JP5233626B2 - Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus - Google Patents

Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus Download PDF

Info

Publication number
JP5233626B2
JP5233626B2 JP2008310560A JP2008310560A JP5233626B2 JP 5233626 B2 JP5233626 B2 JP 5233626B2 JP 2008310560 A JP2008310560 A JP 2008310560A JP 2008310560 A JP2008310560 A JP 2008310560A JP 5233626 B2 JP5233626 B2 JP 5233626B2
Authority
JP
Japan
Prior art keywords
film
insulating film
metal substrate
power generation
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008310560A
Other languages
Japanese (ja)
Other versions
JP2009102738A5 (en
JP2009102738A (en
Inventor
哲史 石川
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2008310560A priority Critical patent/JP5233626B2/en
Publication of JP2009102738A publication Critical patent/JP2009102738A/en
Publication of JP2009102738A5 publication Critical patent/JP2009102738A5/ja
Application granted granted Critical
Publication of JP5233626B2 publication Critical patent/JP5233626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、金属基板の表面に成膜された絶縁膜の製造方法、反応装置、発電装置及び電子機器に関する。   The present invention relates to a method for manufacturing an insulating film formed on the surface of a metal substrate, a reaction apparatus, a power generation apparatus, and an electronic apparatus.

近年、ノートパソコン、携帯電話、デジタルカメラ等の電子機器の小型化、軽量化が非常に意識され、それに伴い、機器内に搭載される部品自体の小型化が要求されている。そこで、半導体デバイスの開発で蓄積されたシリコンウエハの加工技術を利用した、小型のセンサ、ポンプ、アクチュエータ、モーター、化学反応器等のマイクロデバイスを生み出す技術としてMEMS(Micro Electro Mechanical Systems)技術が知られている。例えば、改質型燃料電池の分野においてMEMS技術は、気化器、改質器、一酸化炭素除去器を積み重ねたマイクロリアクタモジュールと言われる小型の改質型反応装置に用いられている。
マイクロリアクタモジュールの各反応器(マイクロリアクタ)は、基板に微細な溝を形成し、溝が形成された基板を接合したものであり、その溝が流路となる。また、各反応流路には、反応を促進させるための触媒が形成されている。図19は基板がガラス基板である場合の図で、基板400には薄膜ヒータ兼温度センサ405と、絶縁保護層406とが形成されている。図19(a)は、基板400の平面図、図19(b)は(a)の切断線XIX−XIXに沿って切断した際の矢視断面図である。図19(b)に示されるように、基板400の表面に密着層401、拡散防止層402、発熱抵抗層403、拡散防止層404からなる薄膜ヒータ兼温度センサ405と、絶縁保護層406とが形成されている。なお、図面の関係上、流路は図示していない。このような薄膜ヒータ兼温度センサは水蒸気改質器において280〜400℃、一酸化炭素除去器において100〜180℃と、所望の温度制御の役割と、温度センシングの役割を担っている。
In recent years, electronic devices such as notebook computers, mobile phones, digital cameras, and the like have become very conscious of downsizing and weight reduction, and accordingly, miniaturization of components mounted in the devices is required. Therefore, MEMS (Micro Electro Mechanical Systems) technology is known as a technology for creating micro devices such as small sensors, pumps, actuators, motors, chemical reactors, etc., utilizing the silicon wafer processing technology accumulated in the development of semiconductor devices. It has been. For example, in the field of reforming fuel cells, the MEMS technology is used in a small reforming reactor called a microreactor module in which a vaporizer, a reformer, and a carbon monoxide remover are stacked.
Each reactor (microreactor) of the microreactor module is formed by forming a fine groove on a substrate and joining the substrate on which the groove is formed, and the groove serves as a flow path. Each reaction channel is formed with a catalyst for promoting the reaction. FIG. 19 shows a case where the substrate is a glass substrate. A thin film heater / temperature sensor 405 and an insulating protective layer 406 are formed on the substrate 400. 19A is a plan view of the substrate 400, and FIG. 19B is a cross-sectional view taken along the cutting line XIX-XIX in FIG. As shown in FIG. 19B, a thin film heater / temperature sensor 405 including an adhesion layer 401, a diffusion prevention layer 402, a heating resistance layer 403, and a diffusion prevention layer 404 on the surface of the substrate 400, and an insulating protection layer 406 are provided. Is formed. Note that the flow path is not shown for the sake of illustration. Such a thin film heater / temperature sensor has a desired temperature control role and a temperature sensing role at 280 to 400 ° C. in the steam reformer and 100 to 180 ° C. in the carbon monoxide remover.

上述のようにマイクロリアクタを、金属基板を元に作製した場合、基板及び薄膜ヒータは、ともに電気伝導性を有していること、薄膜ヒータには電圧が印加されることから、金属基板と薄膜ヒータとの間には絶縁膜が必要となる。上記特許文献1に記載の金属製のマイクロリアクタの場合、絶縁膜として基板自体を陽極酸化させ、膜厚5〜150μmの絶縁膜を設けている。しかしながら、陽極酸化により形成された絶縁膜は、しばしば膜が細孔質となり、高絶縁耐圧の絶縁膜は期待できない。また、絶縁膜の膜厚が5〜150μmと厚いため、金属基板も厚くなり、反応器の熱容量がその分増加することを考慮すると高速起動に向かないという問題がある。さらに、マイクロリアクタは高温環境下で作動されるため、選択する基板としては高耐熱性を有する金属(例えば、Ni,Ni−Cr合金、インコネル等のNi含有合金)を使用しなければならないという制限もある。   When the microreactor is manufactured based on a metal substrate as described above, both the substrate and the thin film heater have electrical conductivity, and voltage is applied to the thin film heater. An insulating film is required between the two. In the case of the metal microreactor described in Patent Document 1, the substrate itself is anodized as an insulating film, and an insulating film having a thickness of 5 to 150 μm is provided. However, an insulating film formed by anodic oxidation often has a porous structure, and an insulating film having a high withstand voltage cannot be expected. In addition, since the insulating film is as thick as 5 to 150 μm, the metal substrate is also thick, and there is a problem that it is not suitable for high-speed startup considering that the heat capacity of the reactor increases accordingly. Furthermore, since the microreactor is operated in a high temperature environment, the substrate to be selected must be made of a metal having high heat resistance (for example, Ni-containing alloy such as Ni, Ni-Cr alloy, Inconel). is there.

一方、YOを冷陰極の電子放出膜として用いられることが知られている(例えば、特許文献2参照)。このYOの結晶は酸化工程における酸素濃度に依存し、五つのタイプの膜が作製される。そのうち、NaCl型を含むYO(1.32>X≧0.95)膜が冷陰極の電子放出膜として適しているというものである。YO膜の作成方法は洗浄工程を経た基板(ここではNi及びCrを含有するもの)に、蒸着法あるいはスパッタ法によりY金属膜を形成し、酸化工程を行う。その後、膜が微結晶、アモルファスであった場合には別途アニール工程を行っている。
特開2004−256387号公報 特開平10−269986号公報
On the other hand, it is known that YO x is used as an electron emission film of a cold cathode (see, for example, Patent Document 2). The YO x crystals depend on the oxygen concentration in the oxidation process, and five types of films are produced. Among them, a YO x (1.32> X ≧ 0.95) film containing NaCl type is suitable as an electron emission film for a cold cathode. How to create YO x film on the substrate which has undergone the washing step (here those containing Ni and Cr), the Y metallic film is formed by vapor deposition or sputtering, an oxidation process. After that, if the film is microcrystalline or amorphous, an annealing process is performed separately.
JP 2004-256387 A JP-A-10-269986

しかしながら、上記特許文献2において作製されたYOは、Xの範囲が1.32>X≧0.95と化学量論からずれており、電気的性質としては良導体として振る舞う。そのために層間絶縁膜として用いることはできないという問題がある。
一方、層間絶縁膜として高耐圧材料で知られているSiO膜を用いた場合、蒸着法、スパッタ法、CVD法、塗布法等で成膜されたSiO膜は通常、アモルファス(非晶質)構造となる。アモルファス構造のSiOは、図20に示すように、線膨張係数が0.5〜0.6(10-6/℃)であり、金属の線膨張係数10〜14(10-6/℃)に対して二桁も小さい。室温より高い温度環境下で用いる化学反応器のような小型デバイスにおいて、基板と膜との熱膨張係数の不一致は基板の歪みや、層間絶縁膜の亀裂、剥離を引き起こし、最終的には金属基板と発熱体間の電気的絶縁の信頼性を低下させてしまうという問題がある。この問題は小型反応器のみならず、600℃〜900℃もの高温で作動する固体酸化物型燃料電池のような高温作動デバイス共通の問題である。
そこで、本発明は上記事情に鑑みてなされたもので、層間絶縁膜の絶縁耐圧の向上を図ることのできる絶縁膜の製造方法、反応装置、発電装置及び電子機器を提供することを目的としている。
However, YO x produced in Patent Document 2 has a range of X that is out of stoichiometry as 1.32> X ≧ 0.95, and behaves as a good conductor in terms of electrical properties. Therefore, there is a problem that it cannot be used as an interlayer insulating film.
On the other hand, in the case of using the SiO 2 film known in the high-voltage material as an interlayer insulating film, vapor deposition, sputtering, CVD, it is deposited by a coating method such as a SiO 2 film is usually amorphous (amorphous ) Structure. As shown in FIG. 20, the amorphous SiO 2 has a linear expansion coefficient of 0.5 to 0.6 (10 −6 / ° C.) and a metal linear expansion coefficient of 10 to 14 (10 −6 / ° C.). Is two orders of magnitude smaller. In a small device such as a chemical reactor used in a temperature environment higher than room temperature, the mismatch in the thermal expansion coefficient between the substrate and the film causes distortion of the substrate, cracking and peeling of the interlayer insulating film, and finally the metal substrate. There is a problem that the reliability of electrical insulation between the heating elements is lowered. This problem is common not only to small reactors but also to high temperature operation devices such as solid oxide fuel cells that operate at temperatures as high as 600 ° C to 900 ° C.
Accordingly, the present invention has been made in view of the above circumstances, and an object thereof is to provide an insulating film manufacturing method, a reaction apparatus, a power generation apparatus, and an electronic apparatus that can improve the withstand voltage of an interlayer insulating film. .

上記課題を解決するため、請求項1の発明は、絶縁膜の製造方法において、金属基板の表面に、Sc、Y、La、Gd、Dy、Ho、Er、Tm、及びLuから選択される少なくとも一つの希土類元素Rと水素とからなる蒸着源を用いて蒸着を行う蒸着工程と、蒸着後の前記金属基板を酸化してR膜とする酸化工程と、を含むことを特徴とする。 To solve the above problems, the invention of claim 1, in the manufacturing method of the insulating film, the surface of the metal substrate is selected S c, Y, La, Gd , Dy, Ho, Er, Tm, and Lu, A vapor deposition step of performing vapor deposition using a vapor deposition source comprising at least one rare earth element R and hydrogen; and an oxidation step of oxidizing the metal substrate after vapor deposition into an R 2 O 3 film, To do.

請求項2の発明は、絶縁膜の製造方法において、
金属基板の表面に、Sc、Y、La、Gd、Dy、Ho、Er、Tm、Luの希土類元素Rを含有する第一のR膜を形成する工程と、
前記第一のR膜の上に、少なくとも一つの希土類元素Rと水素とからなる蒸着源を用いて蒸着を行う蒸着工程と、蒸着後の前記金属基板を酸化する酸化工程と、を含む第二のR膜を形成する工程と、
を含むことを特徴とする。
The invention of claim 2 is a method of manufacturing an insulating film,
Forming a first R 2 O 3 film containing a rare earth element R of Sc, Y, La, Gd, Dy, Ho, Er, Tm, and Lu on the surface of the metal substrate;
On the first R 2 O 3 film, a deposition step for depositing using a deposition source consisting of one rare earth element R and hydrogen even without low, the oxidation step of oxidizing the metal substrate after deposition Forming a second R 2 O 3 film containing
It is characterized by including.

請求項3の発明は、絶縁膜の製造方法において、
金属基板の表面に、Sc、Y、La、Gd、Dy、Ho、Er、Tm、及びLuから選択される少なくとも一つの希土類元素Rと水素とからなる蒸着源を用いて蒸着を行う蒸着工程と、蒸着後の前記金属基板を酸化する酸化工程と、を含む第一のR2O3膜を形成する工程と、
前記第一のR膜の上に、前記希土類元素Rを含有する第二のR膜を形成する工程と、
を含むことを特徴とする。
The invention of claim 3 is a method of manufacturing an insulating film,
Vapor deposition process for performing vapor deposition on the surface of the metal substrate using a vapor deposition source composed of at least one rare earth element R selected from Sc, Y, La, Gd, Dy, Ho, Er, Tm, and Lu, and hydrogen. Forming a first R2O3 film comprising: an oxidation step of oxidizing the metal substrate after vapor deposition;
On the first R 2 O 3 film, forming a second R 2 O 3 film containing the rare earth element R,
It is characterized by including.

請求項4の発明は、請求項1〜3のいずれか一項に記載の絶縁膜の製造方法において、Invention of Claim 4 in the manufacturing method of the insulating film as described in any one of Claims 1-3,
前記酸化工程は、大気圧より低い圧力雰囲気下で行うことを特徴とする。The oxidation step is performed in a pressure atmosphere lower than atmospheric pressure.

請求項5の発明は、反応装置において、
請求項1〜4のいずれか一項に記載の絶縁膜の製造方法により製造された絶縁膜を、前記金属基板と薄膜ヒータとの間に備えることを特徴とする。
The invention of claim 5 is a reaction apparatus,
An insulating film manufactured by the method for manufacturing an insulating film according to any one of claims 1 to 4 is provided between the metal substrate and the thin film heater .

請求項6の発明は、請求項5に記載の反応装置において、Invention of Claim 6 is the reaction apparatus of Claim 5,
燃料を改質し水素を生成する改質器を備えることを特徴とする。A reformer that reforms the fuel to generate hydrogen is provided.

請求項7の発明は、請求項6に記載の反応装置において、The invention of claim 7 is the reaction apparatus according to claim 6,
固体酸化物型の発電セルを備えることを特徴とする。A solid oxide type power generation cell is provided.

請求項8の発明は、発電装置において、The invention of claim 8 is the power generator,
請求項5〜6のいずれか一項に記載の反応装置を備え、Comprising the reactor according to any one of claims 5 to 6,
前記反応装置により生成される生成物により発電を行うことを特徴とする。Electricity is generated by the product generated by the reactor.

請求項の発明は、発電装置において、
請求項に記載の反応装置を備えることを特徴とする。
The invention of claim 9 is the power generator,
The reactor according to claim 7 is provided .

請求項10の発明は、電子機器において、
請求項8〜9のいずれか一項に記載の発電装置と、
前記発電装置によって発電された電気により動作する電子機器本体と、を備えることを特徴とする。
The invention of claim 10 is an electronic device,
A power generator according to any one of claims 8 to 9 ,
And an electronic device main body that operates by electricity generated by the power generation device.

本発明によれば、金属基板と薄膜ヒータとの間に結晶構造を有するR膜を形成することができ、金属基板との熱膨張係数の差を小さくして、高温環境下で金属基板が歪んだ際に起こり易い絶縁膜の亀裂や剥離を防止でき、絶縁膜としての信頼性を高めることができる。また、金属基板を酸化させることなくR膜を成膜することができる。さらに、絶縁膜を二層構造とした場合には、膜内のピンホールを軽減でき、信頼性の高い絶縁膜を設けることができ、それに加えて上層、下層と異なる手法により膜を作製することで膜作製段階に発生する反りを抑制することができる。 According to the present invention, an R 2 O 3 film having a crystal structure can be formed between a metal substrate and a thin film heater, and the difference in thermal expansion coefficient with the metal substrate can be reduced, so that the metal can be used in a high temperature environment. It is possible to prevent cracking and peeling of the insulating film, which are likely to occur when the substrate is distorted, and to improve the reliability as the insulating film. In addition, the R 2 O 3 film can be formed without oxidizing the metal substrate. Furthermore, when the insulating film has a two-layer structure, pinholes in the film can be reduced, a highly reliable insulating film can be provided, and in addition, a film can be produced by a method different from the upper layer and the lower layer Therefore, it is possible to suppress warping that occurs in the film production stage.

以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
[第一の実施の形態]
図1は、本発明に係る反応装置の実施形態におけるマイクロリアクタ1の分解斜視図である。
マイクロリアクタ1は、例えば、ノート型パーソナルコンピュータ、PDA、電子手帳、デジタルカメラ、携帯電話機、腕時計、レジスタ、プロジェクタといった電子機器に内蔵され、発電セル(燃料電池)に使用する水素ガスを生成する反応装置である。
マイクロリアクタ1は、矩形薄板状の天板2及び底板3と、天板2と底板3との間に天板2の下面及び底板3の上面に対して垂直となるように立設される平面視L字型の枠体4,4と、枠体4,4の内側で枠体4,4の長手方向内壁面に対して垂直となるように設けられる薄板状の例として三つの隔壁5,5,…とを備えている。三つの隔壁5,5,…によって、枠体4,4の内側が葛折り状の流路6に仕切られている。隔壁5,5,…の高さは周囲の枠体4の高さにほぼ等しい。また、枠体4,4の各両端部間には、流路6に通じるように隙間(流入口、流出口)が形成されている。
天板2、底板3、枠体4,4及び隔壁5,5,…は、いずれも耐熱性の良い、例えばNi、Ni−Cr合金、インコネル等のNi含有合金等の金属材料からなる。底板3、枠体4,4、隔壁5,5,…及び天板2は蝋付けにより接合されている。また、マイクロリアクタ1の流路6を形成する底板3の上面、天板2の下面、枠体4,4の内側面及び隔壁5,5,…の両側面に触媒が担持されている。触媒としては、少なくとも一種類以上の金属種又は少なくとも一種以上の金属酸化物が含まれていることが好ましく、具体的には白金触媒、Cu/ZnO系触媒、Pd/ZnO系触媒等が挙げられる。
The best mode for carrying out the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.
[First embodiment]
FIG. 1 is an exploded perspective view of a microreactor 1 in an embodiment of a reaction apparatus according to the present invention.
The microreactor 1 is a reaction device that generates hydrogen gas used in a power generation cell (fuel cell), for example, built in an electronic device such as a notebook personal computer, PDA, electronic notebook, digital camera, mobile phone, wristwatch, register, projector. It is.
The microreactor 1 is a rectangular thin plate-like top plate 2 and bottom plate 3, and a plan view standing between the top plate 2 and the bottom plate 3 so as to be perpendicular to the lower surface of the top plate 2 and the upper surface of the bottom plate 3. L-shaped frame bodies 4, 4 and three partition walls 5, 5 as an example of a thin plate provided inside the frame bodies 4, 4 so as to be perpendicular to the inner wall surface in the longitudinal direction of the frame bodies 4, 4. , ... are provided. The inner side of the frame bodies 4 and 4 is partitioned by the three partition walls 5, 5,. The height of the partition walls 5, 5,... Is substantially equal to the height of the surrounding frame 4. Further, gaps (inlet and outlet) are formed between both end portions of the frames 4 and 4 so as to communicate with the flow path 6.
The top plate 2, the bottom plate 3, the frames 4, 4 and the partition walls 5, 5,. The bottom plate 3, the frame bodies 4, 4, the partition walls 5, 5, ... and the top plate 2 are joined by brazing. Further, the catalyst is supported on the upper surface of the bottom plate 3 forming the flow path 6 of the microreactor 1, the lower surface of the top plate 2, the inner side surfaces of the frames 4, 4, and both side surfaces of the partition walls 5, 5. The catalyst preferably contains at least one kind of metal species or at least one kind of metal oxide, and specifically includes platinum catalysts, Cu / ZnO-based catalysts, Pd / ZnO-based catalysts, and the like. .

図2(a)は、底板3の下面図、図2(b)は、図2(a)の切断線II−IIに沿って切断した際
の矢視断面図である。
底板3の下面には、全面に絶縁膜31が形成されている。絶縁膜31は、結晶構造を有するY膜である。結晶構造としてはC型(ビクスバイト構造)である(詳細は後述する。)。結晶構造を有することにより、アモルファスに比べて密に原子が充填されるので、熱による膨張が大きくなり、その結果、線膨張係数が7.2×10-6/℃高くなることから金属基板である底板3の線膨張係数に近くなる点で好ましい。
2A is a bottom view of the bottom plate 3, and FIG. 2B is a cross-sectional view taken along the cutting line II-II in FIG. 2A.
An insulating film 31 is formed on the entire bottom surface of the bottom plate 3. The insulating film 31 is a Y 2 O 3 film having a crystal structure. The crystal structure is C-type (Bixbite structure) (details will be described later). By having a crystal structure, atoms are packed more densely than amorphous, so thermal expansion increases, and as a result, the coefficient of linear expansion is 7.2 × 10 −6 / ° C. This is preferable in that it is close to the linear expansion coefficient of a certain bottom plate 3.

ここで、絶縁膜31であるビクスバイト構造を有するY膜の製造方法について二つの方法を説明する。
<第一の製造方法>
まず、スパッタ法で金属基板(底板3)の下面にY膜を成膜した後、成膜されたY膜を4%以下の水素量と残りが不活性ガス(Ar、Ne、Nガス)雰囲気において、温度300〜400℃で15分焼成を行うことによりYH膜を形成し、さらに、YH膜を真空雰囲気下(1×10-4Pa)、520〜800℃で30分焼成することにより成膜することができる。なお、スパッタの試料としては水素を含有していないYインゴットを使用する。また、Y膜の成膜方法はスパッタ法に限らず、蒸着法、CVD法、イオンプレーティング法、塗布法等でも構わない。金属基板の膜厚は0.5mm以下であり、その基板厚との関係から、絶縁膜31の膜厚は、200〜600nm程度の範囲が好ましい。
なお、YH膜はY膜と比較して、酸素を取り込みやすく、膜中での酸素の拡散速度を早くさせる働きがあるため、真空雰囲気下でさえ、炉内の残留している微量酸素(0.1〜1(×10-6Pa))を取り込み、水素と置き換わる形でY膜が形成される。図3は、真空中で10℃/minの速さで700℃まで昇温し、700℃で30分保持した際の炉内の水素分圧値を時間に対してプロットしたものである。昇温開始時、炉内の水素分圧は1〜2(×10-6Pa)であったが、温度の上昇につれて徐々に水素分圧は高くなっていることから、YH膜から水素が脱離していると理解できる。それとともに、後述するX線回折測定結果からY膜が形成されたものと考えられる。520℃において水素分圧は最も高く2400(×10-6Pa)の値を示していることから、Y膜の作製において焼成温度は520℃で十分と言える。
Here, two methods for manufacturing the Y 2 O 3 film having the bixbyite structure as the insulating film 31 will be described.
<First manufacturing method>
First, after forming a Y film on the lower surface of the metal substrate (bottom plate 3) by sputtering, the formed Y film has an amount of hydrogen of 4% or less and the remaining inert gas (Ar, Ne, N 2 gas). In an atmosphere, a YH 2 film is formed by baking at a temperature of 300 to 400 ° C. for 15 minutes, and further, the YH 2 film is baked at 520 to 800 ° C. for 30 minutes in a vacuum atmosphere (1 × 10 −4 Pa). Thus, a film can be formed. Note that a Y ingot containing no hydrogen is used as a sample for sputtering. Further, the method for forming the Y film is not limited to the sputtering method, but may be a vapor deposition method, a CVD method, an ion plating method, a coating method, or the like. The thickness of the metal substrate is 0.5 mm or less, and the thickness of the insulating film 31 is preferably in the range of about 200 to 600 nm in relation to the thickness of the substrate.
Note that the YH 2 film is easier to take in oxygen than the Y film and has a function of increasing the diffusion rate of oxygen in the film, so that even in a vacuum atmosphere, the trace amount of oxygen remaining in the furnace ( 0.1 to 1 (× 10 −6 Pa)) is taken in and replaced with hydrogen, and a Y 2 O 3 film is formed. FIG. 3 plots the hydrogen partial pressure value in the furnace against time when the temperature was raised to 700 ° C. at a rate of 10 ° C./min in vacuum and held at 700 ° C. for 30 minutes. At the start of temperature increase, the hydrogen partial pressure in the furnace was 1 to 2 (× 10 −6 Pa). However, since the hydrogen partial pressure gradually increases as the temperature rises, hydrogen is removed from the YH 2 film. It can be understood that it is detached. At the same time, it is considered that a Y 2 O 3 film was formed from the X-ray diffraction measurement results described later. Since the hydrogen partial pressure is the highest at 520 ° C. and shows a value of 2400 (× 10 −6 Pa), it can be said that a firing temperature of 520 ° C. is sufficient for the production of the Y 2 O 3 film.

<第二の製造方法>
図4は、第二の製造方法における蒸着法を説明するための図である。
まず、蒸着源であるYのインゴットを、4%以下の水素量と残りが不活性ガス(Ar、Ne、Nガス)雰囲気において、温度300〜400℃で1時間焼成を行うことにより水素を含有したYのインゴット7を予め用意する。次いで、水素含有Yインゴット7を用いて金属基板(底板3)の温度が280℃、成膜時の真空度3〜5(×10-3Pa)、成膜速度18nm/minの条件で、金属基板の下面に蒸着する。この蒸着により、金属基板の下面にY、YH、Y膜が成膜される。さらに、図示しないが、成膜されたY、YH、Y膜を真空雰囲気下で300〜800℃で30分焼成することによりY膜が成膜される。(Yの領域ではYが酸素と結合し、YHの領域ではYと結合している水素が脱離し酸素と結合する)。金属基板の厚さは上述したものと同様で0.5mm以下で、絶縁膜31の膜厚は200〜600nm程度の範囲が好ましい。
このように、水素を含有したYインゴット7を蒸着源として蒸着した後、金属基板を酸化してY膜を成膜した場合、上記第一の製造方法に比べて作製工程を簡略化できる点で好ましい。
<Second production method>
FIG. 4 is a diagram for explaining a vapor deposition method in the second manufacturing method.
First, the Y ingot as a deposition source is baked at a temperature of 300 to 400 ° C. for 1 hour in an atmosphere of 4% or less of hydrogen and the remainder of an inert gas (Ar, Ne, N 2 gas). The contained Y ingot 7 is prepared in advance. Next, using a hydrogen-containing Y ingot 7, the metal substrate (bottom plate 3) had a temperature of 280 ° C., a degree of vacuum during film formation of 3 to 5 (× 10 −3 Pa), and a film formation rate of 18 nm / min. Vapor deposition on the bottom surface of the substrate. By this vapor deposition, Y, YH 2 and Y 2 O 3 films are formed on the lower surface of the metal substrate. Furthermore, although not shown, the formed Y, Y 2 O 3 film by baking 30 minutes at 300 to 800 ° C. The YH 2, Y 2 O 3 film in a vacuum atmosphere is deposited. (Y is bonded to oxygen in the Y region, and hydrogen bonded to Y is desorbed and bonded to oxygen in the YH 2 region). The thickness of the metal substrate is the same as described above and is 0.5 mm or less, and the thickness of the insulating film 31 is preferably in the range of about 200 to 600 nm.
As described above, when the Y ingot 7 containing hydrogen is deposited as a deposition source and then the metal substrate is oxidized to form a Y 2 O 3 film, the fabrication process is simplified compared to the first manufacturing method. It is preferable in that it can be performed.

そして、上述の二つの方法のいずれかによって形成した絶縁膜31には、図2(b)に示すように、薄膜ヒータ32が蛇行した状態にフォトリソ技術によりパターニングされている。薄膜ヒータ32は、絶縁膜31側から順に、金属密着層33、拡散防止層34、発熱抵抗層35を積層したものである。発熱抵抗層35は、三つの層の中で最も低い抵抗率の材料(例えば、Au)であり、薄膜ヒータ32に電圧が印加されると電流が集中的に流れて発熱する。拡散防止層34は、薄膜ヒータ32が発熱しても発熱抵抗層35の材料が拡散防止層34に熱拡散されにくく、かつ拡散防止層34の材料が発熱抵抗層35に熱拡散しにくい材料であり、比較的融点が高くかつ反応性が低い物質(例えば、W)を用いることが好ましい。また、金属密着層33は、拡散防止層34が絶縁膜31に対して密着性が低く剥離しやすいことを防止するために設けられ、拡散防止層34に対しても絶縁膜31に対しても密着性に優れた材料(例えば、Ta、Mo、Ti、Cr)からなる。金属密着層33の膜厚は、100〜200nm、拡散防止層34の膜厚は、50〜100nm、発熱抵抗層35の膜厚は、200〜400nmが好ましい。薄膜ヒータ32は、起動時にマイクロリアクタ1を加熱し、温度に依存して電気抵抗が変化するため、抵抗値の変化から温度の変化を読み取る温度センサとしても機能する。具体的には、薄膜ヒータ32の温度が電気抵抗に対して線形に変化する領域を用いる。   Then, the insulating film 31 formed by one of the above two methods is patterned by a photolithography technique in a state where the thin film heater 32 meanders as shown in FIG. 2B. The thin film heater 32 is formed by laminating a metal adhesion layer 33, a diffusion prevention layer 34, and a heating resistance layer 35 in order from the insulating film 31 side. The heat generating resistance layer 35 is a material having the lowest resistivity among the three layers (for example, Au). When a voltage is applied to the thin film heater 32, current flows intensively and generates heat. The diffusion prevention layer 34 is a material in which the material of the heat generation resistance layer 35 is not easily diffused into the diffusion prevention layer 34 even when the thin film heater 32 generates heat, and the material of the diffusion prevention layer 34 is difficult to thermally diffuse into the heat generation resistance layer 35. It is preferable to use a substance (for example, W) having a relatively high melting point and low reactivity. Further, the metal adhesion layer 33 is provided to prevent the diffusion prevention layer 34 from having low adhesion to the insulating film 31 and being easily peeled off, and to both the diffusion prevention layer 34 and the insulation film 31. It consists of material (for example, Ta, Mo, Ti, Cr) excellent in adhesiveness. The film thickness of the metal adhesion layer 33 is preferably 100 to 200 nm, the film thickness of the diffusion preventing layer 34 is 50 to 100 nm, and the film thickness of the heating resistor layer 35 is preferably 200 to 400 nm. The thin film heater 32 heats the microreactor 1 at the time of activation, and the electric resistance changes depending on the temperature. Specifically, a region where the temperature of the thin film heater 32 changes linearly with respect to the electric resistance is used.

上述の構成からなるマイクロリアクタ1においては、薄膜ヒータ32に接続されたリード線(図示しない)に電圧を印加して、薄膜ヒータ32を発熱させることによりマイクロリアクタ1を加熱させ、反応物を流路6に送り込むことによって、反応物が流路6を流動している際に、反応物が反応する。   In the microreactor 1 having the above-described configuration, a voltage is applied to a lead wire (not shown) connected to the thin film heater 32 to cause the thin film heater 32 to generate heat, thereby heating the microreactor 1 and allowing the reactant to flow through the flow path 6. When the reactant is flowing through the flow path 6, the reactant reacts.

図5は、底板3Aの変形例を示したものであり、図5(a)は底板3Aに枠体4A,4Aを接合した際の上面図で、図5(b)は、図5(a)の切断線V−Vに沿って切断した際の矢視断面図である。図5(a)に示すように、底板3Aの上面で隔壁5A,5A,…を除いた箇所に絶縁膜31Aを蛇行して形成している。このように、流路と同じ側に薄膜ヒータを配置する構成でもよいが、この場合は、図5(b)に示すように触媒との絶縁性を確保するために、絶縁保護層を成膜する必要があり、絶縁膜31A上に四つの層(金属密着層33A、拡散防止層34A、発熱抵抗層35A、拡散防止層36A)からなる薄膜ヒータ32Aを蛇行した状態でパターニングし、その上に絶縁保護層37Aが成膜されることになる。絶縁保護層37AとしてはY膜が望ましいが、膜が薄いならばSiO膜でも良い。 FIG. 5 shows a modification of the bottom plate 3A. FIG. 5 (a) is a top view when the frame bodies 4A and 4A are joined to the bottom plate 3A, and FIG. 5 (b) is a plan view of FIG. It is an arrow directional cross-sectional view at the time of cut | disconnecting along the cutting line VV of). As shown in FIG. 5 (a), an insulating film 31A is meandered on the upper surface of the bottom plate 3A except for the partition walls 5A, 5A,. In this way, the thin film heater may be arranged on the same side as the flow path, but in this case, an insulating protective layer is formed in order to ensure insulation from the catalyst as shown in FIG. 5 (b). The thin film heater 32A composed of four layers (metal adhesion layer 33A, diffusion prevention layer 34A, heat generation resistance layer 35A, diffusion prevention layer 36A) is patterned on the insulating film 31A in a meandering state, The insulating protective layer 37A is formed. The insulating protective layer 37A is preferably a Y 2 O 3 film, but may be a SiO 2 film if the film is thin.

以上のように、マイクロリアクタ1において、底板3の下面で薄膜ヒータ32との間に絶縁膜31である結晶構造(ビクスバイト構造)を有するY膜が介在しており、Y膜は金属と熱膨張係数が非常に近いため、底板3の金属基板との熱膨張係数の差を小さくすることができる。その結果、室温より高い環境下で金属基板が歪んだ際に起こりやすい絶縁膜31の亀裂や剥離を防止することができ、絶縁膜31としての信頼性を高めることができる。また、絶縁膜31を成膜する場合、不活性ガス雰囲気において焼成するため、金属基板である底板3を酸化させることなくY膜を成膜することができる。 As described above, in the microreactor 1, the Y 2 O 3 film having the crystal structure (Bixbite structure) as the insulating film 31 is interposed between the lower surface of the bottom plate 3 and the thin film heater 32, and Y 2 O 3 Since the thermal expansion coefficient of the film is very close to that of metal, the difference in thermal expansion coefficient between the bottom plate 3 and the metal substrate can be reduced. As a result, it is possible to prevent the insulating film 31 from being cracked or peeled off easily when the metal substrate is distorted in an environment higher than room temperature, and the reliability of the insulating film 31 can be improved. In addition, when the insulating film 31 is formed, the Y 2 O 3 film can be formed without oxidizing the bottom plate 3 that is a metal substrate because the insulating film 31 is fired in an inert gas atmosphere.

[第二の実施の形態]
図6は、図2と同様に底板3Bを切断線II−IIに沿って切断した際の矢視断面図である。
第二の実施の形態のマイクロリアクタは、第一の実施の形態のマイクロリアクタ1と異なり、絶縁膜31Ba,31BbがY膜の二層構造となっている。
具体的には、図6に示すように、底板3Bの下面には、全面に結晶構造を有する二層の絶縁膜31Ba,31Bbが形成されている。二層の絶縁膜31Ba,31BbはいずれもY膜であり、底板3Bの下面に直接成膜された第一のY膜31Baと、第一のY膜31Ba上に成膜された第二のY膜31Bbとからなる。結晶構造としては上述したビクスバイト構造である。
[Second Embodiment]
FIG. 6 is a cross-sectional view taken along the arrow when the bottom plate 3B is cut along the cutting line II-II as in FIG.
Unlike the microreactor 1 of the first embodiment, the microreactor of the second embodiment has a two-layer structure in which the insulating films 31Ba and 31Bb are Y 2 O 3 films.
Specifically, as shown in FIG. 6, two layers of insulating films 31Ba and 31Bb having a crystal structure are formed on the entire bottom surface of the bottom plate 3B. The two insulating films 31Ba and 31Bb are both Y 2 O 3 films, on the first Y 2 O 3 film 31Ba and the first Y 2 O 3 film 31Ba formed directly on the lower surface of the bottom plate 3B. And the second Y 2 O 3 film 31Bb formed on the substrate. The crystal structure is the bixbite structure described above.

ここで、第一のY膜31Ba及び第二のY膜31Bbの製造方法について四つの方法を説明する。
<第三の製造方法>
第一のY膜31Baは、金属基板(底板3B)の下面に蒸着法、スパッタ法、イオンプレーティング法、CVD法、塗布法等により直接、Y膜を成膜することによって形成する。
第二のY膜31Bbは、上述したように第一のY膜31Ba上にスパッタ法によりY膜を成膜した後、成膜したY膜を4%以下の水素量と残りが不活性ガス(Ar、Ne、Nガス)雰囲気において、温度300〜400℃で15分焼成を行うことによりYH膜を形成し、さらに、YH膜を真空雰囲気下(1×10-4Pa)、520〜800℃で30分焼成することにより成膜することができる。なお、Y膜の成膜方法はスパッタ法に限らず、蒸着法、CVD法、イオンプレーティング法、塗布法等でも構わない。金属基板の厚さは0.5mm以下であり、その基板厚との関係から、第一のY膜の膜厚31Baと第二のY膜31Bbの膜厚が併せて、200〜600nm程度の範囲が好ましい。
Here, four methods for manufacturing the first Y 2 O 3 film 31Ba and the second Y 2 O 3 film 31Bb will be described.
<Third production method>
The first Y 2 O 3 film 31Ba is formed by directly forming a Y 2 O 3 film on the lower surface of the metal substrate (bottom plate 3B) by vapor deposition, sputtering, ion plating, CVD, coating, or the like. Formed by.
As described above, the second Y 2 O 3 film 31Bb is formed by depositing a Y film on the first Y 2 O 3 film 31Ba by sputtering, and then forming the formed Y film with a hydrogen amount of 4% or less. The rest is an inert gas (Ar, Ne, N 2 gas) atmosphere, and a YH 2 film is formed by baking at a temperature of 300 to 400 ° C. for 15 minutes. Further, the YH 2 film is formed in a vacuum atmosphere (1 × 10 6). -4 Pa), and can be formed by baking at 520 to 800 ° C. for 30 minutes. The method for forming the Y film is not limited to the sputtering method, but may be a vapor deposition method, a CVD method, an ion plating method, a coating method, or the like. The thickness of the metal substrate is 0.5 mm or less, and from the relationship with the substrate thickness, the film thickness 31Ba of the first Y 2 O 3 film and the film thickness of the second Y 2 O 3 film 31Bb are combined, A range of about 200 to 600 nm is preferable.

<第四の製造方法>
これは、第三の製造方法におけるをY膜の二層構造を逆の順序で製造するものである。
第一のY膜31Baは、第三の製造方法における第二のY膜31Bbと同様に、金属基板(底板3B)の表面にスパッタ法、蒸着法、CVD法、イオンプレーティング法、塗布法等によりY膜を成膜した後、成膜したY膜を4%以下の水素量と残りが不活性ガス(Ar、Ne、Nガス)雰囲気において、温度300〜400℃で15分焼成を行うことによりYH膜を形成し、さらに、YH膜を真空雰囲気下(1×10-4Pa)、520〜800℃で30分焼成することにより成膜することができる。
第二のY膜31Bbは、第三の製造方法における第一のY膜31Baと同様に、成膜した第一のY膜31Baの上に蒸着法、スパッタ法、イオンプレーティング法、CVD法、塗布法等により直接、Y膜を成膜することによって形成する。
<Fourth manufacturing method>
This is to manufacture the two-layer structure of the Y 2 O 3 film in the reverse order in the third manufacturing method.
Similar to the second Y 2 O 3 film 31Bb in the third manufacturing method, the first Y 2 O 3 film 31Ba is formed on the surface of the metal substrate (bottom plate 3B) by sputtering, vapor deposition, CVD, ion plating. After the Y film is formed by a coating method, a coating method, etc., the temperature of the formed Y film is 300 to 400 ° C. in a hydrogen amount of 4% or less and the remainder in an inert gas (Ar, Ne, N 2 gas) atmosphere. the YH 2 film is formed by in performing the baking 15 minutes, further, the YH 2 film under a vacuum atmosphere (1 × 10 -4 Pa), can be formed by baking 30 minutes at 520-800 ° C. .
Similar to the first Y 2 O 3 film 31Ba in the third manufacturing method, the second Y 2 O 3 film 31Bb is deposited on the first Y 2 O 3 film 31Ba formed by a vapor deposition method or a sputtering method. The Y 2 O 3 film is formed directly by an ion plating method, a CVD method, a coating method, or the like.

<第五の製造方法>
第一のY膜31Baは、第三の製造方法における第一のY膜31Baと同様に、金属基板(底板3B)の表面にスパッタ法、蒸着法、CVD法、イオンプレーティング法、塗布法等により直接、Y膜を成膜することによって形成する。
第二のY膜31Bbは、成膜した第一のY膜31Baの上に、蒸着源である水素含有Yインゴットを蒸着する。水素含有Yインゴットは、第一の実施の形態における第二の製造方法で説明したように、Yのインゴットを4%以下の水素量と残りが不活性ガス(Ar、Ne、Nガス)雰囲気において、温度300〜400℃で1時間焼成を行うことにより得られる。また、蒸着条件としては、金属基板の温度が280℃、成膜時の真空度3〜5(×10-3Pa)、成膜速度18nm/minとする。そして、蒸着により成膜されたY、YH、Y膜を真空雰囲気下で300〜800℃で30分焼成することにより第二のY膜31Bbが成膜される。
<Fifth manufacturing method>
As with the first Y 2 O 3 film 31Ba in the third manufacturing method, the first Y 2 O 3 film 31Ba is formed on the surface of the metal substrate (bottom plate 3B) by sputtering, vapor deposition, CVD, ion plating. A Y 2 O 3 film is formed directly by a coating method, a coating method, or the like.
The second Y 2 O 3 film 31Bb deposits a hydrogen-containing Y ingot as a deposition source on the first Y 2 O 3 film 31Ba formed. As described in the second manufacturing method in the first embodiment, the hydrogen-containing Y ingot is a Y ingot with an amount of hydrogen of 4% or less and the balance being an inert gas (Ar, Ne, N 2 gas) atmosphere. In this, it is obtained by baking at a temperature of 300 to 400 ° C. for 1 hour. The deposition conditions are as follows: the temperature of the metal substrate is 280 ° C., the degree of vacuum during film formation is 3 to 5 (× 10 −3 Pa), and the film formation rate is 18 nm / min. Then, the second Y 2 O 3 film 31Bb is formed by baking the Y, YH 2 and Y 2 O 3 films formed by vapor deposition at 300 to 800 ° C. for 30 minutes in a vacuum atmosphere.

<第六の製造方法>
これは、第五の製造方法におけるをY膜の二層構造を逆の順序で製造するものである。
第一のY膜31Baは、第五の製造方法の第二のY膜31Bbと同様に、金属基板(底板3B)の表面に、蒸着源である水素含有Yインゴットを蒸着する。そして、蒸着により成膜されたY、YH、Y膜を真空雰囲気下で300〜800℃で30分焼成することにより成膜する。
第二のY膜31Bbは、成膜した第一のY膜31Baの上に、スパッタ法、蒸着法、CVD法、イオンプレーティング法、塗布法等により直接、Y膜を成膜することによって形成する。
<Sixth manufacturing method>
This is to manufacture the two-layer structure of the Y 2 O 3 film in the reverse order in the fifth manufacturing method.
As with the second Y 2 O 3 film 31Bb of the fifth manufacturing method, the first Y 2 O 3 film 31Ba deposits a hydrogen-containing Y ingot as a deposition source on the surface of the metal substrate (bottom plate 3B). To do. Then, deposited by the formed Y, the YH 2, Y 2 O 3 film is baked for 30 minutes at 300 to 800 ° C. in a vacuum atmosphere by evaporation.
Second Y 2 O 3 film 31Bb is directly over the first Y 2 O 3 film 31Ba was deposited, a sputtering method, an evaporation method, CVD method, ion plating method, a coating method or the like, Y 2 O It is formed by depositing three films.

そして、上述の四つの方法のいずれかによって形成した二層の絶縁膜31Ba,31Bbには、図6に示すように、薄膜ヒータ32Bが蛇行した状態にフォトリソ技術によりパターニングされている。薄膜ヒータ32Bは、上記第一の実施の形態の薄膜ヒータ32と同様で、絶縁膜31Ba,31Bb側から順に、金属密着層33B、拡散防止層34B、発熱抵抗層35Bを積層したものである。   As shown in FIG. 6, the two-layered insulating films 31Ba and 31Bb formed by any one of the four methods described above are patterned by a photolithographic technique in a state where the thin film heater 32B meanders. The thin film heater 32B is similar to the thin film heater 32 of the first embodiment, and is formed by laminating a metal adhesion layer 33B, a diffusion prevention layer 34B, and a heating resistance layer 35B in this order from the insulating films 31Ba and 31Bb side.

以上のように、絶縁膜31Ba,31Bbを二層構造とした場合には、第二のY膜31Bbによって第一のY膜31Ba内のピンホールを軽減でき、信頼性の高い絶縁膜31Ba,31Bbとすることができる。
また、第一のY膜31Baと第二のY膜31Bbとを異なる手法により作製することで、後述の実施例1で明らかなように膜作製段階に発生する反りを抑制することができる。すなわち、上述の第三の製造方法のように、金属基板にY膜をスパッタ法により成膜後、結晶子サイズを上げるために焼成した場合、成膜直後のY膜に比較して、原子同士の距離が短くなり、膜としては収縮する。したがって、金属基板は膜に引っ張られて金属基板は下に凸となる。このように金属基板が歪んでしまうと、例えば、他の金属部材との接合をする場合など、接触面積が減少することから接合ができず、他のプロセスにとって悪影響を及ぼす。したがって、第一のY膜31Baが成膜されて下に凸に反った金属基板に、上述のようにさらに第二のY膜31Bbを成膜することで、第一のY膜31Baを成膜した直後と比較して酸素を取り込むことにより結晶のY膜が成膜されるので、その分膜は伸長することになり、上に凸に反ることになる。このように膜作製における金属基板の反りは、第一のY膜31Baと第二のY膜31Bbとでそれぞれ異なるため、互いに異なる方法によるY膜を組み合わせることで金属基板の反りを相殺させることができる。
As described above, when the insulating films 31Ba and 31Bb have a two-layer structure, pinholes in the first Y 2 O 3 film 31Ba can be reduced by the second Y 2 O 3 film 31Bb, and reliability is improved. High insulating films 31Ba and 31Bb can be obtained.
In addition, by producing the first Y 2 O 3 film 31Ba and the second Y 2 O 3 film 31Bb by different methods, the warpage occurring in the film production stage is suppressed as will be apparent from Example 1 described later. can do. That is, as in the third manufacturing method described above, after the film formation by sputtering Y 2 O 3 film on the metal substrate, when firing in order to increase the crystallite size, the Y 2 O 3 film immediately after the film formation In comparison, the distance between atoms is shortened and the film contracts. Therefore, the metal substrate is pulled by the film, and the metal substrate becomes convex downward. When the metal substrate is distorted in this way, for example, when joining with another metal member, the contact area is reduced, so that the joining cannot be performed, which adversely affects other processes. Therefore, by forming the second Y 2 O 3 film 31Bb on the metal substrate on which the first Y 2 O 3 film 31Ba is formed and warped downward, the first Y 2 O 3 film 31Ba is formed as described above. Since the crystalline Y 2 O 3 film is formed by taking in oxygen as compared to immediately after the Y 2 O 3 film 31Ba is formed, the film is extended by that amount, and is warped upward. It will be. As described above, since the warp of the metal substrate in film production differs between the first Y 2 O 3 film 31Ba and the second Y 2 O 3 film 31Bb, by combining Y 2 O 3 films by different methods. The warp of the metal substrate can be offset.

[応用例1]
次に、本発明に係る反応装置の応用例としてマイクロリアクタモジュール100について説明する。
図7は、マイクロリアクタモジュール100を斜め下から示した斜視図、図8は、マイクロリアクタモジュール100の分解斜視図、図9は、マイクロリアクタモジュール100を機能毎に分けた場合の概略側面図、図10は、マイクロリアクタモジュール100と発電セル(燃料電池)160を備える発電システム500、及び、電子機器本体600を含むブロック図である。
マイクロリアクタモジュール100は、ベースプレート101、下部枠102、中部枠103、燃焼器プレート104、上部枠105、蓋プレート106を積層してなる高温反応部107と、ベースプレート111、下部枠112、中部枠113、上部枠115及び蓋プレート116を積層した低温反応部117と、高温反応部107と低温反応部117との間に架設された連結管121と、低温反応部117の下面に連結した多管材122と、多管材122の周りにおいて積層された3枚の燃焼器プレート123と、低温反応部117の下面にパターニングされた電熱線(薄膜ヒータ)124と、低温反応部117から連結管121、高温反応部107にかけての下面にパターニングされた電熱線(薄膜ヒータ)125と、低温反応部117の下面から燃焼器プレート123の外面にかけてパターニングされた電熱線(薄膜ヒータ)126とを備える。
また、パターニングされた電熱線124と、低温反応部117の下面(ベースプレート111)との間及びパターニングされた電熱線125と、高温反応部107の下面(ベースプレート101)との間には、それぞれ全面に亘って絶縁膜131が形成されている。絶縁膜131は、上述した第一の実施の形態における一層の絶縁膜31と同様に第一の製造方法により成膜されたビクスバイト構造を有するY膜である。また、絶縁膜131の膜厚は、200〜600nm程度の範囲が好ましい。
なお、絶縁膜131は、第一の実施の形態における第二の製造方法により成膜されたY膜としても良い。また、第二の実施の形態のように、第一のY膜31Baと第二のY膜31Bbとからなる二層構造からなる絶縁膜であっても良い。この場合、第二の実施の形態における第三〜第六の製造方法によりそれぞれ成膜することができる。
[Application Example 1]
Next, a microreactor module 100 will be described as an application example of the reaction apparatus according to the present invention.
7 is a perspective view showing the microreactor module 100 obliquely from below, FIG. 8 is an exploded perspective view of the microreactor module 100, FIG. 9 is a schematic side view when the microreactor module 100 is divided for each function, and FIG. 1 is a block diagram including a power generation system 500 including a microreactor module 100 and a power generation cell (fuel cell) 160, and an electronic device main body 600. FIG.
The microreactor module 100 includes a base plate 101, a lower frame 102, a middle frame 103, a combustor plate 104, an upper frame 105, a lid plate 106, a high temperature reaction unit 107, a base plate 111, a lower frame 112, a middle frame 113, A low-temperature reaction part 117 in which the upper frame 115 and the lid plate 116 are laminated, a connecting pipe 121 laid between the high-temperature reaction part 107 and the low-temperature reaction part 117, a multi-tube member 122 connected to the lower surface of the low-temperature reaction part 117, The three combustor plates 123 stacked around the multi-pipe 122, the heating wire (thin film heater) 124 patterned on the lower surface of the low temperature reaction part 117, the connecting pipe 121, the high temperature reaction part from the low temperature reaction part 117 The heating wire (thin film heater) 125 patterned on the lower surface extending to 107 and the low-temperature reaction part 11 Comprising a from the lower surface of the combustor is patterned over the outer surface of the plate 123 the heating wire (thin film heater) 126.
Further, the entire surface between the patterned heating wire 124 and the lower surface of the low temperature reaction unit 117 (base plate 111) and between the patterned heating wire 125 and the lower surface of the high temperature reaction unit 107 (base plate 101), respectively. An insulating film 131 is formed over the entire area. The insulating film 131 is a Y 2 O 3 film having a bixbite structure formed by the first manufacturing method in the same manner as the single-layer insulating film 31 in the first embodiment described above. The thickness of the insulating film 131 is preferably in the range of about 200 to 600 nm.
The insulating film 131 may be a Y 2 O 3 film formed by the second manufacturing method in the first embodiment. Further, as in the second embodiment, an insulating film having a two-layer structure including a first Y 2 O 3 film 31Ba and a second Y 2 O 3 film 31Bb may be used. In this case, it can form into a film by the 3rd-6th manufacturing method in 2nd embodiment, respectively.

3枚の燃焼器プレート123は外周部に側壁及び流路を仕切るリブが設けられた凹部を持つプレートであり、中央部に貫通孔が形成され、その貫通孔に多管材122が嵌め込まれる。燃焼器プレート123が多管材122の周囲で接合により積層され、更に一番上の燃焼器プレート123が低温反応部117の下面に接合されることによってこれらの接合面内に流路が形成されており、3枚の燃焼器プレート123によって第一燃焼器141(図9)が構成されている。第一燃焼器141には空気と気体燃料(例えば、水素ガス、メタノールガス等)がそれぞれ別々にあるいは混合気として多管材122を通って供給され、燃料器プレート123間の流路において塗布されている触媒により触媒燃焼が起こる。
また、多管材122には、水と液体燃料(例えば、メタノール、エタノール、ジメチルエーテル、ブタン、ガソリン)がそれぞれ別々にあるいは混合された状態で燃料容器から供給され、第一燃焼器141における燃焼熱によって水と液体燃料が気化する気化器142(図9)を構成している。気化した燃料と水の混合気は、ベースプレート111の流路、連結管121を通って高温反応部107の下部の内側に送られる。
高温反応部107の下部はベースプレート101、下部枠102、中部枠103を積層したものであり、これらの積層体の内側に流路が形成され、これによって第一改質器143(図6)が構成される。この第一改質器143の流路を気化された混合気が流れて水素等が触媒反応により生成される。混合気中の液体燃料がメタノールの場合には、次式(1)のような反応になる。さらに次式(2)のような反応により、微量ながら副生成物である一酸化炭素が生成される。
CHOH+HO→3H+CO …(1)
+CO→HO+CO …(2)
The three combustor plates 123 are plates having recesses provided with ribs for partitioning the side wall and the flow path on the outer peripheral portion, a through hole is formed in the center portion, and the multi-pipe material 122 is fitted into the through hole. The combustor plate 123 is laminated around the multi-pipe material 122 by bonding, and the uppermost combustor plate 123 is bonded to the lower surface of the low-temperature reaction unit 117, thereby forming a flow path in these bonding surfaces. The first combustor 141 (FIG. 9) is configured by the three combustor plates 123. Air and gaseous fuel (for example, hydrogen gas, methanol gas, etc.) are supplied to the first combustor 141 separately or as an air-fuel mixture through the multi-pipe material 122 and applied in the flow path between the fuel plate 123. Catalytic combustion occurs with the catalyst.
In addition, water and liquid fuel (for example, methanol, ethanol, dimethyl ether, butane, gasoline) are supplied from the fuel container to the multi-pipe material 122 separately or in a mixed state, and are generated by combustion heat in the first combustor 141. A vaporizer 142 (FIG. 9) that vaporizes water and liquid fuel is configured. The vaporized fuel / water mixture is sent to the inside of the lower part of the high temperature reaction unit 107 through the flow path of the base plate 111 and the connecting pipe 121.
The lower part of the high temperature reaction unit 107 is a laminate of the base plate 101, the lower frame 102, and the middle frame 103, and a flow path is formed inside these laminates, whereby the first reformer 143 (FIG. 6) is formed. Composed. The vaporized gas mixture flows through the flow path of the first reformer 143, and hydrogen or the like is generated by a catalytic reaction. When the liquid fuel in the gas mixture is methanol, the reaction is represented by the following formula (1). Furthermore, carbon monoxide, which is a by-product, is produced by a reaction such as the following formula (2), although the amount is small.
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
H 2 + CO 2 → H 2 O + CO (2)

この触媒反応には熱が必要だが、電熱線125や燃焼器プレート104により熱エネルギーが供給される。燃焼器プレート104は外周部に側壁及び流路を仕切るリブが設けられた凹部を持つプレートである。ここで、燃焼器プレート104が上部枠105と接合することでその接合面内に燃焼室が形成され、これによって第二燃焼器144(図9)が構成される。気体燃料(例えば、水素ガス、メタノールガス等)と空気の混合気が多管材122、ベースプレート111の流路、連結管121を通って燃焼室(第二燃焼器144(図9))に供給され、燃焼室において触媒燃焼が起こる。第二燃焼器144(図9)によって高温反応部107は、280〜400℃程度に加熱される。   Heat is required for this catalytic reaction, but heat energy is supplied by the heating wire 125 or the combustor plate 104. The combustor plate 104 is a plate having a concave portion provided with ribs that partition the side wall and the flow path on the outer peripheral portion. Here, when the combustor plate 104 is joined to the upper frame 105, a combustion chamber is formed in the joining surface, thereby forming the second combustor 144 (FIG. 9). A mixture of gaseous fuel (for example, hydrogen gas, methanol gas, etc.) and air is supplied to the combustion chamber (second combustor 144 (FIG. 9)) through the multi-pipe 122, the flow path of the base plate 111, and the connecting pipe 121. Catalytic combustion occurs in the combustion chamber. The high temperature reaction part 107 is heated to about 280-400 degreeC by the 2nd combustor 144 (FIG. 9).

ベースプレート101、下部枠102、中部枠103の積層体から混合気が更に上部枠105の内側に送られる。上部枠105の内側には複数の隔壁が設けられ、上部枠105の上側開口が蓋プレート106によって閉塞されることによって上部枠106の内側に流路が形成され、これによって第二改質器145(図9)が構成される。上部枠106の内側に送られた混合気は上部枠106の内側の流路を流れて水素等が触媒反応により生成され、さらに微量ながら副生成物である一酸化炭素が生成される(上記式(1)、(2)参照)。そして、水素等を含む混合気が連結管121を通って低温反応部の内側に送られる。   The air-fuel mixture is further sent to the inside of the upper frame 105 from the laminated body of the base plate 101, the lower frame 102, and the middle frame 103. A plurality of partition walls are provided inside the upper frame 105, and a flow path is formed inside the upper frame 106 by closing the upper opening of the upper frame 105 by the lid plate 106, thereby the second reformer 145. (FIG. 9) is configured. The air-fuel mixture sent to the inside of the upper frame 106 flows through the flow path inside the upper frame 106, hydrogen and the like are generated by a catalytic reaction, and carbon monoxide, which is a by-product, is generated in a small amount (the above formula) (See (1) and (2)). Then, an air-fuel mixture containing hydrogen and the like is sent to the inside of the low temperature reaction section through the connecting pipe 121.

低温反応部117はベースプレート111、下部枠112、中部枠113、上部枠115、蓋プレート116を積層したものであるが、これらの積層体の内側に流路が形成され、これによって一酸化炭素除去器146(図9)が構成される。一酸化炭素除去器146の流路を混合気が流れて混合気中の、上記(2)式で生成された一酸化炭素が次式(3)式のように選択的に酸化される。
2CO+O→2CO …(3)
一酸化炭素の選択酸化反応は室温よりも高い温度(100〜180℃程度)で起こるので、低温反応部117が電熱線124や燃焼器プレート123によって加熱される。低温反応部117で一酸化炭素を除去した水素リッチガスが多管材122を通って発電セル160の燃料極に供給される。発電セル160では酸素極に空気が供給され、酸素と水素の電気化学反応により電気エネルギーが生成される。
そして、図10に示すように、発電システム500は、発電セル160により生成された電気エネルギーを適切な電圧に変換するDC/DCコンバータ171と、DC/DCコンバータ171に接続される2次電池172と、それらを制御する制御部173も備える。
DC/DCコンバータ171は発電セル160により生成された電気エネルギーを適切な電圧に変換したのちに電子機器本体600に供給する機能の他に、発電セル160により生成された電気エネルギーを2次電池172に充電し、燃料電池7側が運転されていない時に、電子機器本体600に2次電池172側から電気エネルギーを供給する機能も果たせるようになっている。制御部173は気化器142、第一、二改質器143、145、一酸化炭素除去器146、第二燃焼器144、発電セル160を運転するために必要な図示しないポンプやバルブ類、そして、ヒータ類、DC/DCコンバータ171等を制御し、電子機器本体600に安定して電気エネルギーが供給されるような制御を行なう。
The low-temperature reaction unit 117 is formed by laminating the base plate 111, the lower frame 112, the middle frame 113, the upper frame 115, and the lid plate 116, and a flow path is formed inside these laminated bodies, thereby removing carbon monoxide. A device 146 (FIG. 9) is constructed. The air-fuel mixture flows through the flow path of the carbon monoxide remover 146, and the carbon monoxide generated by the above equation (2) in the air-fuel mixture is selectively oxidized as the following equation (3).
2CO + O 2 → 2CO 2 (3)
Since the selective oxidation reaction of carbon monoxide occurs at a temperature higher than room temperature (about 100 to 180 ° C.), the low temperature reaction section 117 is heated by the heating wire 124 and the combustor plate 123. The hydrogen rich gas from which carbon monoxide has been removed by the low temperature reaction unit 117 is supplied to the fuel electrode of the power generation cell 160 through the multi-pipe material 122. In the power generation cell 160, air is supplied to the oxygen electrode, and electric energy is generated by an electrochemical reaction between oxygen and hydrogen.
As illustrated in FIG. 10, the power generation system 500 includes a DC / DC converter 171 that converts electrical energy generated by the power generation cell 160 into an appropriate voltage, and a secondary battery 172 that is connected to the DC / DC converter 171. And a control unit 173 for controlling them.
The DC / DC converter 171 converts the electric energy generated by the power generation cell 160 into an appropriate voltage and then supplies the electric energy generated by the power generation cell 160 to the secondary battery 172. When the fuel cell 7 is not in operation, the electronic device main body 600 can also function to supply electric energy from the secondary battery 172 side. The controller 173 includes a vaporizer 142, first and second reformers 143 and 145, a carbon monoxide remover 146, a second combustor 144, pumps and valves (not shown) necessary for operating the power generation cell 160, and Then, the heaters, the DC / DC converter 171 and the like are controlled so that the electric energy is stably supplied to the electronic device main body 600.

高温反応部107、低温反応部117、連結管121は断熱パッケージ(図示しない)内に収容されているが、断熱パッケージ内が真空圧とされているので、断熱効果が高くなっている。また、断熱パッケージ内にはゲッター材132が設けられ、リード線151,152、配線133を通じてゲッター材132のヒータに電圧を印加すると、ゲッター材132が活性化して、断熱パッケージ内の真空度が高まる。リード線151,152のほかにも何本かリード線が設けられているが、リード線153,154は電熱線124に接続され、リード線155,156は電熱線125に接続され、リード線157,158は電熱線126に接続されている。   Although the high temperature reaction part 107, the low temperature reaction part 117, and the connecting pipe 121 are accommodated in the heat insulation package (not shown), since the inside of the heat insulation package is made into a vacuum pressure, the heat insulation effect is high. Further, a getter material 132 is provided in the heat insulation package. When a voltage is applied to the heater of the getter material 132 through the lead wires 151 and 152 and the wiring 133, the getter material 132 is activated and the degree of vacuum in the heat insulation package is increased. . In addition to the lead wires 151 and 152, some lead wires are provided. The lead wires 153 and 154 are connected to the heating wire 124, the lead wires 155 and 156 are connected to the heating wire 125, and the lead wire 157 is connected. , 158 are connected to the heating wire 126.

以上のように、マイクロリアクタモジュール100において、ベースプレート101,111の下面と、この下面に設けられた電熱線124,125との間に結晶構造(ビクスバイト構造)を有するY膜(絶縁膜131)を設けるので、室温より高い環境下で金属と熱膨張係数が非常に近いため、ベースプレート101,111の歪みによる絶縁膜131の亀裂や剥離を防止することができ、絶縁膜としての信頼性を高めることできる。
また、絶縁膜131を成膜する場合、不活性ガス雰囲気において焼成するため、金属基板であるベースプレート101,111を酸化させることなくY膜を成膜することができる。
さらに、絶縁膜131を二層構造とした場合には、下層の膜内のピンホールを軽減でき、信頼性の高い絶縁膜を設けることができ、それに加えて上層、下層と異なる手法により膜を作製することで膜作製段階に発生する反りを抑制することができる。
As described above, in the microreactor module 100, a Y 2 O 3 film (insulating film) having a crystal structure (Bixbite structure) between the lower surface of the base plates 101 and 111 and the heating wires 124 and 125 provided on the lower surface. 131), the thermal expansion coefficient is very close to that of a metal in an environment higher than room temperature. Therefore, cracking and peeling of the insulating film 131 due to distortion of the base plates 101 and 111 can be prevented, and the reliability as the insulating film can be prevented. Can be increased.
In addition, since the insulating film 131 is baked in an inert gas atmosphere, the Y 2 O 3 film can be formed without oxidizing the base plates 101 and 111 which are metal substrates.
Further, when the insulating film 131 has a two-layer structure, pinholes in the lower layer film can be reduced and a highly reliable insulating film can be provided. In addition, the film can be formed by a method different from that for the upper layer and the lower layer. By manufacturing, the warp generated in the film manufacturing stage can be suppressed.

[応用例2]
上述した応用例1は、水素製造を行うための化学反応器を想定していたが、これに限らず、改質器等を含む固体酸化物型の発電セル(燃料電池)のように高温作動(600〜900℃)するデバイスにも、結晶構造(ビクスバイト構造)を有するY膜からなる絶縁膜を用いることができる。図11は、固体酸化物型の発電セル200の概略断面図である。
発電セル200は、箱型状をなした金属容器210と、金属容器210内に設けられた膜電極接合体220と、金属容器210内が膜電極接合体220によって仕切られることにより金属容器210内の上側と下側とにそれぞれ形成される燃料取り込み部211及び酸素取り込み部212とを備えている。
金属容器210は、耐熱性の良いNi、Ni−Cr合金、インコネル等の合金からなるものである。膜電極接合体220は、燃料極膜221、固体酸化物電解質膜222及び酸素極膜223を備え、金属容器210内の燃料極膜221は燃料取り込み部211側に配されており、酸素極膜223は金属容器210内の酸素取り込み部212側に配されている。固体酸化物電解質膜222は、燃料極膜221及び酸素極膜223の間に介在し、燃料極膜221、固体酸化物電解質膜222及び酸素極膜223が接合されている。燃料極膜221の固体酸化物電解質膜222と反対側の面には、陽極側の集電体224が設けられ、酸素極膜223の固体酸化物電解質膜222と反対側の面には、陰極側の集電体225が設けられている。金属容器210内の内側面には、絶縁膜であるY膜231が形成されている。絶縁膜231は、上述した絶縁膜31と同様にスパッタ法により成膜された結晶構造(ビクスバイト構造)を有するY膜である。成膜方法としては、スパッタ法に限らず、蒸着法、CVD法、イオンプレーティング法、塗布法等でも構わない。
そして、燃料極膜221、固体酸化物電解質膜222、酸素極膜223及び二つの集電体224,225は、いずれも金属容器210の上面及び下面に対して平行となるように金属容器210内の互いに対向する内側面に形成された絶縁膜231,231間に渡って設けられている。
[Application 2]
Although the application example 1 mentioned above assumed the chemical reactor for performing hydrogen production, not only this but high temperature operation | movement like a solid oxide type power generation cell (fuel cell) including a reformer etc. An insulating film made of a Y 2 O 3 film having a crystal structure (Bixbite structure) can also be used for a device (600 to 900 ° C.). FIG. 11 is a schematic cross-sectional view of a solid oxide power generation cell 200.
The power generation cell 200 includes a metal container 210 having a box shape, a membrane electrode assembly 220 provided in the metal container 210, and the inside of the metal container 210 is partitioned by the membrane electrode assembly 220. The fuel intake part 211 and the oxygen intake part 212 are provided respectively on the upper side and the lower side.
The metal container 210 is made of an alloy such as Ni, Ni—Cr alloy, or Inconel having good heat resistance. The membrane electrode assembly 220 includes a fuel electrode membrane 221, a solid oxide electrolyte membrane 222, and an oxygen electrode membrane 223. The fuel electrode membrane 221 in the metal container 210 is disposed on the fuel intake portion 211 side. 223 is arranged on the oxygen uptake unit 212 side in the metal container 210. The solid oxide electrolyte membrane 222 is interposed between the fuel electrode membrane 221 and the oxygen electrode membrane 223, and the fuel electrode membrane 221, the solid oxide electrolyte membrane 222, and the oxygen electrode membrane 223 are joined. A current collector 224 on the anode side is provided on the surface of the fuel electrode membrane 221 opposite to the solid oxide electrolyte membrane 222, and a cathode on the surface of the oxygen electrode membrane 223 opposite to the solid oxide electrolyte membrane 222. A side current collector 225 is provided. A Y 2 O 3 film 231 that is an insulating film is formed on the inner surface of the metal container 210. The insulating film 231 is a Y 2 O 3 film having a crystal structure (Bixbite structure) formed by sputtering as with the insulating film 31 described above. The film forming method is not limited to the sputtering method, but may be a vapor deposition method, a CVD method, an ion plating method, a coating method, or the like.
The fuel electrode membrane 221, the solid oxide electrolyte membrane 222, the oxygen electrode membrane 223, and the two current collectors 224 and 225 are all in the metal container 210 so as to be parallel to the upper and lower surfaces of the metal container 210. Between the insulating films 231 and 231 formed on the inner surfaces facing each other.

固体酸化物電解質膜222は、酸素極膜223から燃料極膜221へ酸素イオンを運ぶ役割を有し、酸素イオンを透過させる性質をもつ。固体酸化物電解質膜222は、酸化還元雰囲気中で安定なYSZ(イットリア安定化ジルコニア)等が用いられる。
酸素極膜223では導入される空気中の酸素が電極上で吸着、解離し反応場において、電子と結合して酸素イオンを生成する。従って、酸化雰囲気中で安定な多孔質材料で、電子伝導性の良い、例えば、La1−xSrMnOが用いられる。
燃料極膜221では導入される水素が酸素イオンと反応して、水蒸気と電子を生成する。従って、還元雰囲気下で安定な多孔質材料で、水素との親和性が良く、電子伝導率が高い、例えば、Ni/YSZ(サーメット)が用いられる。
集電体224,225は、集電板の役割を担うことから電子伝導率が高く、イオン導電率の低い、例えば、Ni−Cr合金、Fe−Cr合金が用いられる。
The solid oxide electrolyte membrane 222 has a role of transporting oxygen ions from the oxygen electrode membrane 223 to the fuel electrode membrane 221 and has a property of transmitting oxygen ions. The solid oxide electrolyte membrane 222 is made of YSZ (yttria stabilized zirconia) that is stable in an oxidation-reduction atmosphere.
In the oxygen electrode film 223, oxygen in the introduced air is adsorbed and dissociated on the electrode and combined with electrons in the reaction field to generate oxygen ions. Therefore, for example, La 1-x Sr x MnO 3 which is a porous material stable in an oxidizing atmosphere and has good electron conductivity is used.
In the fuel electrode membrane 221, hydrogen introduced reacts with oxygen ions to generate water vapor and electrons. Therefore, for example, Ni / YSZ (cermet) is used which is a porous material that is stable in a reducing atmosphere, has good affinity with hydrogen, and has high electron conductivity.
Since the current collectors 224 and 225 serve as a current collector plate, for example, a Ni—Cr alloy or a Fe—Cr alloy having high electron conductivity and low ion conductivity is used.

金属容器210の外側面には、改質器に連結されて改質器で生成された燃料(H)を燃料取り込み部211に取り込む燃料供給管241と、発電に使用されなかった未反応の燃料(H)を排出する燃料排出管242とが外側面を貫通して設けられている。また、金属容器210の外側面に、酸素取り込み部212に酸素を取り込む酸素供給管243と、発電に使用されなかった未反応の酸素を排出する酸素排出管244とが外側面を貫通して設けられている。 On the outer surface of the metal container 210, a fuel supply pipe 241 connected to the reformer and taking in the fuel (H 2 ) generated by the reformer into the fuel take-in part 211, and an unreacted that has not been used for power generation A fuel discharge pipe 242 that discharges fuel (H 2 ) is provided through the outer surface. Further, an oxygen supply pipe 243 for taking oxygen into the oxygen take-in section 212 and an oxygen discharge pipe 244 for discharging unreacted oxygen that has not been used for power generation are provided on the outer face of the metal container 210 so as to penetrate the outer face. It has been.

金属容器210の上面には、全面に絶縁膜232が形成されている。絶縁膜232は、上述した第一の実施の形態における一層の絶縁膜31と同様に第一の製造方法により成膜されたビクスバイト構造を有するY膜である。また、絶縁膜231の膜厚は、200〜600nm程度の範囲が好ましい。
なお、絶縁膜231は、第一の実施の形態における第二の製造方法により成膜されたY膜としても良い。また、第二の実施の形態のように、第一のY膜31Baと第二のY膜31Bbとからなる二層構造からなる絶縁膜であっても良い。この場合、第二の実施の形態における第三〜第六の製造方法によりそれぞれ成膜することができる。
絶縁膜232上には、薄膜ヒータ233が蛇行した状態にフォトリソ技術によりパターニングされている。薄膜ヒータ233は、絶縁膜232側から順に、金属密着層(例えば、Ta、Mo、Ti、Cr)、拡散防止層(例えば、W)、発熱抵抗層(例えば、Au)を積層したものである。金属密着層の膜厚は、100〜200nm、拡散防止層の膜厚は、50〜100nm、発熱抵抗層の膜厚は、200〜400nmが好ましい。薄膜ヒータ233は、起動時に金属容器210を加熱し、温度に依存して電気抵抗が変化するため、抵抗値の変化から温度の変化を読み取る温度センサとしても機能する。具体的には、薄膜ヒータ233の温度が電気抵抗に対して線形に変化する領域を用いる。
An insulating film 232 is formed on the entire upper surface of the metal container 210. The insulating film 232 is a Y 2 O 3 film having a bixbite structure formed by the first manufacturing method in the same manner as the single-layer insulating film 31 in the first embodiment described above. The thickness of the insulating film 231 is preferably in the range of about 200 to 600 nm.
The insulating film 231 may be a Y 2 O 3 film formed by the second manufacturing method in the first embodiment. Further, as in the second embodiment, an insulating film having a two-layer structure including a first Y 2 O 3 film 31Ba and a second Y 2 O 3 film 31Bb may be used. In this case, it can form into a film by the 3rd-6th manufacturing method in 2nd embodiment, respectively.
On the insulating film 232, the thin film heater 233 is patterned in a meandering manner by a photolithography technique. The thin film heater 233 is formed by laminating a metal adhesion layer (for example, Ta, Mo, Ti, Cr), a diffusion prevention layer (for example, W), and a heating resistance layer (for example, Au) in this order from the insulating film 232 side. . The thickness of the metal adhesion layer is preferably 100 to 200 nm, the thickness of the diffusion preventing layer is preferably 50 to 100 nm, and the thickness of the heating resistor layer is preferably 200 to 400 nm. The thin film heater 233 heats the metal container 210 at the time of activation, and the electric resistance changes depending on the temperature. Therefore, the thin film heater 233 also functions as a temperature sensor that reads a change in temperature from a change in resistance value. Specifically, a region where the temperature of the thin film heater 233 changes linearly with respect to the electrical resistance is used.

上述の構成からなる発電セル200においては、薄膜ヒータ233に接続されたリード線(図示しない)に電圧を印加して、薄膜ヒータ233を発熱させることにより金属容器210を700℃〜1000℃程度に加熱した状態で、水素を燃料供給管241から燃料取り込み部211に供給し、膜電極接合体220での電気化学反応に使用されなかった水素は燃料排出管242から排出される。一方、酸素を含む空気が酸素供給管243から酸素取り込み部212に供給され、酸素が酸素極膜223でイオン化して固体酸化物電解質膜222を透過する。膜電極接合体220での電気化学反応に使用されなかった酸素は酸素排出管244から排出される。固体酸化物電解質膜222を透過した酸素イオンは、燃料極膜221で水素と反応し、水が燃料取り込み部211内に生成される。このとき生じた電子は、陰極側の集電体225から、配線を介して外部回路を通って陽極側の集電体224に戻り伝導する。生成された水は、水蒸気の状態となっており、燃料排出管242から排出される。このように酸素イオンの移動に伴い、電気エネルギーが生成される。   In the power generation cell 200 having the above-described configuration, a voltage is applied to a lead wire (not shown) connected to the thin film heater 233 to cause the thin film heater 233 to generate heat, whereby the metal container 210 is heated to about 700 ° C. to 1000 ° C. In a heated state, hydrogen is supplied from the fuel supply pipe 241 to the fuel intake section 211, and hydrogen that has not been used for the electrochemical reaction in the membrane electrode assembly 220 is discharged from the fuel discharge pipe 242. On the other hand, oxygen-containing air is supplied from the oxygen supply pipe 243 to the oxygen intake section 212, and oxygen is ionized by the oxygen electrode film 223 and passes through the solid oxide electrolyte membrane 222. Oxygen that has not been used for the electrochemical reaction in the membrane electrode assembly 220 is exhausted from the oxygen exhaust pipe 244. Oxygen ions that have permeated through the solid oxide electrolyte membrane 222 react with hydrogen at the fuel electrode membrane 221, and water is generated in the fuel intake portion 211. Electrons generated at this time are conducted from the current collector 225 on the cathode side through the external circuit to the anode current collector 224 through the wiring. The generated water is in the state of water vapor and is discharged from the fuel discharge pipe 242. Thus, electric energy is generated as oxygen ions move.

[応用例3]
図12は、固体酸化物型の別の発電セル300の概略断面図である。
図12に示す発電セル300は、上述した発電セル200のように金属容器210を使用するのではなく、二枚の金属基板311,312を使用したものである。具体的には、発電セル300は、上下に互いに対向して配された二枚の金属基板311,312と、二枚の金属基板311,312間に両金属基板311,312と平行となるように設けられた膜電極接合体320と、膜電極接合体320を金属基板311,312に固定する支柱部313,314と、膜電極接合体320によって仕切られることにより膜電極接合体320と下側の金属基板311との間に形成される燃料取り込み部315と、膜電極接合体320と上側の金属基板312との間に形成される酸素取り込み部316とを備えている。
下側の金属基板311の上面の周縁部には、上方に立設する支柱部313が枠状に形成され、上側の金属基板312の下面の周縁部には、下方に立設する支柱部314が枠状に形成されている。これら支柱部313,314は、セラミック等の絶縁材料から形成されている。
[Application Example 3]
FIG. 12 is a schematic cross-sectional view of another power generation cell 300 of the solid oxide type.
A power generation cell 300 shown in FIG. 12 uses two metal substrates 311 and 312 instead of using the metal container 210 as in the power generation cell 200 described above. Specifically, the power generation cell 300 includes two metal substrates 311 and 312 that are vertically opposed to each other, and is parallel to both metal substrates 311 and 312 between the two metal substrates 311 and 312. The membrane electrode assembly 320, the support portions 313 and 314 that fix the membrane electrode assembly 320 to the metal substrates 311 and 312, and the membrane electrode assembly 320 are separated from the lower side. A fuel intake portion 315 formed between the metal substrate 311 and an oxygen intake portion 316 formed between the membrane electrode assembly 320 and the upper metal substrate 312.
A support column 313 is formed in a frame shape on the periphery of the upper surface of the lower metal substrate 311, and a support column 314 is installed on the periphery of the lower surface of the upper metal substrate 312. Is formed in a frame shape. These support | pillar parts 313,314 are formed from insulating materials, such as a ceramic.

膜電極接合体320は、下側の支柱部313,313と上側の支柱部314,314との間に挟持されており、これによって下側の金属基板311と膜電極接合体320の間及び上側の金属基板312と膜電極接合体320の間に空間が形成されている。膜電極接合体320は、燃料極膜321、固体酸化物電解質膜322及び酸素極膜323を備え、燃料極膜321は燃料取り込み部315側に面して配されており、酸素極膜323は酸素取り込み部316側に面して配されている。固体酸化物電解質膜322は、燃料極膜321及び酸素極膜323の間に介在し、燃料極膜321、固体酸化物電解質膜322及び酸素極膜323が接合されている。燃料極膜321の固体酸化物電解質膜322と反対側の面には、陽極側の集電体324が設けられ、酸素極膜323の固体酸化物電解質膜322と反対側の面には、陰極側の集電体325が設けられている。そして、燃料極膜321、固体酸化物電解質膜322、酸素極膜323及び二つの集電体324,325は、いずれも二つの金属基板311,312に対して平行となるように、左右両側の支柱部313,313,314,314に渡って設けられている。   The membrane electrode assembly 320 is sandwiched between the lower support column portions 313 and 313 and the upper support column portions 314 and 314, whereby the lower metal substrate 311 and the membrane electrode assembly 320 are connected between the upper side and the upper side. A space is formed between the metal substrate 312 and the membrane electrode assembly 320. The membrane electrode assembly 320 includes a fuel electrode membrane 321, a solid oxide electrolyte membrane 322, and an oxygen electrode membrane 323. The fuel electrode membrane 321 is arranged facing the fuel intake portion 315 side. It is arranged facing the oxygen uptake unit 316 side. The solid oxide electrolyte membrane 322 is interposed between the fuel electrode membrane 321 and the oxygen electrode membrane 323, and the fuel electrode membrane 321, the solid oxide electrolyte membrane 322, and the oxygen electrode membrane 323 are joined. A current collector 324 on the anode side is provided on the surface of the fuel electrode membrane 321 opposite to the solid oxide electrolyte membrane 322, and a cathode is provided on the surface of the oxygen electrode membrane 323 opposite to the solid oxide electrolyte membrane 322. A side current collector 325 is provided. The fuel electrode membrane 321, the solid oxide electrolyte membrane 322, the oxygen electrode membrane 323, and the two current collectors 324 and 325 are arranged on both the left and right sides so as to be parallel to the two metal substrates 311 and 312. It is provided across the support columns 313, 313, 314, 314.

固体酸化物電解質膜322、燃料極膜321、酸素極膜323は、上述したものと同様のため、その説明を省略する。
下側の支柱部313の外側面には、改質器に連結されて改質器で生成された燃料(H)を燃料取り込み部315に取り込む燃料供給管341と、発電に使用されなかった未反応の燃料(H)を排出する燃料排出管342とが外側面を貫通して設けられている。また、上側の支柱部314の外側面に、酸素取り込み部316に酸素を取り込む酸素供給管343と、発電に使用されなかった未反応の酸素を排出する酸素排出管344とが外側面を貫通して設けられている。
Since the solid oxide electrolyte membrane 322, the fuel electrode membrane 321 and the oxygen electrode membrane 323 are the same as those described above, the description thereof is omitted.
A fuel supply pipe 341 that is connected to the reformer and takes in the fuel (H 2 ) generated by the reformer into the fuel take-in portion 315 is not used for power generation on the outer surface of the lower support column 313. A fuel discharge pipe 342 for discharging unreacted fuel (H 2 ) is provided through the outer surface. Further, an oxygen supply pipe 343 that takes oxygen into the oxygen take-in section 316 and an oxygen discharge pipe 344 that discharges unreacted oxygen that has not been used for power generation penetrate the outer face of the upper support column 314 through the outer face. Is provided.

上側の金属基板312の上面には、全面に絶縁膜332が形成されている。絶縁膜332は、上述した第一の実施の形態における一層の絶縁膜31と同様に第一の製造方法により成膜されたビクスバイト構造を有するY膜である。また、絶縁膜332の膜厚は、200〜600nm程度の範囲が好ましい。
なお、絶縁膜332は、第一の実施の形態における第二の製造方法により成膜されたY膜としても良い。また、第二の実施の形態のように、第一のY膜31Baと第二のY膜31Bbとからなる二層構造からなる絶縁膜であっても良い。この場合、第二の実施の形態における第三〜第六の製造方法によりそれぞれ成膜することができる。
絶縁膜332上には、薄膜ヒータ333が蛇行した状態にフォトリソ技術によりパターニングされている。薄膜ヒータ333は、絶縁膜332側から順に、金属密着層(例えば、Ta、Mo、Ti、Cr)、拡散防止層(例えば、W)、発熱抵抗層(例えば、Au)を積層したものである。金属密着層の膜厚は、100〜200nm、拡散防止層の膜厚は、50〜100nm、発熱抵抗層の膜厚は、200〜400nmが好ましい。薄膜ヒータ333は、起動時に金属容器を加熱し、温度に依存して電気抵抗が変化するため、抵抗値の変化から温度の変化を読み取る温度センサとしても機能する。具体的には、薄膜ヒータ333の温度が電気抵抗に対して線形に変化する領域を用いる。
An insulating film 332 is formed on the entire upper surface of the upper metal substrate 312. The insulating film 332 is a Y 2 O 3 film having a bixbite structure formed by the first manufacturing method in the same manner as the one-layer insulating film 31 in the first embodiment described above. The thickness of the insulating film 332 is preferably in the range of about 200 to 600 nm.
The insulating film 332 may be a Y 2 O 3 film formed by the second manufacturing method in the first embodiment. Further, as in the second embodiment, an insulating film having a two-layer structure including a first Y 2 O 3 film 31Ba and a second Y 2 O 3 film 31Bb may be used. In this case, it can form into a film by the 3rd-6th manufacturing method in 2nd embodiment, respectively.
On the insulating film 332, the thin film heater 333 is patterned in a meandering manner by a photolithography technique. The thin film heater 333 is formed by laminating a metal adhesion layer (for example, Ta, Mo, Ti, Cr), a diffusion prevention layer (for example, W), and a heating resistance layer (for example, Au) in this order from the insulating film 332 side. . The thickness of the metal adhesion layer is preferably 100 to 200 nm, the thickness of the diffusion preventing layer is preferably 50 to 100 nm, and the thickness of the heating resistor layer is preferably 200 to 400 nm. The thin film heater 333 functions as a temperature sensor that reads a change in temperature from a change in resistance value because the electric resistance changes depending on the temperature by heating the metal container at the time of activation. Specifically, a region where the temperature of the thin film heater 333 changes linearly with respect to the electric resistance is used.

上述の構成からなる発電セル300においても、薄膜ヒータ333に接続されたリード線に電圧を印加して、薄膜ヒータ333を発熱させることにより金属基板311,312等からなる筐体を600〜900℃程度に加熱した状態で、水素を燃料供給管341から燃料取り込み部315に供給し、膜電極接合体320での電気化学反応に使用されなかった水素は燃料排出管342から排出される。一方、酸素を含む空気が酸素供給管343から酸素取り込み部316に供給し、酸素が酸素極膜323でイオン化して固体酸化物電解質膜322を透過する。膜電極接合体320での電気化学反応に使用されなかった未反応の酸素は酸素排出管344から排出される。固体酸化物電解質膜322を透過した酸素イオンは、燃料極膜321で水素と反応し、水が燃料取り込み部315内に生成される。このとき生じた電子は、陰極側の集電体325から、配線を介して外部回路を通って陽極側の集電体324に戻り伝導する。生成された水は、水蒸気の状態となっており、燃料排出管342から排出される。このように酸素イオンの移動に伴い、電気エネルギーが生成される。   Also in the power generation cell 300 having the above-described configuration, a voltage is applied to the lead wire connected to the thin film heater 333 to generate heat, and the casing made of the metal substrates 311, 312, etc. is heated to 600 to 900 ° C. Hydrogen is supplied to the fuel intake unit 315 from the fuel supply pipe 341 in a state of being heated to an extent, and hydrogen that has not been used for the electrochemical reaction in the membrane electrode assembly 320 is discharged from the fuel discharge pipe 342. On the other hand, air containing oxygen is supplied from the oxygen supply pipe 343 to the oxygen uptake unit 316, and oxygen is ionized by the oxygen electrode film 323 and passes through the solid oxide electrolyte membrane 322. Unreacted oxygen that has not been used for the electrochemical reaction in the membrane electrode assembly 320 is discharged from the oxygen discharge pipe 344. Oxygen ions that have permeated the solid oxide electrolyte membrane 322 react with hydrogen in the fuel electrode membrane 321, and water is generated in the fuel intake portion 315. Electrons generated at this time are conducted from the current collector 325 on the cathode side through the external circuit to the anode current collector 324 through the wiring. The generated water is in the state of water vapor and is discharged from the fuel discharge pipe 342. Thus, electric energy is generated as oxygen ions move.

以上のように、図11及び図12に示す固体酸化物型の発電セル200,300において、金属容器210,金属基板312の上面と、この上面に設けられた薄膜ヒータ233,333との間に結晶構造(ビクスバイト構造)を有するY膜(絶縁膜232,332)を設けるので、作動温度が600〜900℃と非常に高い場合にも、金属と熱膨張係数が非常に近いため、金属容器210,金属基板312の歪みによる絶縁膜232,332の亀裂や剥離を防止することができ、絶縁耐圧としての性能に優れたものとすることができる。
また、絶縁膜232,332を成膜する場合、不活性ガス雰囲気において焼成するため、金属容器210、金属基板312を酸化させることなくY膜を成膜することができる。
さらに、絶縁膜232,332を二層構造とした場合には、下層の膜内のピンホールを軽減でき、信頼性の高い絶縁膜を設けることができ、それに加えて上層、下層と異なる手法により膜を作製することで膜作製段階に発生する反りを抑制することができる。
なお、ここでは発電セルが固体酸化物型の例を述べたが、溶融炭酸塩形等の別の発電セルであってもよい。
As described above, in the solid oxide type power generation cells 200 and 300 shown in FIG. 11 and FIG. 12, between the upper surfaces of the metal container 210 and the metal substrate 312 and the thin film heaters 233 and 333 provided on the upper surface. Since the Y 2 O 3 film (insulating films 232 and 332) having a crystal structure (Bixbite structure) is provided, the thermal expansion coefficient is very close to that of the metal even when the operating temperature is as high as 600 to 900 ° C. In addition, it is possible to prevent cracking and peeling of the insulating films 232 and 332 due to distortion of the metal container 210 and the metal substrate 312 and to have excellent performance as a withstand voltage.
In addition, since the insulating films 232 and 332 are formed by baking in an inert gas atmosphere, the Y 2 O 3 film can be formed without oxidizing the metal container 210 and the metal substrate 312.
Furthermore, when the insulating films 232 and 332 have a two-layer structure, pinholes in the lower layer film can be reduced, and a highly reliable insulating film can be provided. By producing the film, warpage occurring in the film production stage can be suppressed.
Although the example in which the power generation cell is a solid oxide type is described here, another power generation cell such as a molten carbonate type may be used.

[実施例1]
次に、第一の実施の形態における第一の製造方法によって成膜したY膜が結晶化すること、第二の実施の形態における第三の製造方法によって第一のY膜と第二のY膜の二層構造とすることにより金属基板の反りが抑制されることを以下の実施例を挙げて説明する。
≪X線回折測定≫
熱酸化膜付きSi基板上に、スパッタ技術を用いてY膜(360nm)を成膜した。スパッタ条件は、ターゲット材料:Y、到達圧力:5×10-4Pa、Ar流量:20sccm、スパッタ圧力:0.1Pa、スパッタ電力:500Wとした。そして、成膜したY膜を水素ガス(3%)と残りがArガス雰囲気において温度350℃で15分焼成を行い、YH膜を形成し、X線回折測定を行った。
YH膜は蛍石構造を有すると報告されている。図13は、成膜直後のYH膜のX線回折測定の結果であり、蛍石型として指数付けを行っている。対象物が薄膜であることから配向し易く、観測されない回折ピークがあるものの結晶のYH膜が作製されている理解できる。特に、(111)面、(311)面、(420)面では顕著な回折ピークが観測された。
次いで、YH膜を形成後、真空中で700℃にて30分焼成することによりY膜を形成し、X線回折測定を行ったものを図14に示す。
膜は上述したようにビクスバイト構造を有する結晶である。ビクスバイト構造は蛍石構造を変形させた構造であり、同様に指数付けを行っている。単位格子としては蛍石構造の2倍の周期を取ると報告されている。したがって、YH膜で顕著に観測された(111)面、(311)面、(420)面は、(222)面、(622)面、(840)面に対応する。図14に示すようにこれらの面に当たるピーク強度はある程度大きく、Y膜はYH膜の配向を引きずっていると言える。また、Yの他にYO1.335に当たるピークも観測されている。
[Example 1]
Next, the Y 2 O 3 film formed by the first manufacturing method in the first embodiment crystallizes, and the first Y 2 O 3 by the third manufacturing method in the second embodiment. The following example is used to explain that the warpage of the metal substrate is suppressed by adopting the two-layer structure of the film and the second Y 2 O 3 film.
≪X-ray diffraction measurement≫
A Y film (360 nm) was formed on a Si substrate with a thermal oxide film by sputtering. The sputtering conditions were as follows: target material: Y, ultimate pressure: 5 × 10 −4 Pa, Ar flow rate: 20 sccm, sputtering pressure: 0.1 Pa, sputtering power: 500 W. Then, the formed Y film was baked for 15 minutes at a temperature of 350 ° C. in an atmosphere of hydrogen gas (3%) and the balance Ar gas, to form a YH 2 film, and X-ray diffraction measurement was performed.
YH 2 films are reported to have a fluorite structure. FIG. 13 shows the result of X-ray diffraction measurement of the YH 2 film immediately after film formation, and indexing is performed as a fluorite type. Since the target is a thin film, it can be easily understood that a crystalline YH 2 film is produced although there is a diffraction peak that is not observed and is easily observed. In particular, significant diffraction peaks were observed on the (111) plane, (311) plane, and (420) plane.
Next, after the YH 2 film is formed, the Y 2 O 3 film is formed by baking in a vacuum at 700 ° C. for 30 minutes, and the X-ray diffraction measurement is performed is shown in FIG.
The Y 2 O 3 film is a crystal having a bixbite structure as described above. The bixbite structure is a modified fluorite structure and is similarly indexed. It is reported that the unit cell takes twice as long as the fluorite structure. Therefore, the (111) plane, (311) plane, and (420) plane, which are remarkably observed in the YH 2 film, correspond to the (222) plane, the (622) plane, and the (840) plane. As shown in FIG. 14, the peak intensity hitting these surfaces is somewhat large, and it can be said that the Y 2 O 3 film drags the orientation of the YH 2 film. In addition to Y 2 O 3 , a peak corresponding to YO 1.335 is also observed.

≪基板の反り≫
次に、4インチ、0.5mmのNi基板上にY膜(300nm)をスパッタ法により成膜後、Ar雰囲気中で800℃にて30分焼成した場合の膜作成により生じた基板の
反りを測定した。測定結果を図15に示す。図15に示すように、基板の反りは45μmの下凸となった。
そして、このNi基板上に成膜されたY膜上にY膜(200nm)をスパッタ法により成膜後、Arと3%水素雰囲気下、350℃へ15分で昇温し、15分保持してYH膜を成膜し、さらに、真空雰囲気下(10-3〜10-4Pa)、700℃へ70分昇温し、30分保持してY膜を成膜した。そのときの反りを測定し、測定結果を図16に示す。図16に示すように、基板の反りは80μmの上凸となった。以上のように、Y膜を二層構造とすることにより、Y膜を一層のみ成膜した場合の基板で下に凸となっていた反りを、逆に上に凸となるように反らすことができることがわかる。なお、Y膜をさらに薄くすることにより上に凸となる逆反りを抑制することができると考えられる。
≪Warpage of the board≫
Next, a Y 2 O 3 film (300 nm) formed on a 4-inch, 0.5 mm Ni substrate by sputtering and then fired at 800 ° C. for 30 minutes in an Ar atmosphere, resulting in film formation. The warpage of was measured. The measurement results are shown in FIG. As shown in FIG. 15, the warpage of the substrate was 45 μm downward.
A Y film (200 nm) is formed on the Y 2 O 3 film formed on the Ni substrate by sputtering, and then heated to 350 ° C. in an Ar and 3% hydrogen atmosphere in 15 minutes. A YH 2 film is formed by holding for a minute, and further, heated to 700 ° C. for 70 minutes in a vacuum atmosphere (10 −3 to 10 −4 Pa), and held for 30 minutes to form a Y 2 O 3 film. did. The warpage at that time was measured, and the measurement results are shown in FIG. As shown in FIG. 16, the warpage of the substrate was upward convex of 80 μm. As described above, by forming the Y 2 O 3 film in a two-layer structure, the warp that is convex downward on the substrate when only one layer of the Y 2 O 3 film is formed is conversely convex upward. It can be seen that it can be warped. In addition, it is thought that the reverse curvature which becomes convex upwards can be suppressed by making a Y film | membrane thinner further.

[実施例2]
次に、第一の実施の形態における第四の製造方法によって成膜したY膜が結晶化することを以下の実施例を挙げて説明する。
≪X線回折測定≫
Ni基板上に、蒸着法を用いて水素含有Yインゴットを蒸着源とした成膜を行った。蒸着の条件は、蒸着源であるYに水素が含まれていなければ爆発限界である4%を超えない程度の水素量と残りが不活性ガス(Ar、Ne、Nガス)雰囲気下でYインゴットを300〜400℃で1時間焼成を行ったものを使用し、基板温度:280℃、成膜時真空度:3〜5(×10-3Pa)、成膜速度:18nm/minとする。そして、得られた試料に関するX線回折測定を行った。図17は、成膜直後の試料のX線回折測定の結果(右上の挿入図は2θ:25°〜35°の拡大図)であり、蛍石構造を有するYH、ビクスバイト構造を有するY、基板であるNiの回折パターンが観測された。上述したように蒸着源であるYのインゴット中に含まれる微量水素の影響により、YHを含む膜が成膜されていることが理解できる。また、Yの回折パターンが観測されずにYの回折パター何が観測されていることは、成膜時すでに水素の影響により、成膜中の微量酸素を取り込んでしまっていると理解できる。
図18は、図17の試料について真空(1×10-4Pa)雰囲気下で700℃の焼成を行った試料に関するX線回折結果である。図18に示すように、Y、Niの回折パターンに加えて、膜と基板との界面においてYとNiとの拡散に起因したNiYの回折パターンが観測された。図17で観測されたYHの回折パターンは観測されず、水素が脱離したきれいなY膜であると言える。また、Yの回折ピークは図17と比較して半値幅の狭いピークであり、より結晶子サイズが大きくなっていると理解できる。Yは酸化し易い金属であるため、ハンドリングし難い材料であるが、このように目的材料が酸化物である場合は問題とならない点で好ましい。
[Example 2]
Next, the crystallization of the Y 2 O 3 film formed by the fourth manufacturing method in the first embodiment will be described with reference to the following examples.
≪X-ray diffraction measurement≫
A film was formed on a Ni substrate using a hydrogen-containing Y ingot as a vapor deposition source by vapor deposition. The deposition conditions are as follows. If the deposition source Y does not contain hydrogen, the amount of hydrogen does not exceed the explosion limit of 4%, and the remainder is in an inert gas (Ar, Ne, N 2 gas) atmosphere. The ingot is baked at 300 to 400 ° C. for 1 hour, and the substrate temperature is 280 ° C., the degree of vacuum during film formation is 3 to 5 (× 10 −3 Pa), and the film formation rate is 18 nm / min. . And the X-ray-diffraction measurement regarding the obtained sample was performed. FIG. 17 is a result of X-ray diffraction measurement of a sample immediately after film formation (the upper right inset is an enlarged view of 2θ: 25 ° to 35 °). YH 2 having a fluorite structure and Y having a bixbite structure A diffraction pattern of 2 O 3 and Ni as a substrate was observed. As described above, it can be understood that a film containing YH 2 is formed under the influence of a trace amount of hydrogen contained in the Y ingot as a deposition source. In addition, the fact that the diffraction pattern of Y 2 O 3 is observed without observing the diffraction pattern of Y understands that a trace amount of oxygen during film formation has already been taken in due to the influence of hydrogen during film formation. it can.
FIG. 18 is an X-ray diffraction result of a sample obtained by baking the sample of FIG. 17 at 700 ° C. in a vacuum (1 × 10 −4 Pa) atmosphere. As shown in FIG. 18, in addition to the diffraction patterns of Y 2 O 3 and Ni, a diffraction pattern of Ni 5 Y due to the diffusion of Y and Ni was observed at the interface between the film and the substrate. The diffraction pattern of YH 2 observed in FIG. 17 is not observed, and it can be said that the film is a clean Y 2 O 3 film from which hydrogen has been eliminated. Further, the diffraction peak of Y 2 O 3 is a peak having a narrow half-value width as compared with FIG. 17, and it can be understood that the crystallite size is larger. Since Y is a metal that is easily oxidized, it is a material that is difficult to handle. However, when the target material is an oxide in this way, it is preferable because it does not cause a problem.

以上、本発明において、これまで結晶化が容易で、絶縁耐圧のよい酸化物として、Y23について述べてきた。Yは他の希土類と似た性質をもつことから、他の希土類酸化物(R23:Rは希土類元素)もまた、有望な材料であることが予想される(図21参照)。
なお、いずれのR23も線膨張係数が7〜10(×10−6/℃)と金属のそれに近い。また、融点も十分高いため、高温環境下でも耐え得ることができる(図22参照)。
上述したように、金属基板上に設ける層間絶縁膜としては、Y23膜のみならず、他の希土類酸化物(R23:Rは希土類元素)も結晶化が容易で、絶縁耐圧性がよいことが予想される。しかしながら、これら2つの性質の内、絶縁耐圧性を有する希土類酸化物はある程度限定され、Y23が良好な絶縁性を有するのは、Yの酸化物が三二酸化物だけであり(ただし、極めて、特殊な条件下の場合を除く)、他の組成の酸化物が存在しないためである(あるいは、存在しにくい)。
他の酸化物が存在する場合、例えば、Euの酸化物の場合、EuOとEu23が存在する。この内EuOは半導体で、Eu 23は絶縁体であり、前者はEu2+、後者はEu3+である。2種類以上の酸化物が存在するとEu 23はEu3+だけでなく、Eu2+が存在することから、酸素欠損をもちEu 23−Xとなりやすい。このような酸素欠損、すなわち異なる価数混合した状態は、絶縁耐圧の低下、あるいは、電気(あるいはイオン)伝導性をもたらす。
したがって、絶縁膜として相応しい材料としては、典型的な酸化物である三二酸化物(R23)のみ有する酸化物である。ゆえに、絶縁膜としては、Sc23、Y23、La23、Gd23、Dy23、Ho23、Er233、Tm23、Lu23に限られる。前記以外の希土類元素により構成される酸化物はRO、RO2等の複数の酸化物を取り得ることや、作動温度範囲で結晶構造が変化することから除外される。また、希土類元素は化学的性質が酷似し、固溶しやすいという特徴を有していることから、R23はSc、Y、La、Gd、Dy、Ho、Er、Tm、Luのうち2つ以上含有した場合でもよい。
希土類酸化物は結晶構造によりA型(六方晶)、B型(単斜晶)、C型(立方晶、ビクスバイト構造)の3つに分類でき、これまで説明してきたY23は室温でC型(ビクスバイト構造)に該当する。前記3種の結晶構造のうち、C型(ビクスバイト構造)は安定領域がA型(六方晶)、B型(単斜晶)に比べて広く、このC型にあたるSc23、Y23、Gd23、Dy23、Ho23、Er23、Tm23、Lu23は結晶構造を有する膜を作製しやすく、本発明において特に最適であると言える。
In the present invention, Y 2 O 3 has been described so far as an oxide that can be easily crystallized and has a high withstand voltage. Since Y has properties similar to other rare earths, other rare earth oxides (R 2 O 3 : R is a rare earth element) are also expected to be promising materials (see FIG. 21).
Each R 2 O 3 has a linear expansion coefficient of 7 to 10 (× 10 −6 / ° C.), which is close to that of metal. In addition, since the melting point is sufficiently high, it can withstand even in a high temperature environment (see FIG. 22).
As described above, as the interlayer insulating film provided on the metal substrate, not only the Y 2 O 3 film but also other rare earth oxides (R 2 O 3 : R is a rare earth element) can be easily crystallized. Expected to be good. However, among these two properties, rare earth oxides having withstand voltage resistance are limited to some extent, and Y 2 O 3 has good insulating properties because Y oxide is the only trioxide (however, This is because the oxides of other compositions do not exist (or are unlikely to exist) except under extremely special conditions.
When other oxides are present, for example, EuO and Eu 2 O 3 are present in the case of Eu oxides. Of these, EuO is a semiconductor, Eu 2 O 3 is an insulator, the former being Eu 2+ , and the latter being Eu 3+ . When two or more kinds of oxides are present, Eu 2 O 3 is not only Eu 3+ but also Eu 2+ , so that it has oxygen deficiency and tends to be Eu 2 O 3 -X . Such oxygen deficiency, that is, a state in which different valences are mixed brings about a decrease in withstand voltage or electrical (or ionic) conductivity.
Therefore, a material suitable as an insulating film is an oxide having only a typical oxide, trioxide (R 2 O 3 ). Therefore, as the insulating film, Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 3, Tm 2 O 3 , Lu 2 are used. Limited to O 3 . Oxides composed of rare earth elements other than the above are excluded because they can take a plurality of oxides such as RO and RO 2 and the crystal structure changes in the operating temperature range. In addition, since rare earth elements have similar chemical properties and are easily dissolved, R 2 O 3 is composed of Sc, Y, La, Gd, Dy, Ho, Er, Tm, and Lu. The case where it contains 2 or more may be sufficient.
Rare earth oxides can be classified into three types, A type (hexagonal), B type (monoclinic), and C type (cubic, bixbite structure) according to crystal structure. Y 2 O 3 described so far is room temperature. This corresponds to the C type (Bixbyte structure). Of the three crystal structures, the C type (Bixbitite structure) has a wider stable region than the A type (hexagonal) and B type (monoclinic), and Sc 2 O 3 and Y 2 corresponding to the C type. O 3 , Gd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , and Lu 2 O 3 are easy to produce a film having a crystal structure and are particularly suitable in the present invention. It can be said.

マイクロリアクタ1の分解斜視図である。1 is an exploded perspective view of a microreactor 1. FIG. (a)は、底板3の下面図、(b)は、(a)の切断線II−IIに沿って切断した際の矢視断面図である。(a) is a bottom view of the bottom plate 3, and (b) is a cross-sectional view taken along the line II-II in (a). 第一の製造方法において、真空中で10℃/minの速さで700℃まで昇温し、700℃で30分保持した際の炉内の水素分圧値を時間に対してプロットしたものであるIn the first production method, the hydrogen partial pressure value in the furnace was plotted against time when the temperature was raised to 700 ° C. at a rate of 10 ° C./min in vacuum and held at 700 ° C. for 30 minutes. is there 第二の製造方法における蒸着法を説明するための図である。It is a figure for demonstrating the vapor deposition method in a 2nd manufacturing method. 底板3Aの変形例であり、(a)は底板3Aに枠体4A,4Aを接合した際の上面図で、(b)は、(a)の切断線V−Vに沿って切断した際の矢視断面図である。It is a modified example of the bottom plate 3A, (a) is a top view when the frames 4A, 4A are joined to the bottom plate 3A, and (b) is a view when cut along the cutting line V-V of (a). It is arrow sectional drawing. 底板3Bを切断線II−IIに沿って切断した際の矢視断面図である。It is arrow sectional drawing at the time of cut | disconnecting the baseplate 3B along the cutting line II-II. マイクロリアクタモジュール100を斜め下から示した斜視図である。It is the perspective view which showed the micro reactor module 100 from diagonally downward. マイクロリアクタモジュール100の分解斜視図である。1 is an exploded perspective view of a microreactor module 100. FIG. マイクロリアクタモジュール100を機能毎に分けた場合の概略側面図である。It is a schematic side view at the time of dividing the micro reactor module 100 for every function. マイクロリアクタモジュール100と発電セル160を備える発電システム500、及び、電子機器本体600を含むブロック図である。1 is a block diagram including a power generation system 500 including a microreactor module 100 and a power generation cell 160, and an electronic device main body 600. FIG. 固体酸化物型の発電セル200の概略断面図である。2 is a schematic cross-sectional view of a solid oxide power generation cell 200. FIG. 固体酸化物型の別の発電セル300の概略断面図である。It is a schematic sectional drawing of another power generation cell 300 of a solid oxide type. 第一の製造方法における、成膜直後のYH膜のX線回折測定の結果である。At the first manufacturing method, a YH 2 film results of X-ray diffraction measurement immediately after the film formation. YH膜を形成後、真空中で700℃にて30分焼成して形成したY膜のX線回折測定の結果である。After forming the YH 2 film, it is a result of X-ray diffraction measurement of the Y 2 O 3 film formed by baking 30 minutes at 700 ° C. in vacuo. 実施例1における、基板に一層のY膜を成膜した場合の基板の反りを測定した結果である。In Example 1, the results of measuring the warpage of the substrate obtained by depositing a layer of Y 2 O 3 film on the substrate. 実施例1における、基板に二層のY膜を成膜した場合の基板の反りを測定した結果である。In Example 1, the results of measuring the warpage of the substrate obtained by depositing a Y 2 O 3 film of two layers on the substrate. 実施例2の第四の製造方法における、成膜直後の試料のX線回折測定の結果である。It is a result of the X-ray-diffraction measurement of the sample immediately after film-forming in the 4th manufacturing method of Example 2. FIG. 実施例2における、図17の試料について焼成を行った際のX線回折結果である。18 is an X-ray diffraction result when firing was performed on the sample of FIG. 17 in Example 2. FIG. 従来例を示すためのもので、(a)は、基板400の平面図、(b)は(a)の切断線XIX−XIXに沿って切断した際の矢視断面図である。4A and 4B show a conventional example, in which FIG. 4A is a plan view of the substrate 400, and FIG. 4B is a cross-sectional view taken along the cutting line XIX-XIX in FIG. 線膨張係数の一覧表である。It is a table | surface of a linear expansion coefficient. 希土類元素とそれから作られる希土類酸化物の一覧表である。It is a list of rare earth elements and rare earth oxides made therefrom. 希土類酸化物の融点、結晶構造の一覧表である。3 is a list of melting points and crystal structures of rare earth oxides.

符号の説明Explanation of symbols

1 マイクロリアクタ
2 天板
3,3A,3B 底板
7 インゴット
31,31A,131,231,232,332 絶縁膜
31Ba 第一のY膜(第一のR膜、絶縁膜)
31Bb 第二のY膜(第二のR膜、絶縁膜)
32,32A,32B,233,333,405 薄膜ヒータ
33,33A,33B 金属密着層
34,34A,34B,36A,402 拡散防止層
35,35A,35B,403 発熱抵抗層
37A,406 絶縁保護層
100 マイクロリアクタモジュール
101,111 ベースプレート
124,125,126 電熱線(薄膜ヒータ)
141 第一燃焼器
142 気化器
143 第一改質器
144 第二改質器
145 第二改質器
146 一酸化炭素除去器
160 発電セル(燃料電池)
200,300 固体酸化物型発電セル(燃料電池)
210 金属容器
311,312 金属基板
500 発電システム
600 電子機器本体
1 Microreactor 2 Top plate 3, 3A, 3B Bottom plate 7 Ingot 31, 31A, 131, 231, 232, 332 Insulating film 31Ba First Y 2 O 3 film (first R 2 O 3 film, insulating film)
31Bb second Y 2 O 3 film (second R 2 O 3 film, insulating film)
32, 32A, 32B, 233, 333, 405 Thin film heater 33, 33A, 33B Metal adhesion layer 34, 34A, 34B, 36A, 402 Diffusion prevention layer 35, 35A, 35B, 403 Heat resistance layer 37A, 406 Insulation protective layer 100 Microreactor module 101, 111 Base plate 124, 125, 126 Heating wire (thin film heater)
141 first combustor 142 vaporizer 143 first reformer 144 second reformer 145 second reformer 146 carbon monoxide remover 160 power generation cell (fuel cell)
200,300 Solid oxide power generation cell (fuel cell)
210 Metal container 311, 312 Metal substrate 500 Power generation system 600 Electronic device main body

Claims (10)

金属基板の表面に、Sc、Y、La、Gd、Dy、Ho、Er、Tm、及びLuから選択される少なくとも一つの希土類元素Rと水素とからなる蒸着源を用いて蒸着を行う蒸着工程と、
蒸着後の前記金属基板を酸化してR膜とする酸化工程と、
を含むことを特徴とする絶縁膜の製造方法。
Vapor deposition process for performing vapor deposition on the surface of the metal substrate using a vapor deposition source composed of at least one rare earth element R selected from Sc, Y, La, Gd, Dy, Ho, Er, Tm, and Lu, and hydrogen. When,
An oxidation step of oxidizing the metal substrate after vapor deposition into an R 2 O 3 film ;
A method of manufacturing an insulating film, comprising:
金属基板の表面に、Sc、Y、La、Gd、Dy、Ho、Er、Tm、Luの希土類元素Rを含有する第一のR膜を形成する工程と、
前記第一のR膜の上に、少なくとも一つの希土類元素Rと水素とからなる蒸着源を用いて蒸着を行う蒸着工程と、蒸着後の前記金属基板を酸化する酸化工程と、を含む第二のR膜を形成する工程と、
を含むことを特徴とする絶縁膜の製造方法。
Forming a first R 2 O 3 film containing a rare earth element R of Sc, Y, La, Gd, Dy, Ho, Er, Tm, and Lu on the surface of the metal substrate;
On the first R 2 O 3 film, a deposition step for depositing using a deposition source consisting of one rare earth element R and hydrogen even without low, the oxidation step of oxidizing the metal substrate after deposition Forming a second R 2 O 3 film containing
A method of manufacturing an insulating film, comprising:
金属基板の表面に、Sc、Y、La、Gd、Dy、Ho、Er、Tm、及びLuから選択される少なくとも一つの希土類元素Rと水素とからなる蒸着源を用いて蒸着を行う蒸着工程と、蒸着後の前記金属基板を酸化する酸化工程と、を含む第一のR膜を形成する工程と、
前記第一のR膜の上に、前記希土類元素Rを含有する第二のR膜を形成する工程と、
を含むことを特徴とする絶縁膜の製造方法。
Vapor deposition process for performing vapor deposition on the surface of the metal substrate using a vapor deposition source composed of at least one rare earth element R selected from Sc, Y, La, Gd, Dy, Ho, Er, Tm, and Lu, and hydrogen. And a step of forming a first R 2 O 3 film comprising: an oxidation step of oxidizing the metal substrate after vapor deposition;
On the first R 2 O 3 film, forming a second R 2 O 3 film containing the rare earth element R,
A method of manufacturing an insulating film, comprising:
前記酸化工程は、大気圧より低い圧力雰囲気下で行うことを特徴とする請求項1〜3のいずれか一項に記載の絶縁膜の製造方法。   The method of manufacturing an insulating film according to claim 1, wherein the oxidation step is performed under an atmosphere of pressure lower than atmospheric pressure. 請求項1〜4のいずれか一項に記載の絶縁膜の製造方法により製造された絶縁膜を、前記金属基板と薄膜ヒータとの間に備えることを特徴とする反応装置。   A reaction apparatus comprising an insulating film produced by the method for producing an insulating film according to claim 1 between the metal substrate and the thin film heater. 前記反応装置は、燃料を改質し水素を生成する改質器を備えることを特徴とする請求項5に記載の反応装置。   The reaction apparatus according to claim 5, wherein the reaction apparatus includes a reformer that reforms fuel to generate hydrogen. 前記反応装置は、固体酸化物型の発電セルを備えることを特徴とする請求項6記載の反応装置。   The reaction apparatus according to claim 6, further comprising a solid oxide power generation cell. 請求項5〜6のいずれか一項に記載の反応装置を備え、
前記反応装置により生成される生成物により発電を行うことを特徴とする発電装置。
Comprising the reactor according to any one of claims 5 to 6,
A power generation device that generates power using a product generated by the reaction device.
請求項7に記載の反応装置を備えることを特徴とする発電装置。   A power generation device comprising the reaction device according to claim 7. 請求項8〜9のいずれか一項に記載の発電装置と、
前記発電装置によって発電された電気により動作する電子機器本体と、を備えることを特徴とする電子機器。
A power generator according to any one of claims 8 to 9,
And an electronic device body that operates by electricity generated by the power generation device.
JP2008310560A 2008-12-05 2008-12-05 Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus Expired - Fee Related JP5233626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310560A JP5233626B2 (en) 2008-12-05 2008-12-05 Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310560A JP5233626B2 (en) 2008-12-05 2008-12-05 Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006267832A Division JP4466629B2 (en) 2006-08-30 2006-09-29 Insulating film manufacturing method

Publications (3)

Publication Number Publication Date
JP2009102738A JP2009102738A (en) 2009-05-14
JP2009102738A5 JP2009102738A5 (en) 2009-11-12
JP5233626B2 true JP5233626B2 (en) 2013-07-10

Family

ID=40704714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310560A Expired - Fee Related JP5233626B2 (en) 2008-12-05 2008-12-05 Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP5233626B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941632B2 (en) * 2002-08-29 2007-07-04 カシオ計算機株式会社 Reformer, reformer manufacturing method and power generation system
JP4414780B2 (en) * 2003-02-06 2010-02-10 大日本印刷株式会社 Microreactor for hydrogen production and method for producing the same
JP2004283749A (en) * 2003-03-24 2004-10-14 Casio Comput Co Ltd Reaction apparatus

Also Published As

Publication number Publication date
JP2009102738A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4466629B2 (en) Insulating film manufacturing method
JP5119275B2 (en) Fuel cell and manufacturing method thereof
KR100789543B1 (en) Reactor
WO2005030384A1 (en) Thermal treatment apparatus and power generation module
JP4683029B2 (en) FUEL CELL DEVICE AND ELECTRONIC DEVICE
JP5233626B2 (en) Insulating film manufacturing method, reaction apparatus, power generation apparatus, and electronic apparatus
JP4438569B2 (en) Reactor
US20080070089A1 (en) Heat insulating container
JP4524993B2 (en) Heat treatment equipment
JP4978216B2 (en) Reactor heating device, reactor, fuel cell device and electronic equipment
JP4449926B2 (en) Bonding substrate and bonding method
JP4258554B2 (en) Sealing method for reformer
TWI744041B (en) Fuel cell and fuel cell manufacturing method
JP5157740B2 (en) Manufacturing method of thermistor and electric heater
JP4862762B2 (en) Bonded substrate and reaction apparatus using the same
JP5309482B2 (en) Reactor, power generator and electronic device
JP2008251393A (en) Connection structure for lead wire, connecting method, and vaporizer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees