JP5230457B2 - Storage method of hydrophilic dry silica - Google Patents

Storage method of hydrophilic dry silica Download PDF

Info

Publication number
JP5230457B2
JP5230457B2 JP2009005587A JP2009005587A JP5230457B2 JP 5230457 B2 JP5230457 B2 JP 5230457B2 JP 2009005587 A JP2009005587 A JP 2009005587A JP 2009005587 A JP2009005587 A JP 2009005587A JP 5230457 B2 JP5230457 B2 JP 5230457B2
Authority
JP
Japan
Prior art keywords
dry silica
hydrophilic dry
silica
hydrophilic
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009005587A
Other languages
Japanese (ja)
Other versions
JP2010163303A (en
Inventor
博男 青木
雅和 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2009005587A priority Critical patent/JP5230457B2/en
Publication of JP2010163303A publication Critical patent/JP2010163303A/en
Application granted granted Critical
Publication of JP5230457B2 publication Critical patent/JP5230457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、半導体封止剤、半導体実装用接着剤等に使用する樹脂組成物の充填剤として好適に使用される親水性乾式シリカの保存方法に関するものである。   The present invention relates to a method for preserving hydrophilic dry silica that is suitably used as a filler for a resin composition used for a semiconductor encapsulant, a semiconductor mounting adhesive, and the like.

近年、半導体デバイスの小型化、薄型化に伴い、エポキシ樹脂組成物である半導体封止用樹脂や半導体実装用接着剤に添加される充填剤の粒子径が小さくなっていく傾向があり、BET比表面積が20〜55m/gの親水性乾式シリカが用いられることもある(特許文献1参照)。 In recent years, with the downsizing and thinning of semiconductor devices, the particle diameter of fillers added to semiconductor sealing resins and semiconductor mounting adhesives, which are epoxy resin compositions, tends to become smaller, and the BET ratio Hydrophilic dry silica having a surface area of 20 to 55 m 2 / g may be used (see Patent Document 1).

通常、シリカ製造者と樹脂組成物製造者とは異なるため、製造されたシリカは製造後にシリカ製造者が各種包装形態で小分け、保存し、樹脂組成物製造者の注文に応じて必要量が出荷されることが多い。この保存期間は数日から長い場合には数年に及ぶ。   Usually, since the silica manufacturer and the resin composition manufacturer are different, the manufactured silica is subdivided into various packaging forms and stored after manufacture, and the required amount is shipped according to the order of the resin composition manufacturer. Often done. This shelf life ranges from a few days to several years.

特開2008−19157号公報JP 2008-19157 A

しかしながら、上述のBET比表面積20〜55m/gの親水性乾式シリカには、シリカの保存期間が長くなるほど、これを充填剤として添加した樹脂組成物の粘度が高くなる傾向があり、長期間保存した該シリカを使用すると半導体の封止、成形、実装が困難になるという問題があった。 However, in the above-mentioned hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, the longer the storage period of the silica, the higher the viscosity of the resin composition added as a filler. When the preserved silica is used, there is a problem that it becomes difficult to seal, mold and mount the semiconductor.

従って、本発明の目的は、保存期間が長くなっても、樹脂に添加したときの粘度上昇を抑制する、BET比表面積20〜55m/gの親水性乾式シリカの保存方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for preserving hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, which suppresses an increase in viscosity when added to a resin even when the storage period is long. is there.

本発明者は、上述の課題を解決すべく鋭意検討を行った結果、BET比表面積20〜55m/gの親水性乾式シリカにおいては、その保存期間中に、該シリカの表面に吸着した水分が、該シリカの粒子間凝集を促進かつ強固にし、その凝集が樹脂組成物の粘度を上昇させていることに気付いた。そこで、製造から使用時までの該シリカの水分量をある値以下に維持するよう保存することで、該シリカを使用した場合の樹脂組成物の粘度上昇を抑制できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that, in hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, moisture adsorbed on the surface of the silica during the storage period. However, it was found that the aggregation of the silica particles was promoted and strengthened, and the aggregation increased the viscosity of the resin composition. Thus, the present inventors have found that the increase in the viscosity of the resin composition when using the silica can be suppressed by storing the silica so that the moisture content of the silica from the production to the use is maintained below a certain value, and the present invention is completed. It came to.

すなわち、本発明の保存方法は、BET比表面積20〜55m/gの親水性乾式シリカに関する保存方法であり、下記式(1)
w ≦ 0.01×S ・・・(1)
(上記式中、wは130℃での乾燥減量法により測定される親水性乾式シリカの水分量(wt%)であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足するように製造された親水性乾式シリカを、上記式(1)を満足する状態を維持したまま使用時まで保存することを特徴とする。
That is, the storage method of the present invention is a storage method for hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, and is represented by the following formula (1):
w ≦ 0.01 × S (1)
(W is the water content (wt%) of hydrophilic dry silica measured by the loss on drying method at 130 ° C., and S is the BET specific surface area (m 2 / g) of hydrophilic dry silica. .)
The hydrophilic dry silica produced so as to satisfy the above condition is stored until it is used while maintaining the condition satisfying the above formula (1).

また、上記式(1)と同時に、下記式(2)
τ ≦ 240S−1.4 − 0.07 ・・・(2)
(上記式中、τは親水性乾式シリカを1.5wt%濃度で含有させた水懸濁液の波長700mの光に対する吸光度であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足するように製造された親水性乾式シリカを、上記式(1)及び(2)の双方を満足する状態を維持したまま使用時まで保存することが特に好ましい。
In addition to the above formula (1), the following formula (2)
τ ≦ 240S −1.4 −0.07 (2)
(In the above formula, τ is the absorbance with respect to light having a wavelength of 700 m of an aqueous suspension containing hydrophilic dry silica at a concentration of 1.5 wt%, and S is the BET specific surface area (m 2 / g of hydrophilic dry silica). ).)
It is particularly preferable that the hydrophilic dry silica produced so as to satisfy the above conditions is stored until use while maintaining the state satisfying both the above formulas (1) and (2).

本発明の保存方法を適用すれば、BET比表面積20〜55m/gの親水性乾式シリカを樹脂に添加して樹脂組成物を製造するにあたり、該シリカの保存期間を気にすることなく、粘度特性に優れた樹脂組成物を得ることができる。 If the storage method of the present invention is applied, the hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g is added to the resin to produce a resin composition without worrying about the storage period of the silica. A resin composition having excellent viscosity characteristics can be obtained.

本発明において、乾式シリカとは、気相で生成及び/または溶融されたシリカ、もしくは気相で生成及び/または溶融された後に表面処理されたシリカのことをいう。   In the present invention, dry silica refers to silica produced and / or melted in the gas phase, or silica surface-treated after being produced and / or melted in the gas phase.

より具体的には、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン等のハロゲン化ケイ素類、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサン等のシロキサン類等の含ケイ素化合物と、酸素等の支燃性ガスとの混合ガス(必要に応じて窒素等の希釈ガスや水素等の補助燃焼ガスが用いられる場合もある)をバーナーから噴出させつつ燃焼させる方法により製造されるシリカ;金属ケイ素粉末を火炎中等の高温で、かつ酸化性の雰囲気下で熱処理する方法により製造されるシリカ;粉砕した石英やシリカ凝集体を火炎中で溶融させた後、再凝固させることによって製造されるシリカ等、及びこれらを各種のシランカップリング剤等で表面処理したシリカ等が挙げられる。   More specifically, silicon halides such as monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, octamethyltrimethyl. From a burner a mixed gas of a silicon-containing compound such as siloxane such as siloxane and a combustion-supporting gas such as oxygen (a dilution gas such as nitrogen or an auxiliary combustion gas such as hydrogen may be used if necessary) Silica produced by a method of burning while being blown; Silica produced by a method of heat-treating metal silicon powder in a high-temperature and oxidizing atmosphere such as in a flame; Melting crushed quartz and silica aggregates in a flame Silica, etc. produced by re-solidification after Silica or the like to these surface-treated with various silane coupling agents and the like.

なお、このような乾式シリカは、その製造工程で含ケイ素化合物の燃焼やシリカの溶融のために極めて高い温度を経るため、その付着水分が湿式(ケイ酸ソーダの中和やゾルゲル法)で製造されたシリカに比べて極めて少ないシリカとなる。   In addition, since such dry silica undergoes extremely high temperatures due to the combustion of silicon-containing compounds and the melting of silica in the production process, the adhering moisture is produced by a wet method (sodium silicate neutralization or sol-gel method). The amount of silica is much smaller than that of the formed silica.

本発明において、シリカが親水性であるとは、シリカを水にシリカ濃度1.5重量%となるように攪拌混合したときに、水面に浮遊するシリカ分が存在せず、シリカと水が完全に混合される場合をいう。   In the present invention, the silica is hydrophilic when silica is stirred and mixed in water so that the silica concentration is 1.5% by weight. The case where it is mixed.

このような親水性シリカとしては、全く表面処理をしていないもの、主にγ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリプロポキシシラン等のエポキシ官能基を有するシランカップリング剤やγ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン等のアミノ基を有するシランカップリング剤等の極性(親水性)官能基を有するシランカップリング剤で処理したものなどが挙げられる。   As such hydrophilic silica, those having no surface treatment, mainly γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, Silane coupling agents having an epoxy functional group such as γ-glycidoxypropyltripropoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane And those treated with a silane coupling agent having a polar (hydrophilic) functional group such as a silane coupling agent having an amino group such as γ- (2-aminoethyl) aminopropylmethyldimethoxysilane.

従って、本発明における親水性乾式シリカとは、乾式シリカであって、なおかつ親水性であるものをいう。   Accordingly, the hydrophilic dry silica in the present invention refers to a dry silica that is hydrophilic.

本発明は、上記の如き親水性乾式シリカであって、BET法により測定された比表面積20〜55m/gのシリカであり、かつ下記式(1)
w ≦ 0.01×S ・・・(1)
(上記式中、wは130℃での乾燥減量法により測定される親水性乾式シリカの水分量(wt%)であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足するシリカに係る。
The present invention is a hydrophilic dry silica as described above, which is a silica having a specific surface area of 20 to 55 m 2 / g measured by the BET method, and the following formula (1)
w ≦ 0.01 × S (1)
(W is the water content (wt%) of hydrophilic dry silica measured by the loss on drying method at 130 ° C., and S is the BET specific surface area (m 2 / g) of hydrophilic dry silica. .)
Relating to silica satisfying

上記全ての物性を満足するように製造されたシリカは、樹脂硬化物の熱膨張係数を半導体素子に近似させるのに必要な量を樹脂に添加できる利点を有し、また、樹脂硬化物に十分な強度を付与できる利点も有する。しかしその一方で、その表面が親水性であり比表面積も比較的大きいために、保存中にその表面に水分を吸着しやすい。そしてこのシリカ表面に吸着した水分が、シリカ粒子間凝集を促進かつ強固にし、その凝集が樹脂組成物の粘度を上昇させるなどして、使用困難となる。   Silica manufactured to satisfy all the above physical properties has the advantage that it can be added to the resin in an amount necessary to approximate the thermal expansion coefficient of the cured resin to that of a semiconductor element. There is also an advantage that a sufficient strength can be imparted. However, on the other hand, since the surface is hydrophilic and the specific surface area is relatively large, moisture is easily adsorbed on the surface during storage. The moisture adsorbed on the silica surface promotes and strengthens the aggregation between the silica particles, and the aggregation increases the viscosity of the resin composition, which makes it difficult to use.

さらに一旦シリカが水分を吸着してしまうと、これを乾燥させて再度上記式(1)を満足する状態に戻したとしても、乾燥に伴う水分蒸発時にシリカ粒子同士の距離が狭くなるため、かえって凝集が促進、凝集が強固になり、いっそうその物性が低下するという問題を生じる。   Furthermore, once the silica adsorbs moisture, even if it is dried and returned to a state that satisfies the above formula (1) again, the distance between the silica particles is reduced when the moisture evaporates due to drying. Aggregation is accelerated, aggregation is strengthened, and the physical properties are further deteriorated.

従って本発明においては、前記式(1)を満足するように製造されたシリカを、使用時まで該物性を満足する状態を維持したまま、即ち、シリカ表面への水分の吸着が抑制された環境下で保存するものである。このようにして親水性乾式シリカを保存しておけば、該シリカを樹脂と混合して樹脂組成物を製造するにあたり、保存期間を気にすることなく常に優れた物性を有する樹脂組成物を得ることができる。   Therefore, in the present invention, the silica produced so as to satisfy the formula (1) is maintained in a state satisfying the physical properties until use, that is, an environment in which moisture adsorption to the silica surface is suppressed. The one to save below. If hydrophilic dry silica is stored in this manner, a resin composition always having excellent physical properties can be obtained without worrying about the storage period in producing a resin composition by mixing the silica with a resin. be able to.

上記式(1)を満足するように製造された20〜55m/gの親水性乾式シリカを、該上記式(1)を満足する状態を維持するように保存する方法は特に限定されないが、水分透過性の低い容器中で密封保存する方法が一般的である。該容器の水分透過性は、保存環境の湿度や温度、保存期間等を考慮して適宜設定すればよいが、例えば、季節を問わず日本国内において6ヶ月以上の長時間保存を行うことを考えれば、水蒸気透過率が1g/m/day(40℃/90%RHでの値)以下、好ましくは0.2g/m/day(40℃/90%RHでの値)以下の包装容器に該シリカを封入することが好ましい。なお当該水蒸気透過率はJIS−Z−0208に準じて測定する値である。 The method for storing 20 to 55 m 2 / g hydrophilic dry silica produced so as to satisfy the above formula (1) so as to maintain the state satisfying the above formula (1) is not particularly limited. A method of hermetically storing in a container having low moisture permeability is common. The moisture permeability of the container may be set as appropriate in consideration of the humidity, temperature, storage period, etc. of the storage environment. For example, it can be considered that the container is stored for a long period of time of 6 months or more in Japan regardless of the season. For example, a packaging container having a water vapor transmission rate of 1 g / m 2 / day (value at 40 ° C./90% RH) or less, preferably 0.2 g / m 2 / day (value at 40 ° C./90% RH) or less. It is preferable to encapsulate the silica. The water vapor transmission rate is a value measured according to JIS-Z-0208.

かかる包装容器の例としては、アルミラミネート袋、金属製ペール缶などが挙げられるが、経済性、包装容器の取扱い易さ、保管スペースを小さく出来る点でアルミラミネート袋が好ましい。当該アルミラミネート袋の具体例としては、例えば、株式会社生産日本社製ラミジップALシリーズ、カイト化学工業株式会社製アルミラミネート袋、株式会社サンライズ製ハイバリアー袋等が挙げられる。   Examples of such packaging containers include aluminum laminated bags, metal pail cans, etc. Aluminum laminated bags are preferred in terms of economy, ease of handling of packaging containers, and storage space. Specific examples of the aluminum laminated bag include lami zip AL series manufactured by Nippon Shokubai Co., Ltd., an aluminum laminated bag manufactured by Kite Chemical Industries, Ltd., a high barrier bag manufactured by Sunrise, and the like.

このような包装容器への乾式シリカ微粒子の充填方法は、スクリューフィーダーやテーブルフィーダー等の定量供給装置を備えた自動計量器を用いた方法、作業者が計量スコップ等の器具を用いて包装容器に所定の重量になるまで乾式シリカ微粒子を充填する方法等、公知の充填方法が何らの制限無く採用できる。   Such a packing container is filled with dry silica fine particles by a method using an automatic measuring instrument equipped with a quantitative supply device such as a screw feeder or a table feeder. A known filling method such as a method of filling dry silica fine particles until a predetermined weight can be adopted without any limitation.

包装容器の封止(密封)方法は、包装容器が内袋入りペール缶の場合、内袋の開口部を持つ端を捻じった後、ビニールテープや輪ゴム等で留め、次いでペール缶の蓋を所定の留め金具で固定する方法が採用できる。この封止作業の際、内袋やペール缶内部を封止前に露点−20℃以下の空気や窒素で置換すれば本発明の効果がより発揮される。また、包装容器がアルミラミネート袋の場合、開口部をヒートシールする方法が採用できる。この封止作業の際、アルミラミネート袋内部を封止前に露点−20℃以下の空気や窒素で置換すれば、前記式(1)の状態を維持させることが一層容易である。   When the packaging container is a pail can with an inner bag, after twisting the end with the opening of the inner bag, fasten it with vinyl tape or rubber band, and then close the lid of the pail can A method of fixing with a predetermined fastener can be employed. At the time of this sealing operation, the effect of the present invention is more exhibited if the inside of the inner bag or the pail can is replaced with air or nitrogen having a dew point of −20 ° C. or lower before sealing. Moreover, when a packaging container is an aluminum laminated bag, the method of heat-sealing an opening part is employable. In this sealing operation, if the inside of the aluminum laminate bag is replaced with air or nitrogen having a dew point of −20 ° C. or lower before sealing, it is easier to maintain the state of the formula (1).

また、BET比表面積20〜55m/gの親水性乾式シリカのなかでも、下記式(2)
τ ≦ 240S−1.4 − 0.07 ・・・(2)
(上記式中、τは親水性乾式シリカを1.5wt%濃度で含有させた水懸濁液の波長700mの光に対する吸光度であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足するように製造された親水性乾式シリカは、樹脂に対する分散性が良く、これを充填剤とした樹脂組成物はいっそう低粘度である。
Among the hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, the following formula (2)
τ ≦ 240S −1.4 −0.07 (2)
(In the above formula, τ is the absorbance with respect to light having a wavelength of 700 m of an aqueous suspension containing hydrophilic dry silica at a concentration of 1.5 wt%, and S is the BET specific surface area (m 2 / g of hydrophilic dry silica). ).)
The hydrophilic dry silica produced so as to satisfy the above has good dispersibility in the resin, and the resin composition using this as a filler has a lower viscosity.

しかしながら、上記式(2)を満足する物性を持つ乾式シリカであっても、水分を吸着することによって上記式(2)を満たさなくなる場合があり、こうなると再度乾燥させても、もはや上記式(2)を満たす状態に戻すことは困難である。   However, even dry silica having physical properties satisfying the above formula (2) may not satisfy the above formula (2) by adsorbing moisture. It is difficult to return to a state satisfying 2).

従って、粘度特性に優れた樹脂組成物を得るには、上記式(1)及び上記式(2)を満足するように製造されたBET比表面積20〜55m/gの親水性乾式シリカを、上記式(1)及び(2)の双方を満足する状態を維持したまま使用時まで保存することが特に好ましい。上記式(2)を満足する状態を維持したまま保存する方法は、前記式(1)を満足する状態を維持したまま保存する方法と同じく、水分透過性の低い容器中で密封保存する方法によればよい。 Therefore, in order to obtain a resin composition having excellent viscosity characteristics, hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g produced so as to satisfy the above formula (1) and the above formula (2), It is particularly preferable to store until use, while maintaining a state satisfying both of the above formulas (1) and (2). The method of preserving while maintaining the state satisfying the above formula (2) is the same as the method of preserving while maintaining the state satisfying the above formula (1), in a method of hermetically storing in a container having low moisture permeability. You can do it.

上記式(1)及び上記式(2)を満足するBET比表面積20〜55m/gの親水性乾式シリカは、例えば特開2008−19157号公報に記載された製造方法によって得ることができる。 A hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g that satisfies the above formula (1) and the above formula (2) can be obtained, for example, by the production method described in JP-A-2008-19157.

上記式(1)及び上記式(2)を満足するように製造されたBET比表面積20〜55m/gの親水性乾式シリカは、上述の包装容器に封入することで、上記式(1)及び(2)の双方を満足する状態を維持したまま使用時まで保存することができる。 The hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g produced so as to satisfy the above formula (1) and the above formula (2) is sealed in the above-mentioned packaging container, whereby the above formula (1) And it can preserve | save until it uses it, maintaining the state which satisfies both of (2).

このようにして保存されるシリカは、エポキシ樹脂等と混練して樹脂組成物とした場合、優れた流動性を発現し、液晶や半導体の封止材として好適に使用できる。またそのほかにも、トナー外添剤、各種の樹脂フィルム、塗料艶消し剤等への塗料添加剤、アンチブロッキング剤用として、保存期間による物性の低下を実質的に考慮せずに使用できる。   Silica thus stored exhibits excellent fluidity when kneaded with an epoxy resin or the like to form a resin composition, and can be suitably used as a sealing material for liquid crystals and semiconductors. In addition, it can be used for toner external additives, various resin films, paint additives for paint matting agents, etc., and anti-blocking agents without substantially considering the deterioration of physical properties due to the storage period.

本発明を具体的に説明するために実施例及び比較例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples and comparative examples are shown to specifically describe the present invention, but the present invention is not limited to these examples.

なお、以下の実施例及び比較例における各種の物性測定等は以下の方法による。   In addition, various physical property measurements in the following examples and comparative examples are based on the following methods.

(1)BET比表面積測定:
柴田理化学社製比表面積測定装置(SA−1000)を用い、窒素吸着BET1点法により測定した。
(1) BET specific surface area measurement:
Using a specific surface area measuring device (SA-1000) manufactured by Shibata Rikagaku Co., the nitrogen adsorption BET one-point method was used.

(2)水分測定(乾燥減量法):
あらかじめ重量を測定した秤量瓶(ガラス製、60mmφ×75mmH)にシリカを投入し、重量を測定した。シリカ投入前の秤量瓶の重量をA(g)、シリカ投入後の秤量瓶の重量(投入シリカの重量を含む)をB(g)とする。このシリカ入り秤量瓶と別途重量を測定した空の秤量瓶(ガラス製、60mmφ×75mmH)を130℃の恒温乾燥器に30分静置した。空の秤量瓶の重量C(g)とする。その後、シリカ入りの秤量瓶と空の秤量瓶を乾燥器から取り出し、デシケータ(乾燥剤として五酸化二リンを使用)に入れ、30分間静置した。その後、デシケータからシリカ入りの秤量瓶と空の秤量瓶を取り出し、その重量を測定した。このときの、シリカ入り秤量瓶の重量をB’(g)、空の秤量瓶の重量をC’(g)とする。そして、次式でシリカの水分量wを算出した。
水分量w(重量%)=100×[(B−B’)−(C−C’)]/[B−A]
(3)吸光度測定:
日本分光社製分光光度計(V−530)を用いて、波長700nmの光に対するシリカ濃度1.5重量%の水懸濁物の吸光度τを測定した。
(2) Moisture measurement (loss on drying method):
Silica was put into a weighing bottle (made of glass, 60 mmφ × 75 mmH) whose weight was measured in advance, and the weight was measured. Let A (g) be the weight of the weighing bottle before loading silica, and B (g) be the weight of the weighing bottle after silica loading (including the weight of loaded silica). This silica-containing weighing bottle and an empty weighing bottle (made of glass, 60 mmφ × 75 mmH) whose weight was separately measured were allowed to stand for 30 minutes in a 130 ° C. constant temperature dryer. Let C (g) be the weight of an empty weighing bottle. Thereafter, the silica-containing weighing bottle and the empty weighing bottle were taken out of the dryer, placed in a desiccator (using diphosphorus pentoxide as a desiccant), and allowed to stand for 30 minutes. Then, the weighing bottle containing silica and the empty weighing bottle were taken out from the desiccator, and the weight was measured. At this time, the weight of the weighing bottle with silica is B ′ (g), and the weight of the empty weighing bottle is C ′ (g). And the moisture content w of the silica was computed by following Formula.
Water content w (% by weight) = 100 × [(BB ′) − (CC ′)] / [BA]
(3) Absorbance measurement:
Using a spectrophotometer (V-530) manufactured by JASCO Corporation, the absorbance τ of an aqueous suspension having a silica concentration of 1.5% by weight with respect to light having a wavelength of 700 nm was measured.

測定試料セルとしては、東京硝子器械社製合成石英セル(5面透明、10×10×45H)を用いた。   As the measurement sample cell, a synthetic quartz cell (5-sided transparent, 10 × 10 × 45H) manufactured by Tokyo Glass Instruments Co., Ltd. was used.

シリカ濃度1.5重量%の水懸濁物は、以下のように調製した。   A water suspension having a silica concentration of 1.5% by weight was prepared as follows.

シリカ0.3gと蒸留水20mlをガラス製のサンプル管瓶(アズワン社製、内容量30ml、外径約28ml)に入れ、超音波細胞破砕器(BRANSON社製Sonifier II Model 250D、プローブ:1/4インチ)のプローブチップ下面が水面下15mmになるようにセットし、出力25W(振幅41%)、分散時間3分の条件でシリカを蒸留水に分散した。   0.3 g of silica and 20 ml of distilled water are placed in a glass sample tube bottle (manufactured by ASONE, inner volume 30 ml, outer diameter about 28 ml), and an ultrasonic cell crusher (BRANSON Sonifier II Model 250D, probe: 1 / 4 inches) was set so that the lower surface of the probe tip was 15 mm below the water surface, and silica was dispersed in distilled water under the conditions of an output of 25 W (amplitude 41%) and a dispersion time of 3 minutes.

(4)樹脂組成物の粘度
以下のようにエポキシ樹脂組成物を調製し、その粘度を測定した。
(4) Viscosity of resin composition An epoxy resin composition was prepared as follows and the viscosity thereof was measured.

(エポキシ樹脂組成物の調製)
東都化成製エポキシ樹脂ZX−1059を131.6g秤量後、これにシリカ56.4g添加した。その後、自転公転式プラネタリーミキサー(シンキー社製AR−250)を用いて、攪拌時間5分の条件で混練しエポキシ樹脂組成物を得た。その後、樹脂組成物を25℃の恒温槽に2時間静置した。
(Preparation of epoxy resin composition)
After 131.6 g of Toto Kasei epoxy resin ZX-1059 was weighed, 56.4 g of silica was added thereto. Then, it knead | mixed on the conditions for stirring time 5 minutes using the autorotation revolution planetary mixer (AR-250 by a Shinkey company), and obtained the epoxy resin composition. Thereafter, the resin composition was allowed to stand in a constant temperature bath at 25 ° C. for 2 hours.

(粘度測定)
25℃の恒温槽から樹脂組成物を取り出し、BH粘度計を用いて、回転数20rpmと2rpmの粘度を測定した。
(Viscosity measurement)
The resin composition was taken out from the thermostatic bath at 25 ° C., and the viscosity at 20 rpm and 2 rpm was measured using a BH viscometer.

実施例1
以下のように、特開2008−19157号記載の方法でオクタメチルシクロテトラシロキサンを3重管バーナで燃焼させ、親水性乾式シリカを製造した。
Example 1
As described below, octamethylcyclotetrasiloxane was burned in a triple tube burner by the method described in JP-A-2008-19157 to produce hydrophilic dry silica.

酸素と窒素の混合ガス(酸素濃度21%)に加熱気化させたオクタメチルテトラシロキサンをRが0.39になるように混合した後、バーナ中心管に導入した。また、中心管に隣接する第1環状管に水素をRSFLが0.28になるように導入し、更にその外側に隣接する第2環状管に酸素をRcmbtmが0.83になるように導入した。なお、Rは中心管に導入した酸素の量を同じく中心管に導入したオクタメチルシクロテトラシロキサンが完全燃焼するのに必要な酸素量で割ったものであり、RSFLは第1環状管に導入した水素が完全燃焼するのに必要な酸素量を中心管に導入したオクタメチルシクロテトラシロキサンが完全燃焼するのに必要な酸素量で割ったものであり、Rcmbtmは第2環状管に導入した酸素の量を中心管に導入したオクタメチルシクロテトラシロキサンが完全燃焼するのに必要な酸素量で割ったものである。 Octamethyltetrasiloxane heated and vaporized in a mixed gas of oxygen and nitrogen (oxygen concentration 21%) was mixed so that R 2 O would be 0.39, and then introduced into the burner center tube. Further, hydrogen is introduced into the first annular tube adjacent to the central tube so that R SFL is 0.28, and oxygen is introduced into the second annular tube adjacent to the outside so that R cmbtm is 0.83. Introduced. R 2 O is obtained by dividing the amount of oxygen introduced into the central tube by the amount of oxygen necessary for complete combustion of octamethylcyclotetrasiloxane introduced into the central tube, and R SFL is applied to the first annular tube. The amount of oxygen required for complete combustion of the introduced hydrogen is divided by the amount of oxygen required for complete combustion of octamethylcyclotetrasiloxane introduced into the central tube, and R cmbtm is introduced into the second annular tube. The amount of oxygen produced is divided by the amount of oxygen necessary for complete combustion of the octamethylcyclotetrasiloxane introduced into the central tube.

製造直後の親水性乾式シリカのBET比表面積は30m/g、水分量は0.10wt%、吸光度τは1.35であった。また、該シリカの樹脂組成物の粘度は、20rpmで11Pa・s、2rpmで10Pa・sであった。 The hydrophilic dry silica immediately after production had a BET specific surface area of 30 m 2 / g, a water content of 0.10 wt%, and an absorbance τ of 1.35. The viscosity of the silica resin composition was 11 Pa · s at 20 rpm and 10 Pa · s at 2 rpm.

この親水性乾式シリカを水蒸気透過率が0.1g/m/day(40℃/90%RHでの値)であるアルミラミネート袋に封入し、大気雰囲気中に1週間保存した。保存後、アルミラミネート袋を開封し、BET比表面積、水分量、吸光度、樹脂組成物の粘度を測定した。評価結果を表1に示す。 This hydrophilic dry silica was sealed in an aluminum laminated bag having a water vapor transmission rate of 0.1 g / m 2 / day (value at 40 ° C./90% RH) and stored in an air atmosphere for 1 week. After storage, the aluminum laminate bag was opened, and the BET specific surface area, water content, absorbance, and viscosity of the resin composition were measured. The evaluation results are shown in Table 1.

実施例2
封入後の保存期間が1ヶ月であることを除き、実施例1と同様に、製造、封入、保存、評価した。評価結果を表1に示す。
Example 2
Manufacture, encapsulation, storage, and evaluation were performed in the same manner as in Example 1 except that the storage period after encapsulation was 1 month. The evaluation results are shown in Table 1.

実施例3
封入後の保存期間が1年であることを除き、実施例1と同様に、製造、封入、保存、評価した。評価結果を表1に示す。
Example 3
Manufacture, encapsulation, storage, and evaluation were performed in the same manner as in Example 1 except that the storage period after encapsulation was 1 year. The evaluation results are shown in Table 1.

比較例1
水蒸気透過率が4g/m/day(40℃/90%RHでの値)であるポリエチレン袋に封入したことを除き、実施例3と同様に、製造、封入、保存、評価した。評価結果を表1に示す。
Comparative Example 1
Manufacture, encapsulation, storage, and evaluation were performed in the same manner as in Example 3 except that it was sealed in a polyethylene bag having a water vapor transmission rate of 4 g / m 2 / day (value at 40 ° C./90% RH). The evaluation results are shown in Table 1.

比較例2
温度55℃、湿度60RH%の恒温恒湿室に2週間保存したことを除き、比較例1と同様に、製造、封入、保存、評価した。評価結果を表1に示す。
Comparative Example 2
Manufacture, encapsulation, storage, and evaluation were performed in the same manner as in Comparative Example 1 except that it was stored in a constant temperature and humidity chamber at a temperature of 55 ° C. and a humidity of 60 RH% for 2 weeks. The evaluation results are shown in Table 1.

比較例3
封入後の保存期間が1ヶ月であることを除き、比較例2と同様に、製造、封入、保存、評価した。評価結果を表1に示す。
Comparative Example 3
Manufacture, encapsulation, storage, and evaluation were performed in the same manner as Comparative Example 2 except that the storage period after encapsulation was 1 month. The evaluation results are shown in Table 1.

比較例4
比較例3と同様に製造、封入、保存した後、ポリエチレン袋を開封した。その後、開封袋中からシリカを取り出し、130℃、30分で乾燥させた。乾燥後、該シリカを水蒸気透過率が0.1g/m/day(40℃/90%RHでの値)であるアルミラミネート袋に封入し、大気雰囲気中に1週間保存した。保存後、アルミラミネート袋を開封し、BET比表面積、水分量、吸光度、樹脂組成物の粘度を測定した。評価結果を表1に示す。
Comparative Example 4
After manufacturing, sealing, and storing in the same manner as in Comparative Example 3, the polyethylene bag was opened. Then, the silica was taken out from the opened bag and dried at 130 ° C. for 30 minutes. After drying, the silica was sealed in an aluminum laminate bag having a water vapor transmission rate of 0.1 g / m 2 / day (value at 40 ° C./90% RH) and stored in an air atmosphere for 1 week. After storage, the aluminum laminate bag was opened, and the BET specific surface area, water content, absorbance, and viscosity of the resin composition were measured. The evaluation results are shown in Table 1.

Figure 0005230457
Figure 0005230457

表中、G(S)はシリカの水分量wと比較する“0.01×S”の計算値、F(S)は吸光度τと比較する“240S−1.4−0.07”の計算値である。 In the table, G (S) is a calculated value of “0.01 × S” compared with the water content w of silica, and F (S) is a calculated value of “240S −1.4 −0.07” compared with the absorbance τ. Value.

Claims (4)

BET比表面積が20〜55m/gの親水性乾式シリカであり、下記式(1)
w ≦ 0.01×S ・・・(1)
(上記式中、wは130℃での乾燥減量法により測定される親水性乾式シリカの水分量(wt%)であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足するように製造された親水性乾式シリカを、上記式(1)を満足する状態を維持したまま使用時まで保存することを特徴とする親水性乾式シリカの保存方法。
It is hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, and is represented by the following formula (1)
w ≦ 0.01 × S (1)
(W is the water content (wt%) of hydrophilic dry silica measured by the loss on drying method at 130 ° C., and S is the BET specific surface area (m 2 / g) of hydrophilic dry silica. .)
A method for preserving hydrophilic dry silica, characterized in that hydrophilic dry silica produced so as to satisfy the above-mentioned conditions is preserved until use while maintaining the state satisfying the above formula (1).
BET比表面積が20〜55m/gの親水性乾式シリカであり、下記式(1)
w ≦ 0.01×S ・・・(1)
(上記式中、wは130℃での乾燥減量法により測定される親水性乾式シリカの水分量(wt%)であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
及び、下記式(2)
τ ≦ 240S−1.4 − 0.07 ・・・(2)
(上記式中、τは親水性乾式シリカを1.5wt%濃度で含有させた水懸濁液の波長700mの光に対する吸光度であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足するように製造された親水性乾式シリカを、上記式(1)及び(2)の双方を満足する状態を維持したまま使用時まで保存することを特徴とする親水性乾式シリカの保存方法。
It is hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, and is represented by the following formula (1)
w ≦ 0.01 × S (1)
(W is the water content (wt%) of hydrophilic dry silica measured by the loss on drying method at 130 ° C., and S is the BET specific surface area (m 2 / g) of hydrophilic dry silica. .)
And the following formula (2)
τ ≦ 240S −1.4 −0.07 (2)
(In the above formula, τ is the absorbance with respect to light having a wavelength of 700 m of an aqueous suspension containing hydrophilic dry silica at a concentration of 1.5 wt%, and S is the BET specific surface area (m 2 / g of hydrophilic dry silica). ).)
The method for preserving hydrophilic dry silica, characterized in that the hydrophilic dry silica produced so as to satisfy the above conditions is preserved until use while maintaining the condition satisfying both of the above formulas (1) and (2). .
BET比表面積が20〜55m/gの親水性乾式シリカであり、下記式(1)
w ≦ 0.01×S ・・・(1)
(上記式中、wは130℃での乾燥減量法により測定される親水性乾式シリカの水分量(wt%)であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足する親水性乾式シリカを製造し、
次いで当該親水性乾式シリカをエポキシ樹脂と混合してエポキシ樹脂組成物を製造する方法であって、
当該親水性乾式シリカを製造後、エポキシ樹脂と混合するまでは、該親水性乾式シリカを上記式(1)を満足する状態を維持することを特徴とするエポキシ樹脂組成物の製造方法。
It is hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, and is represented by the following formula (1)
w ≦ 0.01 × S (1)
(W is the water content (wt%) of hydrophilic dry silica measured by the loss on drying method at 130 ° C., and S is the BET specific surface area (m 2 / g) of hydrophilic dry silica. .)
Manufactured hydrophilic dry silica satisfying
Next, the hydrophilic dry silica is mixed with an epoxy resin to produce an epoxy resin composition,
A method for producing an epoxy resin composition, comprising maintaining the hydrophilic dry silica in a state satisfying the above formula (1) until the hydrophilic dry silica is produced and then mixed with the epoxy resin.
BET比表面積が20〜55m/gの親水性乾式シリカであり、下記式(1)
w ≦ 0.01×S ・・・(1)
(上記式中、wは130℃での乾燥減量法により測定される親水性乾式シリカの水分量(wt%)であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
及び、下記式(2)
τ ≦ 240S−1.4 − 0.07 ・・・(2)
(上記式中、τは親水性乾式シリカを1.5wt%濃度で含有させた水懸濁液の波長700mの光に対する吸光度であり、Sは親水性乾式シリカのBET比表面積(m/g)である。)
を満足する親水性乾式シリカを製造し、
次いで当該親水性乾式シリカをエポキシ樹脂と混合してエポキシ樹脂組成物を製造する方法であって、
当該親水性乾式シリカを製造後、エポキシ樹脂と混合するまでは、該親水性乾式シリカを上記式(1)及び(2)の双方を満足する状態を維持することを特徴とするエポキシ樹脂組成物の製造方法。
It is hydrophilic dry silica having a BET specific surface area of 20 to 55 m 2 / g, and is represented by the following formula (1)
w ≦ 0.01 × S (1)
(W is the water content (wt%) of hydrophilic dry silica measured by the loss on drying method at 130 ° C., and S is the BET specific surface area (m 2 / g) of hydrophilic dry silica. .)
And the following formula (2)
τ ≦ 240S −1.4 −0.07 (2)
(In the above formula, τ is the absorbance with respect to light having a wavelength of 700 m of an aqueous suspension containing hydrophilic dry silica at a concentration of 1.5 wt%, and S is the BET specific surface area (m 2 / g of hydrophilic dry silica). ).)
Manufactured hydrophilic dry silica satisfying
Next, the hydrophilic dry silica is mixed with an epoxy resin to produce an epoxy resin composition,
Until the hydrophilic dry silica is produced and mixed with the epoxy resin, the hydrophilic dry silica is maintained in a state satisfying both of the above formulas (1) and (2). Manufacturing method.
JP2009005587A 2009-01-14 2009-01-14 Storage method of hydrophilic dry silica Active JP5230457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005587A JP5230457B2 (en) 2009-01-14 2009-01-14 Storage method of hydrophilic dry silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005587A JP5230457B2 (en) 2009-01-14 2009-01-14 Storage method of hydrophilic dry silica

Publications (2)

Publication Number Publication Date
JP2010163303A JP2010163303A (en) 2010-07-29
JP5230457B2 true JP5230457B2 (en) 2013-07-10

Family

ID=42579790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005587A Active JP5230457B2 (en) 2009-01-14 2009-01-14 Storage method of hydrophilic dry silica

Country Status (1)

Country Link
JP (1) JP5230457B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091301B2 (en) * 2012-06-27 2017-03-08 株式会社トクヤマ Dry silica fine particles
JP6022302B2 (en) * 2012-10-30 2016-11-09 株式会社トクヤマ Dry silica fine particles
JP6112888B2 (en) * 2013-02-05 2017-04-12 株式会社トクヤマ Dry silica fine particles
JP2017105527A (en) * 2015-12-01 2017-06-15 信越化学工業株式会社 Method for packing curable resin sheet for sealing semiconductor, and packed body of curable resin sheet for sealing semiconductor
CN112601713B (en) * 2018-08-07 2024-02-02 电化株式会社 Silica powder having excellent dispersibility, resin composition using same, and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149512A (en) * 1997-08-02 1999-02-23 Techno Toriito:Kk Technique to suppress aggregation of silica fume and reduce volume thereof
JP2003192331A (en) * 2001-12-26 2003-07-09 Shin Etsu Chem Co Ltd Hydrophilic silica particulates and their producing method
JP2005054131A (en) * 2003-08-07 2005-03-03 Mitsubishi Rayon Co Ltd Adsorptive silica filler and its manufacturing method and resin composition for sealing
JP4758655B2 (en) * 2005-01-31 2011-08-31 株式会社トクヤマ Surface-treated silica fine particles
JP5008460B2 (en) * 2006-06-09 2012-08-22 株式会社トクヤマ Dry silica fine particles

Also Published As

Publication number Publication date
JP2010163303A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5230457B2 (en) Storage method of hydrophilic dry silica
US7220449B2 (en) High-whiteness hydrophobic precipitated silica with ultralow moisture absorption
EP2028158B1 (en) Dry-process for the preparation of silica particles
US6899951B2 (en) High-whiteness, non-heat-treated hydrophobic precipitated silica
US6846865B2 (en) Silicone rubber formulations with hydrophobic silicas
US6956080B2 (en) Room temperature crosslinking, one component silicone rubber formulation with hydrophobic silica
US7074457B2 (en) Process for preparing high-whiteness hydrophobic precipitated silica with ultralow moisture absorption
CN102471080B (en) Hydrophilic silica as filler for silicone rubber formulations
JPH11511198A (en) Stable silane composition on silica carrier
CN104903239B (en) It is wrapped by magnesium oxide powder and this is wrapped by the manufacture method of magnesium oxide powder
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP2003201111A (en) Low thickening fumed silica and its slurry
JP6831754B2 (en) Transparent silica glass and its manufacturing method
CN101195487A (en) Amorphous fine silicon dioxide particles, producing method and uses thereof
JP6091301B2 (en) Dry silica fine particles
US20150368440A1 (en) Composition comprising modified silica and silicone rubber comprising this composition
JP6084510B2 (en) Dry silica fine particles
JP2009298461A (en) Dry silica particle package
JP2004059154A (en) Sealing material packed body and method of packing sealing material
JP6022302B2 (en) Dry silica fine particles
JP7070646B2 (en) Silica particle dispersion and surface-treated silica particles
JP2004090971A (en) Packaging method for epoxide resin molding material for sealing semiconductor
JPS625909B2 (en)
JP2022146989A (en) silica-titania composite oxide
TW202340093A (en) Surface-treated silica powder, resin composition, and dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150