JP5229300B2 - Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same - Google Patents

Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same Download PDF

Info

Publication number
JP5229300B2
JP5229300B2 JP2010241478A JP2010241478A JP5229300B2 JP 5229300 B2 JP5229300 B2 JP 5229300B2 JP 2010241478 A JP2010241478 A JP 2010241478A JP 2010241478 A JP2010241478 A JP 2010241478A JP 5229300 B2 JP5229300 B2 JP 5229300B2
Authority
JP
Japan
Prior art keywords
less
ppm
toughness
weld metal
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010241478A
Other languages
Japanese (ja)
Other versions
JP2011067871A (en
Inventor
直哉 早川
宏一 井原
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010241478A priority Critical patent/JP5229300B2/en
Publication of JP2011067871A publication Critical patent/JP2011067871A/en
Application granted granted Critical
Publication of JP5229300B2 publication Critical patent/JP5229300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、ラインパイプや構造用鋼管等に用いて好適な低温靱性に優れる高強度厚肉溶接ベンド鋼管用の素管およびその製造方法に関するものである。   The present invention relates to a raw pipe for a high-strength thick-walled welded steel pipe excellent in low-temperature toughness suitable for use in line pipes, structural steel pipes, and the like, and a method for producing the same.

大径ベンド鋼管は、通常、サブマージアーク溶接法によりシーム溶接を行って製管した溶接鋼管を、部分的に高周波誘導加熱により曲げ加工し、その後水冷し、さらに管全体に焼き戻し処理を施すか、またはかかる焼き戻し処理を省略して製造するのが一般的である。
つまり、ベンド管では、曲げ加工部は、焼き入れ、または焼き入れ焼き戻しの熱処理が施され、一方曲げ加工を受けていない部分は、溶接のまま、または焼き戻しの熱処理が施されることから、ベンド管には、1本の管材中に異なる熱処理を受ける部分が混在することになる。
Large-diameter bend steel pipes are usually welded steel pipes made by seam welding by the submerged arc welding method, partially bent by high-frequency induction heating, then water-cooled, and then the whole pipe is tempered. Or, it is general to manufacture without such a tempering process.
In other words, in a bend tube, the bent portion is subjected to heat treatment of quenching or quenching and tempering, while the portion not subjected to bending processing is subjected to heat treatment of tempering as it is welded. In the bend pipe, parts subjected to different heat treatments are mixed in one pipe material.

ところで、かかる大径ベンド鋼管では、要求される必要特性の中でも特に低温靱性が重要とされ、この特性はとりわけ溶接金属において問題となる。
溶接金属の低温靱性を向上させる方法としては、TiとBの複合添加がよく知られている。この技術は、Bの添加により、旧オーステナイト粒界に生成する粒界フェライトを抑制し、Tiの酸化物を溶融金属内に分散させることによって旧オーステナイト粒内におけるフェライトの生成を促進させ、フェライトを微細化させることによって、溶接金属の溶接ままの低温靱性を向上させる方法である。
By the way, in such a large-diameter bend steel pipe, low-temperature toughness is particularly important among the required properties required, and this property becomes a problem particularly in weld metal.
As a method for improving the low temperature toughness of the weld metal, combined addition of Ti and B is well known. This technology suppresses the grain boundary ferrite generated in the prior austenite grain boundaries by the addition of B, and promotes the formation of ferrite in the prior austenite grains by dispersing the Ti oxide in the molten metal. This is a method of improving the low temperature toughness of the weld metal as it is by making it finer.

しかしながら、溶接後に急熱−急冷を受ける溶接金属の靱性を確保する方法については、必ずしも明らかではなく、溶接金属の焼き戻し後の靱性については、焼き戻し脆性を助長する元素を低減してその靱性劣化を最小限に止める方法等が知られているが、この方法によっても必ずしも十分な成果を挙げることはできなかった。   However, it is not always clear how to secure the toughness of the weld metal that undergoes rapid heating and quenching after welding, and the toughness after tempering of the weld metal is reduced by reducing the elements that promote temper brittleness. A method for minimizing deterioration is known, but this method has not always produced a satisfactory result.

すなわち、Ti−B処理は、溶接ままの溶接金属の靱性を向上させるものの、高強度ベンド管曲げ加工部の溶接金属は必ずしも高靱化せず、むしろ靱性が劣化する傾向が見られた。
また、Ti−B処理した溶接金属をそなえる鋼管に焼き戻し処理を行うと、溶接金属の靱性は劣化し、良好な低温靱性は得られなかった。
さらに、多層溶接では、次パスにより再熱を受けた溶接金属の靱性向上にはTi−B処理は有効とはいえない。
That is, although the Ti-B treatment improves the toughness of the weld metal as-welded, the weld metal in the bent portion of the high-strength bend pipe is not necessarily toughened, but rather the toughness tends to deteriorate.
Moreover, when the tempering process was performed on the steel pipe having the weld metal treated with Ti-B, the toughness of the weld metal deteriorated, and good low temperature toughness was not obtained.
Furthermore, in multilayer welding, the Ti-B treatment is not effective for improving the toughness of the weld metal that has been reheated by the next pass.

この発明は、上記の現状に鑑み開発されたもので、サブマージアーク溶接により、内外面を合計で3パス以上の多層溶接にて接合したのち、高周波加熱曲げ加工を行う大径ベンド鋼管において、溶接まま、高周波加熱焼き入れまま、高周波加熱焼き入れ−焼き戻しおよび焼き戻しの各熱処理を受ける溶接金属の全ての部分について優れた低温靱性を有する高強度厚肉溶接ベンド鋼管用の素管を、その有利な製造方法と共に提案することを目的とする。
なお、この発明において低温靱性に優れるとは、−46℃でのシャルピー衝撃試験において 100J以上の吸収エネルギーを有することをいう。
The present invention has been developed in view of the above-described situation. In a large-diameter bend steel pipe that performs high-frequency heating bending after joining the inner and outer surfaces by multi-pass welding of 3 passes or more in total by submerged arc welding, As it is, the raw pipe for high-strength thick-walled welded bend steel pipe having excellent low-temperature toughness for all the parts of the weld metal subjected to the respective heat treatments of induction heating quenching-tempering and tempering as it is. The object is to propose with an advantageous manufacturing method.
In this invention, being excellent in low temperature toughness means having an absorbed energy of 100 J or more in a Charpy impact test at -46 ° C.

さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、溶接金属の低温靱性に及ぼす影響が特に大きい元素はTi,V, Al,O,NおよびB、さらには含有された場合のNiであって、溶接・製管後の熱処理条件の如何にかかわらず、溶接部の全ての領域において優れた低温靱性を確保するためには、これらの元素を所定の範囲に厳密に制御することが重要であることの知見を得た。
この発明は、上記の知見に立脚するものである。
As a result of intensive studies to achieve the above object, the inventors have found that elements that have a particularly large effect on the low temperature toughness of weld metal are Ti, V, Al, O, N, and B, and further. In order to ensure excellent low temperature toughness in all areas of the weld zone, regardless of the heat treatment conditions after welding and pipe making, these elements are strictly within a predetermined range. We have learned that it is important to control.
The present invention is based on the above findings.

すなわち、この発明の要旨構成は次のとおりである。
1.質量百分率で
C:0.01〜0.10%、
Si:0.05〜0.5 %、
Mn:0.5 〜2.0 %、
Ti:0.005 〜0.09%、
Nb:0.003 〜0.08%、
V:0.003 〜0.08%、
Al:0.008 〜0.06%および
N:0.007 %以下
を含み、かつ
Mo:0.5 %以下、
Ni:5.0 %以下、
Cu:1.0 %以下および
Cr:0.5 %以下
のうちから選んだ少なくとも一種を含有し、残部はFeおよび不可避的不純物の組成からなる鋼管の内外面を、質量百分率で
C:0.01〜0.12%、
Si:0.01〜0.30%、
Mn:0.50〜1.89%、
Mo:0.45%以下、
Cu:0.13%以下、
Ni:5.0 %以下、
Ti:0.3 %以下、
Al:0.3 %以下、
B:0.03%以下および
N:0.008 %以下
を含み、残部はFeおよび不可避的不純物の組成からなる低合金鋼溶接用ワイヤーを用い、合計3パス以上の多層溶接にて接合した高強度厚肉鋼管であって、溶接金属の成分中、特にTi,V, Al,O,N,BおよびNiが、下記の成分組成範囲および(1), (2)式の関係を満足することを特徴とする、溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管。

Ti:30〜400 ppm 、
V:20〜500 ppm 、
Al:20〜500 ppm 、
O:500 ppm 以下、
N:80 ppm以下、
B:3〜60 ppmおよび
Ni:3.0 mass%以下
〔N〕− 0.087〔Ti〕−0.03〔V〕−9≦0 --- (1)
0.17 ≦〔B〕/G≦ 2.5 --- (2)
ただし、G=0.15〔O〕− 0.113〔Al〕−0.0345〔Ti〕+1
また、〔 〕内は ppm表示
That is, the gist configuration of the present invention is as follows.
1. By mass percentage
C: 0.01-0.10%,
Si: 0.05 to 0.5%,
Mn: 0.5-2.0%,
Ti: 0.005 to 0.09%,
Nb: 0.003 to 0.08%,
V: 0.003 to 0.08%,
Al: 0.008 to 0.06% and
N: 0.007% or less
And including
Mo: 0.5% or less,
Ni: 5.0% or less,
Cu: 1.0% or less and
Cr: 0.5% or less
Containing at least one selected from the above, with the balance being the mass percentage of the inner and outer surfaces of the steel pipe composed of Fe and unavoidable impurities.
C: 0.01 to 0.12%,
Si: 0.01-0.30%
Mn: 0.50-1.89%
Mo: 0.45% or less,
Cu: 0.13% or less,
Ni: 5.0% or less,
Ti: 0.3% or less,
Al: 0.3% or less,
B: 0.03% or less and
N: 0.008% or less
The balance is a high-strength thick-walled steel pipe joined by multi-layer welding with a total of three or more passes , using a low-alloy steel welding wire composed of Fe and inevitable impurities. Ti, V, Al, O, N, B, and Ni satisfy the following component composition ranges and the relationships of formulas (1) and (2). Base pipe for welded bend steel pipe.
Record
Ti: 30-400 ppm
V: 20-500 ppm,
Al: 20-500 ppm
O: 500 ppm or less,
N: 80 ppm or less,
B: 3-60 ppm and
Ni: 3.0 mass% or less [N] -0.087 [Ti] -0.03 [V] -9≤0 --- (1)
0.17 ≦ [B] / G ≦ 2.5 --- (2)
However, G = 0.15 [O] −0.113 [Al] −0.0345 [Ti] +1
In addition, [] shows ppm.

.質量百分率で
C:0.01〜0.10%、
Si:0.05〜0.5 %、
Mn:0.5 〜2.0 %、
Ti:0.005 〜0.09%、
Nb:0.003 〜0.08%、
V:0.003 〜0.08%、
Al:0.008 〜0.06%および
N:0.007 %以下
を含み、かつ
Mo:0.5 %以下、
Ni:5.0 %以下、
Cu:1.0 %以下および
Cr:0.5 %以下
のうちから選んだ少なくとも一種を含有し、残部はFeおよび不可避的不純物の組成からなる高強度厚肉鋼板を、O形状に成形したのち、サブマージアーク溶接により、鋼管の内外面を合計3パス以上の多層溶接にて接合するに際し、
溶接フラックスとして、次式
BL=6.05〔CaO〕+6.05〔CaF 2 〕+ 4.0〔MgO〕+ 4.8〔MnO〕
+ 3.4〔FeO〕−6.31〔SiO 2 〕−4.97〔TiO 2 〕− 0.2〔A1 2 O 3
ただし、〔 〕内は mol分率表示
で示される塩基度(BL)が 0.2〜2.5 を満足する高塩基性のフラックスを用い、かつ溶接ワイヤとして、質量百分率で
C:0.01〜0.12%、
Si:0.01〜0.30%、
Mn:0.50〜1.89%、
Mo:0.45%以下、
Cu:0.13%以下、
Ni:5.0 %以下、
Ti:0.3 %以下、
Al:0.3 %以下、
B:0.03%以下および
N:0.008 %以下
を含有し、残部はFeおよび不可避的不純物の組成からなる低合金鋼溶接用ワイヤーを用いることにより、溶接金属の成分中、特にTi,V, Al,O,N, BおよびNiについて、下記の成分組成範囲および(1), (2)式の関係を満足する範囲に調整することを特徴とする、溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管の製造方法。

Ti:30〜400 ppm 、
V:20〜500 ppm 、
Al:20〜500 ppm 、
O:500 ppm 以下、
N:80 ppm以下、
B:3〜60 ppmおよび
Ni:3.0 mass%以下
〔N〕− 0.087〔Ti〕−0.03〔V〕−9≦0 --- (1)
0.17 ≦〔B〕/G≦ 2.5 --- (2)
ただし、G=0.15〔O〕− 0.113〔Al〕−0.0345〔Ti〕+1
また、〔 〕内は ppm表示
2 . In mass percentage C: 0.01-0.10%,
Si: 0.05 to 0.5%,
Mn: 0.5-2.0%,
Ti: 0.005 to 0.09%,
Nb: 0.003 to 0.08%,
V: 0.003 to 0.08%,
Al: 0.008 to 0.06% and N: 0.007% or less, and
Mo: 0.5% or less,
Ni: 5.0% or less,
Cu: 1.0% or less and
Cr: Contains at least one selected from 0.5% or less , the balance of Fe and unavoidable impurities is formed into a high-strength thick steel plate into O shape, and then the inner and outer surfaces of the steel pipe by submerged arc welding When joining by multi-layer welding of 3 passes or more in total,
As welding flux , the following formula
BL = 6.05 [CaO] + 6.05 [CaF 2 ] + 4.0 [MgO] + 4.8 [MnO]
+3.4 [FeO] -6.31 [SiO 2 ] -4.97 [TiO 2 ] -0.2 [A1 2 O 3 ]
However, [] is mol fraction display
A basicity (BL) represented by the following is used: a high basic flux satisfying 0.2 to 2.5 , and as a welding wire, C: 0.01 to 0.12% by mass percentage,
Si: 0.01-0.30%
Mn: 0.50-1.89%
Mo: 0.45% or less,
Cu: 0.13% or less,
Ni: 5.0% or less,
Ti: 0.3% or less,
Al: 0.3% or less,
B: 0.03% or less and N: 0.008% or less, with the balance being composed of Fe and inevitable impurities, low-alloy steel welding wire, among the components of the weld metal, especially Ti, V, Al, A high-strength, thick-walled weld bend with excellent weld toughness characterized by adjusting O, N, B, and Ni to the following component composition ranges and ranges satisfying the relations of formulas (1) and (2) A method of manufacturing a raw pipe for a steel pipe.
Record
Ti: 30-400 ppm
V: 20-500 ppm,
Al: 20-500 ppm
O: 500 ppm or less,
N: 80 ppm or less,
B: 3-60 ppm and
Ni: 3.0 mass% or less [N] -0.087 [Ti] -0.03 [V] -9≤0 --- (1)
0.17 ≦ [B] / G ≦ 2.5 --- (2)
However, G = 0.15 [O] −0.113 [Al] −0.0345 [Ti] +1
In addition, [] shows ppm.

かくして、この発明によれば、高強度厚肉溶接ベンド鋼管用の素管において、AW,AT後は勿論のこと、AQ、QT後においても、低温靱性に優れかつ高強度の溶接金属を得ることができ、その工業的価値は極めて大きい。   Thus, according to the present invention, it is possible to obtain a high-strength weld metal having excellent low-temperature toughness not only after AW and AT, but also after AQ and QT, in a raw pipe for high-strength thick-walled welded steel pipe. And its industrial value is extremely high.

溶接金属中のB量指数(〔B〕/G)または〔B〕/G' )を種々に変化させた場合における、−46℃でのシャルピー吸収エネルギーについての調査結果を示した図である。It is the figure which showed the investigation result about the Charpy absorbed energy in -46 degreeC in the case of changing B quantity index ([B] / G) or [B] / G ') in a weld metal variously.

以下、この発明を具体的に説明する。
この発明は、板巻き鋼管のように、板厚が極めて厚い板材をO形状に成形したのち、3パス以上の多層溶接によって接合して直管を製造し、これを素管として、その後需要者側で所定の熱処理や曲げ加工が施されるいわゆる厚肉ベンド鋼管用の素管を対象とする。
この発明において、厚肉ベンド鋼管とは肉厚が 19 mm以上の鋼管をいう。
The present invention will be specifically described below.
In the present invention, a sheet material having an extremely large thickness, such as a sheet-wound steel pipe, is formed into an O shape, and then joined by multi-pass welding of three or more passes to produce a straight pipe. The target tube is a so-called thick bend steel pipe that is subjected to predetermined heat treatment and bending on the side.
In the present invention, the thick bend steel pipe means a steel pipe having a wall thickness of 19 mm or more.

さて、溶接ままの溶接金属の靱性に及ぼすBの働きとしては、Bがオーステナイト粒界に偏析して粒界エネルギーを低減し、粒界から発生するフェライトの生成を抑制することによって靱性を向上させることはよく知られている。特に−46℃レベルの低温靱性を確保するには、Bは必須の元素である。
ただし、多層溶接の場合、次パスの熱影響を受けた部分はBの増加と共に靱性が劣化するので、過剰の添加は靱性に対してむしろ悪影響を及ぼす。
Now, as the effect of B on the toughness of the weld metal as-welded, B segregates at the austenite grain boundary to reduce the grain boundary energy and to improve toughness by suppressing the generation of ferrite generated from the grain boundary. That is well known. In particular, B is an indispensable element for securing low temperature toughness at the −46 ° C. level.
However, in the case of multi-layer welding, the toughness deteriorates with an increase in B in the part that was affected by heat in the next pass, so excessive addition has a rather adverse effect on the toughness.

一方、ベンド管の曲げ部は、Ac3より高い温度( 800〜1200℃程度) に加熱され、水冷される。このとき、良好な低温靱性を確保するには、溶接金属のミクロ組織をフェライト主体の組織にする必要がある。言い換えると上部ベイナイトの生成量を低減する必要がある。そして、かかるベイナイトは溶接金属の焼き入れ性が高いほど生成し易い。
この点、上記したBは、溶接金属の焼き入れ性を微量でも高め、ベイナイトを生成させるため、曲げ部の靱性を低下させる。ベイナイトが多量に生成した溶接金属は、その後に焼き戻し処理を行っても靱性の回復は期待できない。
On the other hand, the bent part of the bend pipe is heated to a temperature higher than Ac 3 (about 800 to 1200 ° C.) and cooled with water. At this time, in order to ensure good low temperature toughness, the microstructure of the weld metal needs to be a ferrite-based structure. In other words, it is necessary to reduce the amount of upper bainite produced. And this bainite is easy to produce | generate, so that the hardenability of a weld metal is high.
In this respect, the above-described B increases the hardenability of the weld metal even in a small amount and generates bainite, so that the toughness of the bent portion is lowered. A weld metal in which a large amount of bainite is produced cannot be expected to recover toughness even after subsequent tempering treatment.

また、焼入れ処理なしで 400℃から 650℃程度の焼き戻し処理を受けた溶接金属は、B量の増加と共に低温靱性は向上する。
しかしながら、その靱性はあるB量でピークを示し、その後はB量の増加に伴い劣化する。
In addition, the weld metal that has been tempered at 400 ° C. to 650 ° C. without quenching has improved low-temperature toughness as the B content increases.
However, the toughness shows a peak at a certain amount of B, and thereafter deteriorates as the amount of B increases.

すなわち、上記の現象をまとめると、溶接まま(As−Welded;AW)、焼き入れまま(As−Quenched;AQ)、焼き入れ焼き戻し(Quench−Tempered;QT)および焼き戻し(As−Tempered;AT)の4つの熱処理を受ける溶接金属において、良好な低温靱性を確保するには、AWではある程度以上のB量を必要とし、またATではB量の最適範囲があり、さらにAQおよびQTにおいてはB量が少ないほど良好な靱性が得られることになる。
つまり、AWおよびATの靱性が確保できるようにB量を添加すると共に、AQやQTおよびATでの溶接金属靱性が損なわれないようにB量を制限することが、ベンド管溶接金属の靱性を確保する上で重要なわけである。
That is, when the above phenomena are summarized, as-welded (AW), as-quenched (As-Quenched; AQ), quench-tempered (QT) and tempered (As-Tempered; AT In order to ensure good low temperature toughness in weld metals that are subjected to the four heat treatments of A), a certain amount of B is required for AW, and there is an optimum range of B for AT, and B for AQ and QT. The smaller the amount, the better the toughness will be obtained.
In other words, adding B amount so as to ensure the toughness of AW and AT, and limiting the B amount so that the weld metal toughness in AQ, QT and AT is not impaired, the toughness of the bend pipe weld metal is reduced. It is important to secure.

そこで、発明者らは、良好な溶接金属靱性が得られる適正なB量を見出すべく、Bの添加量を、固溶B量に影響を及ぼす元素の添加量と共に検討した。
その結果、溶接金属中のN量が比較的多い場合、すなわちN量とTi,V量が次式(1)'
〔N〕− 0.087〔Ti〕−0.03〔V〕−9>0 --- (1)'
の関係を満たす場合には、〔B〕/G' で示されるB量指数を0.17〜2.5 の範囲に制限する、すなわち次式(2)'
0.17 ≦〔B〕/G' ≦ 2.5 --- (2)'
ただし、G' =0.15〔O〕+ 0.9〔N〕− 0.113〔Al〕− 0.113〔Ti〕
−0.03〔V〕−8
また、〔 〕内は ppm表示
の関係を満足させることが、溶接金属の低温靱性の改善に極めて有効であることが突き止められた。
Therefore, the inventors examined the addition amount of B together with the addition amount of elements that affect the solid solution B amount in order to find an appropriate amount of B that can provide good weld metal toughness.
As a result, when the amount of N in the weld metal is relatively large, that is, the amount of N and the amounts of Ti and V are expressed by the following equation (1) ′.
[N] -0.087 [Ti] -0.03 [V] -9> 0 --- (1) '
When the relationship is satisfied, the B quantity index represented by [B] / G ′ is limited to the range of 0.17 to 2.5, that is, the following formula (2) ′
0.17 ≤ [B] / G '≤ 2.5 --- (2)'
However, G ′ = 0.15 [O] +0.9 [N] −0.113 [Al] −0.113 [Ti]
-0.03 [V] -8
Moreover, it was found that satisfying the relationship expressed in ppm in [] is extremely effective in improving the low temperature toughness of the weld metal.

ここに、B量指数(〔B〕/G' )が0.17より小さくなると、溶接ままおよび焼き戻し後の溶接金属の靱性が劣化する。つまり、トータルBが少ないか、あるいは酸素および窒素量が多く、かつAl,TiおよびVが少ない場合には、溶接ままおよび焼き戻し後の靱性が劣化する。
一方、〔B〕/G' が 2.5を超えると、溶接金属の焼き入れ性が高まるため、焼き入れままおよび焼き入れ焼き戻し後の靱性が劣化する。また、焼き戻し後の靱性も劣化する。
If the B content index ([B] / G ′) is smaller than 0.17, the toughness of the weld metal as-welded and after tempering deteriorates. That is, when the total B is small, or the amounts of oxygen and nitrogen are large and Al, Ti, and V are small, the toughness as-welded and after tempering deteriorates.
On the other hand, when [B] / G ′ exceeds 2.5, the hardenability of the weld metal is increased, so that the toughness after quenching and after quenching and tempering deteriorates. Moreover, the toughness after tempering also deteriorates.

一方、溶接金属中の固溶N量が比較的少ない場合、すなわちN量とTi,V量が次式(1)
〔N〕−0.087 〔Ti〕−0.03〔V〕−9≦0 --- (1)
の関係を満たす場合には、G' は
G=0.15〔O〕− 0.113〔Al〕−0.0345〔Ti〕+1
ただし、〔 〕内は ppm表示
と書き表せ、従ってB量指数(〔B〕/G)は次式(2)
0.17 ≦〔B〕/G≦ 2.5 --- (2)
の範囲に制御すれば良い。
On the other hand, when the amount of dissolved N in the weld metal is relatively small, that is, the amount of N and the amounts of Ti and V are expressed by the following formula (1).
[N] -0.087 [Ti] -0.03 [V] -9≤0 --- (1)
G ′ satisfies G = 0.15 [O] −0.113 [Al] −0.0345 [Ti] +1
However, the value in [] can be expressed as ppm. Therefore, the B amount index ([B] / G) can be expressed by the following formula (2)
0.17 ≦ [B] / G ≦ 2.5 --- (2)
It may be controlled within the range.

いずれにしても、〔B〕/Gまたは〔B〕/G' で示されるB量指数を0.17〜2.5 の範囲に制限することが肝要である。
図1に、溶接金属中のB量指数(〔B〕/G)または〔B〕/G' )を種々に変化させた場合における、−46℃でのシャルピー吸収エネルギーについて調べた結果を示したが、B量指数が0.17〜2.5 の範囲であれば、AW,AT,AQおよびQTのいずれの熱処理後においても良好な低温靱性が得られている。
特に好適にはB量指数:0.30〜2.0 の範囲である。
In any case, it is important to limit the B amount index represented by [B] / G or [B] / G ′ to a range of 0.17 to 2.5.
FIG. 1 shows the results of examining Charpy absorbed energy at −46 ° C. when the B content index ([B] / G) or [B] / G ′) in the weld metal is variously changed. However, if the B content index is in the range of 0.17 to 2.5, good low temperature toughness is obtained even after any heat treatment of AW, AT, AQ and QT.
The B content index is particularly preferably in the range of 0.30 to 2.0.

次に、上記した各成分の溶接金属中における適正量について説明する。
Ti:30〜400 ppm
Tiは、結晶粒の微細化に有用なだけでなく、溶接金属中のNやOを固定する作用があるが、含有量が 30ppmに満たないとその添加効果に乏しく、一方 400 ppmを超えるとNやOと結合しない固溶Tiが増大して溶接金属の靱性の劣化を招くので、Ti量は30〜400 ppm の範囲に限定した。
Next, the appropriate amount of each component described above in the weld metal will be described.
Ti: 30-400 ppm
Ti is not only useful for refining crystal grains, but also has the effect of fixing N and O in the weld metal. However, if the content is less than 30 ppm, its additive effect is poor, while if it exceeds 400 ppm, The amount of Ti was limited to the range of 30 to 400 ppm because the solid solution Ti that does not bond with N or O increases and the toughness of the weld metal deteriorates.

V:20〜500 ppm
Vは、溶接金属中のNを固定する作用があるが、含有量が20 ppmに満たないとその添加効果に乏しく、一方 500 ppmを超えると固溶Vが増大して溶接金属の靱性が劣化するので、V量は20〜500 ppm の範囲に限定した。
V: 20-500 ppm
V has the effect of fixing N in the weld metal, but if the content is less than 20 ppm, the effect of addition is poor. On the other hand, if it exceeds 500 ppm, the solid solution V increases and the toughness of the weld metal deteriorates. Therefore, the amount of V was limited to the range of 20 to 500 ppm.

Al:20〜500 ppm
Alは、溶接金属中のOを固定する作用があるが、含有量が20ppmに満たないとその添加効果に乏しく、一方 500 ppmを超えるとTi酸化物の形成が阻害され、フェライト変態が促進されなくなって、靱性が劣化するので、Al量は20〜500 ppm の範囲に限定した。
Al: 20-500 ppm
Al has the effect of fixing O in the weld metal, but if the content is less than 20 ppm, the effect of addition is poor, while if it exceeds 500 ppm, the formation of Ti oxide is inhibited and ferrite transformation is promoted. Since the toughness deteriorates as it disappears, the Al content is limited to the range of 20 to 500 ppm.

O:500 ppm 以下
Oは、溶接金属中ではほとんど非金属酸化物として存在するが、酸素量が高くなると、破壊の起点として働く介在物が増加し、特に 500 ppmより多くなると溶接金属の靱性が損なわれる。そこで、この発明ではOの上限を500 ppmに定めた。
O: 500 ppm or less O exists as a non-metal oxide in the weld metal. However, when the oxygen content is high, inclusions that act as starting points of fracture increase, and especially when the oxygen content exceeds 500 ppm, the toughness of the weld metal increases. Damaged. Therefore, in the present invention, the upper limit of O is set to 500 ppm.

N:80 ppm以下
N量が多くなると島状組織を形成し、溶接金属の靱性を劣化させるため、この発明ではNの上限を 80ppmに定めた。
N: 80 ppm or less In order to form an island-like structure and deteriorate the toughness of the weld metal when the amount of N increases, the upper limit of N is set to 80 ppm in the present invention.

B:3〜60 ppm
Bは、上述したとおり、溶接ままおよび焼き戻し熱処理後の靱性の向上に有効に寄与するが、含有量が3 ppmに満たないとその添加効果に乏しく、一方 60ppmを超えると焼き入れ性が過度に高まり、焼き入れままおよび焼き入れ焼き戻し熱処理時にベイナイトの発生を誘発して靱性を低下させるので、Bは3〜60 ppmの範囲で含有させるものとした。
B: 3-60 ppm
As mentioned above, B effectively contributes to the improvement of toughness as-welded and after tempering heat treatment, but if the content is less than 3 ppm, the effect of addition is poor, while if it exceeds 60 ppm, the hardenability is excessive. Since the toughness is lowered by inducing quenching and quenching and tempering heat treatment to reduce the toughness, B is contained in the range of 3 to 60 ppm.

Ni:3.0 mass%以下
Niは、強度の向上だけでなく、低温靱性の向上にも有効に寄与するので、かような効果を期待する場合には添加する。一方、上記の効果を特に必要としない場合には添加しなくてもよい。しかしながら、添加する場合に、溶接金属中の含有量が 3.0mass%を超えて多くなると溶接時に高温割れを生じるので、Niを添加する場合には 3.0mass%以下で含有させるものとした。
Ni: 3.0 mass% or less
Ni effectively contributes not only to improving the strength but also to improving low-temperature toughness. Therefore, Ni is added when such an effect is expected. On the other hand, when the above effect is not particularly required, it may not be added. However, when added, if the content in the weld metal exceeds 3.0 mass%, hot cracking occurs at the time of welding. Therefore, when Ni is added, it should be contained at 3.0 mass% or less.

その他の元素、例えばCについては、溶接金属中のCが0.02mass%を下回ると溶接金属の強度が不足し、一方0.12mass%を超えると高速溶接時に高温割れが生じ易くなり、また焼き戻し熱処理時に炭化物を析出して靱性が劣化するため、C量は0.02〜0.12mass%程度とするのが好ましい。   For other elements, such as C, if the C in the weld metal is less than 0.02 mass%, the strength of the weld metal is insufficient. On the other hand, if it exceeds 0.12 mass%, hot cracking is likely to occur during high-speed welding, and tempering heat treatment is performed. Since carbides sometimes precipitate and the toughness deteriorates, the C content is preferably about 0.02 to 0.12 mass%.

また、この発明では、低温靱性に優れるだけでなく、引張強度が 455 MPa以上の API規格X−52以上を対象としているが、このように高い強度を確保するには、次式で示されるPcmが溶接金属において0.10以上とすることが好ましい。
Pcm=C+Si/30+ (Cu+Mn+Cr) /20+Ni/60+Mo/15+V/10+5B
ここで、各元素の値はmass%表示とする。
In addition, this invention is not only excellent in low temperature toughness, but also targets API standard X-52 or higher with a tensile strength of 455 MPa or higher. To ensure such high strength, Pcm represented by the following formula: Is preferably 0.10 or more in the weld metal.
Pcm = C + Si / 30 + (Cu + Mn + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B
Here, the value of each element is expressed in mass%.

さて、上記した溶接金属の成分は、母材、溶接ワイヤおよび溶接フラックスの組成で決定され、CとMoは主に母材とワイヤから添加され、Bは母材に含まれることはまれでワイヤとフラックスから添加される。Nは、母材および溶接ワイヤから添加され、大気からの巻き込みも考慮する必要がある。Oは、フラックスの塩基度に強く影響を受けるだけでなく、鋼板やワイヤ、フラックス中のAl,Ti,SiおよびMnなどの脱酸元素にも影響を受ける。特に塩基度の高いフラックスを使用することにより溶接金属中のOを下げることができる。   Now, the components of the above-mentioned weld metal are determined by the composition of the base material, the welding wire and the welding flux, C and Mo are mainly added from the base material and the wire, and B is rarely contained in the base material. And added from the flux. N is added from the base material and the welding wire, and it is necessary to consider the entrainment from the atmosphere. O is not only strongly influenced by the basicity of the flux, but is also affected by deoxidizing elements such as Al, Ti, Si and Mn in the steel sheet, wire, and flux. In particular, O in the weld metal can be lowered by using a flux having a high basicity.

そこで、以下、母材となる鋼板、溶接ワイヤおよび溶接フラックスの適正成分組成範囲について説明する。
まず、鋼管の母材成分について説明する。なお、各元素の「%」表示は、質量百分率(mass%)を表すものとする。
C:0.01〜0.10%
Cは、0.01〜0.10%含有させる必要がある。というのは、C量が0.01%より少ないと溶接金属の強度を確保するのが難しく、一方0.10%を超えると溶接金属の靱性が損なわれるからである。
Therefore, hereinafter, the proper component composition range of the steel plate, the welding wire, and the welding flux as the base material will be described.
First, the base material component of the steel pipe will be described. In addition, "%" display of each element shall represent mass percentage (mass%).
C: 0.01-0.10%
C, it is necessary to free Yes 0.01 to 0.10%. This is because if the C content is less than 0.01%, it is difficult to ensure the strength of the weld metal, while if it exceeds 0.10%, the toughness of the weld metal is impaired.

Si:0.05〜0.5 %
母材中のSiが少なすぎると強度を確保するのが難しく、一方多すぎるとCの拡散を阻害し、溶接金属および母材の靱性が損なわれるので、Si量は0.05〜0.5 %とする
Si: 0.05-0.5%
It is difficult to secure strength when Si is too small in the matrix, whereas too much, inhibit diffusion and C, since the toughness of the weld metal and the base metal is deteriorated, Si content is set to 0.05% to 0.5%.

Mn:0.5 〜2.0 %
Mn量が 0.5%未満では母材の強度が確保できず、一方 2.0%を超えると母材の靱性が劣化するので、Mnは 0.5〜2.0 %とする
Mn: 0.5-2.0%
If the Mn content is less than 0.5%, the strength of the base material cannot be secured. On the other hand, if it exceeds 2.0%, the toughness of the base material deteriorates, so Mn is set to 0.5 to 2.0 % .

Ti:0.005 〜0.09%
Tiは、母材の強度および靱性を向上させるのに有用な元素であるが、含有量が0.005 %に満たないとその添加効果に乏しく、一方0.09%を超えると溶接金属中のTi量が増加して溶接金属の靱性が劣化するだけでなく、焼戻し後の母材の靱性がTi炭化物の析出により劣化するので、Ti量は 0.005〜0.09%とする
Ti: 0.005 to 0.09%
Ti is an element useful for improving the strength and toughness of the base metal. However, if the content is less than 0.005%, the effect of addition is poor, while if it exceeds 0.09%, the amount of Ti in the weld metal increases. As a result, not only does the toughness of the weld metal deteriorate, but also the toughness of the base material after tempering deteriorates due to precipitation of Ti carbide, so the Ti content is made 0.005 to 0.09 % .

Nb:0.003 〜0.08%、V:0.003 〜0.08%
Nb, Vはそれぞれ、母材の強度を確保するのに必要な元素であるが、一方で炭化物として析出して溶接金属の靱性を劣化させるので、それぞれ 0.003〜0.08%の範囲とする
Nb: 0.003 to 0.08%, V: 0.003 to 0.08%
Each of Nb and V is an element necessary for ensuring the strength of the base metal. On the other hand, Nb and V are precipitated as carbides and deteriorate the toughness of the weld metal .

Al:0.008 〜0.06%
Alは、少なすぎると母材の脱酸が不十分となって靱性を劣化させ、一方0.06%を超えると溶接金属中のAl量が高くなって溶接金属の靱性が損なわれるので、Al量は 0.008〜0.06%とする
Al: 0.008 to 0.06%
If the amount of Al is too small, the deoxidation of the base metal will be insufficient and the toughness will deteriorate, while if it exceeds 0.06%, the amount of Al in the weld metal will increase and the toughness of the weld metal will be impaired. 0.008 to 0.06 % .

N:0.007 %以下
母材中のN量があまりに多いと、溶接金属中のN量が高まり、靱性が損なわれるので、N量は 0.007%以下とする
N: 0.007% or less If the amount of N in the base metal is too large, the amount of N in the weld metal increases and the toughness is impaired, so the N amount is set to 0.007% or less .

以上、鋼管母材の基本成分について説明したが、その他、以下の元素のうちから選んだ少なくとも一種を適宜含有させる
Mo:0.5 %以下
Moは、粗大な粒界フェライトを抑制し、溶接金属の溶接ままの靱性を向上させる働きがあるが、一方でパーライト変態を抑制し、ベイナイトを生成させる働きが強く、AQ処理およびQT処理後の靱性劣化を招き易いので、母材のMo量は 0.5%以下とする
The basic components of the steel pipe base material have been described above. In addition, at least one selected from the following elements is appropriately contained .
Mo: 0.5% or less
Mo suppresses coarse grain boundary ferrite and improves the toughness of the weld metal as it is welded. On the other hand, it suppresses pearlite transformation and has a strong effect of generating bainite, and after AQ treatment and QT treatment. since liable toughness deterioration, Mo amount of base metal and hereinafter 0.5%.

Ni:5.0 %以下、Cu:1.0 %以下、Cr:0.5 %以下
Niは、母材の低温靱性を高め、かつ強度を高めるのに有効に寄与するが、5.0 %を超える添加は不経済なので、Niは 5.0%以下とする
Cuは、母材の強度を高めるのに効果的な元素であるが、 1.0%を超えると靱性が劣化するので、Cu量は1.0 %以下とする
Crは、母材の焼入性を高め、強度の向上に有効に寄与するが、 0.5%を超えて含有させると、AQ処理およびQT処理後の靱性が劣化するので、Cr量は 0.5%以下とする
Ni: 5.0% or less, Cu: 1.0% or less, Cr: 0.5% or less
Ni contributes effectively to increasing the low temperature toughness and strength of the base metal. However, it is uneconomical to add more than 5.0%, so Ni should be 5.0% or less .
Cu is an effective element for increasing the strength of the base metal, but if it exceeds 1.0%, the toughness deteriorates, so the Cu content should be 1.0% or less .
Cr enhances the hardenability of the base metal and contributes effectively to improving the strength. However, if it exceeds 0.5%, the toughness after AQ treatment and QT treatment deteriorates, so the Cr content is 0.5% or less. to.

なお、P,Sは、凝固界面に偏析し易く、溶接金属の高温割れを助長し、靱性を劣化させることから、いずれも0.02%以下とすることが好ましい。   P and S are preferably segregated at the solidification interface, promote hot cracking of the weld metal, and deteriorate toughness.

また、ワイヤの適正組成については次のとおりである。
なお、この発明で行う溶接は、複数本の溶接ワイヤを用いることが多いが、このように複数本の溶接ワイヤを用いた場合におけるワイヤ組成はそれらの平均組成とする。
C:0.01〜0.12%
ワイヤ中のC量は0.01%より少ないと、溶接時のCOガス発生量が減少し、溶接金属中のN量が増加して、靱性の劣化を招き、一方0.12%を超えると溶接金属に高温割れが発生し易く、焼戻し後の溶接金属靱性が劣化するので、C量は0.01〜0.12%とする
The proper composition of the wire is as follows.
The welding performed in the present invention often uses a plurality of welding wires, but the wire composition when such a plurality of welding wires are used is the average composition thereof.
C: 0.01 to 0.12%
If the amount of C in the wire is less than 0.01%, the amount of CO gas generated during welding decreases, the amount of N in the weld metal increases, leading to deterioration of toughness. On the other hand, if it exceeds 0.12%, the weld metal has a high temperature. Since cracking easily occurs and the weld metal toughness after tempering deteriorates, the C content is set to 0.01 to 0.12 % .

Ti:0.3 %以下、Al:0.3 %以下
ワイヤ中のTi, Al量がそれぞれ、0.3 %より高いと溶接金属中に残留するAl, Ti量が多くなりすぎ、靱性が劣化するので、いずれも 0.3%以下とする
Ti: 0.3% or less, Al: 0.3% or less If the amount of Ti and Al in the wire is higher than 0.3%, the amount of Al and Ti remaining in the weld metal will be too much and the toughness will deteriorate. % Or less .

B:0.03%以下
ワイヤ中のB量が0.03%を超えると溶接時に高温割れが発生し易く、溶接金属の靱性が損なわれるので、B量は0.03%以下とする
B: 0.03% or less If the amount of B in the wire exceeds 0.03%, hot cracking is likely to occur during welding and the toughness of the weld metal is impaired, so the amount of B is set to 0.03% or less .

N:0.008 %以下
ワイヤ中のN量が 0.008%を超えると溶接金属中のN量が高くなりすぎ、靱性が損なわれるので、N量は 0.008%以下とする
その他にも、JIS Z 3351に示されるような、通常低合金鋼溶接用に用いられる溶接ワイヤに含まれている各種元素を含有させることもできる。
N: 0.008% or less If the N content in the wire exceeds 0.008%, the N content in the weld metal becomes too high and the toughness is impaired, so the N content is 0.008% or less .
In addition, various elements contained in a welding wire usually used for low alloy steel welding as shown in JIS Z 3351 can be contained.

次に、適正フラックス組成について説明する。
溶接フラックスは、フラックスの塩基度が低すぎると溶接金属の酸素量が高くなり、靱性が損なわれるので、高塩基性のフラックスを使用することが好ましい。しかしながら、塩基度があまりに高すぎると粘性が高まり、さまぎまな溶接欠陥が発生し易くなるので、塩基度を過剰に高めるのは禁物である。
ここに、かかる高塩基性フラックスとしては、
BL=6.05〔CaO 〕+6.05〔CaF2〕+ 4.0〔MgO 〕+ 4.8〔MnO 〕
+ 3.4〔FeO 〕−6.31〔SiO2〕−4.97〔TiO2〕− 0.2〔A12O3
ただし、〔 〕内は mol分率表示
で示される塩基度が 0.2〜2.5 のものを用いる
また、フラックスとしては、焼成型のフラックスが、スラグの剥離が容易なため好ましい。
Next, the proper flux composition will be described.
If the basicity of the flux is too low, the welding flux increases the oxygen content of the weld metal and impairs the toughness. Therefore, it is preferable to use a highly basic flux. However, if the basicity is too high, the viscosity increases, and it is easy to generate a flawed weld defect. Therefore, it is prohibited to increase the basicity excessively.
Here, as such a high basic flux,
BL = 6.05 [CaO] Tasu6.05 [CaF 2] + 4.0 [MgO] + 4.8 [MnO]
+3.4 [FeO] −6.31 [SiO 2 ] −4.97 [TiO 2 ] −0.2 [A1 2 O 3 ]
However, those in [] are those with a basicity of 0.2 to 2.5 indicated by mol fraction.
Further, as the flux, a fired flux is preferable because the slag can be easily peeled off.

パイプの母材鋼板としては、表1に成分組成を示す、0.05%C-0.1%Si-1.8%Mn−0.25%MoのX80級パイプ素材と0.05%C-0.3%Si-1.3%MnのX52級パイプ素材の2種類用いた。板厚はいずれも27.0mmである。
これらのパイプ素材を、板巻きによりO形状に成形したのち、2電極サブマージアーク溶接にて、内面2パス後、ガウジングにて内面1パスを除去したのち、外面4パスの多層溶接を行った。溶接条件は表2に示すとおりである。
なお、外面1パス目は、スラグ剥離性確保のため、先行電極のみの1電極溶接とした。また、溶接入熱は 25 〜55 kJ/cmとした。
また、上記のサブマージアーク溶接に使用する溶接ワイヤとしては、表3に示す成分組成になるワイヤを用い、各電極に使用するワイヤを種々組み合わせることによって溶接金属の成分組成を変化させた。なお、これらの溶接ワイヤはいずれも、JIS Z 3351にあるような低合金鋼の溶接に一般的に使用されるワイヤである。また、ワイヤ径はいずれも4.0mm とした。さらに、表3には、使用したワイヤの組み合わせおよびそれらを使用した場合の平均組成も併せて示す。
なお、溶接に当たっては2電極式のサブマージアーク溶接とし、ワイヤX、Yをそれぞれ先行電極、後行電極として用いた。
さらに、フラックスとしては、表4に示す成分組成になる、高塩基性のSiO2−CaO −CaF2−Al2O3 −MgO 系で、Bの酸化物を少量含む焼成型フラックス(BL=2.13)を用いた。
The base steel plate of the pipe is shown in Table 1. The composition of the X80 grade pipe material of 0.05% C-0.1% Si-1.8% Mn-0.25% Mo and X52 of 0.05% C-0.3% Si-1.3% Mn are shown in Table 1. Two types of grade pipe material were used. The plate thickness is 27.0 mm.
These pipe materials were formed into an O shape by sheet winding, and after two passes on the inner surface by two-electrode submerged arc welding, one pass on the inner surface was removed by gouging, and then multilayer welding of four passes on the outer surface was performed. The welding conditions are as shown in Table 2.
In addition, the 1st pass of the outer surface was 1-electrode welding of only the leading electrode in order to ensure slag peelability. The welding heat input was 25 to 55 kJ / cm.
Moreover, as a welding wire used for said submerged arc welding, the wire used as a component composition shown in Table 3 was used, and the component composition of a weld metal was changed by combining various wires used for each electrode. All of these welding wires are commonly used for welding low-alloy steels as described in JIS Z 3351. The wire diameter was 4.0 mm for all. Further, Table 3 also shows the combinations of the wires used and the average composition when they are used.
In the welding, two-electrode submerged arc welding was used, and wires X and Y were used as the leading electrode and the trailing electrode, respectively.
Further, as the flux, a calcined flux (BL = 2.13) which is a highly basic SiO 2 —CaO—CaF 2 —Al 2 O 3 —MgO system having a composition shown in Table 4 and contains a small amount of B oxide. ) Was used.

このようにして得られた溶接金属の化学組成を表5に、また各溶接金属のPcm、a値( (1)または(1)'式の指数)、GまたはG' の値およびB量指数(〔B〕/Gまたは〔B〕/G' )を表6に示す。
No.7〜8が発明例、一方 No.1〜6,9は参考例、No.10〜13は比較例である。
この溶接金属に付与した熱処理条件としては、焼き入れ処理については最高加熱温度:900 〜1100℃、500 ℃までの冷却速度:10〜20℃/sの条件とし、また焼き戻し処理については 450〜650 ℃の温度範囲に90分間保持し、その後空冷する条件とした。
AW,AT,AQおよびQTの各熱処理後における溶接金属の低温靱性および硬さについて調べた結果を表7に示す。なお、No.13 については、溶接時に高温割れが生じたので、低温靱性および硬さを調べることができなかった。
The chemical composition of the weld metal thus obtained is shown in Table 5, and the Pcm, a value (index of (1) or (1) 'formula), G or G' value and B amount index of each weld metal. Table 6 shows ([B] / G or [B] / G ').
Nos. 7 to 8 are invention examples, while Nos . 1 to 6 and 9 are reference examples, and Nos. 10 to 13 are comparative examples.
As for the heat treatment conditions given to the weld metal, the maximum heating temperature for the quenching treatment is 900 to 1100 ° C., the cooling rate to 500 ° C. is 10 to 20 ° C./s, and the tempering treatment is 450 to The temperature was maintained at 650 ° C. for 90 minutes and then air-cooled.
Table 7 shows the results of examining the low temperature toughness and hardness of the weld metal after each heat treatment of AW, AT, AQ and QT. For No. 13, high temperature cracking occurred during welding, so the low temperature toughness and hardness could not be examined.

Figure 0005229300
Figure 0005229300

Figure 0005229300
Figure 0005229300

Figure 0005229300
Figure 0005229300

Figure 0005229300
Figure 0005229300

Figure 0005229300
Figure 0005229300

Figure 0005229300
Figure 0005229300

Figure 0005229300
Figure 0005229300

表7に示したとおり、溶接金属の成分組成がこの発明の適正範囲を満足する発明例はいずれも、AW,AT,AQおよびQTの全ての熱処理後においても良好な低温靱性が得られている。
これに対し、No.10 は、溶接金属中のB量指数が 2.5より大きく、曲げ部に相当するAQ、QT後の靱性が不十分であった。また、No.11 ではB量指数が0.17より小さく、AW、ATの靱性が不十分であった。さらに、 No.12は溶接フラックス中に金属Tiと金属Al粉末を添加してTi、Al量を富化したものであるが、AT、AQ、QT後の靱性が不十分であった。
As shown in Table 7, all of the inventive examples in which the composition of the weld metal satisfies the appropriate range of the present invention have good low temperature toughness even after all heat treatments of AW, AT, AQ and QT. .
On the other hand, No. 10 had a B content index greater than 2.5 in the weld metal, and the toughness after AQ and QT corresponding to the bent portion was insufficient. In No. 11, the B content index was smaller than 0.17, and the toughness of AW and AT was insufficient. Furthermore, No. 12 was obtained by adding metal Ti and metal Al powder to the welding flux to enrich the amount of Ti and Al, but the toughness after AT, AQ and QT was insufficient.

Claims (2)

質量百分率で
C:0.01〜0.10%、
Si:0.05〜0.5 %、
Mn:0.5 〜2.0 %、
Ti:0.005 〜0.09%、
Nb:0.003 〜0.08%、
V:0.003 〜0.08%、
Al:0.008 〜0.06%および
N:0.007 %以下
を含み、かつ
Mo:0.5 %以下、
Ni:5.0 %以下、
Cu:1.0 %以下および
Cr:0.5 %以下
のうちから選んだ少なくとも一種を含有し、残部はFeおよび不可避的不純物の組成からなる鋼管の内外面を、質量百分率で
C:0.01〜0.12%、
Si:0.01〜0.30%、
Mn:0.50〜1.89%、
Mo:0.45%以下、
Cu:0.13%以下、
Ni:5.0 %以下、
Ti:0.3 %以下、
Al:0.3 %以下、
B:0.03%以下および
N:0.008 %以下
を含み、残部はFeおよび不可避的不純物の組成からなる低合金鋼溶接用ワイヤーを用い、合計3パス以上の多層溶接にて接合した高強度厚肉鋼管であって、溶接金属の成分中、特にTi,V, Al,O,N,BおよびNiが、下記の成分組成範囲および(1), (2)式の関係を満足することを特徴とする、溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管。

Ti:30〜400 ppm 、
V:20〜500 ppm 、
Al:20〜500 ppm 、
O:500 ppm 以下、
N:80 ppm以下、
B:3〜60 ppmおよび
Ni:3.0 mass%以下
〔N〕− 0.087〔Ti〕−0.03〔V〕−9≦0 --- (1)
0.17 ≦〔B〕/G≦ 2.5 --- (2)
ただし、G=0.15〔O〕− 0.113〔Al〕−0.0345〔Ti〕+1
また、〔 〕内は ppm表示
In mass percentage C: 0.01-0.10%,
Si: 0.05 to 0.5%,
Mn: 0.5-2.0%,
Ti: 0.005 to 0.09%,
Nb: 0.003 to 0.08%,
V: 0.003 to 0.08%,
Al: 0.008 to 0.06% and N: 0.007% or less, and
Mo: 0.5% or less,
Ni: 5.0% or less,
Cu: 1.0% or less and
Cr: containing at least one selected from 0.5% or less, and the balance of the inner and outer surfaces of the steel pipe composed of Fe and unavoidable impurities in mass percentage C: 0.01 to 0.12%,
Si: 0.01-0.30%
Mn: 0.50-1.89%
Mo: 0.45% or less,
Cu: 0.13% or less,
Ni: 5.0% or less,
Ti: 0.3% or less,
Al: 0.3% or less,
B: 0.03% or less and N: 0.008% or less, the balance is a high-strength thick-walled steel pipe joined by multi-pass welding with a total of 3 passes or more using low alloy steel welding wire composed of Fe and inevitable impurities In particular, Ti, V, Al, O, N, B, and Ni among the components of the weld metal satisfy the following component composition ranges and the relationships of the formulas (1) and (2). Elementary pipe for high-strength, thick-walled bend steel pipe with excellent weld toughness.
Record
Ti: 30-400 ppm
V: 20-500 ppm,
Al: 20-500 ppm
O: 500 ppm or less,
N: 80 ppm or less,
B: 3-60 ppm and
Ni: 3.0 mass% or less [N] -0.087 [Ti] -0.03 [V] -9≤0 --- (1)
0.17 ≦ [B] / G ≦ 2.5 --- (2)
However, G = 0.15 [O] −0.113 [Al] −0.0345 [Ti] +1
In addition, [] shows ppm.
質量百分率で
C:0.01〜0.10%、
Si:0.05〜0.5 %、
Mn:0.5 〜2.0 %、
Ti:0.005 〜0.09%、
Nb:0.003 〜0.08%、
V:0.003 〜0.08%、
Al:0.008 〜0.06%および
N:0.007 %以下
を含み、かつ
Mo:0.5 %以下、
Ni:5.0 %以下、
Cu:1.0 %以下および
Cr:0.5 %以下
のうちから選んだ少なくとも一種を含有し、残部はFeおよび不可避的不純物の組成からなる高強度厚肉鋼板を、O形状に成形したのち、サブマージアーク溶接により、鋼管の内外面を合計3パス以上の多層溶接にて接合するに際し、
溶接フラックスとして、次式
BL=6.05〔CaO〕+6.05〔CaF2〕+ 4.0〔MgO〕+ 4.8〔MnO〕
+ 3.4〔FeO〕−6.31〔SiO2〕−4.97〔TiO2〕− 0.2〔A12O3
ただし、〔 〕内は mol分率表示
で示される塩基度(BL)が 0.2〜2.5 を満足する高塩基性のフラックスを用い、かつ溶接ワイヤとして、質量百分率で
C:0.01〜0.12%、
Si:0.01〜0.30%、
Mn:0.50〜1.89%、
Mo:0.45%以下、
Cu:0.13%以下、
Ni:5.0 %以下、
Ti:0.3 %以下、
Al:0.3 %以下、
B:0.03%以下および
N:0.008 %以下
を含有し、残部はFeおよび不可避的不純物の組成からなる低合金鋼溶接用ワイヤーを用いることにより、溶接金属の成分中、特にTi,V, Al,O,N, BおよびNiについて、下記の成分組成範囲および(1), (2)式の関係を満足する範囲に調整することを特徴とする、溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管の製造方法。

Ti:30〜400 ppm 、
V:20〜500 ppm 、
Al:20〜500 ppm 、
O:500 ppm 以下、
N:80 ppm以下、
B:3〜60 ppmおよび
Ni:3.0 mass%以下
〔N〕− 0.087〔Ti〕−0.03〔V〕−9≦0 --- (1)
0.17 ≦〔B〕/G≦ 2.5 --- (2)
ただし、G=0.15〔O〕− 0.113〔Al〕−0.0345〔Ti〕+1
また、〔 〕内は ppm表示
In mass percentage C: 0.01-0.10%,
Si: 0.05 to 0.5%,
Mn: 0.5-2.0%,
Ti: 0.005 to 0.09%,
Nb: 0.003 to 0.08%,
V: 0.003 to 0.08%,
Al: 0.008 to 0.06% and N: 0.007% or less, and
Mo: 0.5% or less,
Ni: 5.0% or less,
Cu: 1.0% or less and
Cr: Contains at least one selected from 0.5% or less, the balance of Fe and unavoidable impurities is formed into a high-strength thick steel plate into O shape, and then the inner and outer surfaces of the steel pipe by submerged arc welding When joining by multi-layer welding of 3 passes or more in total,
As welding flux, BL = 6.05 [CaO] + 6.05 [CaF 2 ] + 4.0 [MgO] + 4.8 [MnO]
+3.4 [FeO] -6.31 [SiO 2 ] -4.97 [TiO 2 ] -0.2 [A1 2 O 3 ]
However, the inside of [] uses the high basicity flux which the basicity (BL) shown by mol fraction display satisfies 0.2-2.5, and, as a welding wire, C: 0.01-0.12% by mass percentage,
Si: 0.01-0.30%
Mn: 0.50-1.89%
Mo: 0.45% or less,
Cu: 0.13% or less,
Ni: 5.0% or less,
Ti: 0.3% or less,
Al: 0.3% or less,
B: 0.03% or less and N: 0.008% or less, with the balance being composed of Fe and inevitable impurities, low-alloy steel welding wire, among the components of the weld metal, especially Ti, V, Al, A high-strength, thick-walled weld bend with excellent weld toughness characterized by adjusting O, N, B, and Ni to the following component composition ranges and ranges satisfying the relations of formulas (1) and (2) A method of manufacturing a raw pipe for a steel pipe.
Record
Ti: 30-400 ppm
V: 20-500 ppm,
Al: 20-500 ppm
O: 500 ppm or less,
N: 80 ppm or less,
B: 3-60 ppm and
Ni: 3.0 mass% or less [N] -0.087 [Ti] -0.03 [V] -9≤0 --- (1)
0.17 ≦ [B] / G ≦ 2.5 --- (2)
However, G = 0.15 [O] −0.113 [Al] −0.0345 [Ti] +1
In addition, [] shows ppm.
JP2010241478A 2000-03-31 2010-10-27 Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same Expired - Lifetime JP5229300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241478A JP5229300B2 (en) 2000-03-31 2010-10-27 Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000098333 2000-03-31
JP2000098333 2000-03-31
JP2010241478A JP5229300B2 (en) 2000-03-31 2010-10-27 Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001086959A Division JP4649753B2 (en) 2000-03-31 2001-03-26 Elementary pipe for high strength thick welded bend steel pipe with excellent weld toughness and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2011067871A JP2011067871A (en) 2011-04-07
JP5229300B2 true JP5229300B2 (en) 2013-07-03

Family

ID=44013684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241478A Expired - Lifetime JP5229300B2 (en) 2000-03-31 2010-10-27 Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5229300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418934A (en) * 2013-07-26 2013-12-04 宝鸡石油钢管有限责任公司 High-strength submerged arc welding wire good in low temperature toughness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN05913A (en) * 2012-01-12 2015-06-05 Nippon Steel & Sumitomo Metal Corp
JP6191393B2 (en) * 2013-10-28 2017-09-06 新日鐵住金株式会社 Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
CN108340091B (en) * 2018-05-14 2020-07-31 北京智双科技发展有限公司 Flux-cored wire for welding superfine X80 pipeline steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232225A (en) * 1983-06-13 1984-12-27 Nippon Kokan Kk <Nkk> Manufacture of bent pipe with high tension and toughness
JPS6210212A (en) * 1985-07-08 1987-01-19 Nippon Kokan Kk <Nkk> Production of bend pipe
JPS62107023A (en) * 1985-11-01 1987-05-18 Kawasaki Steel Corp Working method for welded steel pipe
JPH09296253A (en) * 1996-05-02 1997-11-18 Nippon Steel Corp Extremely thick high strength steel pipe excellent in low temperature toughness
JP3526722B2 (en) * 1997-05-06 2004-05-17 新日本製鐵株式会社 Ultra high strength steel pipe with excellent low temperature toughness
JP3466450B2 (en) * 1997-12-12 2003-11-10 新日本製鐵株式会社 High strength and high toughness bend pipe and its manufacturing method
JP3339403B2 (en) * 1998-03-19 2002-10-28 住友金属工業株式会社 Method of manufacturing welded steel structure and welded steel structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418934A (en) * 2013-07-26 2013-12-04 宝鸡石油钢管有限责任公司 High-strength submerged arc welding wire good in low temperature toughness

Also Published As

Publication number Publication date
JP2011067871A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
KR101111023B1 (en) Bend pipe and process for producing the same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5212124B2 (en) Thick steel plate and manufacturing method thereof
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP2004149821A (en) Base material for clad steel plate excellent in low-temperature toughness at weld heat-affected zone, and method for producing the clad steel plate
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5229300B2 (en) Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP2002256379A (en) Steel for high heat input welding
JP7104370B2 (en) Thick steel plate and its manufacturing method
JP4649753B2 (en) Elementary pipe for high strength thick welded bend steel pipe with excellent weld toughness and method for manufacturing the same
JP2007138203A (en) High tensile strength thick steel plate having excellent weldability and its production method
JP2017110249A (en) Sour resistant steel plate
JP2002146471A (en) Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method
JP2004218081A (en) Method for producing high-tension steel plate
JP4581275B2 (en) Elementary pipe for high-strength welded bend steel pipe with excellent weld toughness and manufacturing method thereof
JP4311226B2 (en) Manufacturing method of high-tensile steel sheet
JP4066850B2 (en) Method for producing high-tensile steel with excellent CTOD characteristics of welds
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JPH10263817A (en) Manufacture of high strength welded joint having excellent crack resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150