JP5229965B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5229965B2
JP5229965B2 JP2009185220A JP2009185220A JP5229965B2 JP 5229965 B2 JP5229965 B2 JP 5229965B2 JP 2009185220 A JP2009185220 A JP 2009185220A JP 2009185220 A JP2009185220 A JP 2009185220A JP 5229965 B2 JP5229965 B2 JP 5229965B2
Authority
JP
Japan
Prior art keywords
injection
fuel
fuel injection
angular velocity
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009185220A
Other languages
Japanese (ja)
Other versions
JP2011038449A (en
Inventor
修 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2009185220A priority Critical patent/JP5229965B2/en
Publication of JP2011038449A publication Critical patent/JP2011038449A/en
Application granted granted Critical
Publication of JP5229965B2 publication Critical patent/JP5229965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の気筒内に燃料噴射を行うための燃料噴射制御装置に関し、特に、燃料噴射量の補正を行うことで精度のよい必要量の燃料噴射制御を実行するための燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for injecting fuel into a cylinder of an internal combustion engine, and more particularly, to a fuel injection control for executing a required fuel injection control with high accuracy by correcting the fuel injection amount. It relates to the device.

従来、内燃機関の一態様としてのディーゼルエンジンの気筒内へ燃料を噴射する装置として、蓄圧式燃料噴射装置が用いられている。この蓄圧式燃料噴射装置は、複数の燃料噴射弁が接続されるとともに高圧燃料が蓄積されるコモンレールを備えており、高圧燃料が各燃料噴射弁に供給された状態で燃料噴射弁の通電制御を行うことによって、燃料の緻密な噴射が行われるようになっている。   Conventionally, a pressure accumulation type fuel injection device has been used as a device for injecting fuel into a cylinder of a diesel engine as one aspect of an internal combustion engine. This accumulator type fuel injection device is provided with a common rail to which a plurality of fuel injection valves are connected and high pressure fuel is stored, and energization control of the fuel injection valves is performed in a state where the high pressure fuel is supplied to each fuel injection valve. By doing so, precise injection of fuel is performed.

このような蓄圧式燃料噴射装置において、使用される燃料が異なると純度や密度等の燃料性状の違いによりエミッションの悪化を招いたり車両運転性が悪化したりするおそれがあることから、使用されている燃料の性状を判定し、燃料噴射量を目標値に制御する内燃機関の燃料噴射装置が開示されている。   In such an accumulator type fuel injection device, if the fuel used is different, there is a risk that emission may deteriorate due to differences in fuel properties such as purity and density, and vehicle drivability may deteriorate. A fuel injection device for an internal combustion engine that determines the property of the fuel that is in control and controls the fuel injection amount to a target value is disclosed.

具体的には、各燃料噴射弁から機関の一サイクル中に先の噴射と後の噴射の少なくとも二回の燃料噴射が行われ、先の噴射が行われてから後の噴射が行われるまでのインターバル時間によって後の噴射の噴射量の目標値に対する変動量が変化する内燃機関の噴射制御装置において、予め定められている機関の運転状態において基準となる燃料を用いた場合に後の噴射の上記変動量が基準値となる基準インターバル時間が予め記憶されており、機関運転中に機関の運転状態が上記予め定められた機関の運転状態となったときに後の噴射の上記変動量が基準値となるインターバル時間を求め、基準インターバル時間と求めたインターバル時間とのインターバル時間比からそのとき使用された燃料中の圧力脈動の伝播速度が算出され、算出された伝播速度から燃料性状を推定して推定された燃料性状に基づいて機関の制御定数を修正するようにした内燃機関の燃料噴射装置が提案されている(特許文献1参照)。   Specifically, at least two fuel injections of the previous injection and the subsequent injection are performed from one fuel injection valve during one cycle of the engine, and after the previous injection is performed until the subsequent injection is performed. In the injection control device for an internal combustion engine in which the amount of change of the injection amount of the subsequent injection with respect to the target value changes according to the interval time, the above-mentioned of the subsequent injection when the reference fuel is used in the predetermined engine operating state The reference interval time at which the fluctuation amount becomes the reference value is stored in advance, and the fluctuation amount of the subsequent injection is the reference value when the engine operating state becomes the predetermined engine operating state during engine operation. And the propagation speed of the pressure pulsation in the fuel used at that time is calculated from the interval time ratio between the reference interval time and the calculated interval time. The fuel injection system of an internal combustion engine so as to correct the control constants of the engine based on the fuel property that is estimated by estimating a fuel property from the speed has been proposed (see Patent Document 1).

特開2005−76562号公報JP 2005-76562 A

特許文献1の内燃機関の燃料噴射装置は、先の噴射によって燃料中に圧力脈動を生じさせ、機関回転数(角速度)と全噴射量との関係に基づき求められる後の噴射の噴射量の変動量が基準値となるインターバル時間に基づいて燃料中の圧力脈動の伝播速度を算出し、この圧力脈動の伝播速度から推定される燃料性状に基づいて機関の制御定数を修正するものである。   The fuel injection device for an internal combustion engine disclosed in Patent Document 1 causes pressure pulsation in the fuel by the previous injection, and fluctuations in the injection amount of the subsequent injection obtained based on the relationship between the engine speed (angular velocity) and the total injection amount. The propagation speed of the pressure pulsation in the fuel is calculated based on the interval time at which the quantity becomes the reference value, and the engine control constant is corrected based on the fuel property estimated from the propagation speed of the pressure pulsation.

ここで、ある燃料噴射が行われたときの内燃機関の角速度は燃料噴射が行われたときの気筒内のピストンの位置によって異なる。すなわち、燃料噴射が行われるときの気筒内のピストンの位置が異なれば、燃料噴射が行われてから燃料に着火するまでの時間が異なるため、気筒内での燃焼性が変わってくる。そのため、同量の燃料を噴射する場合であっても、気筒内のピストンの位置によって内燃機関の角速度が異なってくる。したがって、特許文献1において後の噴射の噴射量の変動量を求める際に用いられる内燃機関の角速度は、本来的には圧力脈動の伝播速度に起因する全噴射量の影響だけでなく、先の噴射あるいは後の燃料の噴射時期におけるピストンの位置の影響も受けている。   Here, the angular velocity of the internal combustion engine when a certain fuel injection is performed differs depending on the position of the piston in the cylinder when the fuel injection is performed. That is, if the position of the piston in the cylinder when the fuel injection is performed is different, the time from the fuel injection to the ignition of the fuel is different, so the combustibility in the cylinder changes. Therefore, even when the same amount of fuel is injected, the angular velocity of the internal combustion engine varies depending on the position of the piston in the cylinder. Therefore, the angular velocity of the internal combustion engine used when obtaining the variation amount of the injection amount of the subsequent injection in Patent Document 1 is not limited to the influence of the total injection amount inherently due to the propagation speed of the pressure pulsation. It is also influenced by the position of the piston at the time of injection or subsequent fuel injection.

しかしながら、特許文献1では、機関回転数(角速度)を全噴射量にのみ影響しているものと捉えて、機関回転数(角速度)と全噴射量との関係に基づき後の噴射の噴射量の変動量を求めている。そのため、後の噴射の噴射量の変動量が現実の変動量と異なり、この変動量が基準値となるインターバル時間と基準インターバル時間との比から推定される燃料性状が現実の燃料性状とずれてしまい、機関の制御定数を正確に修正できないおそれがある。   However, in Patent Document 1, it is assumed that the engine speed (angular speed) affects only the total injection quantity, and the injection quantity of the subsequent injection is determined based on the relationship between the engine speed (angular speed) and the total injection quantity. The amount of fluctuation is obtained. Therefore, the variation amount of the injection amount of the subsequent injection is different from the actual variation amount, and the fuel property estimated from the ratio between the interval time at which the variation amount becomes the reference value and the reference interval time is different from the actual fuel property. Therefore, the engine control constant may not be corrected accurately.

そこで、本発明の発明者は鋭意努力し、二回の噴射が実行されたときの内燃機関の角速度変動に基づき推定される燃料性状に応じて燃料噴射量の補正を行うにあたり、二回の噴射の噴射間隔と内燃機関の角速度変動との関係を考慮して補正を行うことにより上述した問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明は、内燃機関のサイクル中における燃料噴射時期の違いに起因する内燃機関の角速度変動の影響を排除することで、使用する燃料の性状をより正確に把握して、燃料噴射量の補正を精度良く実行可能な燃料噴射制御装置を提供することを目的とする。   Therefore, the inventor of the present invention has made diligent efforts to correct the fuel injection amount according to the fuel property estimated based on the angular velocity fluctuation of the internal combustion engine when the two injections are executed. The present invention has been completed by finding that the above-mentioned problem can be solved by performing correction in consideration of the relationship between the injection interval and the angular velocity fluctuation of the internal combustion engine. That is, the present invention eliminates the influence of the angular velocity fluctuation of the internal combustion engine due to the difference in the fuel injection timing during the cycle of the internal combustion engine, thereby more accurately grasping the properties of the fuel to be used and It is an object of the present invention to provide a fuel injection control device capable of performing correction with high accuracy.

本発明によれば、コモンレールに蓄積された燃料を燃料噴射弁により内燃機関の気筒内に噴射する蓄圧式燃料噴射装置の制御に用いられ、内燃機関の各気筒への目標燃料噴射量を演算する目標噴射量演算部と、目標燃料噴射量に基づき燃料噴射弁の駆動制御を行う燃料噴射弁制御部と、を備えた燃料噴射制御装置において、内燃機関の無噴射状態を検出する無噴射状態検出部と、内燃機関の角速度を検出する角速度検出部と、内燃機関の無噴射状態が検出されたときに、所定の噴射間隔で行われる二回の定時間噴射を噴射間隔を変えながら複数回実行させるとともに二回の定時間噴射を複数回実行したときのそれぞれの内燃機関の角速度変動又は角速度変動の相関値に基づいて求められる燃料の圧力脈動の周期から燃料の燃料性状を推定し、燃料性状に基づき目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行うための性状補正係数を算出する性状補正係数演算部と、性状補正係数によって目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行う燃料噴射量補正部と、あらかじめ記憶された、噴射間隔の違いのみによる内燃機関の角速度変動又は角速度変動の相関値に基づき、性状補正係数の補正を行う係数補正部と、を備えることを特徴とする燃料噴射制御装置が提供され、上述した問題を解決することができる。   According to the present invention, it is used for controlling an accumulator fuel injection device that injects fuel accumulated in a common rail into a cylinder of an internal combustion engine by means of a fuel injection valve, and calculates a target fuel injection amount to each cylinder of the internal combustion engine. Non-injection state detection for detecting a non-injection state of an internal combustion engine in a fuel injection control device comprising: a target injection amount calculation unit; and a fuel injection valve control unit that performs drive control of a fuel injection valve based on a target fuel injection amount , An angular velocity detection unit that detects the angular velocity of the internal combustion engine, and two fixed-time injections that are performed at a predetermined injection interval when the non-injection state of the internal combustion engine is detected. And estimating the fuel property of the fuel from the pressure pulsation period of the fuel determined based on the angular velocity fluctuation of each internal combustion engine or the correlation value of the angular speed fluctuation when the two constant-time injections are executed a plurality of times, A property correction coefficient calculation unit for calculating a property correction coefficient for correcting the target fuel injection amount or the fuel injection valve drive signal based on the property, and the target fuel injection amount or the fuel injection valve drive signal by the property correction coefficient. A fuel injection amount correction unit that performs correction, and a coefficient correction unit that corrects the property correction coefficient based on the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation that is stored in advance based only on the difference in injection interval. Is provided to solve the above-described problems.

また、本発明の燃料噴射制御装置を構成するにあたり、係数補正部は、あらかじめ記憶された、それぞれ所定の噴射量で噴射される二回の定量噴射を噴射間隔を変えて複数回実行したときの噴射間隔と内燃機関の角速度変動又は角速度変動の相関値との関係に基づき、性状補正係数の補正を行うことが好ましい。   Further, when configuring the fuel injection control device of the present invention, the coefficient correction unit is configured to execute two constant injections, each of which is stored in advance and is injected at a predetermined injection amount, a plurality of times at different injection intervals. It is preferable to correct the property correction coefficient based on the relationship between the injection interval and the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation.

また、本発明の燃料噴射制御装置を構成するにあたり、性状補正係数演算部は、内燃機関の無噴射状態が検出されたときに、内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで、二回の定時間噴射を噴射間隔を変えながら複数回実行させる二回噴射実行制御部と、二回の定時間噴射を複数回実行したときのそれぞれの内燃機関の角速度変動を定時間噴射を実行しなかったときの角速度変動と比較することで二回の定時間噴射の噴射間隔と内燃機関の角速度変動との関係を求め、噴射間隔と角速度変動又は角速度変動の相関値との関係に基づき燃料の圧力脈動の周期を演算する圧力脈動周期演算部と、燃料の圧力脈動の周期に応じて燃料性状を推定するとともに燃料性状に基づき性状補正係数を算出する補正係数演算部と、を含むことが好ましい。   Further, in configuring the fuel injection control device of the present invention, the property correction coefficient calculation unit fixes the second injection timing in the cycle of the internal combustion engine when the non-injection state of the internal combustion engine is detected, By varying the first injection timing, the two-time injection execution control unit that executes the two-time injection multiple times while changing the injection interval, and the two-time constant-time injection multiple times By comparing the angular velocity fluctuation of the internal combustion engine with the angular velocity fluctuation when the constant time injection is not executed, the relationship between the injection interval of the two constant time injections and the angular velocity fluctuation of the internal combustion engine is obtained, and the injection interval and the angular velocity fluctuation or A pressure pulsation cycle calculation unit that calculates the cycle of fuel pressure pulsation based on the correlation value of the angular velocity fluctuation, and a property correction unit that estimates the fuel property according to the period of fuel pressure pulsation and based on the fuel property Preferably contains a correction coefficient calculating unit for calculating a.

また、本発明の燃料噴射制御装置を構成するにあたり、圧力脈動周期演算部は、角速度変動を二回の定時間噴射による燃料噴射量の変動に換算して燃料の圧力脈動の周期を演算することが好ましい。   Further, in configuring the fuel injection control device of the present invention, the pressure pulsation cycle calculation unit calculates the cycle of the fuel pressure pulsation by converting the angular velocity fluctuation into the fluctuation of the fuel injection amount by two fixed-time injections. Is preferred.

また、本発明の燃料噴射制御装置を構成するにあたり、定時間噴射は微小噴射であることが好ましい。   In configuring the fuel injection control device of the present invention, it is preferable that the fixed-time injection is a micro injection.

また、本発明の燃料噴射制御装置を構成するにあたり、係数補正部は、あらかじめ記憶された、内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで噴射間隔を変えながら二回の定量噴射を複数回行った場合における、二回の定量噴射の噴射間隔と内燃機関の角速度変動との関係に基づき、圧力脈動周期演算部における角速度変動、圧力脈動の周期又は燃料噴射量の少なくとも一つを補正することにより、性状補正係数の補正を行うことが好ましい。   Further, in configuring the fuel injection control device of the present invention, the coefficient correction unit fixes the second injection timing stored in the cycle of the internal combustion engine, while differentiating the first injection timing. Based on the relationship between the injection interval of the two quantitative injections and the angular velocity fluctuation of the internal combustion engine when the two quantitative injections are performed multiple times while changing the injection interval, the angular velocity fluctuation and pressure pulsation of the pressure pulsation cycle calculation unit are determined. It is preferable to correct the property correction coefficient by correcting at least one of the period or the fuel injection amount.

また、本発明の燃料噴射制御装置を構成するにあたり、燃料噴射制御装置は、内燃機関の無噴射状態が検出されたときに、噴射時間を変えながら一回の微小噴射を複数回実行させるとともに一回の微小噴射が実行されたときの内燃機関の角速度変動があらかじめ設定された基準変動数となったときの噴射時間を求め、噴射時間と基準噴射時間との比に基づき目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行うための個体差補正係数を算出する個体差補正係数演算部を備え、燃料噴射量補正部はさらに個体差補正係数によって目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行うことが好ましい。   Further, in configuring the fuel injection control device of the present invention, the fuel injection control device executes one micro injection a plurality of times while changing the injection time when the non-injection state of the internal combustion engine is detected. The injection time when the angular velocity fluctuation of the internal combustion engine when the minute number of micro injections is executed becomes a preset reference fluctuation number is obtained, and the target fuel injection amount or fuel is calculated based on the ratio of the injection time and the reference injection time An individual difference correction coefficient calculation unit for calculating an individual difference correction coefficient for correcting the drive signal of the injection valve is provided, and the fuel injection amount correction unit further includes a target fuel injection amount or a fuel injection valve drive signal according to the individual difference correction coefficient. It is preferable to perform the correction.

また、本発明の燃料噴射制御装置を構成するにあたり、性状補正係数演算部は、燃料性状を燃料温度の相関値に変換して性状補正係数を求めることが好ましい。   Further, in configuring the fuel injection control device of the present invention, it is preferable that the property correction coefficient calculation unit obtains the property correction coefficient by converting the fuel property into a correlation value of the fuel temperature.

また、本発明の別の態様は、コモンレールに蓄積された燃料を燃料噴射弁により内燃機関の気筒内に噴射する蓄圧式燃料噴射装置に用いられ、内燃機関の各気筒への目標燃料噴射量を演算する目標噴射量演算部と、目標燃料噴射量に基づき燃料噴射弁の駆動制御を行う燃料噴射弁制御部と、を備えた燃料噴射制御装置において、内燃機関の無噴射状態を検出する無噴射状態検出部と、内燃機関の角速度を検出する角速度検出部と、内燃機関の無噴射状態が検出されたときに、噴射時間を変えながら一回の微小噴射を複数回実行させる一回微小噴射実行制御部と、一回の微小噴射が実行されたときの内燃機関の角速度変動があらかじめ設定された基準変動数となったときの噴射時間を求めるとともに、噴射時間と基準噴射時間との比に基づき目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行うための個体差補正係数を算出する第1の補正係数演算部と、内燃機関の無噴射状態が検出されたときに、所定の噴射間隔で噴射される二回の定時間微小噴射を、内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで噴射間隔を変えながら複数回実行させる二回定時間微小噴射実行制御部と、二回の定時間微小噴射が複数回実行されたときのそれぞれの内燃機関の角速度変動を定時間微小噴射を実行しなかったときの角速度変動と比較することで、二回の定時間微小噴射の噴射間隔と内燃機関の角速度変動又は角速度変動の相関値との関係を求め、噴射間隔と角速度変動又はその相関値との関係に基づき燃料の圧力脈動の周期を演算する圧力脈動周期演算部と、燃料の圧力脈動の周期に応じて燃料の燃料性状を推定するとともに、燃料性状に基づき目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行うための性状補正係数を算出する第2の補正係数演算部と、あらかじめ記憶された、それぞれ所定の噴射量で噴射される二回の定量微小噴射を、内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで噴射間隔を変えて複数回実行したときの二回の定量微小噴射の噴射間隔と内燃機関の角速度変動又は角速度変動の相関値との関係に基づき、圧力脈動周期演算部における角速度変動又はその相関値あるいは圧力脈動の周期の少なくとも一つを補正する係数補正部と、個体差補正係数及び性状補正係数によって目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行う燃料噴射量補正部と、を備えることを特徴とする燃料噴射制御装置である。   Another aspect of the present invention is used in an accumulator fuel injection device that injects fuel accumulated in a common rail into a cylinder of an internal combustion engine by a fuel injection valve, and sets a target fuel injection amount to each cylinder of the internal combustion engine. A non-injection for detecting a non-injection state of an internal combustion engine in a fuel injection control device comprising a target injection amount calculation unit for calculating and a fuel injection valve control unit for performing drive control of a fuel injection valve based on the target fuel injection amount A state detection unit, an angular velocity detection unit that detects the angular velocity of the internal combustion engine, and a single micro injection execution that executes a single micro injection a plurality of times while changing the injection time when a non-injection state of the internal combustion engine is detected Based on the control unit and the injection time when the angular velocity fluctuation of the internal combustion engine when a single minute injection is executed reaches a preset reference fluctuation number, and based on the ratio of the injection time and the reference injection time Eye A first correction coefficient calculation unit that calculates an individual difference correction coefficient for correcting the fuel injection amount or the drive signal of the fuel injection valve; and when a non-injection state of the internal combustion engine is detected, at a predetermined injection interval Two fixed time injections are performed twice, while the second injection time in the cycle of the internal combustion engine is fixed, while the first injection time is varied to change the injection interval multiple times. By comparing the angular velocity fluctuation of each internal combustion engine when the time constant microinjection execution control unit is executed a plurality of times of the constant time microinjection with the angular speed fluctuation when the constant time microinjection is not executed, Find the relationship between the injection interval of two constant-time micro-injections and the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation, and calculate the fuel pressure pulsation cycle based on the relationship between the injection interval and the angular velocity fluctuation or the correlation value Pressure A pulsation cycle calculation unit and a fuel correction factor for correcting the target fuel injection amount or fuel injection valve drive signal based on the fuel property, while estimating the fuel property according to the fuel pressure pulsation cycle A second correction coefficient calculation unit that performs two fixed minute injections each of which is stored in advance at a predetermined injection amount, while fixing the second injection timing in the cycle of the internal combustion engine, Pressure pulsation cycle calculation based on the relationship between the injection interval of two quantitative micro-injections and the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation when the injection interval is changed multiple times with different injection timings A coefficient correction unit that corrects at least one of the angular velocity fluctuation or its correlation value or pressure pulsation period in the unit, and the target fuel injection amount or fuel by the individual difference correction coefficient and the property correction coefficient A fuel injection control device comprising: a fuel injection amount correction unit that corrects a drive signal of an injection valve.

また、本発明の別の態様は、コモンレールに蓄積された燃料を燃料噴射弁により内燃機関の気筒内に噴射する蓄圧式燃料噴射装置における燃料噴射量の補正を行う燃料噴射制御方法において、内燃機関の無噴射状態が検出されたときに、所定の噴射間隔で行われる二回の定時間噴射を噴射間隔を変えながら複数回実行させるとともに二回の定時間噴射を複数回実行したときのそれぞれの内燃機関の角速度変動又は角速度変動の相関値を求め、あらかじめ記憶された、噴射間隔の違いのみによる内燃機関の角速度変動又は角速度変動の相関値に基づき、求められた二回の定時間噴射実行時の角速度変動又はその相関値から、噴射間隔に応じた角速度変動又はその相関値を減算し、減算して得られた値に基づいて求められる燃料の圧力脈動の周期に応じて燃料の燃料性状を推定し、燃料性状に基づき目標燃料噴射量又は燃料噴射弁の駆動信号の補正を行うことを特徴とする燃料噴射制御方法である。   According to another aspect of the present invention, there is provided a fuel injection control method for correcting a fuel injection amount in an accumulator fuel injection device that injects fuel accumulated in a common rail into a cylinder of an internal combustion engine by a fuel injection valve. When no non-injection state is detected, each of the two fixed-time injections performed at a predetermined injection interval is executed a plurality of times while changing the injection interval, and the two fixed-time injections are executed a plurality of times. When calculating the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular speed fluctuation, and executing the two fixed-time injections obtained based on the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation only by the difference in the injection interval stored in advance. Of the fuel pressure pulsation obtained based on the value obtained by subtracting the angular velocity fluctuation or its correlation value corresponding to the injection interval from the angular velocity fluctuation or its correlation value Depending estimate the fuel property of fuel is a fuel injection control method characterized by correcting the drive signal of the target fuel injection amount or the fuel injection valve based on the fuel property.

本発明の燃料噴射制御装置及び燃料噴射制御方法によれば、二回の定時間噴射が実行されたときの内燃機関の角速度変動又はその相関値に基づき推定される燃料性状を用いて燃料噴射量の補正を行うにあたり、二回の燃料噴射の間隔の違いによって燃料噴射時の気筒内のピストンの位置が異なることによる内燃機関の角速度変動の影響を排除した角速度変動に基づいて燃料性状が推定される。したがって、燃料性状が精度よく推定されるとともに、当該燃料性状に基づいて燃料噴射量の補正が精度よく実行されるようになる。   According to the fuel injection control device and the fuel injection control method of the present invention, the fuel injection amount using the fuel property estimated on the basis of the angular velocity fluctuation of the internal combustion engine or the correlation value when the two fixed-time injections are executed. In performing the correction, the fuel property is estimated based on the angular velocity fluctuation that excludes the influence of the angular velocity fluctuation of the internal combustion engine due to the difference in the position of the piston in the cylinder at the time of fuel injection due to the difference between the two fuel injection intervals. The Therefore, the fuel property is accurately estimated, and the correction of the fuel injection amount is accurately executed based on the fuel property.

蓄圧式燃料噴射装置の構成例について説明するための図である。It is a figure for demonstrating the structural example of a pressure accumulation type fuel-injection apparatus. 本実施形態の燃料噴射制御装置の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the structural example of the fuel-injection control apparatus of this embodiment. 個体差補正係数演算部の演算処理について説明するための図である。It is a figure for demonstrating the calculation process of the individual difference correction coefficient calculating part. 性状補正係数演算部の演算処理について説明するための図である。It is a figure for demonstrating the calculation process of a property correction coefficient calculating part. 性状補正係数演算部の演算処理について説明するための図である。It is a figure for demonstrating the calculation process of a property correction coefficient calculating part. 係数補正部の演算処理について説明するための図である。It is a figure for demonstrating the calculation process of a coefficient correction | amendment part. 本実施形態の燃料噴射制御方法について説明するためのフローである。It is a flow for demonstrating the fuel-injection control method of this embodiment. 個体差補正係数の演算のフローである。It is a flow of calculation of an individual difference correction coefficient. 性状補正係数の演算のフローである。It is a flow of calculation of a property correction coefficient. 燃料性状を燃料温度の相関値に変換して補正を行う方法を説明するためのフローである。It is a flow for demonstrating the method which correct | amends by converting a fuel property into the correlation value of fuel temperature.

以下、図面を参照して、本発明の燃料噴射制御装置に関する実施の形態について具体的に説明する。ただし、以下の実施の形態は本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものは同一の部材を示しており、適宜説明が省略されている。   Embodiments relating to a fuel injection control device of the present invention will be specifically described below with reference to the drawings. However, the following embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. In addition, what attached | subjected the same code | symbol in each figure has shown the same member, and description is abbreviate | omitted suitably.

1.蓄圧式燃料噴射装置の全体的構成
図1は、本発明の実施の形態にかかる燃料噴射制御装置70が備えられた蓄圧式燃料噴射装置50の概略構成を示している。この図1に示す蓄圧式燃料噴射装置50は、内燃機関40としてのディーゼルエンジンの気筒内に燃料を噴射する蓄圧式燃料噴射装置であって、燃料タンク1と、低圧ポンプ2と、高圧ポンプ5と、コモンレール10と、燃料噴射弁13と、燃料噴射制御装置70等を主たる要素として備えている。
1. FIG. 1 shows a schematic configuration of an accumulator fuel injection apparatus 50 provided with a fuel injection control apparatus 70 according to an embodiment of the present invention. An accumulator fuel injection apparatus 50 shown in FIG. 1 is an accumulator fuel injection apparatus that injects fuel into a cylinder of a diesel engine as an internal combustion engine 40, and includes a fuel tank 1, a low pressure pump 2, and a high pressure pump 5. The main rail 10, the fuel injection valve 13, the fuel injection control device 70, and the like are provided as main elements.

内燃機関40は、ピストン42がクランクシャフト43の回転に伴って気筒41内を往復動し、圧縮行程で気筒41内にディーゼル燃料が噴射されることで気筒41内で爆発を生じピストン42が押し下げられてクランクシャフト43がさらに回転させられることで駆動する。この内燃機関40には、クランクシャフト43の回転位相であるクランク角を検出するためのクランク角センサ45が設けられている。   In the internal combustion engine 40, the piston 42 reciprocates in the cylinder 41 as the crankshaft 43 rotates, and diesel fuel is injected into the cylinder 41 in the compression stroke, causing an explosion in the cylinder 41 and pushing down the piston 42. Then, the crankshaft 43 is driven by being further rotated. The internal combustion engine 40 is provided with a crank angle sensor 45 for detecting a crank angle that is a rotational phase of the crankshaft 43.

蓄圧式燃料噴射装置50において、低圧ポンプ2と高圧ポンプ5は低圧燃料通路18で接続され、高圧ポンプ5とコモンレール10、コモンレール10と燃料噴射弁13は、それぞれ高圧燃料通路37、39で接続されている。また、高圧ポンプ5やコモンレール10、燃料噴射弁13等には、リーク燃料あるいはリターン燃料を燃料タンク1に戻すためのリターン通路30a〜30cが接続されている。   In the accumulator fuel injection device 50, the low pressure pump 2 and the high pressure pump 5 are connected by a low pressure fuel passage 18, and the high pressure pump 5 and the common rail 10, and the common rail 10 and the fuel injection valve 13 are connected by high pressure fuel passages 37 and 39, respectively. ing. Further, return passages 30 a to 30 c for returning leaked fuel or return fuel to the fuel tank 1 are connected to the high-pressure pump 5, the common rail 10, the fuel injection valve 13, and the like.

低圧ポンプ2は、燃料タンク1内の低圧燃料を吸い上げ、低圧燃料通路18を介して高圧ポンプ5に対して低圧燃料を供給する。低圧ポンプ2としては、通電により駆動する電動低圧ポンプや内燃機関の動力によって駆動するギヤポンプ等が用いられる。   The low pressure pump 2 sucks up the low pressure fuel in the fuel tank 1 and supplies the low pressure fuel to the high pressure pump 5 through the low pressure fuel passage 18. As the low-pressure pump 2, an electric low-pressure pump that is driven by energization, a gear pump that is driven by the power of an internal combustion engine, or the like is used.

高圧ポンプ5は、低圧ポンプ2によって送られる低圧燃料を加圧し、高圧燃料通路37を介して、高圧燃料をコモンレール10に圧送する。高圧ポンプ5の加圧室5aよりも上流の低圧燃料通路18には流量制御弁8が備えられ、要求されるレール圧及び要求噴射量等に応じて加圧室5aに供給される低圧燃料の流量が調節される。この流量制御弁8は、例えば、供給されるパルス電圧の大きさによって弁体のストローク量が可変である電磁比例式の流量制御弁が用いられる。   The high-pressure pump 5 pressurizes the low-pressure fuel sent by the low-pressure pump 2 and sends the high-pressure fuel to the common rail 10 via the high-pressure fuel passage 37. The low-pressure fuel passage 18 upstream of the pressurizing chamber 5a of the high-pressure pump 5 is provided with a flow control valve 8, and the low-pressure fuel supplied to the pressurizing chamber 5a according to the required rail pressure, the required injection amount, etc. The flow rate is adjusted. As the flow control valve 8, for example, an electromagnetic proportional flow control valve in which the stroke amount of the valve body is variable depending on the magnitude of the supplied pulse voltage is used.

また、流量制御弁8よりも上流側には圧力調整弁14が接続されており、圧力調整弁14はさらに燃料タンク1に通じるリターン通路30aに接続されている。この圧力調整弁14は、前後の差圧、すなわち、低圧燃料通路18内の圧力と、リターン通路30a内の圧力との差が所定値を越えたときに開弁されるオーバーフローバルブが用いられている。   A pressure adjustment valve 14 is connected upstream of the flow control valve 8, and the pressure adjustment valve 14 is further connected to a return passage 30 a that communicates with the fuel tank 1. The pressure regulating valve 14 is an overflow valve that is opened when the difference between the front and rear pressures, that is, the difference between the pressure in the low pressure fuel passage 18 and the pressure in the return passage 30a exceeds a predetermined value. Yes.

コモンレール10は、高圧ポンプ5から圧送される高圧燃料を蓄積し、高圧燃料通路39を介して接続された複数の燃料噴射弁13に対して高圧燃料を供給する。このコモンレール10にはレール圧センサ21及び圧力制御弁12が取り付けられている。圧力制御弁12は、例えば電磁比例制御弁が用いられ、コモンレール10から燃料リーク通路30bに排出する燃料のリーク量が調節され、当該リーク量に応じてレール圧が調整される。   The common rail 10 accumulates high-pressure fuel pumped from the high-pressure pump 5 and supplies the high-pressure fuel to the plurality of fuel injection valves 13 connected via the high-pressure fuel passage 39. A rail pressure sensor 21 and a pressure control valve 12 are attached to the common rail 10. For example, an electromagnetic proportional control valve is used as the pressure control valve 12, the amount of fuel leaked from the common rail 10 to the fuel leak passage 30 b is adjusted, and the rail pressure is adjusted according to the amount of leak.

コモンレール10に接続された燃料噴射弁13は、噴射孔が設けられたノズルボディと噴射孔を閉塞するノズルニードルとを備え、ノズルニードルの後端側に作用する背圧が逃されることによって噴射孔が開かれ、コモンレール10から供給される高圧燃料が内燃機関40の気筒内に噴射される。燃料噴射弁13は、例えば、背圧制御部としてソレノイドバルブが備えられた電磁制御型の燃料噴射弁や、背圧制御部としてピエゾ素子が備えられた電歪型の燃料噴射弁が用いられる。   The fuel injection valve 13 connected to the common rail 10 includes a nozzle body provided with an injection hole and a nozzle needle that closes the injection hole, and the back pressure acting on the rear end side of the nozzle needle is released to release the injection hole. Is opened, and the high-pressure fuel supplied from the common rail 10 is injected into the cylinder of the internal combustion engine 40. As the fuel injection valve 13, for example, an electromagnetic control type fuel injection valve provided with a solenoid valve as a back pressure control unit, or an electrostrictive type fuel injection valve provided with a piezo element as a back pressure control unit is used.

また、蓄圧式燃料噴射装置50には、燃料温度を検出するための図示しない燃料温度センサが備えられている。燃料温度センサの配置位置は特に制限されないが、例えば、高圧ポンプに設けられた燃料通路に配置される。   The accumulator fuel injector 50 is provided with a fuel temperature sensor (not shown) for detecting the fuel temperature. Although the arrangement position of the fuel temperature sensor is not particularly limited, for example, it is arranged in a fuel passage provided in the high-pressure pump.

これまで説明した本実施形態の蓄圧式燃料噴射装置50は、従来公知の蓄圧式燃料噴射装置の一構成例にすぎず、本発明の燃料噴射制御装置が備えられる蓄圧式燃料噴射装置はこれ以外の構成となっていても構わない。   The accumulator fuel injection device 50 of the present embodiment described so far is only one configuration example of a conventionally known accumulator fuel injection device, and the accumulator fuel injection device provided with the fuel injection control device of the present invention is other than this. It may be configured as follows.

2.燃料噴射制御装置
図2は、本実施形態の燃料噴射制御装置70の構成を機能的なブロックで表した図を示している。この燃料噴射制御装置70は、公知の構成からなるマイクロコンピュータを中心に構成されており、目標噴射量演算部71と、無噴射状態検出部72と、角速度検出部73と、燃料温度検出部74と、個体差補正係数演算部80と、性状補正係数演算部90と、係数補正部75と、燃料噴射量補正部77と、燃料噴射弁制御部79とを備えている。個体差補正係数演算部80は、一回微小噴射実行制御部81と、第1の補正係数演算部83とを有している。性状補正係数演算部90は、二回定時間微小噴射実行制御部91と、圧力脈動周期演算部93と、第2の補正係数演算部95とを有している。これらの各部は、具体的にはマイクロコンピュータによるプログラムの実行によって実現される。
2. Fuel Injection Control Device FIG. 2 is a functional block diagram showing the configuration of the fuel injection control device 70 of this embodiment. The fuel injection control device 70 is configured around a microcomputer having a known configuration, and includes a target injection amount calculation unit 71, a non-injection state detection unit 72, an angular velocity detection unit 73, and a fuel temperature detection unit 74. An individual difference correction coefficient calculation unit 80, a property correction coefficient calculation unit 90, a coefficient correction unit 75, a fuel injection amount correction unit 77, and a fuel injection valve control unit 79. The individual difference correction coefficient calculation unit 80 includes a single minute injection execution control unit 81 and a first correction coefficient calculation unit 83. The property correction coefficient calculation unit 90 includes a two-time fixed time minute injection execution control unit 91, a pressure pulsation cycle calculation unit 93, and a second correction coefficient calculation unit 95. Specifically, each of these units is realized by executing a program by a microcomputer.

また、燃料噴射制御装置70には、図示しない記憶部(RAM:Random Access Memory)が備えられている。この記憶部には、各部で算出ないし検出された情報や、蓄圧式燃料噴射装置50や内燃機関40に備えられたセンサの情報が記憶され、記憶された情報は各部によって必要に応じて読込まれる。   Further, the fuel injection control device 70 includes a storage unit (RAM: Random Access Memory) (not shown). In this storage unit, information calculated or detected in each unit and information of sensors provided in the accumulator 50 or the internal combustion engine 40 are stored, and the stored information is read by each unit as necessary. It is.

(1)目標噴射量演算部
目標噴射量演算部71は、内燃機関40の回転数Ne及びアクセル操作量Acc等に基づいて、内燃機関40の気筒内に噴射する燃料の目標燃料噴射量Qtgtを算出する。具体的に、目標噴射量演算部71では、内燃機関40の回転数Neやアクセル操作量Acc以外に、排気ガスの浄化に用いられる触媒やパティキュレートフィルタの状態、燃料温度等を考慮して、目標パイロット噴射量、目標メイン噴射量、目標ポスト噴射量をそれぞれ算出するように構成されている。
(1) Target injection amount calculation unit The target injection amount calculation unit 71 calculates a target fuel injection amount Qtgt of fuel to be injected into the cylinder of the internal combustion engine 40 based on the rotational speed Ne of the internal combustion engine 40, the accelerator operation amount Acc, and the like. calculate. Specifically, in the target injection amount calculation unit 71, in addition to the rotational speed Ne of the internal combustion engine 40 and the accelerator operation amount Acc, the state of the catalyst and particulate filter used for exhaust gas purification, the fuel temperature, and the like are considered. The target pilot injection amount, the target main injection amount, and the target post injection amount are each calculated.

(2)無噴射状態検出部
無噴射状態検出部72は、目標噴射量演算部71で算出された目標燃料噴射量Qtgtとアクセル操作量Accとを読込み、内燃機関40の無噴射状態を検出する。具体的に、本実施形態の燃料噴射制御装置70の無噴射状態検出部72は、車両が高速あるいは中速での走行状態から運転者がアクセルを離すことで燃料が無噴射状態となるオーバーラン状態を検出する。オーバーラン状態以外にも内燃機関40の無噴射状態が存在するのであれば、その状態が検出されるように構成されていてもよい。無噴射状態が検出されると、無噴射状態検出部72は個体差補正係数演算部80及び性状補正係数演算部90に対して信号を伝達する。
(2) Non-injection state detection unit The non-injection state detection unit 72 reads the target fuel injection amount Qtgt calculated by the target injection amount calculation unit 71 and the accelerator operation amount Acc, and detects the non-injection state of the internal combustion engine 40. . Specifically, the non-injection state detection unit 72 of the fuel injection control device 70 according to the present embodiment performs an overrun in which the fuel is brought into the non-injection state when the driver releases the accelerator from a traveling state at a high speed or medium speed. Detect state. If there is a non-injection state of the internal combustion engine 40 other than the overrun state, the state may be detected. When the non-injection state is detected, the non-injection state detection unit 72 transmits a signal to the individual difference correction coefficient calculation unit 80 and the property correction coefficient calculation unit 90.

(3)角速度検出部及び燃料温度検出部
角速度検出部73は、クランク角センサ45のセンサ値を単位時間ごとに継続的に読込み、単位時間当たりのクランクシャフト43の回転変位の角速度ωを検出する。また、燃料温度検出部74は、燃料温度センサのセンサ値を継続的に読込み、燃料温度を検出する。
(3) Angular velocity detection unit and fuel temperature detection unit The angular velocity detection unit 73 continuously reads the sensor value of the crank angle sensor 45 every unit time and detects the angular velocity ω of the rotational displacement of the crankshaft 43 per unit time. . The fuel temperature detection unit 74 continuously reads the sensor value of the fuel temperature sensor and detects the fuel temperature.

(4)個体差補正係数演算部
個体差補正係数演算部80は、燃料噴射弁13ごとの加工精度や経時劣化等による個体差のばらつきによる目標燃料噴射量Qtgtと現実の燃料噴射量Qactとのずれ分を補正するための補正係数である個体差補正係数αを求める。この個体差のばらつきは、例えば、燃料噴射弁13の噴射孔の大きさや弁体のストローク量、摺動性、噴射孔の詰まり具合等の影響によって発生する。本実施形態の燃料噴射制御装置70では、あらかじめ定められた基準微小噴射量Qzfc1が噴射される噴射時間ETa1を内燃機関40の角速度ωの推移(以下「角速度変動Ω」と称する。)に基づいて求め、基準微小噴射量Qzfc1が噴射される噴射時間として設定されている基準噴射時間ETa0と求められた噴射時間ETa1との比に基づき燃料噴射量の補正を行う個体差補正係数αが求められるように構成されている。
(4) Individual Difference Correction Coefficient Calculation Unit The individual difference correction coefficient calculation unit 80 calculates the target fuel injection amount Qtgt and the actual fuel injection amount Qact due to variations in individual differences due to processing accuracy for each fuel injection valve 13 or deterioration over time. An individual difference correction coefficient α which is a correction coefficient for correcting the deviation is obtained. This variation in individual difference occurs due to the influence of the size of the injection hole of the fuel injection valve 13, the stroke amount of the valve body, the slidability, the degree of clogging of the injection hole, and the like. In the fuel injection control device 70 of the present embodiment, the injection time ETa1 in which a predetermined reference micro-injection amount Qzfc1 is injected is based on the transition of the angular velocity ω of the internal combustion engine 40 (hereinafter referred to as “angular velocity variation Ω”). The individual difference correction coefficient α for correcting the fuel injection amount based on the ratio between the reference injection time ETa0 set as the injection time during which the reference minute injection amount Qzfc1 is injected and the determined injection time ETa1 is obtained. It is configured.

個体差補正係数αの求め方を図3(a)〜(c)を参照しながら具体的に説明する。
個体差補正係数演算部80を構成する一回微小噴射実行制御部81は、無噴射状態検出部72で内燃機関40の無噴射状態が検出されたときに、補正対象の燃料噴射弁13に対して、一サイクル中に一回の微小噴射を噴射時間ETaを変えながら複数回実行させる制御を行うよう燃料噴射弁制御部79に対して指示を伝達する。この微小噴射は、内燃機関40の駆動力に大きく影響しない程度の基準微小噴射量Qzfc1、例えば、1ccの燃料噴射が行われるように、燃料噴射弁13へ供給する電流あるいは電圧の制御が行われる。一回の微小噴射が実行されると、燃料が噴射された気筒における圧縮行程から膨張工程にかけて内燃機関40の角速度変動Ωが増大する(図3(a)を参照)。
A method for obtaining the individual difference correction coefficient α will be specifically described with reference to FIGS.
The single minute injection execution control unit 81 that constitutes the individual difference correction coefficient calculation unit 80 applies to the fuel injection valve 13 to be corrected when the non-injection state of the internal combustion engine 40 is detected by the non-injection state detection unit 72. Thus, an instruction is transmitted to the fuel injection valve control unit 79 so as to perform a control for executing a single micro injection a plurality of times while changing the injection time ETa during one cycle. This micro injection controls the current or voltage supplied to the fuel injection valve 13 so that the reference micro injection amount Qzfc1, for example, 1 cc, is injected so as not to greatly affect the driving force of the internal combustion engine 40. . When one micro injection is executed, the angular velocity fluctuation Ω of the internal combustion engine 40 increases from the compression stroke to the expansion process in the cylinder into which the fuel is injected (see FIG. 3A).

また、個体差補正係数演算部80を構成する第1の補正係数演算部83は、一回微小噴射実行制御部81によって補正対象の燃料噴射弁13から一回の微小噴射が実行されるごとにその信号を受け取り、この微小噴射が行われたときの角速度変動Ωzfc1を、微小噴射が行われなかったときの角速度変動Ωzfc0と比較し、角速度変動の差分ΔΩzfc1を求める。この一回の微小噴射が噴射時間ETaを変えながら複数回実行されると、増大した角速度変動Ωzfc1と他の気筒での角速度変動Ωzfc0との差分ΔΩzfc1と、噴射時間ETaとの関係が得られる(図3(a)及び(b)を参照)。角速度変動Ωの比較は、補正対象の燃料噴射弁13が備えられた気筒での圧縮行程から膨張行程までの角速度変動Ωzfc1を、それ以外の気筒での圧縮行程から膨張行程までの角速度変動Ωzfc0と比較することで行われる。このような比較を行うことで、短時間で角速度変動の差分ΔΩzfc1が得られ、内燃機関40の無噴射状態での個体差補正係数αの算出が速やかに行われる。   In addition, the first correction coefficient calculation unit 83 constituting the individual difference correction coefficient calculation unit 80 is performed each time a single micro injection is executed from the fuel injection valve 13 to be corrected by the single micro injection execution control unit 81. The signal is received, and the angular velocity fluctuation Ωzfc1 when the minute injection is performed is compared with the angular velocity fluctuation Ωzfc0 when the minute injection is not performed to obtain the difference ΔΩzfc1 of the angular velocity fluctuation. When this single micro injection is executed a plurality of times while changing the injection time ETa, the relationship between the difference ΔΩzfc1 between the increased angular velocity fluctuation Ωzfc1 and the angular velocity fluctuation Ωzfc0 in other cylinders and the injection time ETa is obtained ( (See FIGS. 3 (a) and 3 (b)). The angular velocity fluctuation Ω is compared with the angular velocity fluctuation Ωzfc1 from the compression stroke to the expansion stroke in the cylinder provided with the fuel injection valve 13 to be corrected, and the angular velocity fluctuation Ωzfc0 from the compression stroke to the expansion stroke in the other cylinders. This is done by comparing. By performing such a comparison, the difference ΔΩzfc1 of the angular velocity fluctuation is obtained in a short time, and the individual difference correction coefficient α is calculated quickly when the internal combustion engine 40 is in the non-injection state.

個体差補正係数演算部80は、燃料噴射量制御装置70にあらかじめ記憶されている燃料噴射量Qactと角速度変動の差分ΔΩzfcとの関係を示すデータ(図3(c)を参照)を参照可能になっており、第1の補正係数演算部83は、角速度変動の差分ΔΩzfc1が基準値ΔΩ0となったときの一回の微小噴射の噴射時間ETa1を求める。この基準値ΔΩ0は、基準微小噴射量Qzfc1の燃料が噴射されたときに生じる角速度変動の差分の値として、あらかじめ実験等により求められて記憶されている。そして、求められた噴射時間ETa1を、蓄圧式燃料噴射装置50の出荷時等の設定で角速度変動の差分が基準値ΔΩ0となる噴射時間として定められた基準噴射時間ETa0と比較し、基準噴射時間ETa0に対する噴射時間ETa1の比率(ETa1/ETa0)を個体差補正係数αとする。   The individual difference correction coefficient calculation unit 80 can refer to data (see FIG. 3C) indicating the relationship between the fuel injection amount Qact stored in advance in the fuel injection amount control device 70 and the difference ΔΩzfc of the angular velocity fluctuation. Thus, the first correction coefficient calculation unit 83 obtains the injection time ETa1 of one minute injection when the difference ΔΩzfc1 of the angular velocity fluctuation becomes the reference value ΔΩ0. This reference value ΔΩ0 is obtained and stored in advance through experiments or the like as a value of the difference in angular velocity fluctuation that occurs when fuel of the reference minute injection amount Qzfc1 is injected. Then, the obtained injection time ETa1 is compared with a reference injection time ETa0 determined as an injection time at which the difference of the angular velocity fluctuation becomes a reference value ΔΩ0 in the setting of the accumulator fuel injection device 50 at the time of shipment, etc. The ratio of the injection time ETa1 to ETa0 (ETa1 / ETa0) is set as an individual difference correction coefficient α.

このようにして求められる個体差補正係数αは、燃料噴射量補正部77において目標燃料噴射量Qtgt又は燃料噴射弁13への制御指示値あるいは目標噴射量の演算式に乗算されることで、現実の燃料噴射量Qactが増減される。その結果、加工精度や経時劣化等による目標燃料噴射量Qtgtと現実の燃料噴射量Qactとのずれ分が解消される。   The individual difference correction coefficient α obtained in this way is multiplied by the target fuel injection amount Qtgt, the control instruction value to the fuel injection valve 13 or the arithmetic expression of the target injection amount in the fuel injection amount correction unit 77, so that The fuel injection amount Qact is increased or decreased. As a result, the difference between the target fuel injection amount Qtgt and the actual fuel injection amount Qact due to processing accuracy, deterioration with time, and the like is eliminated.

(5)性状補正係数演算部
性状補正係数演算部90は、現在使用している燃料の密度や粘度等で表される燃料性状ρactが、目標燃料噴射量Qtgtの演算式を設定する際に想定されていた基準燃料の燃料性状ρ0とは異なることによる目標燃料噴射量Qtgtと現実の燃料噴射量Qactとのずれ分を補正するための補正係数である性状補正係数βを求める。使用燃料の密度や粘度等の燃料性状の違いから燃料圧力(レール圧)の誤差が生じ、燃料噴射量のばらつきとなって現れる。本実施形態の燃料噴射制御装置70では、所定の噴射間隔ΔTで行われる二回の定時間微小噴射を複数回実行して噴射間隔ΔTと内燃機関40の角速度変動Ωとの関係を求め、その関係をもとに現在の使用燃料の圧力脈動の周期Cprを算出して燃料性状を推定する。性状補正係数βは、例えば推定された燃料性状ρactと基準燃料の燃料性状ρ0とに基づいて求められる。
(5) Property correction coefficient calculation unit The property correction coefficient calculation unit 90 assumes that the fuel property ρact represented by the density, viscosity, etc. of the currently used fuel sets the calculation formula for the target fuel injection amount Qtgt. A property correction coefficient β, which is a correction coefficient for correcting a deviation between the target fuel injection amount Qtgt and the actual fuel injection amount Qact due to the difference from the fuel property ρ0 of the reference fuel that has been set, is obtained. An error in fuel pressure (rail pressure) occurs due to differences in fuel properties such as density and viscosity of the fuel used, and appears as variations in the fuel injection amount. In the fuel injection control device 70 of the present embodiment, two constant-time micro injections performed at a predetermined injection interval ΔT are executed a plurality of times to obtain the relationship between the injection interval ΔT and the angular velocity fluctuation Ω of the internal combustion engine 40, and Based on the relationship, the fuel property is estimated by calculating the pressure pulsation period Cpr of the current fuel. The property correction coefficient β is obtained based on, for example, the estimated fuel property ρact and the fuel property ρ0 of the reference fuel.

性状補正係数βの求め方を図4(a)〜(d)及び図5(a)〜(b)を参照しながら具体的に説明する。
性状補正係数演算部90を構成する二回定時間微小噴射実行制御部91は、無噴射状態検出部72で内燃機関40の無噴射状態が検出されたときに、いずれかの燃料噴射弁13に対して、一サイクル中に所定の噴射間隔ΔTで噴射される二回の定時間微小噴射を噴射間隔ΔTを変えながら複数回実行させる制御を行うよう燃料噴射弁制御部79に対して指示を伝達する。個体差補正係数αを求める際に微小噴射を実行させる燃料噴射弁13が補正対象の燃料噴射弁でなければならないのとは対称的に、性状補正係数βを求める際に二回の定時間微小噴射を実行させる燃料噴射弁13はどの燃料噴射弁であっても構わない。
The method for obtaining the property correction coefficient β will be specifically described with reference to FIGS. 4 (a) to 4 (d) and FIGS. 5 (a) to 5 (b).
The two-time fixed-time microinjection execution control unit 91 constituting the property correction coefficient calculation unit 90 is connected to any one of the fuel injection valves 13 when the non-injection state of the internal combustion engine 40 is detected by the non-injection state detection unit 72. On the other hand, an instruction is transmitted to the fuel injection valve control unit 79 so as to perform control to execute two fixed time minute injections injected at a predetermined injection interval ΔT in a single cycle a plurality of times while changing the injection interval ΔT. To do. In contrast to the fact that the fuel injection valve 13 for executing the micro injection when determining the individual difference correction coefficient α must be the fuel injection valve to be corrected, it is small for a fixed time twice when determining the property correction coefficient β. The fuel injection valve 13 that executes the injection may be any fuel injection valve.

二回の定時間微小噴射の噴射間隔ΔTは、二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることによって変えられる。この二回の定時間微小噴射によって噴射される燃料の噴射量Qzfc2は、内燃機関40の駆動力に大きく影響しない程度の噴射量となるように、例えば、一回目の噴射時間ETb1及び二回目の噴射時間ETb2がともに200μsecとなるように、燃料噴射弁13へ供給される電流あるいは電圧の制御が行われる。二回の定時間微小噴射が実行されると、燃料が噴射された気筒における圧縮行程から膨張工程にかけて内燃機関40の角速度変動Ωが増大する(図4(a)を参照)。   The injection interval ΔT of the two fixed-time minute injections can be changed by fixing the second injection timing while making the first injection timing different. For example, the first injection time ETb1 and the second injection time are set so that the injection amount Qzfc2 of the fuel injected by the two fixed-time micro injections does not greatly affect the driving force of the internal combustion engine 40. The current or voltage supplied to the fuel injection valve 13 is controlled so that the injection time ETb2 is both 200 μsec. When the micro injection is performed twice at a constant time, the angular velocity fluctuation Ω of the internal combustion engine 40 increases from the compression stroke to the expansion process in the cylinder in which the fuel is injected (see FIG. 4A).

ここで、一回目の定時間微小噴射は基本的には燃料中の圧力脈動が小さい状態で行われるとともに、本実施形態の燃料噴射制御装置70では、個体差補正係数αによって燃料噴射量の補正が行われるように構成されていることから、一回目の定時間微小噴射の噴射量Qet1はほぼ一定の値となる。その噴射量Qet1の値は噴射時間ETb1をもとに演算によって求められる。一方、二回目の定時間微小噴射は一回目の定時間微小噴射によって燃料中に圧力脈動が生じた状態で行われるため、二回目の定時間微小噴射の噴射量Qet2は、燃料の圧力(レール圧)によって異なる値となる。   Here, the first fixed time minute injection is basically performed in a state where the pressure pulsation in the fuel is small, and in the fuel injection control device 70 of the present embodiment, the fuel injection amount is corrected by the individual difference correction coefficient α. Therefore, the injection amount Qet1 of the first fixed time minute injection becomes a substantially constant value. The value of the injection amount Qet1 is obtained by calculation based on the injection time ETb1. On the other hand, the second fixed-time microinjection is performed in a state where pressure pulsation is generated in the fuel by the first fixed-time microinjection, so the injection amount Qet2 of the second fixed-time microinjection is the fuel pressure (rail The pressure varies depending on the pressure.

また、性状補正係数演算部90を構成する圧力脈動周期演算部93は、二回定時間微小噴射実行制御部91によって燃料噴射弁13から一サイクル中に二回の定時間微小噴射が複数回実行されるごとにその信号を受け取り、この二回の定時間微小噴射が行われたときの角速度変動Ωzfc2を、二回の定時間微小噴射が実行されなかったときの角速度変動Ωzfc0と比較し、角速度変動の差分ΔΩzfc2を求める。この二回の定時間微小噴射が噴射間隔ΔTを変えながら複数回実行されると、増大した角速度変動Ωzfc2及び他の気筒での角速度変動Ωzfc0の差分ΔΩzfc2と、噴射間隔ΔTとの関係が得られる(図4(a)及び(b)を参照)。角速度変動Ωの比較は、個体差補正係数演算部80の場合と同様に、補正対象の燃料噴射弁13が備えられた気筒での圧縮行程から膨張行程までの角速度変動Ωzfc2を、それ以外の気筒での圧縮行程から膨張行程までの角速度変動Ωzfc0と比較することで行われる。このような比較を行うことで、短時間で角速度変動の差分ΔΩzfc2が得られ、内燃機関40の無噴射状態での圧力脈動の周期Cprの算出、ひいては、性状補正係数βの算出が速やかに行われる。   In addition, the pressure pulsation period calculation unit 93 constituting the property correction coefficient calculation unit 90 is executed by the two-time fixed-time micro-injection execution control unit 91 from the fuel injection valve 13 two times in a single cycle. Each time the signal is received, the angular velocity fluctuation Ωzfc2 when the two fixed-time micro-injections are performed is compared with the angular velocity fluctuation Ωzfc0 when the two fixed-time micro-injections are not executed. Obtain the difference ΔΩzfc2 of fluctuation. When the two constant time micro-injections are executed a plurality of times while changing the injection interval ΔT, the relationship between the increased angular velocity fluctuation Ωzfc2 and the difference ΔΩzfc2 of the angular velocity fluctuation Ωzfc0 in other cylinders and the injection interval ΔT is obtained. (See FIGS. 4 (a) and (b)). As in the case of the individual difference correction coefficient calculation unit 80, the angular velocity fluctuation Ω is compared with the angular velocity fluctuation Ωzfc2 from the compression stroke to the expansion stroke in the cylinder provided with the fuel injection valve 13 to be corrected. This is carried out by comparing with the angular velocity fluctuation Ωzfc0 from the compression stroke to the expansion stroke. By performing such a comparison, the difference ΔΩzfc2 in the angular velocity fluctuation can be obtained in a short time, and the calculation of the pressure pulsation cycle Cpr when the internal combustion engine 40 is in the non-injection state, and hence the calculation of the property correction coefficient β, can be performed quickly. Is called.

圧力脈動周期演算部93は、複数の角速度変動の差分ΔΩzfc2の値をもとに使用燃料の圧力脈動の周期Cprを算出する。具体的に、性状補正係数演算部90は、燃料噴射量制御装置70にあらかじめ記憶されている燃料噴射量Qactと角速度変動の差分ΔΩzfcとの関係を示すデータ(図4(c)を参照。図3(c)に同じ。)を参照可能になっている。圧力脈動周期演算部93は、このデータを参照して、角速度変動の差分ΔΩzfc2と噴射間隔ΔTとの関係を、燃料噴射量Qactと噴射間隔ΔTとの関係に置き換える。   The pressure pulsation cycle calculation unit 93 calculates the pressure pulsation cycle Cpr of the fuel used based on the difference ΔΩzfc2 between the plurality of angular velocity fluctuations. Specifically, the property correction coefficient calculation unit 90 refers to data indicating the relationship between the fuel injection amount Qact stored in advance in the fuel injection amount control device 70 and the difference ΔΩzfc in angular velocity fluctuation (see FIG. 4C). 3 (same as (c)). The pressure pulsation cycle calculation unit 93 refers to this data and replaces the relationship between the angular velocity fluctuation difference ΔΩzfc2 and the injection interval ΔT with the relationship between the fuel injection amount Qact and the injection interval ΔT.

さらに、二回の定時間微小噴射による燃料噴射量Qactの違いはレール圧(燃料圧力)Prailの差によるものであることから、圧力脈動周期演算部93は、燃料噴射量Qactと噴射間隔ΔTとの関係を、レール圧Prailと噴射間隔ΔTとの関係に置き換える(図4(d)を参照)。この噴射間隔ΔTは、一回目の定時間微小噴射からの経過時間に相当することから、この噴射間隔ΔTとレール圧Prailとの関係は、一定量の一回目の定時間微小噴射が行われることで生じたレール圧Prailの変動、すなわち、圧力脈動を表している。こうして得られた圧力脈動をもとにして圧力脈動の周期Cprが求められる。   Furthermore, since the difference in the fuel injection amount Qact between the two fixed-time minute injections is due to the difference in the rail pressure (fuel pressure) Prail, the pressure pulsation cycle calculation unit 93 determines that the fuel injection amount Qact and the injection interval ΔT are Is replaced with the relationship between the rail pressure Prail and the injection interval ΔT (see FIG. 4D). Since this injection interval ΔT corresponds to the elapsed time from the first fixed time micro injection, the relationship between the injection interval ΔT and the rail pressure Prail is that a fixed amount of the first fixed time micro injection is performed. It represents the fluctuation of the rail pressure Prail generated by the above, that is, pressure pulsation. Based on the pressure pulsation thus obtained, the pressure pulsation cycle Cpr is obtained.

このとき、複数の角速度変動の差分ΔΩzfc2の値をもとに、二回の定時間微小噴射の噴射間隔ΔTと現実の燃料噴射量Qactとの関係を求めることができるのは、本実施形態の燃料噴射制御装置70の場合、個体差補正係数αによって燃料噴射量の補正が行われ、内燃機関の角速度変動Ωと現実の燃料噴射量Qactとの関係が、現在使用されている燃料に応じて把握されているからである。また、現実の燃料噴射量Qactをレール圧Prailに換算できるのは、二回目の定時間微小噴射の噴射時間ETb2が一定であり、現実の燃料噴射量Qactの違いが噴射圧力、すなわち、レール圧Prailの違いによって生じるからである。   At this time, based on the value of the difference ΔΩzfc2 of the plurality of angular velocity fluctuations, the relationship between the injection interval ΔT of the two fixed-time micro injections and the actual fuel injection amount Qact can be obtained in the present embodiment. In the case of the fuel injection control device 70, the fuel injection amount is corrected by the individual difference correction coefficient α, and the relationship between the angular velocity fluctuation Ω of the internal combustion engine and the actual fuel injection amount Qact depends on the currently used fuel. It is because it is grasped. In addition, the actual fuel injection amount Qact can be converted to the rail pressure Prail because the injection time ETb2 of the second fixed time minute injection is constant, and the difference in the actual fuel injection amount Qact is the injection pressure, that is, the rail pressure. This is due to differences in the Prail.

性状補正係数演算部90には、一回目の定時間微小燃料噴射の噴射時間ETb1で燃料噴射が行われた場合に生じる圧力脈動の周期Cprと燃料温度Tflと燃料性状(密度)ρとの相関関係を示すデータ(図5(a)を参照)が記憶されている。性状補正係数演算部90を構成する第2の補正係数演算部95は、このデータを参照して、圧力脈動周期演算部93において求められた圧力脈動の周期Cprと二回の定時間微小噴射実行時の燃料温度Tflとに基づいて使用燃料の燃料性状ρactを推定する。   The property correction coefficient calculation unit 90 correlates the period Cpr of the pressure pulsation, the fuel temperature Tfl, and the fuel property (density) ρ that are generated when the fuel is injected during the injection time ETb1 of the first fixed time fine fuel injection. Data indicating the relationship (see FIG. 5A) is stored. The second correction coefficient calculation unit 95 constituting the property correction coefficient calculation unit 90 refers to this data, and executes the pressure pulsation cycle Cpr obtained by the pressure pulsation cycle calculation unit 93 and the two fixed time micro injections. The fuel property ρact of the used fuel is estimated based on the fuel temperature Tfl at the time.

そして、第2の補正係数演算部95は、求められた使用燃料の燃料性状ρactと、目標燃料噴射量Qtgtの演算式を設定する際に想定されていた基準燃料の燃料性状ρ0との差に応じて性状補正係数βを算出する。本実施形態では、燃料性状ρactがさらに燃料温度Tfの相関値Tfρに変換され性状補正係数βが求められる。具体的に、第2の補正係数演算部95には、目標燃料噴射量Qtgtの演算式を設定する際に想定されていた基準燃料の燃料性状(密度)ρ0と燃料温度Tfとの相関関係を示すデータがあらかじめ記憶されている(図5(b)を参照)。第2の補正係数演算部95は、このデータを参照して、求められた使用燃料の燃料性状ρactを燃料温度の相関値Tfρに変換する。この相関値Tfρは、目標燃料噴射量Qtgtの演算式を設定する際に想定されていた基準燃料の燃料性状ρ0と使用燃料の燃料性状ρactとの違いを、基準燃料の基準温度Tf0との差分に置き換えたものである。そして、第2の補正係数演算部95では、燃料温度の相関値Tfρに応じた性状補正係数βが求められる。 Then, the second correction coefficient calculation unit 95 calculates the difference between the obtained fuel property ρact of the used fuel and the fuel property ρ0 of the reference fuel assumed when setting the calculation formula of the target fuel injection amount Qtgt. Accordingly, the property correction coefficient β is calculated. In the present embodiment, the fuel property ρact is further converted into a correlation value Tf ρ of the fuel temperature Tf to obtain the property correction coefficient β. Specifically, in the second correction coefficient calculation unit 95, the correlation between the fuel property (density) ρ0 of the reference fuel and the fuel temperature Tf assumed when setting the calculation formula of the target fuel injection amount Qtgt is shown. The data shown is stored in advance (see FIG. 5B). Second correction coefficient calculation unit 95 refers to this data, the fuel property ρact use fuel obtained is converted to the correlation value Tf [rho fuel temperature. This correlation value Tf ρ represents the difference between the fuel property ρ0 of the reference fuel and the fuel property ρact of the fuel used, which was assumed when setting the calculation formula of the target fuel injection amount Qtgt, and the reference temperature Tf0 of the reference fuel. It is replaced with the difference. Then, in the second correction coefficient calculation unit 95, a property correction coefficient β corresponding to the fuel temperature correlation value Tf ρ is obtained.

このようにして求められる性状補正係数βは、燃料噴射量補正部77において目標燃料噴射量Qtgtあるいは燃料噴射弁13への制御指示値に乗算されることで、現実の燃料噴射量Qactが増減される。その結果、使用燃料の燃料性状ρactの違いによる目標燃料噴射量Qtgtと現実の燃料噴射量Qactとのずれ分が解消される。   The property correction coefficient β obtained in this way is multiplied by the target fuel injection amount Qtgt or the control instruction value to the fuel injection valve 13 in the fuel injection amount correction unit 77, whereby the actual fuel injection amount Qact is increased or decreased. The As a result, the difference between the target fuel injection amount Qtgt and the actual fuel injection amount Qact due to the difference in the fuel property ρact of the used fuel is eliminated.

(6)係数補正部
係数補正部75は、あらかじめ記憶された、二回の噴射の噴射間隔ΔTの違いのみによる内燃機関40の角速度変動Ωに基づき、性状補正係数演算部90の圧力脈動周期演算部93で用いられる角速度変動Ω、燃料噴射量Qact又は圧力脈動の周期Cprの少なくとも一つに対して補正を行う。この補正が行われることで、性状補正係数演算部90において角速度変動Ωを用いて性状補正係数βを求める際に、二回の定時間微小噴射が実行される際のピストン位置の違いによる角速度変動Ωのばらつきの影響が排除される。
(6) Coefficient Correction Unit The coefficient correction unit 75 calculates the pressure pulsation cycle of the property correction coefficient calculation unit 90 based on the angular velocity fluctuation Ω of the internal combustion engine 40 that is stored only in advance and is different only in the injection interval ΔT between the two injections. Correction is performed for at least one of the angular velocity fluctuation Ω, the fuel injection amount Qact, or the pressure pulsation cycle Cpr used in the unit 93. By performing this correction, when the property correction coefficient calculating unit 90 obtains the property correction coefficient β using the angular velocity variation Ω, the angular velocity variation due to the difference in the piston position when two fixed time micro injections are performed. The effect of Ω variation is eliminated.

本実施形態の燃料噴射制御装置70では、それぞれ所定の噴射量で噴射される二回の定量微小噴射を噴射間隔ΔTを変えて複数回実行したときの二回の定量微小噴射の噴射間隔ΔTと内燃機関40の角速度変動Ωとの関係を示すデータが、あらかじめ実験等によって求められて記憶されている。以下、二回の定量微小噴射の噴射間隔ΔTと内燃機関40の角速度変動Ωとの関係をあらかじめ求める方法の具体例を図6(a)〜(d)に基づいて説明する。なお、以下の具体例においては、噴射間隔ΔTと内燃機関40の角速度変動Ωとの関係は、噴射間隔ΔTと燃料噴射量Qzfc3との関係に置き換えられている。   In the fuel injection control device 70 of the present embodiment, the two fixed micro-injection intervals ΔT when two fixed micro-injections each injected at a predetermined injection amount are executed a plurality of times while changing the injection interval ΔT, and Data indicating the relationship with the angular velocity fluctuation Ω of the internal combustion engine 40 is obtained and stored in advance by experiments or the like. Hereinafter, a specific example of a method for obtaining in advance the relationship between the injection interval ΔT of the two quantitative micro-injections and the angular velocity fluctuation Ω of the internal combustion engine 40 will be described with reference to FIGS. In the following specific example, the relationship between the injection interval ΔT and the angular velocity fluctuation Ω of the internal combustion engine 40 is replaced with the relationship between the injection interval ΔT and the fuel injection amount Qzfc3.

内燃機関の無噴射状態において、燃料噴射弁から二回の定量微小噴射を実行する。この二回の定量微小噴射が実行されると、その燃料噴射弁が備えられた気筒における圧縮行程から膨張工程にかけて内燃機関の角速度変動Ωが増大する(図6(a)を参照)。この二回の定量微小噴射での噴射量は、一回目の定量微小噴射及び二回目の定量微小噴射ともに内燃機関の駆動力に大きく影響しない程度の一定量に設定される。特に、一回目の定量微小噴射の噴射時間は、二回定時間微小噴射実行制御部91によって実行される一回目の定時間微小噴射の噴射時間ETb1と同じ時間で行われる。   In the non-injection state of the internal combustion engine, two quantitative minute injections are executed from the fuel injection valve. When the two fixed minute injections are executed, the angular velocity fluctuation Ω of the internal combustion engine increases from the compression stroke to the expansion step in the cylinder provided with the fuel injection valve (see FIG. 6A). The injection amount in the two quantitative micro injections is set to a certain amount that does not greatly affect the driving force of the internal combustion engine in both the first quantitative micro injection and the second quantitative micro injection. In particular, the injection time of the first quantitative micro-injection is the same as the injection time ETb1 of the first constant-time micro-injection executed by the second fixed-time micro injection execution control unit 91.

この二回の定量微小噴射が行われたときの角速度変動Ωzfc3を、二回の定量微小噴射が実行されなかったときの角速度変動Ωzfc0と比較することで、角速度変動の差分ΔΩzfc3が求められる。この角速度変動Ωの比較は、個体差補正係数演算部80や性状補正係数演算部90の場合と同様に、二回の定量微小噴射を実行する燃料噴射弁13が備えられた気筒での圧縮行程から膨張行程までの角速度変動Ωzfc3を、それ以外の気筒での圧縮行程から膨張行程までの角速度変動Ωzfc0と比較することで行うことができる。   By comparing the angular velocity fluctuation Ωzfc3 when the two quantitative micro-injections are performed with the angular velocity fluctuation Ωzfc0 when the two quantitative micro-injections are not executed, the angular velocity fluctuation difference ΔΩzfc3 is obtained. The comparison of the angular velocity fluctuation Ω is similar to the case of the individual difference correction coefficient calculation unit 80 and the property correction coefficient calculation unit 90 in the compression stroke in the cylinder provided with the fuel injection valve 13 that performs two quantitative micro injections. The angular velocity fluctuation Ωzfc3 from the expansion stroke to the expansion stroke can be compared with the angular velocity fluctuation Ωzfc0 from the compression stroke to the expansion stroke in the other cylinders.

この二回の定量微小噴射は、燃料噴射が行われる気筒の一サイクル中において、ニ回目の定量微小噴射の噴射時期が固定される一方、一回目の定量微小噴射の噴射時期を異ならせることで噴射間隔ΔTが変えられて、複数回実行される。二回の定量微小噴射が噴射間隔ΔTを変えながら複数回実行されると、増大した角速度変動Ωzfc3と他の気筒での角速度変動Ωzfc0との差分ΔΩzfc3と、噴射間隔ΔTとの関係が得られる(図6(a)及び(b)を参照)。   This two-time quantitative microinjection is performed by changing the injection timing of the first quantitative microinjection while fixing the injection timing of the second quantitative microinjection in one cycle of the cylinder in which fuel injection is performed. The injection interval ΔT is changed and executed a plurality of times. When two quantitative micro-injections are executed a plurality of times while changing the injection interval ΔT, the relationship between the difference ΔΩzfc3 between the increased angular velocity fluctuation Ωzfc3 and the angular velocity fluctuation Ωzfc0 in other cylinders and the injection interval ΔT is obtained ( (See FIGS. 6 (a) and 6 (b)).

係数補正部75には、燃料噴射量制御装置70にあらかじめ記憶されている燃料噴射量Qactと角速度変動の差分ΔΩzfcとの関係を示すデータ(図6(c)を参照。図3(c)及び図4(c)に同じ。)が参照可能になっており、角速度変動の差分ΔΩzfc3と二回の定量微小噴射の噴射間隔ΔTとの関係は、燃料噴射量Qzfc3と噴射間隔ΔTとの関係に置き換えられる(図6(d)を参照)。このようにしてあらかじめ求められた二回の定量微小噴射の噴射間隔ΔTと燃料噴射量Qzfc3との関係が係数補正部75に記憶されている。   The coefficient correction unit 75 stores data indicating the relationship between the fuel injection amount Qact stored in advance in the fuel injection amount control device 70 and the difference ΔΩzfc in angular velocity fluctuation (see FIG. 6C). (Same as FIG. 4C)) can be referred to, and the relationship between the difference ΔΩzfc3 of the angular velocity fluctuation and the injection interval ΔT of the two quantitative micro-injections is the relationship between the fuel injection amount Qzfc3 and the injection interval ΔT. It is replaced (see FIG. 6 (d)). The coefficient correction unit 75 stores the relationship between the injection interval ΔT between the two fixed minute injections thus obtained in advance and the fuel injection amount Qzfc3.

そして、係数補正部75は、記憶された噴射間隔ΔTと燃料噴射量Q zfc3との関係に基づき、性状補正係数演算部90の圧力脈動周期演算部93に対して、圧力脈動の周期を算出する際に用いられる燃料噴射量Qactと噴射間隔ΔTとの関係のうちの燃料噴射量Qactから、噴射間隔ΔTに応じた燃料噴射量Qzfc3を減算した値Qact’を用いて性状補正係数βを算出するように指示を送る。   Then, the coefficient correction unit 75 calculates the pressure pulsation cycle for the pressure pulsation cycle calculation unit 93 of the property correction coefficient calculation unit 90 based on the relationship between the stored injection interval ΔT and the fuel injection amount Q zfc3. The property correction coefficient β is calculated using a value Qact ′ obtained by subtracting the fuel injection amount Qzfc3 corresponding to the injection interval ΔT from the fuel injection amount Qact of the relationship between the fuel injection amount Qact and the injection interval ΔT used at the time. To send instructions.

ここで、係数補正部75には、燃料温度Tfと燃料性状(密度)ρとの関係を示すデータが記憶されており、性状補正係数演算部90で求められた燃料噴射量Qactから係数補正部75で求められた燃料噴射量Qzfc3を減算する際に、基準燃料の基準温度Tf0と使用燃料の温度Tfとの差に応じて減算する燃料噴射量Qzfc3の値が修正されるようになっている。   Here, the coefficient correction unit 75 stores data indicating the relationship between the fuel temperature Tf and the fuel property (density) ρ. The coefficient correction unit 75 calculates the coefficient correction unit based on the fuel injection amount Qact obtained by the property correction coefficient calculation unit 90. When subtracting the fuel injection amount Qzfc3 obtained in 75, the value of the fuel injection amount Qzfc3 to be subtracted according to the difference between the reference temperature Tf0 of the reference fuel and the temperature Tf of the used fuel is corrected. .

その結果、性状補正係数演算部90において求められる圧力脈動の周期Cprは、二回の定時間微小噴射による角速度変動の差分ΔΩzfc2の値から、噴射間隔ΔTの違いに起因して生じる角速度変動Ωの影響が排除され、二回目の定時間微小噴射時の噴射圧力(レール圧)の違いのみによる角速度変動の差分の値に基づいて求められるようになる。したがって、使用燃料の燃料性状ρが精度よく推定され、燃料性状ρの違いによる燃料噴射量Qactの補正が精度よく行なわれるようになる。   As a result, the pressure pulsation cycle Cpr obtained in the property correction coefficient calculation unit 90 is calculated from the difference in angular velocity fluctuation ΔΩzfc2 caused by two constant-time micro-injections from the angular velocity fluctuation Ω caused by the difference in the injection interval ΔT. The influence is eliminated, and it is obtained based on the difference value of the angular velocity fluctuation only due to the difference in the injection pressure (rail pressure) at the second fixed time minute injection. Therefore, the fuel property ρ of the used fuel is accurately estimated, and the fuel injection amount Qact is corrected with accuracy by the difference in the fuel property ρ.

なお、本実施形態の燃料噴射量制御装置70では、性状補正係数演算部80の燃料噴射量Qactの値から、二回の定量微小噴射の噴射間隔ΔTに応じた燃料噴射量Qzfc3を減算することで補正を行うように構成されているが、補正対象を燃料噴射量Qact以外とすることもできる。例えば、性状補正係数演算部90における角速度変動の差分ΔΩzfc2から、係数補正部75によって求められた、噴射間隔ΔTに応じた角速度変動の差分ΔΩzfc3を減算することで補正を行ってもよいし、それ以外のレール圧Prailの変動や圧力脈動の周期Cprに対して補正を行うようにすることもできる。   In the fuel injection amount control device 70 of the present embodiment, the fuel injection amount Qzfc3 corresponding to the injection interval ΔT between the two fixed minute injections is subtracted from the value of the fuel injection amount Qact of the property correction coefficient calculation unit 80. However, the correction target may be other than the fuel injection amount Qact. For example, the correction may be performed by subtracting the difference ΔΩzfc3 of the angular velocity variation corresponding to the injection interval ΔT, which is obtained by the coefficient correction unit 75, from the difference ΔΩzfc2 of the angular velocity variation in the property correction coefficient calculation unit 90. It is also possible to perform correction on the fluctuation of the rail pressure Prail other than the above and the period Cpr of the pressure pulsation.

(7)燃料噴射量補正部
燃料噴射量補正部77は、個体差補正係数演算部80や性状補正係数演算部90で算出された個体差補正係数α及び性状補正係数βを用いて、目標噴射量演算部71で算出された目標燃料噴射量Qtgtあるいは目標噴射量の演算式を補正し、補正後の目標燃料噴射量Qtgt’を算出する。
本実施形態の燃料噴射制御装置70では、燃料温度の違いによっても燃料の粘度に違いが生じ燃料圧力が影響を受けることから、個体差や燃料性状だけでなく、蓄圧式燃料噴射装置50の所定箇所に設けられた燃料温度センサによって検出される燃料温度Tfの値をもとに、目標燃料噴射量Qtgtの補正を行うように構成されている。そのため、燃料噴射制御装置70では、性状補正係数βそのものを求めて補正を行う方法ではなく、その算出の途中で求められる燃料温度Tfの相関値Tfρを、燃料温度センサによって検出される燃料温度Tfの値に足しこんで、目標燃料噴射量Qtgtの補正を行うことも可能である。
(7) Fuel Injection Amount Correction Unit The fuel injection amount correction unit 77 uses the individual difference correction coefficient α and the property correction coefficient β calculated by the individual difference correction coefficient calculation unit 80 and the property correction coefficient calculation unit 90 to perform target injection. The target fuel injection amount Qtgt calculated by the amount calculation unit 71 or the calculation formula of the target injection amount is corrected, and the corrected target fuel injection amount Qtgt ′ is calculated.
In the fuel injection control device 70 of the present embodiment, the difference in fuel temperature also causes a difference in fuel viscosity and the fuel pressure is affected. Therefore, not only individual differences and fuel properties but also the predetermined pressure of the accumulator fuel injection device 50 is determined. The target fuel injection amount Qtgt is corrected based on the value of the fuel temperature Tf detected by the fuel temperature sensor provided at the location. Therefore, the fuel injection control device 70 is not a method of performing correction by obtaining the property correction coefficient β itself, but the correlation value Tf ρ of the fuel temperature Tf obtained in the middle of the calculation is used as the fuel temperature detected by the fuel temperature sensor. It is also possible to correct the target fuel injection amount Qtgt by adding to the value of Tf.

(8)燃料噴射弁制御部
燃料噴射弁制御部79は、レール圧Prailを読み込むとともに、読み込んだレール圧Prailと燃料噴射量補正部77で算出された補正後の目標噴射量Qtgt’とに基づき燃料噴射弁13の制御を行う。具体的に、燃料噴射弁制御部79は、燃料噴射弁13への通電時期及び通電時間を決定し、燃料噴射弁13の駆動制御を行うアクチュエータに対して指示信号を出力する。
(8) Fuel Injection Valve Control Unit The fuel injection valve control unit 79 reads the rail pressure Prail, and based on the read rail pressure Prail and the corrected target injection amount Qtgt ′ calculated by the fuel injection amount correction unit 77. The fuel injection valve 13 is controlled. Specifically, the fuel injection valve control unit 79 determines the energization timing and energization time for the fuel injection valve 13 and outputs an instruction signal to an actuator that controls the drive of the fuel injection valve 13.

3.燃料噴射制御方法の具体的フロー
次に、本実施形態の燃料噴射量制御装置70によって実行される燃料噴射量補正制御について、図7〜図10の制御フローに基づいて詳細に説明する。
3. Specific Flow of Fuel Injection Control Method Next, the fuel injection amount correction control executed by the fuel injection amount control device 70 of the present embodiment will be described in detail based on the control flows of FIGS.

図7において、スタート後のステップS1では個体差補正係数αの演算が行われる。図8は、個体差補正係数αの演算のフローを示している。
個体差補正係数αの演算のフローでは、まずステップS11において、アクセル操作量Accやエンジン回転数Ne等が読込まれた後、ステップS12において、目標燃料噴射量Qtgtが算出される。
In FIG. 7, the individual difference correction coefficient α is calculated in step S1 after the start. FIG. 8 shows a flow of calculation of the individual difference correction coefficient α.
In the calculation flow of the individual difference correction coefficient α, first, in step S11, the accelerator operation amount Acc, the engine speed Ne, and the like are read, and then in step S12, the target fuel injection amount Qtgt is calculated.

次いで、ステップS13において、アクセル操作量Accや目標燃料噴射量Qtgt等に基づき内燃機関が無噴射状態にあるか否かが判別される。内燃機関が無噴射状態にない場合には、個体差補正係数αの算出ができないことからステップS11に戻る。一方、内燃機関が無噴射状態にある場合には、ステップS14に進み、一回微小噴射の噴射時間ETaを所定値に設定した後、ステップS15において一回微小噴射を実行させる。   Next, in step S13, it is determined whether or not the internal combustion engine is in the non-injection state based on the accelerator operation amount Acc, the target fuel injection amount Qtgt, and the like. If the internal combustion engine is not in the non-injection state, the individual difference correction coefficient α cannot be calculated, and the process returns to step S11. On the other hand, when the internal combustion engine is in the non-injection state, the process proceeds to step S14, the injection time ETa for one minute injection is set to a predetermined value, and then one minute injection is executed in step S15.

次いで、ステップS16において、一回微小噴射が実行されたときの内燃機関の角速度変動Ωzfc1を検出するとともに、ステップS17において、一回微小噴射が実行されないときの内燃機関の角速度変動Ωzfc0を検出する。次いで、ステップS18において、一回微小噴射が実行されたときの角速度変動Ωzfc1と実行されないときの角速度変動Ωzfc0との差分ΔΩzfc1が、あらかじめ実験等により求められて記憶されている基準微小噴射量Qzfc1の燃料が噴射されたときに生じる角速度変動の差分の基準値ΔΩ0に一致しているか否かが判別される。角速度変動の差分ΔΩzfc1が基準値ΔΩ0に一致するまで、ステップS14〜ステップS18が繰返し行われる。このとき、ステップS14で設定される噴射時間ETaの値はその都度変更される。   Next, in step S16, the angular velocity fluctuation Ωzfc1 of the internal combustion engine when the single minute injection is executed is detected, and in step S17, the angular speed fluctuation Ωzfc0 of the internal combustion engine when the single minute injection is not executed is detected. Next, in step S18, the difference ΔΩzfc1 between the angular velocity fluctuation Ωzfc1 when the single micro-injection is executed and the angular velocity fluctuation Ωzfc0 when it is not executed is the reference micro-injection amount Qzfc1 obtained and stored in advance through experiments or the like. It is determined whether or not it matches the reference value ΔΩ0 of the difference in angular velocity fluctuation that occurs when fuel is injected. Steps S14 to S18 are repeated until the angular velocity fluctuation difference ΔΩzfc1 matches the reference value ΔΩ0. At this time, the value of the injection time ETa set in step S14 is changed each time.

角速度変動の差分ΔΩzfc1が基準値ΔΩ0に一致すると、ステップS19に進み、そのときの噴射時間ETaをETa1に設定し、ステップS20において、求められた噴射時間ETa1を、角速度変動の差分が基準値ΔΩ0となる噴射時間としてあらかじめ設定された基準噴射時間ETa0と比較し、基準噴射時間ETa0に対する噴射時間ETa1の比率(ETa1/ETa0)を求めることにより、個体差補正係数αが算出される。   When the difference ΔΩzfc1 in the angular velocity fluctuation matches the reference value ΔΩ0, the process proceeds to step S19, and the injection time ETa at that time is set to ETa1, and in step S20, the obtained injection time ETa1 is set to the difference in angular velocity fluctuation as the reference value ΔΩ0. Is compared with a reference injection time ETa0 set in advance as an injection time to obtain the ratio of the injection time ETa1 to the reference injection time ETa0 (ETa1 / ETa0), thereby calculating the individual difference correction coefficient α.

図7に戻り、ステップS1で個体差補正係数αが算出されると、ステップS2において、目標噴射量Qtgtの演算式に個体差補正係数αが乗算され、補正が実行される。次いで、ステップS3では性状補正係数βの演算が行われる。図9は、性状補正係数βの演算のフローを示している。   Returning to FIG. 7, when the individual difference correction coefficient α is calculated in step S <b> 1, in step S <b> 2, the calculation formula of the target injection amount Qtgt is multiplied by the individual difference correction coefficient α to perform correction. Next, in step S3, the property correction coefficient β is calculated. FIG. 9 shows a flow of calculation of the property correction coefficient β.

個体差補正係数αの演算のフローでは、まずステップS31において、アクセル操作量Accやエンジン回転数Ne等が読込まれた後、ステップS32において、目標燃料噴射量Qtgtが算出される。
次いで、ステップS33において、アクセル操作量Accや目標燃料噴射量Qtgt等に基づき内燃機関が無噴射状態にあるか否かが判別される。内燃機関が無噴射状態にない場合には、性状補正係数βの算出ができないことからステップS31に戻る。一方、内燃機関が無噴射状態にある場合には、ステップS34に進み、二回の定時間微小噴射の噴射間隔ΔTを設定した後、ステップS35において二回の定時間微小噴射を実行させる。
In the calculation flow of the individual difference correction coefficient α, first, in step S31, the accelerator operation amount Acc, the engine speed Ne, and the like are read, and then in step S32, the target fuel injection amount Qtgt is calculated.
Next, in step S33, it is determined whether or not the internal combustion engine is in a non-injection state based on the accelerator operation amount Acc, the target fuel injection amount Qtgt, and the like. If the internal combustion engine is not in the non-injection state, the property correction coefficient β cannot be calculated, and the process returns to step S31. On the other hand, when the internal combustion engine is in the non-injection state, the process proceeds to step S34, and after setting the injection interval ΔT of the two fixed time minute injections, the two fixed time minute injections are executed in step S35.

次いで、ステップS36においてこのときの燃料温度Tfを検出した後、ステップS37において二回の定時間微小噴射が実行されたときの内燃機関の角速度変動Ωzfc2を検出するとともに、ステップS38において二回の定時間微小噴射が実行されないときの内燃機関の角速度変動Ωzfc0を検出する。次いで、ステップS39において、二回の定時間微小噴射が実行されたときの角速度変動Ωzfc2と二回の定時間微小噴射が実行されないときの角速度変動Ωzfc0との差分ΔΩzfc2が算出された後、ステップS40において、算出されたΔΩzfc2の数Nがあらかじめ設定された規定値N0以上になったか否かが判別される。算出されたΔΩzfc2の数Nが規定値N0以上になるまで、ステップS34〜ステップS40が繰返し行われる。このとき、ステップS34で設定される噴射間隔ΔTの値はその都度変更される。   Next, after detecting the fuel temperature Tf at this time in step S36, the angular velocity fluctuation Ωzfc2 of the internal combustion engine when two constant-time micro injections are executed in step S37 is detected, and in step S38, the two constants are detected. The angular velocity fluctuation Ωzfc0 of the internal combustion engine when the time minute injection is not executed is detected. Next, in step S39, after calculating a difference ΔΩzfc2 between the angular velocity fluctuation Ωzfc2 when the two fixed-time micro injections are executed and the angular velocity fluctuation Ωzfc0 when the two fixed-time micro injections are not executed, step S40 is performed. In step S1, it is determined whether or not the calculated number N of ΔΩzfc2 is equal to or larger than a preset specified value N0. Steps S34 to S40 are repeated until the calculated number N of ΔΩzfc2 becomes equal to or greater than the specified value N0. At this time, the value of the injection interval ΔT set in step S34 is changed each time.

算出されたΔΩzfc2の数Nが規定値N0以上になると、ステップS41において、二回の定時間微小噴射が実行されたときの角速度変動Ωzfc2及び実行されないときの角速度変動Ωzfc0の差分ΔΩzfc2と、噴射間隔ΔTとの関係が求められる。次いで、ステップS42では、燃料噴射量Qactと角速度変動の差分ΔΩzfcとの関係を示すデータに基づき、ステップS41で求めた角速度変動の差分ΔΩzfc2と噴射間隔ΔTとの関係から、燃料噴射量Qactと噴射間隔ΔTとの関係が求められる。   When the calculated number N of ΔΩzfc2 becomes equal to or greater than the specified value N0, in step S41, the difference ΔΩzfc2 between the angular velocity fluctuation Ωzfc2 when the two-time constant time minute injection is executed and the angular velocity fluctuation Ωzfc0 when the injection is not executed, and the injection interval A relationship with ΔT is required. Next, in step S42, based on the data indicating the relationship between the fuel injection amount Qact and the angular velocity variation difference ΔΩzfc, the fuel injection amount Qact and the injection are determined from the relationship between the angular velocity variation difference ΔΩzfc2 obtained in step S41 and the injection interval ΔT. A relationship with the interval ΔT is obtained.

次いで、ステップS43において、あらかじめ記憶された、二回の定量微小噴射の噴射間隔ΔTと燃料噴射量Qzfc3との関係に基づき、それぞれの噴射間隔ΔTに対応する燃料噴射量Qactから燃料噴射量Qzfc3を減算した後、ステップS44において、ステップ35で実行された二回の定時間微小噴射の噴射間隔ΔTとレール圧Prailとの関係、すなわち、レール圧の脈動の周期Cprを算出する。   Next, in step S43, the fuel injection amount Qzfc3 is calculated from the fuel injection amount Qact corresponding to each injection interval ΔT based on the relationship between the injection interval ΔT of the two fixed minute injections and the fuel injection amount Qzfc3 stored in advance. After the subtraction, in step S44, the relationship between the injection interval ΔT of the two fixed time minute injections executed in step 35 and the rail pressure Prail, that is, the cycle Cpr of the rail pressure pulsation is calculated.

次いで、ステップS45において、あらかじめ記憶された、一回目の定時間微小燃料噴射の噴射時間ETb1で燃料噴射が行われた場合に生じる圧力脈動の周期Cprと燃料温度Tflと燃料性状(密度)ρとの相関関係を示すデータを参照して、圧力脈動の周期Cprと二回の定時間微小噴射実行時の燃料温度Tflとに基づき使用燃料の燃料性状ρactが推定される。使用燃料の燃料性状ρactが推定されると、ステップS46において、あらかじめ記憶された、基準燃料の燃料性状(密度)ρ0と燃料温度Tfとの相関関係を示すデータを参照して、求められた使用燃料の燃料性状ρactが燃料温度の相関値Tfρに変換される。ステップS47では、求められた燃料温度の相関値Tfρに応じて性状補正係数βが算出される。 Next, in step S45, the pressure pulsation cycle Cpr, the fuel temperature Tfl, the fuel property (density) ρ, which are stored in advance when the fuel is injected at the injection time ETb1 of the first fixed time minute fuel injection stored in advance. The fuel property ρact of the used fuel is estimated on the basis of the pressure pulsation cycle Cpr and the fuel temperature Tfl at the time of executing the two constant-time microinjections. When the fuel property ρact of the fuel used is estimated, in step S46, the obtained use is obtained by referring to the data indicating the correlation between the fuel property (density) ρ0 of the reference fuel and the fuel temperature Tf stored in advance. The fuel property ρact of the fuel is converted into a correlation value Tf ρ of the fuel temperature. In step S47, the property correction coefficient β is calculated according to the obtained correlation value Tf ρ of the fuel temperature.

図7に戻り、ステップS3で性状補正係数βが算出されると、ステップS4において、目標噴射量Qtgtの演算式に性状補正係数βが乗算され、補正が実行される。次いで、ステップS5では、内燃機関の運転状態に応じて目標噴射量Qtgtを演算しながら燃料噴射制御が行われる。   Returning to FIG. 7, when the property correction coefficient β is calculated in step S3, in step S4, the arithmetic expression of the target injection amount Qtgt is multiplied by the property correction coefficient β, and correction is executed. Next, in step S5, fuel injection control is performed while calculating the target injection amount Qtgt according to the operating state of the internal combustion engine.

なお、内燃機関の目標噴射量Qtgtを算出する際には、燃料温度Tfの違いによる燃料の粘度の違いを考慮して、現在の燃料温度Tfによる燃料噴射量の補正が行われることが一般的である。上述した制御フローでは、性状補正係数βを、算出された目標噴射量Qtgtあるいは目標噴射量の演算式に乗算する方法で補正が行われるが、性状補正係数βを算出する過程で得られる現在の使用燃料の燃料性状ρactに基づく燃料温度の相関値Tfρを、現在の燃料温度Tfに足し込むことで、燃料性状ρactの違いを目標噴射量に反映させることができる。 When calculating the target injection amount Qtgt of the internal combustion engine, it is common to correct the fuel injection amount based on the current fuel temperature Tf in consideration of the difference in fuel viscosity due to the difference in fuel temperature Tf. It is. In the control flow described above, correction is performed by a method of multiplying the property correction coefficient β by the calculated target injection amount Qtgt or an arithmetic expression of the target injection amount, but the current obtained in the process of calculating the property correction coefficient β By adding the fuel temperature correlation value Tf ρ based on the fuel property ρact of the fuel used to the current fuel temperature Tf, the difference in the fuel property ρact can be reflected in the target injection amount.

図10は、使用燃料の燃焼性状ρactを燃料温度Tfの相関値として目標噴射量に反映させる場合の燃料噴射制御のフローを示している。このフローを実施する前提として、上述した図9に示される性状補正係数βの演算フローは燃料温度の相関値Tfρが求められるステップS46で終了し、ステップS47は省略される。 FIG. 10 shows a flow of fuel injection control when the combustion property ρact of the used fuel is reflected in the target injection amount as a correlation value of the fuel temperature Tf. As a premise for executing this flow, the calculation flow of the property correction coefficient β shown in FIG. 9 described above ends in step S46 in which the correlation value Tf ρ of the fuel temperature is obtained, and step S47 is omitted.

図10のフローでは、まずステップS51においてアクセル操作量Accやエンジン回転数Ne等が読込まれ、さらにステップS52において燃料温度Tfが読込まれる。次いで、ステップS53において、ステップS52で読込まれた燃料温度Tfに対して、燃料性状ρactに基づく燃料温度の相関値Tfρが足し込まれ見かけ温度Tf’が算出される。 In the flow of FIG. 10, first, the accelerator operation amount Acc, the engine speed Ne, and the like are read in step S51, and further, the fuel temperature Tf is read in step S52. Next, in step S53, the fuel temperature correlation value Tf ρ based on the fuel property ρact is added to the fuel temperature Tf read in step S52 to calculate the apparent temperature Tf ′.

その後、ステップS54において、読込まれたアクセル操作量Accやエンジン回転数Ne、さらに燃料の見かけ温度Tf’等に基づき、目標噴射量Qtgt’が算出される。そして、ステップS55において、ステップS54で算出された目標噴射量Qtgt’に基づいて燃料噴射弁13への通電制御が実行される。   Thereafter, in step S54, a target injection amount Qtgt 'is calculated based on the read accelerator operation amount Acc, engine speed Ne, and apparent fuel temperature Tf'. In step S55, energization control to the fuel injection valve 13 is executed based on the target injection amount Qtgt 'calculated in step S54.

以上説明したように、本実施形態の燃料噴射制御装置及び燃料噴射制御方法によれば、二回の燃料噴射の間隔の違いによって燃料噴射時の気筒内のピストンの位置が異なることによる内燃機関の角速度変動の影響を排除した角速度変動に基づいて燃料性状が推定される。したがって、燃料性状が精度よく推定されるとともに、当該燃料性状に基づいて燃料噴射量の補正が精度よく実行されるようになる。   As described above, according to the fuel injection control device and the fuel injection control method of the present embodiment, the position of the piston in the cylinder at the time of fuel injection differs depending on the difference between the two fuel injection intervals. The fuel property is estimated based on the angular velocity fluctuation excluding the influence of the angular velocity fluctuation. Therefore, the fuel property is accurately estimated, and the correction of the fuel injection amount is accurately executed based on the fuel property.

特に、本実施形態の燃料噴射制御装置及び燃料噴射制御方法は、燃料性状による燃料噴射量のばらつきだけでなく、燃料噴射弁の個体差や燃料温度による燃料噴射量のばらつきも解消され、目標噴射量と実際の燃料噴射量とのずれが低減される。さらに、燃料性状を燃料温度の相関値に変換して検出される燃料温度に足し込むことで、目標噴射量の補正の実行回数を増やすことなく燃料噴射量の補正が実行される。   In particular, the fuel injection control device and the fuel injection control method of the present embodiment eliminate not only variations in fuel injection amount due to fuel properties, but also differences in individual fuel injection valves and variations in fuel injection amount due to fuel temperature. The deviation between the quantity and the actual fuel injection quantity is reduced. Further, the fuel injection amount is corrected without increasing the number of executions of the target injection amount correction by adding the fuel property to the detected fuel temperature by converting the fuel property into a correlation value of the fuel temperature.

さらに、本実施形態の燃料噴射制御装置及び燃料噴射制御方法では、内燃機関の無噴射状態を利用して微小噴射を実行して各補正係数を求めるようになっており、内燃機関の気筒内での燃焼状態の違い等によって運転者に違和感を感じさせることなく、補正係数が求められる。   Furthermore, in the fuel injection control device and the fuel injection control method according to the present embodiment, each correction coefficient is obtained by executing minute injection using the non-injection state of the internal combustion engine. The correction coefficient is obtained without making the driver feel uncomfortable due to the difference in the combustion state of the vehicle.

1:燃料タンク、2:電動低圧ポンプ、5:高圧ポンプ、6:燃料吸入弁、7:プランジャ、8:流量制御弁、9:燃料吐出弁、10:コモンレール、12:圧力制御弁、13:燃料噴射弁、14:圧力調整弁、15:カム、16:カム室、18:低圧燃料通路、21:レール圧センサ、30a・30b・30c:リターン通路、37・39:高圧燃料通路、40:内燃機関、42:ピストン、43:クランクシャフト、45:クランク角センサ、50:蓄圧式燃料噴射装置、70:燃料噴射制御装置、71:目標噴射量演算部、72:無噴射状態検出部、73:角速度検出部、74:燃料温度検出部、75:係数補正部、77:燃料噴射量補正部、79:燃料噴射弁制御部、80:個体差補正係数演算部、81:一回微小噴射実行制御部、83:第1の補正係数演算部、90:性状補正係数演算部、91:二回定時間微小噴射実行制御部、93:圧力脈動周期演算部、95:第2の補正係数演算部 1: Fuel tank, 2: Electric low-pressure pump, 5: High-pressure pump, 6: Fuel intake valve, 7: Plunger, 8: Flow control valve, 9: Fuel discharge valve, 10: Common rail, 12: Pressure control valve, 13: Fuel injection valve, 14: pressure adjusting valve, 15: cam, 16: cam chamber, 18: low pressure fuel passage, 21: rail pressure sensor, 30a, 30b, 30c: return passage, 37, 39: high pressure fuel passage, 40: Internal combustion engine, 42: piston, 43: crankshaft, 45: crank angle sensor, 50: accumulator fuel injection device, 70: fuel injection control device, 71: target injection amount calculation unit, 72: no injection state detection unit, 73 : Angular velocity detection unit, 74: fuel temperature detection unit, 75: coefficient correction unit, 77: fuel injection amount correction unit, 79: fuel injection valve control unit, 80: individual difference correction coefficient calculation unit, 81: execution of one minute injection Control unit, 3: first correction coefficient calculation unit, 90: fuel property correction coefficient calculation unit, 91: twice constant-time small injection execution control unit, 93: pressure pulsation cycle calculating unit, 95: second correction coefficient calculator

Claims (10)

コモンレールに蓄積された燃料を燃料噴射弁により内燃機関の気筒内に噴射する蓄圧式燃料噴射装置の制御に用いられ、前記内燃機関の各気筒への目標燃料噴射量を演算する目標噴射量演算部と、前記目標燃料噴射量に基づき前記燃料噴射弁の駆動制御を行う燃料噴射弁制御部と、を備えた燃料噴射制御装置において、
前記内燃機関の無噴射状態を検出する無噴射状態検出部と、
前記内燃機関の角速度を検出する角速度検出部と、
前記内燃機関の無噴射状態が検出されたときに、所定の噴射間隔で行われる二回の定時間噴射を前記噴射間隔を変えながら複数回実行させるとともに前記二回の定時間噴射を複数回実行したときのそれぞれの前記内燃機関の角速度変動又は角速度変動の相関値に基づいて求められる前記燃料の圧力脈動の周期から前記燃料の燃料性状を推定し、前記燃料性状に基づき前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行うための性状補正係数を算出する性状補正係数演算部と、
前記性状補正係数によって前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行う燃料噴射量補正部と、
あらかじめ記憶された、前記噴射間隔の違いのみによる前記内燃機関の角速度変動又は角速度変動の相関値に基づき、前記性状補正係数の補正を行う係数補正部と、
を備えることを特徴とする燃料噴射制御装置。
A target injection amount calculation unit that is used for controlling an accumulator fuel injection device that injects fuel accumulated in a common rail into a cylinder of an internal combustion engine by a fuel injection valve, and calculates a target fuel injection amount to each cylinder of the internal combustion engine And a fuel injection control unit that performs drive control of the fuel injection valve based on the target fuel injection amount,
A non-injection state detector for detecting a non-injection state of the internal combustion engine;
An angular velocity detector for detecting an angular velocity of the internal combustion engine;
When the non-injection state of the internal combustion engine is detected, two fixed-time injections performed at a predetermined injection interval are executed a plurality of times while changing the injection interval, and the two fixed-time injections are executed a plurality of times The fuel property of the fuel is estimated from the pressure pulsation period of the fuel obtained based on the angular velocity fluctuations of each of the internal combustion engines or the correlation value of the angular velocity fluctuations, and the target fuel injection amount or A property correction coefficient calculator for calculating a property correction coefficient for correcting the drive signal of the fuel injection valve;
A fuel injection amount correction unit that corrects the target fuel injection amount or the drive signal of the fuel injection valve by the property correction coefficient;
A coefficient correction unit that corrects the property correction coefficient based on an angular velocity variation of the internal combustion engine or a correlation value of the angular velocity variation, which is stored in advance only by the difference in the injection interval;
A fuel injection control device comprising:
前記係数補正部は、あらかじめ記憶された、それぞれ所定の噴射量で噴射される二回の定量噴射を噴射間隔を変えて複数回実行したときの前記噴射間隔と前記内燃機関の角速度変動又は角速度変動の相関値との関係に基づき、前記性状補正係数の補正を行うことを特徴とする請求項1に記載の燃料噴射制御装置。   The coefficient correction unit stores the injection interval and the angular velocity fluctuation or angular velocity fluctuation of the internal combustion engine when two constant injections, each of which is injected at a predetermined injection amount, are stored a plurality of times while changing the injection interval. The fuel injection control device according to claim 1, wherein the property correction coefficient is corrected based on a relationship with the correlation value. 前記性状補正係数演算部は、
前記内燃機関の無噴射状態が検出されたときに、前記内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで、前記二回の定時間噴射を前記噴射間隔を変えながら複数回実行させる二回噴射実行制御部と、
前記二回の定時間噴射を複数回実行したときのそれぞれの前記内燃機関の角速度変動を前記定時間噴射を実行しなかったときの角速度変動と比較することで前記二回の定時間噴射の噴射間隔と前記内燃機関の角速度変動との関係を求め、前記噴射間隔と前記角速度変動又は角速度変動の相関値との関係に基づき前記燃料の圧力脈動の周期を演算する圧力脈動周期演算部と、
前記燃料の圧力脈動の周期に応じて前記燃料性状を推定するとともに前記燃料性状に基づき前記性状補正係数を算出する補正係数演算部と、
を含むことを特徴とする請求項1又は2に記載の燃料噴射制御装置。
The property correction coefficient calculator is
When the non-injection state of the internal combustion engine is detected, the second injection timing in the cycle of the internal combustion engine is fixed, while the first injection timing is made different so that the two fixed-time injections are performed. A twice-injection execution control unit that executes a plurality of times while changing the injection interval;
Injection of the two constant-time injections by comparing the angular velocity fluctuation of each internal combustion engine when the two constant-time injections are executed a plurality of times with the angular speed fluctuation when the constant-time injection is not executed A pressure pulsation cycle calculating unit that calculates a relationship between the interval and the angular velocity fluctuation of the internal combustion engine, and calculates a cycle of the pressure pulsation of the fuel based on a relationship between the injection interval and the angular velocity fluctuation or a correlation value of the angular velocity fluctuation;
A correction coefficient calculation unit that estimates the fuel property according to the period of the pressure pulsation of the fuel and calculates the property correction coefficient based on the fuel property;
The fuel injection control device according to claim 1, comprising:
前記圧力脈動周期演算部は、前記角速度変動を前記二回の定時間噴射による燃料噴射量の変動に換算して前記燃料の圧力脈動の周期を演算することを特徴とする請求項3に記載の燃料噴射制御装置。   4. The pressure pulsation cycle calculating unit calculates the cycle of the pressure pulsation of the fuel by converting the angular velocity variation into a variation in fuel injection amount due to the two constant-time injections. Fuel injection control device. 前記定時間噴射は微小噴射であることを特徴とする請求項1〜4のいずれか一項に記載の燃料噴射制御装置。   The fuel injection control device according to any one of claims 1 to 4, wherein the fixed-time injection is micro injection. 前記係数補正部は、あらかじめ記憶された、前記内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで噴射間隔を変えながら前記二回の定量噴射を複数回行った場合における、前記二回の定量噴射の噴射間隔と前記内燃機関の角速度変動との関係に基づき、前記圧力脈動周期演算部における前記角速度変動、前記圧力脈動の周期又は前記燃料噴射量の少なくとも一つを補正することにより、前記性状補正係数の補正を行うことを特徴とする請求項3〜5のいずれか一項に記載の燃料噴射制御装置。   The coefficient correction unit fixes the second injection timing stored in advance in the cycle of the internal combustion engine, while changing the injection interval by changing the first injection timing, and performs the two fixed injections. Based on the relationship between the injection interval of the two quantitative injections and the angular velocity fluctuation of the internal combustion engine when performed a plurality of times, the angular velocity fluctuation, the pressure pulsation period or the fuel injection amount in the pressure pulsation period calculation unit The fuel injection control device according to any one of claims 3 to 5, wherein the property correction coefficient is corrected by correcting at least one of the following. 前記燃料噴射制御装置は、前記内燃機関の無噴射状態が検出されたときに、噴射時間を変えながら一回の微小噴射を複数回実行させるとともに前記一回の微小噴射が実行されたときの前記内燃機関の角速度変動があらかじめ設定された基準変動数となったときの噴射時間を求め、前記噴射時間と基準噴射時間との比に基づき前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行うための個体差補正係数を算出する個体差補正係数演算部を備え、
前記燃料噴射量補正部はさらに前記個体差補正係数によって前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行うことを特徴とする請求項1〜6のいずれか一項に記載の燃料噴射制御装置。
When the non-injection state of the internal combustion engine is detected, the fuel injection control device performs one microinjection a plurality of times while changing the injection time and performs the one microinjection. An injection time when the angular velocity fluctuation of the internal combustion engine becomes a preset reference fluctuation number is obtained, and the target fuel injection amount or the drive signal of the fuel injection valve is corrected based on the ratio between the injection time and the reference injection time An individual difference correction coefficient calculation unit for calculating an individual difference correction coefficient for performing
The fuel according to any one of claims 1 to 6, wherein the fuel injection amount correction unit further corrects the target fuel injection amount or the drive signal of the fuel injection valve by the individual difference correction coefficient. Injection control device.
前記性状補正係数演算部は、前記燃料性状を前記燃料温度の相関値に変換して前記性状補正係数を求めることを特徴とする請求項1〜7のいずれか一項に記載の燃料噴射制御装置。   The fuel injection control device according to any one of claims 1 to 7, wherein the property correction coefficient calculation unit obtains the property correction coefficient by converting the fuel property into a correlation value of the fuel temperature. . コモンレールに蓄積された燃料を燃料噴射弁により内燃機関の気筒内に噴射する蓄圧式燃料噴射装置に用いられ、前記内燃機関の各気筒への目標燃料噴射量を演算する目標噴射量演算部と、前記目標燃料噴射量に基づき前記燃料噴射弁の駆動制御を行う燃料噴射弁制御部と、を備えた燃料噴射制御装置において、
前記内燃機関の無噴射状態を検出する無噴射状態検出部と、
前記内燃機関の角速度を検出する角速度検出部と、
前記内燃機関の無噴射状態が検出されたときに、噴射時間を変えながら一回の微小噴射を複数回実行させる一回微小噴射実行制御部と、
前記一回の微小噴射が実行されたときの前記内燃機関の角速度変動があらかじめ設定された基準変動数となったときの噴射時間を求めるとともに、前記噴射時間と基準噴射時間との比に基づき前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行うための個体差補正係数を算出する第1の補正係数演算部と、
前記内燃機関の無噴射状態が検出されたときに、所定の噴射間隔で噴射される二回の定時間微小噴射を、前記内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで前記噴射間隔を変えながら複数回実行させる二回定時間微小噴射実行制御部と、
前記二回の定時間微小噴射が複数回実行されたときのそれぞれの前記内燃機関の角速度変動を前記定時間微小噴射を実行しなかったときの角速度変動と比較することで、前記二回の定時間微小噴射の噴射間隔と前記内燃機関の角速度変動又は角速度変動の相関値との関係を求め、前記噴射間隔と前記角速度変動又はその相関値との関係に基づき前記燃料の圧力脈動の周期を演算する圧力脈動周期演算部と、
前記燃料の圧力脈動の周期に応じて前記燃料の燃料性状を推定するとともに、前記燃料性状に基づき前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行うための性状補正係数を算出する第2の補正係数演算部と、
あらかじめ記憶された、それぞれ所定の噴射量で噴射される二回の定量微小噴射を、前記内燃機関のサイクル中における二回目の噴射時期を固定する一方、一回目の噴射時期を異ならせることで噴射間隔を変えて複数回実行したときの前記二回の定量微小噴射の噴射間隔と前記内燃機関の角速度変動又は角速度変動の相関値との関係に基づき、前記圧力脈動周期演算部における前記角速度変動又はその相関値あるいは前記圧力脈動の周期の少なくとも一つを補正する係数補正部と、
前記個体差補正係数及び前記性状補正係数によって前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行う燃料噴射量補正部と、
を備えることを特徴とする燃料噴射制御装置。
A target injection amount calculation unit for calculating a target fuel injection amount to each cylinder of the internal combustion engine, which is used in an accumulator fuel injection device that injects fuel accumulated in the common rail into a cylinder of the internal combustion engine by a fuel injection valve; A fuel injection control device comprising: a fuel injection valve control unit that performs drive control of the fuel injection valve based on the target fuel injection amount;
A non-injection state detector for detecting a non-injection state of the internal combustion engine;
An angular velocity detector for detecting an angular velocity of the internal combustion engine;
A one-time micro-injection execution control unit that executes one micro-injection a plurality of times while changing the injection time when a non-injection state of the internal combustion engine is detected;
Obtaining an injection time when the angular velocity fluctuation of the internal combustion engine when the one minute injection is executed becomes a preset reference fluctuation number, and based on the ratio of the injection time and the reference injection time A first correction coefficient calculator that calculates an individual difference correction coefficient for correcting the target fuel injection amount or the drive signal of the fuel injection valve;
When the non-injection state of the internal combustion engine is detected, the fixed injection time for the second time in the cycle of the internal combustion engine is fixed for the two fixed-time micro injections that are injected at a predetermined injection interval. A two-time fixed-time micro-injection execution control unit that executes a plurality of times while changing the injection interval by changing the injection timing of
By comparing the angular velocity fluctuation of each of the internal combustion engines when the two fixed-time micro injections are executed a plurality of times with the angular velocity fluctuation when the fixed-time micro injection is not executed, Find the relationship between the injection interval of time minute injection and the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation, and calculate the pressure pulsation cycle of the fuel based on the relationship between the injection interval and the angular velocity fluctuation or the correlation value A pressure pulsation cycle calculating unit to
The fuel property of the fuel is estimated according to the period of the pressure pulsation of the fuel, and a property correction coefficient for correcting the target fuel injection amount or the drive signal of the fuel injection valve is calculated based on the fuel property. A second correction coefficient calculation unit;
Two fixed minute injections, each of which is stored in advance at a predetermined injection amount, are fixed by fixing the second injection timing in the cycle of the internal combustion engine, while varying the first injection timing. Based on the relationship between the injection interval of the two quantitative micro-injections and the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular speed fluctuation when the interval is changed a plurality of times, the angular velocity fluctuation in the pressure pulsation cycle calculation unit or A coefficient correction unit that corrects at least one of the correlation value or the period of the pressure pulsation;
A fuel injection amount correction unit that corrects the target fuel injection amount or the drive signal of the fuel injection valve by the individual difference correction coefficient and the property correction coefficient;
A fuel injection control device comprising:
コモンレールに蓄積された燃料を燃料噴射弁により内燃機関の気筒内に噴射する蓄圧式燃料噴射装置における燃料噴射量の補正を行う燃料噴射制御方法において、
前記内燃機関の無噴射状態が検出されたときに、所定の噴射間隔で行われる二回の定時間噴射を前記噴射間隔を変えながら複数回実行させるとともに前記二回の定時間噴射を複数回実行したときのそれぞれの前記内燃機関の角速度変動又は角速度変動の相関値を求め、
あらかじめ記憶された、前記噴射間隔の違いのみによる前記内燃機関の角速度変動又は角速度変動の相関値に基づき、求められた前記二回の定時間噴射実行時の前記角速度変動又はその相関値から、前記噴射間隔に応じた前記角速度変動又はその相関値を減算し、
減算して得られた値に基づいて求められる前記燃料の圧力脈動の周期に応じて前記燃料の燃料性状を推定し、
前記燃料性状に基づき前記目標燃料噴射量又は前記燃料噴射弁の駆動信号の補正を行うことを特徴とする燃料噴射制御方法。
In a fuel injection control method for correcting a fuel injection amount in an accumulator fuel injection device that injects fuel accumulated in a common rail into a cylinder of an internal combustion engine by a fuel injection valve,
When the non-injection state of the internal combustion engine is detected, two fixed-time injections performed at a predetermined injection interval are executed a plurality of times while changing the injection interval, and the two fixed-time injections are executed a plurality of times Determining the angular velocity fluctuation or angular velocity fluctuation correlation value of each internal combustion engine when
Based on the angular velocity fluctuation of the internal combustion engine or the correlation value of the angular velocity fluctuation, which is stored in advance, based on only the difference in the injection interval, the angular velocity fluctuation or the correlation value at the time of performing the two constant-time injections, Subtract the angular velocity fluctuation or its correlation value according to the injection interval,
Estimating the fuel property of the fuel according to the period of the pressure pulsation of the fuel obtained based on the value obtained by subtraction,
A fuel injection control method, wherein the target fuel injection amount or the drive signal of the fuel injection valve is corrected based on the fuel property.
JP2009185220A 2009-08-07 2009-08-07 Fuel injection control device Active JP5229965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185220A JP5229965B2 (en) 2009-08-07 2009-08-07 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185220A JP5229965B2 (en) 2009-08-07 2009-08-07 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2011038449A JP2011038449A (en) 2011-02-24
JP5229965B2 true JP5229965B2 (en) 2013-07-03

Family

ID=43766463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185220A Active JP5229965B2 (en) 2009-08-07 2009-08-07 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP5229965B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140664A (en) * 2014-01-27 2015-08-03 マツダ株式会社 Fuel injection controller
JP6168016B2 (en) * 2014-09-02 2017-07-26 株式会社デンソー Fuel density detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428201B2 (en) * 2004-11-01 2010-03-10 株式会社デンソー Accumulated fuel injection system
JP4915308B2 (en) * 2007-07-27 2012-04-11 トヨタ自動車株式会社 Fuel cetane number detection device for internal combustion engine
JP4650478B2 (en) * 2007-11-14 2011-03-16 トヨタ自動車株式会社 Diesel engine control device

Also Published As

Publication number Publication date
JP2011038449A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
US7255087B2 (en) Method for controlling an injection system of an internal combustion engine
US20070079811A1 (en) Fuel injection controller of diesel engine
JP2009097385A (en) Fuel injection state detection device
JP2002276445A (en) Fuel supplying device
JP2001082223A (en) Common rail type fuel injection device
JP5287915B2 (en) Fuel injection state estimation device
JP5212502B2 (en) Fuel injection device
JP4118652B2 (en) Accumulated fuel injection system
JP2009057908A (en) Fuel injection control device and fuel injection system using the device
US20150112576A1 (en) Pump control apparatus for fuel supply system of fuel-injection engine
JP5774521B2 (en) Fuel leak detection device
EP2031229B1 (en) Apparatus for controlling quantity of fuel to be actually sprayed from injector in multiple injection mode
JP4497044B2 (en) Fuel injection control device
JP5229965B2 (en) Fuel injection control device
JP5594825B2 (en) Accumulated fuel injection device and control device therefor
JP4470976B2 (en) Fuel injection control device and fuel injection system using the same
JP4470975B2 (en) Fuel injection control device and fuel injection system using the same
JP5545823B2 (en) Control device for accumulator fuel injector
WO2018061472A1 (en) Vehicular control device
JP2000314340A (en) Common rail fuel pressure control device for internal combustion engine
JP5472151B2 (en) Fuel injection device
JP4622775B2 (en) Fuel injection control device
JP2003314338A (en) Injection quantity control device for internal combustion engine
JP2020084851A (en) Fuel injection control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250