JP5233565B2 - Marking formation method for optical glass member and optical glass member with marking - Google Patents
Marking formation method for optical glass member and optical glass member with marking Download PDFInfo
- Publication number
- JP5233565B2 JP5233565B2 JP2008262096A JP2008262096A JP5233565B2 JP 5233565 B2 JP5233565 B2 JP 5233565B2 JP 2008262096 A JP2008262096 A JP 2008262096A JP 2008262096 A JP2008262096 A JP 2008262096A JP 5233565 B2 JP5233565 B2 JP 5233565B2
- Authority
- JP
- Japan
- Prior art keywords
- marking
- optical glass
- glass member
- wavelength
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000005304 optical glass Substances 0.000 title claims description 87
- 238000000034 method Methods 0.000 title claims description 45
- 230000015572 biosynthetic process Effects 0.000 title claims description 15
- 239000010419 fine particle Substances 0.000 claims description 42
- 238000010521 absorption reaction Methods 0.000 claims description 17
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 13
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 7
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 7
- 229920003169 water-soluble polymer Polymers 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 description 36
- 239000000463 material Substances 0.000 description 15
- 239000011521 glass Substances 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002679 ablation Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 101100074177 Schizosaccharomyces pombe (strain 972 / ATCC 24843) laf2 gene Proteins 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FQKMRXHEIPOETF-UHFFFAOYSA-N F.OP(O)(O)=O Chemical compound F.OP(O)(O)=O FQKMRXHEIPOETF-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc.) Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- GJJSDZSDOYNJSW-UHFFFAOYSA-N lanthanum(3+);borate Chemical compound [La+3].[O-]B([O-])[O-] GJJSDZSDOYNJSW-UHFFFAOYSA-N 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
- Surface Treatment Of Glass (AREA)
Description
本発明は、光学ガラス部材のマーキング形成方法及びマーキング付光学ガラス部材に関する。 The present invention relates to a marking forming method for an optical glass member and an optical glass member with marking.
製品管理や意匠の目的で、ガラス部材上へマーキングを施すことがある。マーキングを形成する方法としては、スキャニングレーザによるダイレクトマーキングなどが広く用いられる。ここで、ダイレクトマーキングとは、マーキング対象の部材の表面にレーザビームを走査して、レーザアブレーションさせることで当該部材にマーキングを施す方法を意味する。 For the purpose of product management and design, marking may be applied on the glass member. As a method for forming the marking, direct marking using a scanning laser is widely used. Here, direct marking means a method of marking a member by marking the surface of the member to be marked with a laser beam and performing laser ablation.
上記以外のマーキング形成方法としては、例えば、金属粉体及び/又は無機顔料を着色源としてペースト中に混練した着色ペーストを塗布被覆したガラス面にレーザ走査することで、レーザ走査部にペーストを硬化させてなる着色ペーストパターンを形成した後、レーザ走査部を除く未硬化の着色ペーストを有機溶剤に溶解させて除去した後で焼成することで、上記着色ペーストパターンを焼成してなる描画パターンをガラス表面上に形成する方法(特許文献1参照)などが開示されている。
本発明の目的は、光学ガラス部材の光学性能への影響が実用上十分なレベルまで低減された光学ガラス部材上へのマーキング形成方法を提供することにある。本発明の目的はまた、当該マーキング形成方法によりマーキングが形成されたマーキング付光学ガラス部材を提供することにある。 An object of the present invention is to provide a marking forming method on an optical glass member in which the influence on the optical performance of the optical glass member is reduced to a practically sufficient level. Another object of the present invention is to provide an optical glass member with marking in which marking is formed by the marking forming method.
本発明は、光学ガラス部材上に、当該光学ガラス部材の内部透過率が99.9%/cm以上となる波長において0.1%/cm以上の吸収を有する透光性微粒子(光の波長を変化させ光学ガラス部材の内部透過率を測定して、99.9%/cm以上の内部透過率を示す波長を選択し、選択された波長において0.1%/cm以上の吸収を有する透光性微粒子)を媒体に分散させた分散物の皮膜を形成させ、当該皮膜が形成された面のマーキング形成領域に、上記波長のレーザ光を照射して上記透光性微粒子を上記光学ガラス部材に融着させる、光学ガラス部材のマーキング形成方法を提供する。 The present invention provides a light-transmitting fine particle having an absorption of 0.1% / cm or more (wavelength of light) at a wavelength at which the internal transmittance of the optical glass member is 99.9% / cm or more. Measuring the internal transmittance of the optical glass member, and selecting a wavelength exhibiting an internal transmittance of 99.9% / cm or more, and transmitting light having an absorption of 0.1% / cm or more at the selected wavelength A film of a dispersion in which the fine particles are dispersed in a medium, and the marking-forming region on the surface on which the film is formed is irradiated with the laser beam having the above-described wavelength, so that the translucent fine particles are applied to the optical glass member. A method for forming a marking on an optical glass member to be fused is provided.
透光性微粒子としては、2000℃以下の融点を有するものがよく、透光性微粒子は、金属酸化物を含む結晶、又はケイ素を含む非晶体からなることが好ましい。金属酸化物を含む結晶としては、酸化ビスマス又は酸化モリブデンを含むものが好適である。 As the light-transmitting fine particles, those having a melting point of 2000 ° C. or less are preferable, and the light-transmitting fine particles are preferably made of a crystal containing a metal oxide or an amorphous material containing silicon. As the crystal containing a metal oxide, a crystal containing bismuth oxide or molybdenum oxide is suitable.
媒体としては、水溶性高分子及び水を含有するものが適用できる。また、皮膜が形成された面に照射されるレーザ光の波長は、YAGレーザ若しくはYVO4レーザの基本波長、2倍波長又は3倍波長であることが好ましい。 A medium containing a water-soluble polymer and water can be used as the medium. In addition, the wavelength of the laser light applied to the surface on which the film is formed is preferably the fundamental wavelength, the double wavelength, or the triple wavelength of the YAG laser or YVO 4 laser.
上述のマーキング形成方法を適用すれば、光学ガラス部材上にマーキングが形成された、マーキング付光学ガラス部材を得ることができる。 If the above-mentioned marking formation method is applied, the optical glass member with a marking in which the marking was formed on the optical glass member can be obtained.
本発明によれば、光学ガラス部材の光学性能への影響が実用上十分なレベルまで低減された光学ガラス部材上へのマーキング形成方法並びにマーキング付光学ガラス部材が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the marking formation method on the optical glass member and the optical glass member with a marking by which the influence on the optical performance of an optical glass member was reduced to practically sufficient level are provided.
以下、場合により図面を参照して、本発明の好適な実施形態について説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。 In the following, preferred embodiments of the present invention will be described with reference to the drawings as the case may be. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.
図1は、実施形態に係る光学ガラス部材のマーキング形成方法を説明する断面図である。本実施形態のマーキング形成方法を実施するためにはまず、光学性能を発揮する光学ガラス部材として、レンズ形状の光学ガラス部材1を準備する。次に、準備した光学ガラス部材1上に、透光性微粒子を水溶性高分子及び水からなる媒体に分散させて得られる分散物(塗布材料)を塗布し、揮発成分を除去して、皮膜15を形成させる。そして、形成された皮膜15に対して、レーザ装置8から生じるレーザ光9を照射し、皮膜15が形成された面のマーキング形成領域(マーキングを形成しようとする領域)の皮膜15を加熱して、皮膜15に含まれる透光性微粒子を光学ガラス部材1に融着(溶融及び固着)させる。 Drawing 1 is a sectional view explaining the marking formation method of the optical glass member concerning an embodiment. In order to implement the marking forming method of the present embodiment, first, a lens-shaped optical glass member 1 is prepared as an optical glass member that exhibits optical performance. Next, a dispersion (coating material) obtained by dispersing translucent fine particles in a medium composed of a water-soluble polymer and water is applied on the prepared optical glass member 1 to remove volatile components, and a film is formed. 15 is formed. Then, the formed film 15 is irradiated with laser light 9 generated from the laser device 8 to heat the film 15 in the marking formation region (region where the marking is to be formed) on the surface on which the film 15 is formed. The translucent fine particles contained in the film 15 are fused (melted and fixed) to the optical glass member 1.
以上により光学ガラス部材のマーキング形成方法が実施されるが、レーザ光9の照射により、透光性微粒子1つずつが光学ガラス部材1に融着してもよいし、透光性微粒子同士が融着した状態で光学ガラス部材1に融着してもよい。なお、レーザ光9の波長は、光学ガラス部材1の内部透過率が99.9%/cm以上となる波長であり、この波長において、透光性微粒子は0.1%/cm以上の吸収を有している。 The optical glass member marking forming method is carried out as described above. However, each of the light-transmitting fine particles may be fused to the optical glass member 1 by the irradiation of the laser light 9, or the light-transmitting fine particles are melted. It may be fused to the optical glass member 1 while being worn. The wavelength of the laser light 9 is a wavelength at which the internal transmittance of the optical glass member 1 is 99.9% / cm or more. At this wavelength, the light-transmitting fine particles absorb 0.1% / cm or more. Have.
融着後、光学ガラス部材1を洗浄(水洗)することが好ましい。洗浄により、皮膜15のうち融着した部分(すなわち、マーキング形成領域)のみが光学ガラス部材1上に残留する。本実施形態では媒体として水溶性高分子が溶解された水を用いているため、レーザ光9が照射されていない部分の皮膜は、洗浄(水洗)により容易に除去することができる。一方、レーザ光9が照射された部分は発生する熱により水溶性高分子が燃焼し除去されており、完全除去されていない場合でも、洗浄(水洗)時に除去される。 It is preferable to wash (wash with water) the optical glass member 1 after fusing. By cleaning, only the fused portion (that is, the marking formation region) of the film 15 remains on the optical glass member 1. In this embodiment, since water in which a water-soluble polymer is dissolved is used as a medium, the film in the portion not irradiated with the laser light 9 can be easily removed by washing (washing). On the other hand, the water-soluble polymer is burned and removed by the generated heat in the portion irradiated with the laser beam 9, and even when it is not completely removed, it is removed during washing (water washing).
図2は、このようなマーキング形成方法により得られるマーキング付光学ガラス部材の断面図である。図2に示すマーキング付光学ガラス部材100は、光学ガラス部材1とこの上に形成されたマーキング10(透光性微粒子の融着物)とを備えている。なお、マーキング10の形状としては、例えば、バーコード形状や文字形状が挙げられる。 FIG. 2 is a cross-sectional view of an optical glass member with marking obtained by such a marking forming method. An optical glass member with marking 100 shown in FIG. 2 includes an optical glass member 1 and a marking 10 (a fusion product of translucent fine particles) formed thereon. Examples of the shape of the marking 10 include a barcode shape and a character shape.
透光性微粒子は、例えば、透光性材料を粉砕して作製することができる。透光性微粒子の平均粒径は、通常0.1〜10μmであるが、形成されたマーキングによる表面散乱を抑制して、マーキングを目立たなくする観点からは、0.1〜0.5μmであることが好ましい。 The translucent fine particles can be produced, for example, by pulverizing a translucent material. The average particle diameter of the translucent fine particles is usually 0.1 to 10 μm, but from the viewpoint of making the marking inconspicuous by suppressing surface scattering by the formed marking, it is 0.1 to 0.5 μm. It is preferable.
透光性微粒子としては、光学ガラス部材の内部透過率が99.9%/cm以上となる波長に0.1%/cm以上の吸収を有するものを用いる。このような透光性微粒子としては、例えば、金属酸化物を含む結晶からなるもの、ケイ素を含む非晶体が挙げられる。 As the light-transmitting fine particles, those having an absorption of 0.1% / cm or more at a wavelength at which the internal transmittance of the optical glass member is 99.9% / cm or more are used. Examples of such translucent fine particles include those made of crystals containing metal oxides and amorphous materials containing silicon.
皮膜15の融着に用いられるレーザ光9としては、例えば、YAGレーザ、YVO4レーザ、CO2レーザが挙げられる。皮膜15へ照射するレーザ光9の波長は、光学ガラス部材1の内部透過率が99.9%/cm以上(好ましくは、99.95%以上、更には99.99%以上)となる波長とする。光学ガラス部材1の内部透過率が99.9%/cm未満である波長のレーザ光を照射した場合、光学ガラス部材1にクラックが発生する不具合が生じ得る。皮膜15へ照射するレーザ光9の波長としては、例えば、上述のYVO4レーザの基本波長(1060nm)、第二高調波(530nm)、第三高調波(353nm)が挙げられる。 Examples of the laser light 9 used for fusing the coating 15 include a YAG laser, a YVO 4 laser, and a CO 2 laser. The wavelength of the laser light 9 applied to the film 15 is such that the internal transmittance of the optical glass member 1 is 99.9% / cm or more (preferably 99.95% or more, and further 99.99% or more). To do. When laser light having a wavelength with an internal transmittance of the optical glass member 1 of less than 99.9% / cm is irradiated, there may be a problem that the optical glass member 1 is cracked. Examples of the wavelength of the laser light 9 applied to the film 15 include the fundamental wavelength (1060 nm), second harmonic (530 nm), and third harmonic (353 nm) of the YVO 4 laser described above.
光学ガラス部材の内部透過率が99.9%/cm以上となる波長において、0.1%/cm以上の吸収を有する透光性微粒子は、上述のレーザ波長において吸収を生じる。したがって、上述の波長のレーザ光を、透光性微粒子を含む皮膜15へ照射すると、当該透光性微粒子がレーザ光を吸収し発熱する。そして透光性微粒子は発熱することにより溶融し、光学ガラス部材1表面に固着する。一方、上記レーザ光は、光学ガラス部材1にはほとんど吸収されないため、光学ガラス部材へのクラックの発生などを防止しつつ、光学ガラス部材1上に所望の形状のマーキングを形成できる。 At a wavelength at which the internal transmittance of the optical glass member is 99.9% / cm or more, the light-transmitting fine particles having an absorption of 0.1% / cm or more cause absorption at the laser wavelength described above. Therefore, when the laser beam having the above-described wavelength is irradiated onto the coating 15 containing the light-transmitting fine particles, the light-transmitting fine particles absorb the laser light and generate heat. The translucent fine particles are melted by generating heat and are fixed to the surface of the optical glass member 1. On the other hand, since the laser beam is hardly absorbed by the optical glass member 1, it is possible to form a marking having a desired shape on the optical glass member 1 while preventing generation of cracks in the optical glass member.
マーキングの種類としては、例えば、可視光において肉眼で容易に認識可能なマーキングや、特定手段により可視光において肉眼での認識が容易となるマーキングがある。 Examples of the type of marking include a marking that can be easily recognized with the naked eye in visible light and a marking that can be easily recognized with the naked eye in visible light by a specific means.
可視光において肉眼で容易に認識可能なマーキングを形成する場合には、透光性微粒子として、金属酸化物を含む結晶からなるものを用いることが好ましい。このような透光性微粒子は、通常、光学ガラス部材との屈折率差が0.1以上のものである。したがって、このような透光性微粒子を用いて形成したマーキングは、可視光において肉眼で認識可能となる。 When forming a marking that can be easily recognized with the naked eye in visible light, it is preferable to use a light-transmitting fine particle made of a crystal containing a metal oxide. Such translucent fine particles generally have a refractive index difference of 0.1 or more with respect to the optical glass member. Therefore, the marking formed using such translucent fine particles can be recognized with the naked eye in visible light.
上述の金属酸化物としては、例えば、酸化ビスマス、酸化モリブデン、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化スズ、酸化インジウム、酸化鉛、酸化亜鉛などが挙げられる。 Examples of the metal oxide include bismuth oxide, molybdenum oxide, aluminum oxide, magnesium oxide, titanium oxide, zirconium oxide, hafnium oxide, tin oxide, indium oxide, lead oxide, and zinc oxide.
また、金属酸化物を含む結晶は、2000℃以下の融点を有することが好ましい。このような融点を有する上記結晶を用いると、皮膜15の光学ガラス部材1上への固着が容易になり、剥がれ難いマーキングを形成することができる。このような観点からは、金属酸化物を含む結晶の融点は、1000℃以下であることが更に好ましい。 Moreover, it is preferable that the crystal containing a metal oxide has a melting point of 2000 ° C. or lower. When the crystal having such a melting point is used, the coating 15 can be easily fixed on the optical glass member 1 and a marking which is difficult to peel off can be formed. From such a viewpoint, the melting point of the crystal containing the metal oxide is more preferably 1000 ° C. or lower.
なお、上述の金属酸化物のうち1000℃以下の融点を有するものとしては、例えば、酸化ビスマス、酸化モリブデン、酸化鉛などが挙げられる。 Examples of the metal oxide having a melting point of 1000 ° C. or less include bismuth oxide, molybdenum oxide, lead oxide, and the like.
また、上述の金属酸化物として酸化ビスマスを用いれば、後工程でマーキングが不要になった場合でも、塩酸や硫酸などの酸により容易にマーキングが除去できる。酸化ビスマスは、酸に可溶であり、例えば、濃度10wt%の塩酸に1μm/分程度の速度で溶解する。したがって、光学ガラス部材が耐酸性の場合には、形成されたマーキング上への酸の塗布などにより、光学ガラス部材の光学性能低下などを生じさせずに、光学ガラス部材上からマーキングを除去することが可能である。 In addition, when bismuth oxide is used as the metal oxide, the marking can be easily removed with an acid such as hydrochloric acid or sulfuric acid even when the marking is not necessary in a later process. Bismuth oxide is soluble in acid, for example, dissolved in hydrochloric acid having a concentration of 10 wt% at a rate of about 1 μm / min. Therefore, when the optical glass member is acid-resistant, the marking is removed from the optical glass member without causing a decrease in the optical performance of the optical glass member by applying an acid on the formed marking. Is possible.
特定手段により可視光において肉眼での認識が容易となるマーキングを形成する場合には、透光性微粒子として、ケイ素を含む非晶体からなるものを用いることが好ましい。このような透光性微粒子は、通常、光学ガラス部材との屈折率差が0.1以内のものである。したがって、このような透光性微粒子を用いて形成したマーキングは、光学ガラス部材の光軸方向にマーキングを見ても認識が困難であるが、光軸から所定角度をなす方向から観察すれば認識が可能になる。また、集光灯からに光を光軸から所定角度をなす方向から照射し、光軸方向から観察することによっても認識が可能になる。 In the case of forming a marking that can be easily recognized with the naked eye in visible light by a specific means, it is preferable to use a material made of an amorphous material containing silicon as the light-transmitting fine particles. Such translucent fine particles usually have a refractive index difference of 0.1 or less with respect to the optical glass member. Therefore, it is difficult to recognize the marking formed using such translucent fine particles even if the marking is seen in the optical axis direction of the optical glass member, but it is recognized if observed from a direction at a predetermined angle from the optical axis. Is possible. In addition, the light can be recognized by irradiating light from a condenser lamp from a direction that makes a predetermined angle from the optical axis and observing from the direction of the optical axis.
ケイ素を含む非晶体としては、例えば、ホウ珪酸系ガラス、ホウ酸ランタン系ガラス、フッ化物リン酸系ガラスが挙げられる。形成されたマーキングによる表面散乱を抑制して、マーキングを目立たなくする観点からは、ケイ素を含む非晶体として、気泡や脈理などの光学的欠陥が少ない光学ガラスを用いることが好ましい。なお、ケイ素を含む非晶体は、1000℃以下の融点を有することが好ましい。 Examples of the amorphous substance containing silicon include borosilicate glass, lanthanum borate glass, and fluoride phosphate glass. From the viewpoint of suppressing surface scattering due to the formed marking and making the marking inconspicuous, it is preferable to use an optical glass with few optical defects such as bubbles and striae as an amorphous material containing silicon. Note that the amorphous body containing silicon preferably has a melting point of 1000 ° C. or lower.
ケイ素を含む非晶体の、光学ガラス部材の内部透過率が99.9%/cm以上となる波長に対する吸収が、0.1%/cm未満である場合には、当該吸収が0.1%/cm以上となるように着色剤を加えてもよい。着色剤としては、例えば、鉄、コバルト、ニッケル、クロム、マンガン、バナジウム、セレン、銅、金、銀、硫黄、チタン及びネオジウムが挙げられる。 When the absorption of the amorphous material containing silicon with respect to the wavelength at which the internal transmittance of the optical glass member is 99.9% / cm or more is less than 0.1% / cm, the absorption is 0.1% / You may add a coloring agent so that it may become cm or more. Examples of the colorant include iron, cobalt, nickel, chromium, manganese, vanadium, selenium, copper, gold, silver, sulfur, titanium, and neodymium.
なお、ケイ素を含む非晶体及び光学ガラス部材1は、その組成やガラス転移温度が近いことが好ましい。その組成やガラス転移温度が近い材料同士は、互いに固着しやすい。 In addition, it is preferable that the amorphous body containing silicon and the optical glass member 1 have close compositions and glass transition temperatures. Materials whose composition and glass transition temperature are close to each other are likely to stick to each other.
透光性微粒子を分散させる媒体としては、洗浄により洗い流せるものが好ましい。洗浄方法は、透光性微粒子及び光学ガラス部材を変質させない限りにおいて、どのような洗浄方法を選択してよく、例えば、光学部材の機械的強度などにより適宜選択すればよい。洗浄方法としては、例えば、超音波洗浄、浸漬洗浄、噴射洗浄などが挙げられる。 As the medium for dispersing the translucent fine particles, a medium that can be washed away by washing is preferable. Any cleaning method may be selected as long as the translucent fine particles and the optical glass member are not deteriorated. For example, the cleaning method may be appropriately selected depending on the mechanical strength of the optical member. Examples of the cleaning method include ultrasonic cleaning, immersion cleaning, and jet cleaning.
媒体としては、例えば、水;メタノールやエタノールなどのアルコール類が挙げられる。塗布層の塗布厚みの制御などの成形性の観点からは、媒体は、バインダポリマーと、バインダポリマーを溶解、膨潤又は分散できる溶媒とを含有することが好ましい。バインダポリマーとしてはポリビニルアルコール(PVA)、ポリフッ化ビニリデン(PVDF)が挙げられ、上記溶媒としては、それぞれ、水;メタノールやエタノールなどのアルコール類などが挙げられる。 Examples of the medium include water; alcohols such as methanol and ethanol. From the viewpoint of moldability such as control of the coating thickness of the coating layer, the medium preferably contains a binder polymer and a solvent capable of dissolving, swelling or dispersing the binder polymer. Examples of the binder polymer include polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVDF), and examples of the solvent include water; alcohols such as methanol and ethanol.
なお、工程の簡略化の観点からは、媒体は水で洗浄できることが好ましい。このような観点からは、バインダポリマーが水溶性高分子であり、溶媒が水であることが好ましい。水溶性高分子としては、デンプン、ゼラチン、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース等)、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリエチレンオキシド等が挙げられ、水溶性や分子量の調整が容易で種々の分散物が得られることから、ポリビニルアルコール(PVA)が好ましい。なお、PVAは、通常700℃以上で分解し揮発するため、レーザ走査した後に残渣として残らない。このことからもバインダポリマーとして用いるのに好適である。 From the viewpoint of simplifying the process, it is preferable that the medium can be washed with water. From such a viewpoint, it is preferable that the binder polymer is a water-soluble polymer and the solvent is water. Examples of the water-soluble polymer include starch, gelatin, cellulose derivatives (carboxymethyl cellulose, methyl cellulose, etc.), polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyethylene oxide, and the like. Since a thing is obtained, polyvinyl alcohol (PVA) is preferable. In addition, since PVA is normally decomposed | disassembled and volatilized at 700 degreeC or more, it does not remain as a residue after laser scanning. This is also suitable for use as a binder polymer.
透光性微粒子を媒体に分散させた分散物の合計重量に対する、バインダポリマーの含有量は、1〜10重量%であることが好ましく、1〜5重量%であることが更に好ましい。 The content of the binder polymer is preferably 1 to 10% by weight, more preferably 1 to 5% by weight, based on the total weight of the dispersion in which the translucent fine particles are dispersed in the medium.
分散物の光学ガラス部材1上への塗布に特に制限はないが、例えば、エアブラシによる噴霧、筆及びスタンプなどを用いた塗布、ディップコーティング、スピンコーティングが挙げられる。また、塗布は、乾燥後の厚み、すなわち、皮膜15の厚みが、5〜50μmとなるように行うことが好ましい。皮膜15の厚みは、5〜20μmであれば特に好ましい。皮膜15の厚みが50μmより大きいと、レーザによる焼付が困難になる傾向にあり、5μmより小さいと、マーキングが読み出し難くなる傾向にある。 Although there is no restriction | limiting in particular in the application | coating on the optical glass member 1 of a dispersion, For example, spraying with an airbrush, application | coating using a brush, a stamp, etc., dip coating, spin coating are mentioned. Moreover, it is preferable to apply | coat so that the thickness after drying, ie, the thickness of the membrane | film | coat 15, may be 5-50 micrometers. The thickness of the film 15 is particularly preferably 5 to 20 μm. If the thickness of the film 15 is larger than 50 μm, it tends to be difficult to print with a laser, and if it is smaller than 5 μm, the marking tends to be difficult to read.
上述のようなマーキング形成方法によれば、光学ガラス部材1上に、光学ガラス部材の光学性能への影響が小さいマーキング10を形成することができる。このように形成されたマーキング付光学ガラス部材は、クラックや光学有効部の形状の変形などが少なく、光学性能の低下が十分に抑制されたものとなる。 According to the marking forming method as described above, the marking 10 having a small influence on the optical performance of the optical glass member can be formed on the optical glass member 1. The optical glass member with marking formed in this way has few cracks, deformation of the shape of the optically effective portion, and the like, and the deterioration of the optical performance is sufficiently suppressed.
なお、ダイレクトマーキングによりマーキングを施す場合、以下のような問題が生じていた。光学ガラス部材は、通常、脆性材料であるため、レーザの波長での吸収を高めるとクラックが発生し、光学ガラス部材の光学性能が低下するという問題があった。一方、クラックの発生を抑えるためレーザの波長での吸収を小さくするとアブレーション自体が困難になっていた。具体的には、YAGレーザやYVO4レーザの基本波長(1060nm)及びその第二高調波(530nm)を用いて光学ガラス部材にダイレクトマーキングを施した場合、光学ガラス部材のアブレーション自体が困難である。第三高調波(353nm)では、アブレーションは可能だがクラックが避けられない。なお、ガラスの吸収波長域である赤外域の炭酸ガスレーザを用いれば、アブレーションは可能であるが、波長が10.6μm程度と長いためにmmサイズ以下の微細なマーキングが難しい。 In addition, when marking by direct marking, the following problems have occurred. Since the optical glass member is usually a brittle material, there is a problem that if the absorption at the wavelength of the laser is increased, cracks are generated and the optical performance of the optical glass member is lowered. On the other hand, if the absorption at the wavelength of the laser is reduced in order to suppress the generation of cracks, ablation itself has become difficult. Specifically, when direct marking is applied to an optical glass member using the fundamental wavelength (1060 nm) and second harmonic (530 nm) of a YAG laser or YVO 4 laser, ablation of the optical glass member itself is difficult. . At the third harmonic (353 nm), ablation is possible, but cracks are inevitable. If an infrared carbon dioxide laser that is the absorption wavelength range of glass is used, ablation is possible, but since the wavelength is as long as about 10.6 μm, it is difficult to make a fine marking of mm size or less.
また、上述の方法以外のマーキング形成方法としては、例えば、透明部材の内部にレーザビームを集光して透明部材の内部に描画を行う方法が知られているが、このような方法によって光学ガラス部材にマーキングを施した場合、光学ガラス部材内部に歪みが発生し、光学性能が低下してしまう。 Further, as a marking forming method other than the above-described method, for example, a method of drawing a laser beam by condensing a laser beam inside the transparent member is known. When marking is given to a member, distortion will generate | occur | produce inside an optical glass member, and optical performance will fall.
また、レーザ走査を行う従来法では、レーザ走査による硬化だけでは十分な付着力が得られず、レーザ走査によるパターン形成後に、電気炉等で750℃の高温で加熱し、焼成する必要がある。しかしながら、このような高い焼成温度は、光学ガラス部材の光学有効部の精密な形状を変形させる原因となり、光学ガラス部材の光学性能を低下させる原因となる。 Further, in the conventional method in which laser scanning is performed, sufficient adhesion cannot be obtained only by curing by laser scanning, and after pattern formation by laser scanning, it is necessary to heat and bake at a high temperature of 750 ° C. in an electric furnace or the like. However, such a high firing temperature causes the precise shape of the optically effective portion of the optical glass member to be deformed and causes the optical performance of the optical glass member to deteriorate.
しかしながら、本発明のマーキング形成方法によれば、このような問題をも回避できる。 However, according to the marking forming method of the present invention, such a problem can be avoided.
本実施形態においては光学ガラス部材1として、レンズ形状の部材(光学レンズ)を用いた例を示したが、本実施形態の効果を発揮する限りにおいて如何なる光学ガラス部材も使用できる。このような光学ガラス部材としては、プリズム、ミラー、光学フィルター、ビームスプリッター、偏光素子などが挙げられる。 In this embodiment, the example using the lens-shaped member (optical lens) was shown as the optical glass member 1, However, As long as the effect of this embodiment is exhibited, any optical glass member can be used. Examples of such optical glass members include prisms, mirrors, optical filters, beam splitters, and polarizing elements.
次に、本実施形態において形成したマーキングを読み出す方法について説明する。 Next, a method for reading the marking formed in the present embodiment will be described.
図3は、マーキング読み出し方法の好適な一例を説明するための図である。マーキング読み出し方法に用いられる光学部材100は、光学ガラス部材1及び光学ガラス部材1上に形成されたマーキング10を備える。ここで、光学部材100においてマーキング10が形成された面を上面、上面に対向する方向を下面と呼ぶ。 FIG. 3 is a diagram for explaining a preferred example of the marking reading method. The optical member 100 used in the marking reading method includes an optical glass member 1 and a marking 10 formed on the optical glass member 1. Here, the surface on which the marking 10 is formed in the optical member 100 is referred to as an upper surface, and the direction facing the upper surface is referred to as a lower surface.
マーキングを読み出す場合には、例えば、光学部材100の上面側からマーキング10に向けて斜めに可視光5を照射し、可視光5を照射した側(光学部材100の上面側)からマーキング10を見ることにより、マーキングを読み出すことができる。可視光5の照射には、例えば、集光灯を用いることができる。 When reading the marking, for example, the visible light 5 is irradiated obliquely from the upper surface side of the optical member 100 toward the marking 10, and the marking 10 is viewed from the side irradiated with the visible light 5 (upper surface side of the optical member 100). Thus, the marking can be read out. For irradiation with the visible light 5, for example, a condenser lamp can be used.
以上、本実施形態における好適なマーキング形成方法及びマーキングの読み出し方法の好適な一例を説明したが、本発明はこれに限定されるものではない。 As described above, the preferable example of the marking forming method and the reading method of the marking according to the present embodiment has been described. However, the present invention is not limited to this.
(実施例1)
(塗布材料の作製)
透光性微粒子として、平均粒径1μm程度の酸化ビスマス粉を準備した。なお、酸化ビスマスの融点は約800℃である。そして、準備した酸化ビスマス粉1gに対して、純水5g及びポリビニルアルコール10重量%水溶液(和光純薬製)10gを混合して、塗布材料(ガラスペースト)を作製した。
Example 1
(Production of coating material)
As translucent fine particles, bismuth oxide powder having an average particle size of about 1 μm was prepared. The melting point of bismuth oxide is about 800 ° C. Then, 5 g of pure water and 10 g of a polyvinyl alcohol 10 wt% aqueous solution (manufactured by Wako Pure Chemical Industries) were mixed with 1 g of the prepared bismuth oxide powder to prepare a coating material (glass paste).
(光学ガラス部材上へのマーキングの形成)
光学ガラス部材として、ホウ珪酸ガラスであるショット社製BK7から形成された光学レンズを準備した。そして上述のように作製した塗布材料を、エアブラシを用いて光学レンズに噴霧して、厚みが10μm程度の塗布材料層を形成した。
(Formation of markings on optical glass members)
As an optical glass member, an optical lens formed from BK7 manufactured by Schott Corp., which is borosilicate glass, was prepared. And the coating material produced as mentioned above was sprayed on the optical lens using the airbrush, and the coating material layer about 10 micrometers thick was formed.
その後、塗布材料層を乾燥させ、塗布層を形成した後、図1に示すようにスキャニングレーザを用いて、光学部材表面にガラスを溶融・固着させた。使用したレーザはYVO4レーザの第二高調波(ミヤチテクノス社製、ML−9001A、波長532nm)を光源とするレーザマーカーであった。このようなレーザは、1mm以下の小さな文字やバーコードを印字することが可能である。また、レーザの照射条件は、電流23A、周波数20kHz、走査速度100mm/sであった。なお、この波長において、光学ガラス部材(光学レンズ)の内部透過率は99.9%/cm以上であり、酸化ビスマス粉の吸収は10%/cm以上であった。 Thereafter, the coating material layer was dried to form the coating layer, and then the glass was melted and fixed on the surface of the optical member using a scanning laser as shown in FIG. The laser used was a laser marker using a second harmonic of YVO 4 laser (Miyachi Technos, ML-9001A, wavelength 532 nm) as a light source. Such a laser can print small characters and barcodes of 1 mm or less. The laser irradiation conditions were a current of 23 A, a frequency of 20 kHz, and a scanning speed of 100 mm / s. At this wavelength, the internal transmittance of the optical glass member (optical lens) was 99.9% / cm or more, and the absorption of the bismuth oxide powder was 10% / cm or more.
酸化ビスマスを含む塗布層は、レーザ照射により酸化ビスマスの融点である約800℃以上に昇温されることで溶融し、光学ガラスの表面に焼き付いた。なお、ポリビニルアルコール(PVA)は700℃以上で分解し揮発するため、レーザ走査した後には存在しないと思われる。 The coating layer containing bismuth oxide was melted by being heated to about 800 ° C., which is the melting point of bismuth oxide, by laser irradiation, and baked onto the surface of the optical glass. In addition, since polyvinyl alcohol (PVA) decomposes | dissolves and volatilizes at 700 degreeC or more, it seems that it does not exist after laser scanning.
そして、パターンを形成するために、焼き付けられなかった余分な塗布層を洗浄・除去するため、純水で超音波洗浄した。洗浄後、光学部材を乾燥させた。以上のように、光学レンズ上にレーザ走査部にマーキングを形成した。また、マーキングが形成されたことによる光学ガラス部材の光学性能低下はほとんどなかった。 Then, in order to form a pattern, ultrasonic cleaning was performed with pure water in order to clean and remove the excess coating layer that was not baked. After washing, the optical member was dried. As described above, the marking was formed on the laser scanning portion on the optical lens. Moreover, there was almost no deterioration in the optical performance of the optical glass member due to the formation of the marking.
(マーキングの読み出し)
集光灯を用い、作製した光学部材の上面側から10000ルーメンの白色光を照射し、図3に示す方法によりマーキングを観察した。その結果、明瞭に文字を視認することができた。
(Reading of marking)
Using a condenser lamp, 10000 lumen white light was irradiated from the upper surface side of the produced optical member, and the marking was observed by the method shown in FIG. As a result, the characters were clearly visible.
(マーキングの除去)
マーキング上へ、濃度10wt%の塩酸を塗布したところ、2分間経過後に焼き付けられた酸化ビスマスは全て溶解した。なお、ショット社製BK7は、塩酸に対して不溶であるため、マーキングの除去したことによる光学ガラス部材の光学性能低下などは起こらなかった。
(Removal of marking)
When hydrochloric acid having a concentration of 10 wt% was applied onto the marking, all the bismuth oxide baked after 2 minutes had dissolved. Since BK7 manufactured by Schott was insoluble in hydrochloric acid, the optical performance of the optical glass member was not deteriorated due to the removal of the marking.
(実施例2)
透光性微粒子として、酸化亜鉛粉を使用したこと以外は、実施例1と同様の方法によりマーキングを形成した。なお、酸化亜鉛の融点は約1980℃である。また、照射したレーザ波長において、酸化亜鉛粉の吸収は10%/cm以上であった。
(Example 2)
A marking was formed by the same method as in Example 1 except that zinc oxide powder was used as the light-transmitting fine particles. The melting point of zinc oxide is about 1980 ° C. Moreover, the absorption of the zinc oxide powder was 10% / cm or more at the irradiated laser wavelength.
本実施例においても、マーキングが形成されたことによる光学ガラス部材の光学性能低下はほとんどなかった。但し、実施例1と比較し、光学ガラス部材へのマーキングの付着強度が不十分であるなど、焼き付き状態が悪いものであった。 Also in this example, there was almost no deterioration in the optical performance of the optical glass member due to the formation of the marking. However, compared with Example 1, the image sticking state was poor, for example, the adhesion strength of the marking to the optical glass member was insufficient.
(実施例3)
透光性微粒子として、酸化モリブデン粉を使用したこと以外は、実施例1と同様の方法によりマーキングを形成した。なお、酸化モリブデンの融点は約800℃である。また、照射したレーザ波長において、酸化モリブデン粉の吸収は10%/cm以上であった。
(Example 3)
A marking was formed by the same method as in Example 1 except that molybdenum oxide powder was used as the light-transmitting fine particles. The melting point of molybdenum oxide is about 800 ° C. In addition, at the irradiated laser wavelength, the absorption of the molybdenum oxide powder was 10% / cm or more.
本実施例においても、マーキングが形成されたことによる光学ガラス部材の光学性能低下はほとんどなかった。また、光学ガラス部材へのマーキングの焼き付き状態は、実施例1とほぼ同等であった。 Also in this example, there was almost no deterioration in the optical performance of the optical glass member due to the formation of the marking. Further, the burn-in state of the marking on the optical glass member was almost the same as that in Example 1.
(実施例4)
透光性微粒子として、TeO2を10mol%以上含むテルライトガラスを使用したこと、レーザ波長を、YVO4レーザの基本波(ミヤチテクノス社製、波長1064nm)としたこと以外は、実施例1と同様の方法によりマーキングを形成した。また、照射したレーザ波長において、上記テルライトガラスの吸収は0.2%/cmであった。
Example 4
Example 1 except that tellurite glass containing 10 mol% or more of TeO 2 was used as the light-transmitting fine particles, and that the laser wavelength was the fundamental wave of YVO 4 laser (manufactured by Miyachi Technos, wavelength 1064 nm) A marking was formed by the same method. The absorption of the tellurite glass at the irradiated laser wavelength was 0.2% / cm.
本実施例においても、マーキングが形成されたことによる光学ガラス部材の光学性能低下はほとんどなかった。また、光学ガラス部材へのマーキングの焼き付き状態は、実施例1とほぼ同等であった。 Also in this example, there was almost no deterioration in the optical performance of the optical glass member due to the formation of the marking. Further, the burn-in state of the marking on the optical glass member was almost the same as that in Example 1.
(マーキングの読み出し)
集光灯を用い、作製した光学部材の上面側から10000ルーメンの白色光を照射し、図3に示す方法によりマーキングを観察した。その結果、明瞭に文字を視認することができた。
(Reading of marking)
Using a condenser lamp, 10000 lumen white light was irradiated from the upper surface side of the produced optical member, and the marking was observed by the method shown in FIG. As a result, the characters were clearly visible.
(実施例5)
粉砕したHOYA社製LAF2ガラスと、酸化ネオジウムとを混合した。酸化ネオジウムの添加量は、LAF2ガラスと酸化ネオジウムの合計量に対して、0.5mol%であった。得られた混合物を熔解して、ガラスを作製し、さらに、作製したガラスを粉砕し、透光性微粒子とした。
(Example 5)
The pulverized HOYA LAF2 glass was mixed with neodymium oxide. The addition amount of neodymium oxide was 0.5 mol% with respect to the total amount of LAF2 glass and neodymium oxide. The obtained mixture was melted to produce glass, and the produced glass was further pulverized to form translucent fine particles.
このようなガラスを透光性微粒子として用いたこと以外は、実施例1と同様の方法により、マーキングを形成した。また、照射したレーザ波長において、上記透光性微粒子の吸収は0.5%/cmであった。 A marking was formed by the same method as in Example 1 except that such glass was used as the light-transmitting fine particles. Further, the absorption of the light-transmitting fine particles was 0.5% / cm at the irradiated laser wavelength.
このような条件において、透光性微粒子のレーザ波長の吸収は十分あり、レーザ照射によって温度が融点以上に上昇した。これにより、塗布層は、良好に溶融・固着された。 Under such conditions, the light-transmitting fine particles have sufficiently absorbed the laser wavelength, and the temperature rose to the melting point or more by laser irradiation. Thereby, the coating layer was melted and fixed satisfactorily.
本実施例においても、マーキングが形成されたことによる光学ガラス部材の光学性能低下はほとんどなかった。 Also in this example, there was almost no deterioration in the optical performance of the optical glass member due to the formation of the marking.
(マーキングの読み出し)
集光灯を用い、作製した光学部材の上面側から10000ルーメンの白色光を照射し、図3に示す方法によりマーキングを観察した。その結果、明瞭に文字を視認することができた。
(Reading of marking)
Using a condenser lamp, 10000 lumen white light was irradiated from the upper surface side of the produced optical member, and the marking was observed by the method shown in FIG. As a result, the characters were clearly visible.
(比較例1)
粉砕したHOYA社製LAF2ガラスを透光性微粒子としたこと、レーザ波長を、YVO4レーザの基本波(ミヤチテクノス社製、ML−7111A、波長1064nm)としたこと以外は、実施例1と同様の方法によりマーキングを形成した。ここで、照射したレーザ波長において、上記透光性微粒子の吸収は0.1%/cm未満であった。
(Comparative Example 1)
To the ground HOYA Co. LAF2 glass was translucent fine particles, the laser wavelength, YVO 4 laser fundamental wave (Miyachi Technos Co., ML-7111A, wavelength 1064 nm) except that the A, as in Example 1 The marking was formed by the method described above. Here, at the irradiated laser wavelength, the absorption of the translucent fine particles was less than 0.1% / cm.
このような条件においては、塗布層の、溶融・固着ができず、マーキング自体が形成できなかった。透光性微粒子のレーザ波長の吸収が不十分であり、レーザ照射によっても温度が融点以上に上昇しなかったためと思われる。 Under such conditions, the coating layer could not be melted and fixed, and the marking itself could not be formed. This is probably because the light-transmitting fine particles did not absorb the laser wavelength sufficiently, and the temperature did not rise above the melting point even by laser irradiation.
1…光学ガラス部材、8…レーザ装置、9…レーザ光、10…マーキング、15…皮膜、100…マーキング付光学ガラス部材。 DESCRIPTION OF SYMBOLS 1 ... Optical glass member, 8 ... Laser apparatus, 9 ... Laser beam, 10 ... Marking, 15 ... Film | membrane, 100 ... Optical glass member with marking
Claims (4)
前記光学ガラス部材の内部透過率が99.9%/cm以上となる波長において0.1%/cm以上の吸収を有する透光性微粒子を媒体に分散させた分散物の皮膜を形成させ、
前記皮膜が形成された面のマーキング形成領域に、前記波長のレーザ光を照射して前記透光性微粒子を前記光学ガラス部材に融着させる、光学ガラス部材のマーキング形成方法であり、
前記透光性微粒子が、2000℃以下の融点を有するとともに、金属酸化物を含む結晶からなり、
前記結晶が、酸化ビスマス又は酸化モリブデンを含む、マーキング形成方法。 On the optical glass member,
Forming a film of a dispersion in which translucent fine particles having absorption of 0.1% / cm or more at a wavelength at which the internal transmittance of the optical glass member is 99.9% / cm or more are dispersed in a medium;
It is a marking forming method for an optical glass member, wherein the marking forming region of the surface on which the film is formed is irradiated with laser light of the wavelength to fuse the translucent fine particles to the optical glass member ,
The translucent fine particles have a melting point of 2000 ° C. or less and are made of crystals containing a metal oxide,
A marking forming method, wherein the crystal contains bismuth oxide or molybdenum oxide .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008262096A JP5233565B2 (en) | 2008-10-08 | 2008-10-08 | Marking formation method for optical glass member and optical glass member with marking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008262096A JP5233565B2 (en) | 2008-10-08 | 2008-10-08 | Marking formation method for optical glass member and optical glass member with marking |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010089997A JP2010089997A (en) | 2010-04-22 |
JP5233565B2 true JP5233565B2 (en) | 2013-07-10 |
Family
ID=42253108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008262096A Active JP5233565B2 (en) | 2008-10-08 | 2008-10-08 | Marking formation method for optical glass member and optical glass member with marking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5233565B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013131064A1 (en) * | 2012-03-01 | 2013-09-06 | Ferro Corporation | Laser absorbing compounds |
EP3000553B1 (en) * | 2013-05-20 | 2019-10-02 | Tokan Material Technology Co., Ltd. | Use of bismuth oxide-based additive for laser marking |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075223A (en) * | 1997-09-08 | 2000-06-13 | Thermark, Llc | High contrast surface marking |
-
2008
- 2008-10-08 JP JP2008262096A patent/JP5233565B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010089997A (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6445194B2 (en) | Laser absorbing compound | |
CN105764863A (en) | Glass member, and glass-member production method | |
CN108025577B (en) | Image forming method, image forming apparatus, laser-irradiated printing ink, and method for manufacturing image-formed object | |
CN101745742B (en) | Method of marking or inscribing a workpiece | |
TWI424479B (en) | Method for patterning crystalline indium tin oxide by using femtosecond laser | |
JP2011530436A (en) | Method for providing subsurface marks in a polymeric material | |
JP6049401B2 (en) | OPTICAL MEMBER, IMAGING DEVICE, AND OPTICAL MEMBER MANUFACTURING METHOD | |
JP5233565B2 (en) | Marking formation method for optical glass member and optical glass member with marking | |
Wackerow et al. | Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass | |
JP2011168422A (en) | Method of forming mark of optical glass member, method of manufacturing optical glass member with mark and optical glass member with mark | |
JP5217878B2 (en) | Marking reading method for optical member, marking forming method, and optical glass member with marking | |
JPH11156568A (en) | Marking method of transparent material | |
JP2010089130A (en) | Method for reading-out marking of optical member, method for forming marking and marking-fitted optical glass member | |
Bovatsek et al. | Three-dimensional micromachining inside transparent materials using femtosecond laser pulses: new applications | |
CN102974942A (en) | Method for carrying out invisible engraving in transparent material by laser | |
Richter et al. | UV laser generated micro structured black surface on commercial TiO2-containing glass | |
JP4192232B2 (en) | Manufacturing method of colored glass | |
JP4731530B2 (en) | Glass coloring method | |
JP2011083786A (en) | Method for marking optical glass member, method for manufacturing optical glass member with mark, and optical glass member with mark | |
CN115257209B (en) | Laser marking method for reagent tube | |
US20180355187A1 (en) | Laser marking compositions and methods of making and using the same | |
JP5471300B2 (en) | Mark forming method for optical glass member, method for manufacturing optical glass member with mark, and optical glass member with mark | |
FR3084667A1 (en) | METHOD FOR MARKING A REFRACTORY CERAMIC PART | |
JP2004351746A (en) | Method for drawing picture on glass by laser scan | |
CN108890122A (en) | A kind of scribble method of ceramic substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5233565 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |