled with the stator 10 and the fluid bearing 12. In such an optical deflecting device 1, a driving current is supplied from the driving circuit 14 and the stator 10 is excited, whereby the rotating shaft 7, the rotor frame 8, the flange 4, the rotating polygon mirror 3, the spring 5, A “rotating body” having screws 6 rotates. Among them, the “rotating member” is configured by including the rotating shaft 7, the rotor frame 8, the flange 4, the spring 5, and the screw 6, and the “rotating member” and the rotating polygon mirror 3 rotate integrally. Note that the “rotating member” and the members constituting the “rotating body” may not include all of the above-described members, but may include only a part thereof.

図4は、回転多面鏡3の斜視図である。図4に示されるように、回転多面鏡3は、所定の肉厚で形成される基準肉厚部3a(本体部)を備える。回転多面鏡3の表面には、バランス修正用の環状かつ凹状の環状凹部15及び環状凹部16が形成されている。環状凹部15が内側の凹部であり、環状凹部16が外側の凹部である。環状凹部15及び環状凹部16は基準肉厚部3aよりも薄い肉厚で形成される。 FIG. 4 is a perspective view of the rotary polygon mirror 3. As shown in FIG. 4, the rotary polygon mirror 3 includes a reference thickness portion 3 a (main body portion) formed with a predetermined thickness. On the surface of the rotary polygon mirror 3, an annular concave portion 15 and an annular concave portion 16 for correcting balance are formed. The annular recess 15 is an inner recess, and the annular recess 16 is an outer recess. The annular recess 15 and the annular recess 16 are formed with a thickness thinner than the reference thickness portion 3a.

回転多面鏡3やロータフレーム8を含む『回転体』の振動を低減するためのバランス修正は以下のように行われる。『回転体』を回転させることにより発生する動的不均衡(アンバランス)を測定器により測定する。次に測定されたアンバランスに基づき、回転多面鏡3では、環状凹部15に紫外線硬化樹脂製のバランスウエイト17が塗布され、環状凹部16に紫外線硬化樹脂製のバランスウエイト18が塗布される。こうしたバランスウエイト17、18の付与により、『回転体』の質量のバランスが修正される。バランスウエイト17とバランスウエイト18には互いに異なる比重のものが用いられて、バランスが微調整及び粗調整される。   The balance correction for reducing the vibration of the “rotating body” including the rotating polygon mirror 3 and the rotor frame 8 is performed as follows. A dynamic imbalance (unbalance) generated by rotating the “rotor” is measured by a measuring instrument. Next, based on the measured unbalance, in the rotary polygon mirror 3, a balance weight 17 made of ultraviolet curable resin is applied to the annular recess 15, and a balance weight 18 made of UV curable resin is applied to the annular recess 16. By providing the balance weights 17 and 18, the balance of the mass of the “rotating body” is corrected. Balance weights 17 and balance weights 18 having different specific gravities are used to finely and roughly adjust the balance.

また、回転多面鏡3の基準肉厚部3aの表面には、バランス修正用の環状かつ凸状の環状凸部19が形成されている。環状凸部19は、環状凹部15や環状凹部16よりも『回転部』の回転中心Pから遠い位置に形成される。すなわち、環状凸部19は環状凹部16の外周側に形成される。環状凸部19の上面20は平坦に形成される。また、環状凸部19の上面20は回転多面鏡3の表面上で最も高い最上面として形成される。   Further, on the surface of the reference thick portion 3a of the rotary polygon mirror 3, an annular and convex annular convex portion 19 for correcting the balance is formed. The annular convex portion 19 is formed at a position farther from the rotational center P of the “rotating portion” than the annular concave portion 15 and the annular concave portion 16. That is, the annular convex portion 19 is formed on the outer peripheral side of the annular concave portion 16. The upper surface 20 of the annular convex part 19 is formed flat. Further, the upper surface 20 of the annular convex portion 19 is formed as the highest uppermost surface on the surface of the rotary polygon mirror 3.

図5は、回転多面鏡3の回転湿式成膜方法を説明する図である。図5に示されるように、回転多面鏡3の反射面21には、反射面保護のために、回転湿式成膜方法により非晶質フッ素樹脂膜が施される。回転多面鏡3が積み重ねられて串22に串刺しされて、この複数の回転多面鏡3は、非晶質フッ素樹脂の塗布液23に浸漬された後に、塗布液23から退避される。その後に、複数の回転多面鏡3は串ごと回転され、所謂擬似的なスピンコートが反射面21に施され、最終的に170℃程度の環境で焼成される。   FIG. 5 is a diagram for explaining a rotating wet film forming method of the rotating polygon mirror 3. As shown in FIG. 5, an amorphous fluororesin film is applied to the reflecting surface 21 of the rotating polygon mirror 3 by a rotating wet film forming method for protecting the reflecting surface. The rotary polygon mirrors 3 are stacked and skewered on the skewer 22, and the plurality of rotary polygon mirrors 3 are immersed in the amorphous fluororesin coating solution 23 and then withdrawn from the coating solution 23. Thereafter, the plurality of rotary polygon mirrors 3 are rotated together with the skewer, so-called pseudo spin coating is applied to the reflection surface 21, and finally baked in an environment of about 170 ° C.

図6は、積み重ねられて串刺しされた回転多面鏡3の構成を示す断面図である。図6に示されるように、回転多面鏡3の基準肉厚部3aの裏面には、平坦な平坦面3cが形成される。なお、少なくとも『回転部』の回転中心Pから環状凸部19までの距離と同一距離の位置に平坦な平坦面3cが形成されれば良い。また、ここで、「平坦な面」とは、鏡面仕上げの有無を問わず、表面が平滑もしくはほぼ平滑な面のことをいう。本実施形態では、環状凸部19の上面20は、鏡面仕上げを施されていないほぼ平滑な平坦面であり、基準肉厚部3aの裏面に形成された平坦面3cは、鏡面仕上げを施された平滑な面である。   FIG. 6 is a cross-sectional view showing the configuration of the rotary polygon mirror 3 stacked and skewered. As shown in FIG. 6, a flat flat surface 3 c is formed on the back surface of the reference thick portion 3 a of the rotary polygon mirror 3. The flat surface 3c may be formed at least at the same distance as the distance from the rotation center P of the “rotating part” to the annular convex part 19. Here, the term “flat surface” refers to a surface having a smooth or almost smooth surface regardless of the presence or absence of mirror finish. In the present embodiment, the upper surface 20 of the annular convex portion 19 is a substantially smooth flat surface that is not mirror-finished, and the flat surface 3c formed on the back surface of the reference thick portion 3a is mirror-finished. It is a smooth surface.

また、複数の回転多面鏡3は環状凸部19が上に向けられて積み重ねられる。各々の回転多面鏡3には中央に孔3bが形成されていることから、この複数の孔3bに対して串22が差し込まれる。そして、複数の回転多面鏡3は、串22の一端部側と他端部側とから所定の圧力が加えられ、回転多面鏡3同士の間では、環状凸部19で囲まれる領域が閉塞される。   The plurality of rotary polygon mirrors 3 are stacked with the annular convex portion 19 facing upward. Since each rotary polygon mirror 3 has a hole 3b formed in the center, skewers 22 are inserted into the plurality of holes 3b. A predetermined pressure is applied to the plurality of rotary polygon mirrors 3 from one end side and the other end side of the skewer 22, and the region surrounded by the annular convex portion 19 is blocked between the rotary polygon mirrors 3. The

図7は、図6のA部の拡大断面図である。図7に示されるように、成膜時に積み重ねた回転多面鏡3同士の当接部24には、塗布液23の液面高さや浸漬量が十分に管理されても、所謂毛細管現象のように塗布液23が浸入してしまうことがある。塗布液23の塗布状態は図中の太線に示される。また、塗布液23の浸入経路は矢印Bで示される。   FIG. 7 is an enlarged cross-sectional view of a portion A in FIG. As shown in FIG. 7, the contact portion 24 between the rotary polygon mirrors 3 stacked during the film formation is similar to the so-called capillary phenomenon even if the liquid surface height and the immersion amount of the coating liquid 23 are sufficiently controlled. The coating liquid 23 may enter. The application state of the application liquid 23 is indicated by a thick line in the figure. Further, the penetration path of the coating liquid 23 is indicated by an arrow B.

串22に固定された複数の回転多面鏡3が塗布液23に浸漬されると、回転多面鏡3同士の間に向かう塗布液23は、環状凸部19で遮断される。また、塗布液23が環状凸部19を超えて浸入しようとしても、塗布液23は、塗布液23自身の表面張力で環状凸部19の陵部25で停滞する。したがって、塗布液23が環状凹部16に到達することはない。すなわち、誤って環状凹部16、15に入った非晶質フッ素樹脂膜の上にバランスウエイト18を塗布するといった虞は皆無である。そのために、紫外線硬化後のバランスウエイト18が回転多面鏡3の回転中に剥離することはなく、『回転体』の質量のバランス崩れに伴う振動や騒音の発生は抑制される。   When the plurality of rotary polygon mirrors 3 fixed to the skewer 22 are immersed in the coating liquid 23, the coating liquid 23 that is directed between the rotary polygon mirrors 3 is blocked by the annular convex portion 19. Further, even if the coating liquid 23 tries to enter beyond the annular convex portion 19, the coating liquid 23 stagnates at the crest portion 25 of the annular convex portion 19 due to the surface tension of the coating liquid 23 itself. Therefore, the coating liquid 23 does not reach the annular recess 16. That is, there is no possibility of applying the balance weight 18 on the amorphous fluororesin film that has entered the annular recesses 16 and 15 by mistake. For this reason, the balance weight 18 after UV curing is not peeled off during the rotation of the rotary polygon mirror 3, and the generation of vibration and noise associated with the balance loss of the mass of the “rotor” is suppressed.

また、回転多面鏡3には、回転中心Pから見て環状凸部19よりも遠い位置に、環状凸部19よりも『薄い肉厚の部位』である外縁側部位40(薄肉部)が形成される。すなわち、回転多面鏡3の半径方向外側の外縁側部位40は、環状凸部19の上面20よりも低い薄肉部として形成される。したがって、従来例(例えば、前述の特許文献1乃至3)の回転多面鏡を用いた場合に比較して、回転多面鏡3を塗布液23に浸漬させたときの液飛び等による浸入は、容易かつ確実に回避される。したがって、歩留まりが向上するとともに、塗布液23の液面高さ等の成膜工程の管理項目値が緩和されるので、製造コストの低減が可能である。 Further, the rotary polygon mirror 3 is formed with an outer edge side portion 40 (thin wall portion) which is a “thin wall portion” thinner than the annular convex portion 19 at a position farther from the annular convex portion 19 when viewed from the rotation center P. Is done. That is, the outer edge side portion 40 on the radially outer side of the rotary polygon mirror 3 is formed as a thin portion lower than the upper surface 20 of the annular convex portion 19. Therefore, in comparison with the case of using the rotary polygon mirror of the conventional example (for example, the above-mentioned Patent Documents 1 to 3), the penetration by the liquid splash when the rotary polygon mirror 3 is immersed in the coating liquid 23 is easy. And it is definitely avoided. Accordingly, the yield is improved, and the management item values of the film forming process such as the liquid level of the coating liquid 23 are alleviated, so that the manufacturing cost can be reduced.

また、環状凸部19は回転多面鏡3の剛性アップにも寄与している。理由としては以下のことが考えられる。剛性が低い回転多面鏡が加工機に保持されると、回転多面鏡は変形(ソリ)する。変形状態のまま切削加工が施されると、高精度に反射面が仕上げられても、加工機の保持が開放されると、回転多面鏡の変形が元に戻ることにより反射面の平面性が悪化する。しかしながら、本実施形態のように、回転多面鏡3に環状凸部19が形成されると、剛性が強められることから、反射面21を切削加工する際に剛性不足に伴う反射面21の平面性の悪化は生じない。   Further, the annular convex portion 19 also contributes to increasing the rigidity of the rotary polygon mirror 3. The reason is considered as follows. When the rotating polygonal mirror having low rigidity is held by the processing machine, the rotating polygonal mirror is deformed (warped). When cutting is performed in a deformed state, even if the reflecting surface is finished with high accuracy, if the holding of the processing machine is released, the deformation of the rotating polygon mirror will return to its original shape, and the flatness of the reflecting surface will be reduced. Getting worse. However, since the rigidity is enhanced when the annular convex portion 19 is formed on the rotary polygon mirror 3 as in this embodiment, the flatness of the reflecting surface 21 due to insufficient rigidity when the reflecting surface 21 is cut. There is no deterioration.

さらに、環状凸部19が形成されることによる回転多面鏡3の剛性アップにより、回転多面鏡3が高速回転時に発生する遠心力に伴う反射面21の平面性の悪化は抑制される。したがって、画像形成装置110内の感光ドラム132上における結像性能やジッタ性能が向上し、高品質な画像を提供することができる。   Furthermore, due to the increased rigidity of the rotary polygon mirror 3 due to the formation of the annular convex portion 19, the flatness of the reflecting surface 21 due to the centrifugal force generated when the rotary polygon mirror 3 rotates at high speed is suppressed. Therefore, the imaging performance and jitter performance on the photosensitive drum 132 in the image forming apparatus 110 are improved, and a high-quality image can be provided.

また、回転多面鏡3は、反射面21よりも回転軸7の回転中心Pの側に環状凸部19を備える。外縁側部位40は、環状凸部19の上面20よりも薄肉に形成されている。したがって、回転多面鏡の外縁側部位40が薄肉に形成されておらず厚肉に形成される構成(例えば、前述の特許文献2の構成)と比較してイナーシャは小さく抑えられる。その結果、『回転体』の立ち上がり時間は短縮され、また、起動電流や定常電流の低減される。加えて、消費電力が小さくFPOT(First Print Out Time)が短い高性能な画像形成装置が提供される。   Further, the rotary polygon mirror 3 includes an annular convex portion 19 on the side of the rotation center P of the rotation shaft 7 with respect to the reflection surface 21. The outer edge side portion 40 is formed thinner than the upper surface 20 of the annular convex portion 19. Therefore, the inertia is suppressed to be small as compared with a configuration in which the outer edge side portion 40 of the rotary polygon mirror is not formed thin but formed thick (for example, the configuration of Patent Document 2 described above). As a result, the rise time of the “rotor” is shortened, and the starting current and the steady current are reduced. In addition, a high-performance image forming apparatus with low power consumption and short FPOT (First Print Out Time) is provided.

(第2実施形態)
図8は、本発明の第2実施形態に係る回転多面鏡30の斜視図である。図9は、積み重ねられて串刺しされた回転多面鏡30の構成を示す断面図である。図10は、図9のC部の拡大断面図である。第2実施形態の回転多面鏡30が第1実施形態の回転多面鏡3と異なる点は、回転多面鏡30では、環状凹部15及び環状凹部16の外周側に環状凸部31が形成され、この環状凸部31の最上面には、断面視で凹状の環状溝32が円周方向に形成される点である。環状溝32は浅く形成される。第2実施形態の回転多面鏡30の構成の中で、第1実施形態の回転多面鏡3の構成と同一の部材に関しては、同一の符号を付し、適宜その説明を省略する。
(Second Embodiment)
FIG. 8 is a perspective view of the rotary polygon mirror 30 according to the second embodiment of the present invention. FIG. 9 is a cross-sectional view illustrating a configuration of the rotary polygon mirror 30 that is stacked and skewered. 10 is an enlarged cross-sectional view of a portion C in FIG. The rotating polygon mirror 30 of the second embodiment is different from the rotating polygon mirror 3 of the first embodiment in that the rotating polygon mirror 30 has an annular convex portion 31 formed on the outer peripheral side of the annular concave portion 15 and the annular concave portion 16. The uppermost surface of the annular convex portion 31 is that a concave annular groove 32 is formed in the circumferential direction in a sectional view. The annular groove 32 is formed shallow. In the configuration of the rotary polygon mirror 30 of the second embodiment, the same members as those in the configuration of the rotary polygon mirror 3 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.

図9に示されるように、複数の回転多面鏡30が積み重ねられ、孔3bに串22が挿入される。そして、第1実施形態の場合と同様に、回転多面鏡30が非晶質フッ素樹脂製の塗布液23を反射面に施す。その後、回転多面鏡30は、170℃適度の環境で焼成される。   As shown in FIG. 9, a plurality of rotary polygon mirrors 30 are stacked, and skewers 22 are inserted into the holes 3b. As in the case of the first embodiment, the rotary polygon mirror 30 applies the coating liquid 23 made of amorphous fluororesin to the reflecting surface. Thereafter, the rotary polygon mirror 30 is fired in an appropriate environment at 170 ° C.

図10に示されるように、塗布液23は、前述のように、所謂毛細管現象にて環状凸部31に微小量ながら浸入する。そのために、焼成後の回転多面鏡30同士は環状凸部31の個所で互いに僅かに固着している。塗布液23の塗布状態は、図10の中で太線にて示してある。塗布液23の浸入経路は、図10の矢印Dにて示してある。   As shown in FIG. 10, the coating solution 23 enters the annular convex portion 31 with a minute amount by the so-called capillary phenomenon as described above. Therefore, the rotary polygon mirrors 30 after firing are slightly fixed to each other at the annular convex portion 31. The application state of the coating liquid 23 is indicated by a thick line in FIG. The infiltration path of the coating liquid 23 is indicated by an arrow D in FIG.

こうした構成によれば、第1実施形態の回転多面鏡3と同様の効果が得られる。加えて、環状凸部31の上面に環状溝32が形成されることで、隣り合う回転多面鏡30同士の接触面積が可能な限り小さくされているので、第1実施形態の回転多面鏡3の場合と比較して、回転多面鏡30同士の取り外しが容易である。すなわち、回転多面鏡30の取り外しのために大型な工具を用意する必要がなく、製造コスト、装置コストは低減される。また、大きな力で取り外す必要がないので、回転多面鏡30が変形することは無く、反射面34にキズが付く虞はない。したがって、結像性能やジッタ性能に優れた高品質な画像が提供される。   According to such a configuration, the same effect as the rotary polygon mirror 3 of the first embodiment can be obtained. In addition, since the annular groove 32 is formed on the upper surface of the annular convex portion 31, the contact area between the adjacent rotary polygon mirrors 30 is made as small as possible, so that the rotary polygon mirror 3 of the first embodiment can be reduced. Compared to the case, the rotary polygon mirrors 30 can be easily detached. That is, it is not necessary to prepare a large tool for removing the rotary polygon mirror 30, and the manufacturing cost and the apparatus cost are reduced. Further, since it is not necessary to remove with a large force, the rotary polygon mirror 30 is not deformed, and there is no possibility that the reflecting surface 34 is damaged. Therefore, a high-quality image having excellent imaging performance and jitter performance is provided.

また僅かながら、当接部35に浸入した塗布液23は環状溝32にて確保される。したがって、第1実施形態の回転多面鏡3の場合よりも、より効果的に回転多面鏡30の中央部36さらには環状凹部15及び環状凹部16への塗布液23の浸入が抑制され、バランスウエイト17、18の剥離のない信頼性の高い光偏向装置が提供される。   In addition, the coating liquid 23 that has entered the contact portion 35 is secured in the annular groove 32 slightly. Therefore, infiltration of the coating liquid 23 into the central portion 36 of the rotary polygon mirror 30, and further to the annular recess 15 and the annular recess 16 is more effectively suppressed than in the case of the rotary polygon mirror 3 of the first embodiment, and the balance weight. A highly reliable optical deflecting device without separation of 17 and 18 is provided.

前述した第1及び第2実施形態の回転多面鏡3、30によれば、基準肉厚部3aの表面で環状凸部19が環状凹部15、16よりも回転中心Pから遠い位置に形成される。このことから、環状凹部15、16にバランスウエイト17、18が塗布された後に、回転多面鏡3、30が塗布液23に浸漬される場合には、塗布液23が環状凹部15、16に浸入するのを環状凸部19は阻むことをができる。特に、環状凸部19の上面20及び基準肉厚部3aの裏面に平坦な平坦面3cが形成されることから、回転多面鏡3、30を複数枚で積み重ねると、環状凸部19の上面20及び基準肉厚部3aの裏面の平坦面3cが確実に接触することができる。環状凸部19で囲まれた領域は閉塞される。したがって、回転多面鏡3、30同士の間では環状凸部19で囲まれた領域に塗布液23が浸入することは抑制される。その結果、環状凹部15、16では、塗布液23の回り込み浸入によるバランスウエイト17、18の剥離は抑制される。また、バランスウエイト17、18の剥離が抑制されることから、回転多面鏡3、30は容易に加工成膜される。   According to the rotary polygon mirrors 3 and 30 of the first and second embodiments described above, the annular convex portion 19 is formed at a position farther from the rotational center P than the annular concave portions 15 and 16 on the surface of the reference thick portion 3a. . Therefore, when the rotary polygon mirrors 3 and 30 are immersed in the coating solution 23 after the balance weights 17 and 18 are applied to the annular recesses 15 and 16, the coating solution 23 enters the annular recesses 15 and 16. The annular protrusion 19 can prevent this from happening. In particular, since a flat flat surface 3c is formed on the upper surface 20 of the annular convex portion 19 and the back surface of the reference thick portion 3a, the upper surface 20 of the annular convex portion 19 is obtained when a plurality of rotating polygon mirrors 3 and 30 are stacked. And the flat surface 3c of the back surface of the reference | standard thickness part 3a can contact reliably. The area surrounded by the annular projection 19 is closed. Therefore, the coating liquid 23 is prevented from entering the region surrounded by the annular convex portion 19 between the rotary polygon mirrors 3 and 30. As a result, in the annular recesses 15 and 16, peeling of the balance weights 17 and 18 due to the intrusion of the coating liquid 23 is suppressed. Further, since peeling of the balance weights 17 and 18 is suppressed, the rotary polygon mirrors 3 and 30 are easily processed and formed.

隣接する一方の回転多面鏡3、30の環状凸部19、31が他方の回転多面鏡3、30の基準肉厚部3aの裏面の平坦面3cに当接したまま塗布液23に浸漬(積層状態で成膜)されて焼成する場合、接着個所が環状凸部19、31の当接部24、35に限定される。その結果、串22から分離するときに、回転多面鏡3、30同士は分離され易い。   The annular convex portions 19 and 31 of the adjacent one of the rotary polygon mirrors 3 and 30 are immersed in the coating solution 23 while being in contact with the flat surface 3c on the back surface of the reference thick portion 3a of the other rotary polygon mirror 3 and 30 (lamination). When the film is formed and fired, the bonding portion is limited to the contact portions 24 and 35 of the annular convex portions 19 and 31. As a result, when separating from the skewer 22, the rotary polygon mirrors 3 and 30 are easily separated.

これらのことから、画像形成装置110として高品質高速印字を可能とし、その回転多面鏡3、30は加工成膜しやすく、製造コストを低減してひいては装置コストも低減することができる。   For these reasons, the image forming apparatus 110 can perform high-quality and high-speed printing, and the rotary polygon mirrors 3 and 30 can be easily processed and formed, thereby reducing the manufacturing cost and the apparatus cost.

さらに、環状凸部19、31が形成されることから、回転多面鏡3、30には十分な剛性が確保される。その結果、高速回転時の面変形等は抑えられる。   Furthermore, since the annular convex portions 19 and 31 are formed, sufficient rigidity is ensured for the rotary polygon mirrors 3 and 30. As a result, surface deformation during high-speed rotation can be suppressed.

回転中心Pから見て環状凸部19、31よりも遠い位置に、環状凸部19、31よりも薄い肉厚の外縁側部位40が形成されることから、回転多面鏡3、30の質量は低減される。その結果、回転多面鏡3、30が回転する場合に、遠心力は低減される。同時に、質量が低減されることから、回転多面鏡3、30が回転する場合に、騒音、振動、定常電流、立ち上がり時間及びジッタが低減されると共に、結像性能が向上し、高性能かつ安価な光偏向装置が提供される。特に、最小限のイナーシャとなる形状によって装置の立ち上がり時間が最小限に抑えられる。   Since the outer edge side portion 40 having a smaller thickness than the annular projections 19 and 31 is formed at a position farther from the annular projections 19 and 31 when viewed from the rotation center P, the mass of the rotary polygon mirrors 3 and 30 is Reduced. As a result, the centrifugal force is reduced when the rotary polygon mirrors 3 and 30 rotate. At the same time, since the mass is reduced, noise, vibration, steady current, rise time and jitter are reduced when the rotary polygon mirrors 3 and 30 are rotated, and the imaging performance is improved, which is high performance and inexpensive. An optical deflecting device is provided. In particular, the rise time of the device is minimized by the shape that results in the minimum inertia.

環状凸部19、31の上面20、31aが回転多面鏡3、30の表面上で最も高いことから、複数の回転多面鏡3、30が積み重ねられた場合には、環状凸部19は、積まれて隣接する他の回転多面鏡3、30の裏面の平坦面3cに確実に接触することができる。なお、上面31aは図8に示される。   Since the upper surfaces 20 and 31a of the annular convex portions 19 and 31 are the highest on the surfaces of the rotary polygon mirrors 3 and 30, when the plurality of rotary polygon mirrors 3 and 30 are stacked, the annular convex portion 19 is not stacked. It is possible to reliably contact the flat surface 3c on the back surface of the other rotary polygon mirrors 3 and 30 that are rarely adjacent to each other. The upper surface 31a is shown in FIG.

前述した第2実施形態の回転多面鏡30では、環状凸部31の最上面である上面31aには断面視で凹状の環状溝32が円周方向に形成される。このことから、複数の回転多面鏡30を積み重ねて塗布液23に浸漬した後に、複数の回転多面鏡30同士を取り外す場合には、回転多面鏡30同士の当接部35の当接面積は狭められる。その結果、回転多面鏡30同士は剥がれ易くなる。また、図10に示されるように、当接部35は、断面視で二股に分かれる。このことから、同一幅の当接部35を設けるならば、環状凸部31の幅を広く形成して、環状凸部31の上面に環状溝32を付与した方が、塗布液23の浸入は抑制される。   In the rotary polygon mirror 30 of the second embodiment described above, a concave annular groove 32 in the circumferential direction is formed in the circumferential direction on the upper surface 31a which is the uppermost surface of the annular convex portion 31. Therefore, when the plurality of rotary polygon mirrors 30 are removed after being stacked and immersed in the coating solution 23, the contact area of the contact portion 35 between the rotary polygon mirrors 30 is narrowed. It is done. As a result, the rotary polygon mirrors 30 are easily peeled off. Further, as shown in FIG. 10, the contact portion 35 is divided into two forks in a cross-sectional view. Therefore, if the contact portion 35 having the same width is provided, the intrusion of the coating liquid 23 is more effective when the annular protrusion 31 is formed wider and the annular groove 32 is provided on the upper surface of the annular protrusion 31. It is suppressed.

なお本発明は上述の第1実施形態及び第2実施形態の構成に限定されず、環状凹部15、16の個数および形状は問わない。また環状溝32の形状はいかなる形状でもよく、また環状でなくてもよい。また、環状凸部19、31は環状凹部16の外側にあれば個数および形状は限定されない。当然のことながら反射面21、34の面数はいくつでも良いことは言うまでもない。   In addition, this invention is not limited to the structure of the above-mentioned 1st Embodiment and 2nd Embodiment, The number and shape of the annular recessed parts 15 and 16 are not ask | required. The shape of the annular groove 32 may be any shape and may not be annular. The number and shape of the annular protrusions 19 and 31 are not limited as long as they are outside the annular recess 16. Needless to say, any number of reflecting surfaces 21 and 34 may be used.

光学走査装置を備える画像形成装置の構成を示す断面図である。It is sectional drawing which shows the structure of an image forming apparatus provided with an optical scanning device. 光学走査装置の構成を示す斜視図である。It is a perspective view which shows the structure of an optical scanning device. 本発明の第1実施形態に係る回転多面鏡を備える光偏向装置の断面図である。It is sectional drawing of an optical deflection apparatus provided with the rotary polygon mirror which concerns on 1st Embodiment of this invention. 回転多面鏡の斜視図である。It is a perspective view of a rotary polygon mirror. 回転多面鏡の回転湿式成膜方法を説明する図である。It is a figure explaining the rotary wet film-forming method of a rotary polygon mirror. 回転多面鏡を積み重ねた際の断面図である。It is sectional drawing at the time of stacking | stacking a rotation polygon mirror. 図6のA部の拡大断面図である。It is an expanded sectional view of the A section of FIG. 本発明の第2実施形態に係る回転多面鏡の斜視図である。It is a perspective view of the rotary polygon mirror which concerns on 2nd Embodiment of this invention. 回転多面鏡を積み重ねた際の断面図である。It is sectional drawing at the time of stacking | stacking a rotation polygon mirror. 図9のC部の拡大断面図である。It is an expanded sectional view of the C section of FIG.

符号の説明Explanation of symbols

2・・・・・光ビーム
3、30・・回転多面鏡(回転体)
3a・・・・基準肉厚部
4・・・・・フランジ(回転部材)(回転体)
5・・・・・バネ(回転部材)(回転体)
6・・・・・ビス(回転部材)(回転体)
8・・・・・ロータフレーム(回転部材)(回転体)
9・・・・・駆動用コイル
10・・・・ステータ
15、16・環状凹部
17、18・バランスウエイト
19、31・環状凸部
20、31a・・・・上面
32・・・・環状溝
40・・・・外周側部位
2 ... Light beam 3, 30 ... Rotating polygon mirror (rotating body)
3a ··· Reference thickness part 4 ··· Flange (rotating member) (rotating body)
5 ... Spring (Rotating member) (Rotating body)
6 ... Screw (Rotating member) (Rotating body)
8 ... Rotor frame (rotating member) (rotating body)
9... Driving coil 10... Stator 15 and 16. Annular recesses 17 and 18. Balance weights 19 and 31. Annular projections 20 and 31 a... Upper surface 32. .... Outer peripheral part

Claims (8)

回転軸の半径方向の端部に複数の反射面が形成された本体部を有し、前記本体部はバランスウェイトが塗布される前記回転軸方向に凹んだ凹部を備え、回転して前記複数の反射面で光ビームを偏向走査する回転多面鏡であって、回転湿式法により前記複数の反射面にフッ素樹脂が塗布される回転多面鏡において
前記本体部は、
前記回転軸の半径方向に関して記凹部よりも外側で前記複数の反射面よりも内側に前記回転軸方向に突出し上面が平坦環状凸部と、
前記本体部の前記環状凸部の裏側の前記環状凸部に対応する位置に形成された平坦面と、
前記回転軸の半径方向に関して前記環状凸部よりも外側に形成され、前記回転軸方向の肉厚が前記環状凸部よりも薄い薄肉部と、
を備えることを特徴とする回転多面鏡
A main body having a plurality of reflecting surfaces formed at a radial end portion of the rotation shaft, the main body including a recess recessed in the rotation shaft direction to which a balance weight is applied, and rotating to rotate the plurality of the plurality of reflection surfaces. a rotating polygon mirror for deflecting and scanning the light beam by the reflecting surface, in the rotary polygon mirror fluororesin is applied to the plurality of reflection surfaces by rotating a wet method,
The main body is
Before Ki凹 portion inner than the plurality of reflecting surfaces on the outside than the projecting upper surface to the rotation axis direction flat annular protrusion with respect to the radial direction of said rotary shaft,
A flat surface made form at a position corresponding to the annular protrusion of the back side of the annular convex portion of the main body portion,
Formed on the outer side of the annular projection with respect to the radial direction of the rotation axis, and a thin wall portion whose thickness in the rotation axis direction is thinner than the annular projection;
A rotating polygonal mirror characterized by comprising:
前記回転軸の半径方向に関して前記環状凸部と前記凹部は離れた位置に形成されていることを特徴とする請求項1に記載の回転多面鏡。The rotary polygon mirror according to claim 1, wherein the annular convex portion and the concave portion are formed at positions separated from each other with respect to a radial direction of the rotating shaft. 前記凹部は前記回転軸を中心として環状に形成されていることを特徴とする請求項1又は2に記載の回転多面鏡。The rotary polygon mirror according to claim 1, wherein the concave portion is formed in an annular shape around the rotation axis. 前記環状凸部の上面には、前記平面部よりも前記回転軸方向でんだ前記回転軸を中心とする環状が形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の回転多面鏡On the upper surface of the annular projection, any of claims 1 to 3 annular groove around the rotary shaft I concave in the axial direction than the flat portion, characterized in Tei Rukoto made form the rotary polygon mirror according to an item or. 前記反射面には、前記本体部を前記回転軸方向で重ねた状態で前記回転湿式法により前記フッ素樹脂が塗布されていることを特徴とする請求項1乃至4のいずれか一項に記載の回転多面鏡。The said fluororesin is apply | coated to the said reflective surface by the said rotary wet method in the state which accumulated the said main-body part in the said rotating shaft direction. Rotating polygon mirror. 請求項1乃至5のいずれか一項に記載の回転多面鏡と、前記回転多面鏡を回転させる駆動手段と、を有することを特徴とする光偏向装置。6. An optical deflection apparatus comprising: the rotary polygon mirror according to claim 1; and a driving unit that rotates the rotary polygon mirror. 請求項6に記載の光偏向装置と、感光体と、を備え、前記光偏向装置により偏向走査した光ビームを感光体に照射して潜像を形成することにより転写材上に画像を形成することを特徴とする画像形成装置。 An image is formed on a transfer material by forming a latent image by irradiating the photosensitive member with a light beam deflected and scanned by the optical deflection device. An image forming apparatus. 回転軸の半径方向の端部に複数の反射面が形成された本体部を有し、前記本体部は前記回転軸方向に凹んだ凹部を備え、回転して前記複数の反射面で光ビームを偏向走査する回転多面鏡の製造方法において、A main body portion having a plurality of reflecting surfaces formed at radial ends of the rotating shaft, the main body portion including a concave portion recessed in the rotating shaft direction, and rotating to transmit a light beam on the plurality of reflecting surfaces. In a method of manufacturing a rotary polygon mirror that performs deflection scanning,
前記本体部は、前記回転軸の半径方向に関して前記凹部よりも外側で前記複数の反射面よりも内側に、前記回転軸方向に突出し上面が平坦な環状凸部と、前記本体部の前記環状凸部の裏側の前記環状凸部に対応する位置に形成された平坦面と、前記回転軸の半径方向に関して前記環状凸部よりも外側に形成され、前記回転軸方向の肉厚が前記環状凸部よりも薄い薄肉部と、を備え、The main body includes an annular protrusion that protrudes in the direction of the rotation axis and has a flat upper surface and protrudes inward of the plurality of reflecting surfaces outside the recess with respect to the radial direction of the rotation axis, and the annular protrusion of the main body. A flat surface formed at a position corresponding to the annular convex part on the back side of the part, and formed on the outer side of the annular convex part with respect to the radial direction of the rotary shaft, and the thickness in the rotational axis direction is the annular convex part And a thinner thin part,
前記本体部を前記回転軸方向で重ねた状態で回転湿式法により前記複数の反射面にフッ素樹脂が塗布した後、前記凹部にバランスウェイトが塗布されることを特徴とする回転多面鏡の製造方法。A method of manufacturing a rotary polygon mirror, wherein a fluororesin is applied to the plurality of reflective surfaces by a rotary wet method in a state where the main body portion is overlapped in the rotation axis direction, and then a balance weight is applied to the concave portion. .
JP2008157017A 2008-06-16 2008-06-16 Optical deflection apparatus, optical scanning apparatus, and image forming apparatus Active JP5235521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157017A JP5235521B2 (en) 2008-06-16 2008-06-16 Optical deflection apparatus, optical scanning apparatus, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157017A JP5235521B2 (en) 2008-06-16 2008-06-16 Optical deflection apparatus, optical scanning apparatus, and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2009300885A JP2009300885A (en) 2009-12-24
JP2009300885A5 JP2009300885A5 (en) 2011-08-04
JP5235521B2 true JP5235521B2 (en) 2013-07-10

Family

ID=41547827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157017A Active JP5235521B2 (en) 2008-06-16 2008-06-16 Optical deflection apparatus, optical scanning apparatus, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5235521B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629313A (en) * 1985-07-05 1987-01-17 Sharp Corp Polygon mirror
JPH06208075A (en) * 1993-01-13 1994-07-26 Canon Inc Deflecting and scanning device
JP2000002851A (en) * 1998-06-12 2000-01-07 Ricoh Co Ltd Polygon mirror scanner device
JP2000089151A (en) * 1998-09-07 2000-03-31 Canon Electronics Inc Polygon mirror scanner motor
JP2000292733A (en) * 1999-04-08 2000-10-20 Canon Inc Deflecting scanner

Also Published As

Publication number Publication date
JP2009300885A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4950488B2 (en) Optical deflector, optical deflector manufacturing method, optical scanning device, and image forming apparatus
CN112305751B (en) Rotary polygon mirror, light deflection unit, and optical scanning device including the light deflection unit
US10656552B2 (en) Light deflector, optical scanning device, and image forming apparatus
JP5235521B2 (en) Optical deflection apparatus, optical scanning apparatus, and image forming apparatus
JP2010002751A (en) Method of balance correction of optical deflector, optical deflector, optical scanner and image forming apparatus
JP2005242024A (en) Optical scanner and color image forming apparatus
JP2006337677A (en) Light deflector, method of machining polygon mirror, optical scanner and image forming apparatus
JP6971626B2 (en) Optical deflector, optical scanning device, and image forming device
US11703776B2 (en) Light deflector, light scanning apparatus and image forming apparatus
JP2008040282A (en) Optical deflector, scanning optical apparatus and image forming apparatus
JP2000338443A (en) Light deflection type scanner
JP4250226B2 (en) Deflection scanner
JP2006139279A (en) Multibeam scanning optical apparatus and image forming apparatus using the same
JP2006221001A (en) Deflection scanner
JP2000292733A (en) Deflecting scanner
JPH10288747A (en) Deflecting/scanning device
JP2000275561A (en) Optical deflector
JP2005115296A (en) Optical scanner and image forming apparatus
JP2016126268A (en) Optical scanner and image formation device
JP2005156919A (en) Scanning optical apparatus
JP2005173354A (en) Optical deflector
JP2006058723A (en) Deflection scanner and image forming apparatus
JP2007316657A (en) Optical scanner and image forming apparatus
JP2000206442A (en) Deflecting scanning device
JPH11249059A (en) Optical deflecting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R151 Written notification of patent or utility model registration

Ref document number: 5235521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3