JP5223163B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP5223163B2
JP5223163B2 JP2001271543A JP2001271543A JP5223163B2 JP 5223163 B2 JP5223163 B2 JP 5223163B2 JP 2001271543 A JP2001271543 A JP 2001271543A JP 2001271543 A JP2001271543 A JP 2001271543A JP 5223163 B2 JP5223163 B2 JP 5223163B2
Authority
JP
Japan
Prior art keywords
electron transport
light emitting
light
transport layer
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001271543A
Other languages
Japanese (ja)
Other versions
JP2003086381A (en
JP2003086381A5 (en
Inventor
大輔 北澤
亨 小濱
剛 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001271543A priority Critical patent/JP5223163B2/en
Publication of JP2003086381A publication Critical patent/JP2003086381A/en
Publication of JP2003086381A5 publication Critical patent/JP2003086381A5/ja
Application granted granted Critical
Publication of JP5223163B2 publication Critical patent/JP5223163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、電気エネルギーを光に変換できる装置であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に利用可能な発光素子に関するものである。  The present invention is a device capable of converting electrical energy into light, and can be used in the fields of display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, etc. It relates to an element.

基板上に形成された第一電極(陽極)から注入された正孔と第二電極(陰極)から注入された電子が両極に挟まれた有機蛍光体内で再結合する際に発光する有機積層薄膜発光素子の研究が近年活発に行われている。この素子は、薄型、低駆動電圧下での高輝度発光、蛍光材料を選ぶことによる多色発光が特徴である。  Organic laminated thin film that emits light when holes injected from the first electrode (anode) formed on the substrate and electrons injected from the second electrode (cathode) recombine in the organic phosphor sandwiched between the two electrodes. In recent years, research on light emitting devices has been actively conducted. This element is thin, has high luminance emission under a low driving voltage, and features multicolor emission by selecting a fluorescent material.

有機電界発光素子が高輝度に発光することは、コダック社のC.W.Tangらによって初めて示された(Appl.Phys.Lett.51(12)21、p.913、1987)。コダック社の提示した有機電界発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層であり、電子輸送性も併せ持ったトリス(8−キノリノラト)アルミニウム、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1000カンデラ/平方メートルの緑色発光が可能であった。現在の有機電界発光素子は、基本的にはコダック社の構成を踏襲しており、基板上に第一電極、発光層を含む薄膜層および第二電極が順次積層された構造をしている。薄膜層の構成は、発光層のみの単層構造である場合もあるが、多くは正孔輸送層や電子輸送層を設けた複数の積層構造である。  The organic electroluminescence device emits light with high brightness, which is a C.D. W. First shown by Tang et al. (Appl. Phys. Lett. 51 (12) 21, p. 913, 1987). The typical structure of the organic electroluminescence device presented by Kodak is tris (8-quinolinolato) aluminum having a hole transporting diamine compound, a light emitting layer and an electron transporting property on an ITO glass substrate, and a cathode. Mg: Ag was sequentially provided, and green light emission of 1000 candela / square meter was possible with a driving voltage of about 10V. The current organic electroluminescent element basically follows the configuration of Kodak Company, and has a structure in which a first electrode, a thin film layer including a light emitting layer, and a second electrode are sequentially laminated on a substrate. The structure of the thin film layer may be a single-layer structure including only the light-emitting layer, but many have a plurality of stacked structures provided with a hole transport layer and an electron transport layer.

有機電界発光素子には、発光効率の向上、駆動電圧の低下、耐久性の向上を満たす必要がある。発光効率が低いと高輝度を要する画像の出力ができなくなり、所望の輝度を出力するための消費電力量が多くなる。発光効率を向上させるために陰極からの反射光との干渉効果を利用する方法があるが、その最適条件では薄膜層が厚膜化するため駆動電圧が上昇してしまう。一方、耐久性向上のためにはガラス転移点が高い化合物を用いるのが好ましいが、一般にガラス転移点の高い化合物は電気抵抗も高い傾向があり、駆動電圧が上昇してしまう。また異物混入によるリークや連続駆動に対する耐久性を高めるために、薄膜層の膜厚を厚くすると、それに伴って駆動電圧が上昇してしまう。以上のように、発光効率や耐久性を向上させようとすると駆動電圧が上昇するという問題があった。  The organic electroluminescent element needs to satisfy the improvement in luminous efficiency, the reduction in driving voltage, and the improvement in durability. If the luminous efficiency is low, it is impossible to output an image that requires high luminance, and the amount of power consumed to output desired luminance increases. In order to improve the light emission efficiency, there is a method of using the interference effect with the reflected light from the cathode. However, under the optimum conditions, the thin film layer is thickened, so that the driving voltage is increased. On the other hand, in order to improve durability, it is preferable to use a compound having a high glass transition point, but in general, a compound having a high glass transition point tends to have a high electric resistance, resulting in an increase in driving voltage. Further, when the film thickness of the thin film layer is increased in order to enhance the durability against leakage due to foreign matter contamination and continuous driving, the driving voltage increases accordingly. As described above, there is a problem that the drive voltage increases when trying to improve the light emission efficiency and durability.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、かかる従来技術の問題を解決し、高発光効率、低駆動電圧でかつ高耐久性の発光素子を提供することを目的とするものである。  The object of the present invention is to solve such problems of the prior art and to provide a light-emitting element with high luminous efficiency, low driving voltage and high durability.

課題を解決するための手段Means for solving the problem

発明は、基板上に形成された第一電極上に、少なくとも有機化合物からなる発光層および電子輸送層を含む薄膜層と、薄膜層上に形成された第二電極とを含む発光素子において、前記電子輸送層は分子量が400以上の有機化合物からなり、前記電子輸送層の少なくとも一部分にドナー性不純物がドーピングされており、前記有機化合物が非金属錯体系複素環化合物であって、ベンゾキノリン骨格を有する化合物であることを特徴とする発光素子である。 The present invention relates to a light emitting device including a thin film layer including at least a light emitting layer made of an organic compound and an electron transport layer on a first electrode formed on a substrate, and a second electrode formed on the thin film layer. the electron transport layer has a molecular weight is 400 or more organic compounds, said has a donor impurity is doped to at least a portion of the electron transport layer, the organic compound is a non-metallic complex based heterocyclic compounds, base Nzokinorin bone A light-emitting element characterized by being a compound having a rating .

以下、本発明による発光素子について説明する。  Hereinafter, the light emitting device according to the present invention will be described.

本発明におけるドナー性不純物のドーピングは電子輸送層の電気伝導性向上ならびにキャリア注入を容易にする。電子輸送能力を向上させるためには電子輸送層にドナー性不純物をドーピングする。本発明におけるドナー性不純物は、アルカリ金属、アルカリ土類金属、アミノ化合物、アンモニア、テトラチアフルバレン誘導体、テトラセレナフルバレン誘導体などが挙げられる。中でも真空中での蒸着が容易で、有機薄膜中に拡散しやすく、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、カリウム、ルビジウム、セシウムといったアルカリ金属や、マグネシウム、カルシウム、ストロンチウム、バリウムといったアルカリ土類金属が好ましく、アルカリ金属、特に仕事関数が全元素中最も小さいセシウムがより好ましい。  In the present invention, doping with a donor impurity facilitates improvement of electric conductivity of the electron transport layer and carrier injection. In order to improve the electron transport capability, the electron transport layer is doped with a donor impurity. Examples of the donor impurities in the present invention include alkali metals, alkaline earth metals, amino compounds, ammonia, tetrathiafulvalene derivatives, and tetraselenafulvalene derivatives. Among them, alkali deposition such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, easy to evaporate in vacuum, easily diffuse into organic thin film, and have a large effect of improving the electron transport ability with a low work function, An alkaline earth metal such as barium is preferable, and an alkali metal, particularly cesium having the smallest work function among all elements is more preferable.

電子輸送性材料としては、陰極からの電子を効率良く輸送することが必要で、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす化合物として、分子量が580以上の複素環化合物であって、該複素環を構成する少なくとも1つの環構造に窒素原子が2個以上含まれる化合物が好適に用いられる。  As the electron transporting material, it is necessary to efficiently transport the electrons from the cathode, and it is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is required that the material has a high electron affinity, a high electron mobility, excellent stability, and a substance that does not easily generate trapping impurities during manufacturing and use. As a compound satisfying such conditions, a heterocyclic compound having a molecular weight of 580 or more and a compound in which two or more nitrogen atoms are contained in at least one ring structure constituting the heterocyclic ring is preferably used.

同じ窒素化合物でも、電子輸送性の点から、アミン化合物よりも窒素含有複素環化合物であるピラジン骨格、トリアジン骨格、トリアゾール骨格などを含む化合物が好ましい。このような条件を満たす物質として、下記化〜化3に示す化合物などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。

Figure 0005223163
Even in the same nitrogen compound, a compound containing a pyrazine skeleton, a triazine skeleton, a triazole skeleton, or the like, which is a nitrogen-containing heterocyclic compound, is preferable to an amine compound from the viewpoint of electron transport properties. Examples of the material satisfying such conditions include compounds shown in the following chemical formulas 1 to 3, but are not particularly limited. These electron transport materials are used alone, but may be laminated or mixed with different electron transport materials.
Figure 0005223163

Figure 0005223163
Figure 0005223163

Figure 0005223163
Figure 0005223163

また、電子輸送性材料として、分子量が400以上の非金属錯体系複素環化合物であって、該複素環を構成する環構造1つにつき窒素原子が0個もしくは1個含まれる化合物も同様に好適に用いられる。  Also suitable as the electron transporting material is a non-metallic complex-type heterocyclic compound having a molecular weight of 400 or more, and a compound containing 0 or 1 nitrogen atom per ring structure constituting the heterocyclic ring. Used for.

電子輸送性の点から、本発明の非金属錯体系複素環化合物としてピリジン骨格、チオフェン骨格、シロール骨格のうち少なくとも1種類を有する化合物が好ましい。さらに、薄膜形成時の膜質安定性の点から、ピリジン骨格を有する化合物の中でもベンゾキノリン骨格を有する化合物がより好ましい。  From the viewpoint of electron transport properties, a compound having at least one of a pyridine skeleton, a thiophene skeleton, and a silole skeleton is preferred as the non-metallic complex-type heterocyclic compound of the present invention. Furthermore, a compound having a benzoquinoline skeleton is more preferable among compounds having a pyridine skeleton from the viewpoint of film quality stability during the formation of a thin film.

このような条件を満たす物質として、下記化4に示す化合物などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。 Examples of the material satisfying such conditions include, but are not limited to, compounds represented by the following chemical formula 4 . These electron transport materials are used alone, but may be laminated or mixed with different electron transport materials.

Figure 0005223163
Figure 0005223163

ドナー性不純物をドーピングする場合、キレート配位が可能な化合物は製造時や使用時に好ましくない不純物がトラップされてしまい、ドナー性不純物が効果的に働かなくなることがあるため好ましくない。キレート配位とは、複数の非共有電子対の供与サイトが、同時に一つの原子や分子に配位し、環構造を形成するような配位のしかたである。  In the case of doping with a donor impurity, a compound capable of chelate coordination is not preferable because undesirable impurities are trapped during production or use, and the donor impurity may not work effectively. The chelate coordination is a coordination method in which donor sites of a plurality of unshared electron pairs are simultaneously coordinated to one atom or molecule to form a ring structure.

発光効率を向上させるために干渉効果を利用する方法があるが、これは発光層から直接放射される光と、陰極で反射された光の位相を整合させて光の取り出し効率を向上させるものである。この最適条件は光の発光波長に応じて変化するが、電子輸送層および発光層の合計膜厚が50nm以上となり、赤色などの長波長発光の場合には100nm近くの厚膜になる場合がある。  There is a method that uses the interference effect to improve the light emission efficiency, but this improves the light extraction efficiency by matching the phase of the light directly emitted from the light emitting layer and the light reflected by the cathode. is there. This optimum condition varies depending on the light emission wavelength, but the total film thickness of the electron transport layer and the light-emitting layer is 50 nm or more, and in the case of long-wavelength light emission such as red, it may be a thick film near 100 nm. .

このような薄膜層の膜厚が厚い場合に、電子輸送層にドナー性不純物をドーピングして電子輸送能を向上させる方法は特に効果を発揮するものである。電子輸送層および発光層の合計膜厚が50nm以上の場合に好ましく用いられ、70nm以上ではより好ましく用いられる。  When such a thin film layer is thick, the method of doping the electron transport layer with a donor impurity to improve the electron transport capability is particularly effective. It is preferably used when the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more, and more preferably 70 nm or more.

ドーピングする電子輸送層の膜厚は、電子輸送層の一部分または全部のどちらでも構わないが、全体の膜厚が厚いほどドーピングする膜厚も厚い方がよい。一部分にドーピングする場合、少なくとも電子輸送層/陰極界面にはドーピング層を設けることが望ましく、界面付近にドーピングするだけでも低電圧化の効果は得られる。一方、ドナー性不純物が発光層にドーピングされると発光効率を低下させる悪影響を及ぼす場合があることから、発光層/電子輸送層界面には5nm以上のノンドープ層を設けることが望ましい。  The thickness of the electron transport layer to be doped may be part or all of the electron transport layer, but the thicker the total thickness, the better the thickness of the doping. In the case of partial doping, it is desirable to provide a doping layer at least at the electron transport layer / cathode interface, and the effect of lowering the voltage can be obtained only by doping in the vicinity of the interface. On the other hand, if a donor impurity is doped in the light emitting layer, it may adversely affect the light emission efficiency. Therefore, it is desirable to provide a non-doped layer of 5 nm or more at the light emitting layer / electron transport layer interface.

好適なドーピング濃度は材料やドーピング層の膜厚によっても異なるが、有機化合物とドナー性不純物のモル比100:1〜1:100の範囲が好ましく、10:1〜1:10がより好ましい。  A suitable doping concentration varies depending on the material and the thickness of the doping layer, but the molar ratio of the organic compound to the donor impurity is preferably in the range of 100: 1 to 1: 100, more preferably 10: 1 to 1:10.

第一電極と第二電極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが望ましい。通常、基板上に形成される第一電極を透明電極とし、これを陽極、第二電極を陰極とする。  The first electrode and the second electrode have a role of supplying a sufficient current for light emission of the element, and at least one of the first electrode and the second electrode is preferably transparent or translucent in order to extract light. Usually, the first electrode formed on the substrate is a transparent electrode, which is an anode, and the second electrode is a cathode.

第一電極に用いる材料は、光を取り出すために透明または半透明であれば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。ITO膜形成方法は、電子ビーム蒸着法、スパッタリング法、化学反応法など特に制限を受けるものではない。  If the material used for the first electrode is transparent or semi-transparent to extract light, a conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), or gold Metals such as silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline are not particularly limited, but it is particularly desirable to use ITO glass or Nesa glass. . The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied. For example, an ITO substrate with a resistance of 300Ω / □ or less will function as a device electrode, but since it is now possible to supply a substrate with a resistance of approximately 10Ω / □, use a substrate with a low resistance of 20Ω / □ or less. Is particularly desirable. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm. The ITO film forming method is not particularly limited, such as an electron beam evaporation method, a sputtering method, or a chemical reaction method.

ガラス基板はソーダライムガラス、無アルカリガラスなどが用いられ、また厚みも機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用できる。As the glass substrate, soda lime glass, non-alkali glass, or the like is used, and it is sufficient that the thickness is sufficient to maintain the mechanical strength, so 0.5 mm or more is sufficient. As for the glass material, alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass, but soda-lime glass with a barrier coat such as SiO 2 is also commercially available and can be used.

第二電極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。特に主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。  The material used for the second electrode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer. Generally, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred. In particular, aluminum, silver, and magnesium are preferable as the main components from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.

薄膜層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法などが挙げられ、特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましい。  The method for forming the thin film layer includes resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., and is not particularly limited. Is preferable.

正孔輸送材料としては、電界を与えられた電極間において正極からの正孔を効率良く輸送することが必要で、正孔注入効率が高く、注入された正孔を効率良く輸送することが望ましい。そのためには適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、特に限定されるものではないが、TPD、m−MTDATA、α−NPDなどのトリフェニルアミン誘導体、ビスカルバゾリル誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物やフタロシアニン誘導体に代表される複素環化合物、ポリビニルカルバゾール、ポリシランなどの既知の正孔輸送材料を使用できる。これらの正孔輸送材料は単独でも用いられるが、異なる正孔輸送材料と積層または混合して使用しても構わない。  As a hole transport material, it is necessary to efficiently transport holes from the positive electrode between electrodes to which an electric field is applied. It is desirable that the hole injection efficiency is high and the injected holes are transported efficiently. . For this purpose, it is required that the material has an appropriate ionization potential, has a high hole mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use. Although it does not specifically limit as a substance which satisfy | fills such conditions, Triphenylamine derivatives, such as TPD, m-MTDATA, alpha-NPD, biscarbazolyl derivatives, pyrazoline derivatives, stilbene compounds, hydrazone compounds and phthalocyanine derivatives A known hole transporting material such as a heterocyclic compound represented by the formula (1), polyvinylcarbazole, or polysilane can be used. These hole transport materials may be used alone, but may be used by being laminated or mixed with different hole transport materials.

発光材料はホスト材料のみでも、ホスト材料とゲスト材料の組み合わせでも、いずれであってもよい。また、ゲスト材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ゲスト材料は積層されていても、分散されていても、いずれであってもよい。  The light emitting material may be either a host material alone or a combination of a host material and a guest material. In addition, the guest material may be included in the entire host material, or may be included partially. The guest material may be either laminated or dispersed.

発光材料は、具体的には、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。  Specifically, the light-emitting material includes fused ring derivatives such as anthracene and pyrene, which have been known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters. Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, polyphenylene vinylene derivatives in polymer systems Polyparaphenylene derivatives, polythiophene derivatives, and the like can be used, but are not particularly limited.

発光材料に添加するドーパント材料は特に限定されるものではないが、既知のドーパント材料を用いることができる。具体的には従来から知られている、ペリレン、ルブレンなどの縮合環誘導体、キナクリドン誘導体、フェノキサゾン660、DCM1、ペリノン、クマリン誘導体、ピロメテン(ジアザインダセン)誘導体、シアニン色素などが使用できる。  The dopant material added to the light emitting material is not particularly limited, but a known dopant material can be used. Specifically, conventionally known fused ring derivatives such as perylene and rubrene, quinacridone derivatives, phenoxazone 660, DCM1, perinone, coumarin derivatives, pyromethene (diazaindacene) derivatives, cyanine dyes and the like can be used.

以上の正孔輸送層、発光層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。  The above materials used for the hole transport layer and the light emitting layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate, polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate. , Solvent soluble resins such as polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, phenol resin, xylene resin, It can also be used by being dispersed in a curable resin such as petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, and silicone resin.

以上の技術は、複数の発光色からなるフルカラーまたはマルチカラー表示が可能なディスプレイの場合にも応用することができる。  The above technique can also be applied to a display capable of full color or multicolor display composed of a plurality of emission colors.

以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。  EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited by these examples.

参考例1
スパッタリング法によりITO透明導電膜を120nm堆積させたガラス基板を38×46mmに切断した後、ITOの不要部分をエッチング除去した。得られた基板をアルカリ洗浄液で10分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV/オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料として銅フタロシアニン(CuPc)を10nm、次にN,N’−ジ−(ナフタレン−1−イル)−N,N’−ジフェニル−ベンジジン(NPD)を60nm蒸着し、続いて発光層としてゲスト材料(DCJTB)とホスト材料トリス(8−キノリノラト)アルミニウム(Alq)の混合物を25nmの厚さに積層した。ゲストはホストに対して1重量%とした。次に電子輸送層として、化に示す電子輸送材料(ETL−1)とセシウムをモル比で約3:1の割合で共蒸着して70nmの厚さに積層した。この電子輸送材料ETL−1の分子量は690である。さらに電子輸送層表面をセシウムの蒸気に曝してドーピングした。第二電極用マスクを装着し、アルミニウムを150nm蒸着して陰極とした。
Reference example 1
A glass substrate on which an ITO transparent conductive film of 120 nm was deposited by sputtering was cut into 38 × 46 mm, and then unnecessary portions of ITO were removed by etching. The obtained substrate was ultrasonically cleaned with an alkaline cleaning liquid for 10 minutes and then cleaned with ultrapure water. This substrate was subjected to UV / ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. By resistance heating, copper phthalocyanine (CuPc) is first deposited as a hole transport material at 10 nm, and then N, N′-di- (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) is deposited as 60 nm. Subsequently, a mixture of a guest material (DCJTB) and a host material tris (8-quinolinolato) aluminum (Alq 3 ) was laminated to a thickness of 25 nm as a light emitting layer. The guest was 1% by weight with respect to the host. Next, as an electron transport layer, an electron transport material (ETL-1) shown in Chemical Formula 5 and cesium were co-deposited at a molar ratio of about 3: 1 and laminated to a thickness of 70 nm. The electron transport material ETL-1 has a molecular weight of 690. Further, the surface of the electron transport layer was doped by exposure to cesium vapor. A mask for the second electrode was attached, and aluminum was deposited to 150 nm to form a cathode.

このようにして作製した発光素子を4mA/cm2の電流密度で発光させたところ、発光輝度は98cd/m2、駆動電圧は6V、発光効率は1.2lm/Wで発光した。この素子を初期輝度200cd/m2で連続駆動したところ、1000時間後も輝度が半減しなかった。When the light emitting device thus fabricated was made to emit light at a current density of 4 mA / cm 2 , it emitted light with an emission luminance of 98 cd / m 2 , a driving voltage of 6 V, and an emission efficiency of 1.2 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

Figure 0005223163
Figure 0005223163

参考例2
電子輸送層にリチウムを共蒸着し、表面をリチウムの蒸気で曝してドーピングした他は参考例1と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は89cd/m、駆動電圧は6.2V、発光効率は1.0lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかった。
Reference example 2
A device was fabricated in the same manner as in Reference Example 1 except that lithium was co-evaporated on the electron transport layer and the surface was exposed to lithium vapor for doping. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 89 cd / m 2 , a drive voltage of 6.2 V, and an emission efficiency of 1.0 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

参考例3
電子輸送層の膜厚を30nmにした他は参考例1と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は75cd/m、駆動電圧は5.7V、発光効率は1.1lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかったが、4素子のうち1つが400時間後にショートし発光しなくなった。
Reference example 3
A device was fabricated in the same manner as in Reference Example 1 except that the thickness of the electron transport layer was 30 nm. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light with an emission luminance of 75 cd / m 2 , a driving voltage of 5.7 V, and an emission efficiency of 1.1 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours, but one of the four elements was short-circuited after 400 hours and stopped emitting light.

参考例4
電子輸送層の膜厚を25nmにした他は参考例1と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は70cd/m、駆動電圧は5.6V、発光効率は0.9lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかったが、4素子のうち1つが300時間後にショートし発光しなくなった。
Reference example 4
A device was fabricated in the same manner as in Reference Example 1 except that the thickness of the electron transport layer was 25 nm. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 70 cd / m 2 , a drive voltage of 5.6 V, and an emission efficiency of 0.9 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours, but one of the four elements was short-circuited after 300 hours and did not emit light.

参考例5
電子輸送層として、化6に示す電子輸送材料(ETL−4)を用いた他は参考例1と同様にして素子を作製した。この電子輸送材料ETL−4の分子量は629である。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は98cd/m、駆動電圧は6.2V、発光効率は1.1lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかった。
Reference Example 5
A device was fabricated in the same manner as in Reference Example 1, except that the electron transport material (ETL-4) shown in Chemical Formula 6 was used as the electron transport layer. The electron transport material ETL-4 has a molecular weight of 629. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 98 cd / m 2 , a drive voltage of 6.2 V, and an emission efficiency of 1.1 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

Figure 0005223163
Figure 0005223163

比較例1
セシウムをドーピングしないで電子輸送層を積層した他は参考例1と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は71cd/m、駆動電圧は7.8V、発光効率は0.6lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、800時間後に輝度が半減した。
Comparative Example 1
A device was fabricated in the same manner as in Reference Example 1 except that the electron transport layer was laminated without doping cesium. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 71 cd / m 2 , a drive voltage of 7.8 V, and an emission efficiency of 0.6 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was reduced by half after 800 hours.

比較例2
電子輸送層として、バソクプロインとセシウムをモル比で約3:1の割合で共蒸着した他は参考例1と同様にして素子を作製した。このバソクプロインの分子量は360である。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は59cd/m、駆動電圧は4.2V、発光効率は1.1lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、600時間後に輝度が半減した。
Comparative Example 2
A device was fabricated in the same manner as in Reference Example 1 except that bathocuproine and cesium were co-evaporated at a molar ratio of about 3: 1 as the electron transport layer. The molecular weight of this bathocuproine is 360. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 59 cd / m 2 , a drive voltage of 4.2 V, and an emission efficiency of 1.1 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was reduced by half after 600 hours.

参考例6
電子輸送層として、ETL−1のノンドープ層を15nm設け、次にETL−1とセシウムをモル比で約3:1の割合で55nm共蒸着した他は参考例1と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は100cd/m、駆動電圧は6.2V、発光効率は1.0lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかった。
Reference Example 6
A device was fabricated in the same manner as in Reference Example 1 except that an ETL-1 non-doped layer of 15 nm was provided as an electron transport layer, and then ETL-1 and cesium were co-evaporated at a molar ratio of about 3: 1 to 55 nm. . When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 100 cd / m 2 , a drive voltage of 6.2 V, and an emission efficiency of 1.0 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

実施例
電子輸送層として、化7に示す電子輸送材料(ETL−5)を用いた他は参考例1と同様にして素子を作製した。この電子輸送材料ETL−5の分子量は609である。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は92cd/m、駆動電圧は6.1V、発光効率は1.0lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかった。
Example 1
A device was fabricated in the same manner as in Reference Example 1, except that the electron transport material (ETL-5) shown in Chemical Formula 7 was used as the electron transport layer. The molecular weight of this electron transport material ETL-5 is 609. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light with an emission luminance of 92 cd / m 2 , a driving voltage of 6.1 V, and an emission efficiency of 1.0 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

Figure 0005223163
Figure 0005223163

実施例
電子輸送層にリチウムを共蒸着し、表面をリチウムの蒸気で曝してドーピングした他は実施例と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は84cd/m、駆動電圧は6.3V、発光効率は0.9lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかった。
Example 2
A device was fabricated in the same manner as in Example 1 except that lithium was co-evaporated on the electron transport layer and the surface was exposed to lithium vapor for doping. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light with a light emission luminance of 84 cd / m 2 , a drive voltage of 6.3 V, and a light emission efficiency of 0.9 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

実施例
電子輸送層の膜厚を30nmにした他は実施例と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は70cd/m、駆動電圧は5.9V、発光効率は0.9lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかったが、4素子のうち1つが350時間後にショートし発光しなくなった。
Example 3
A device was fabricated in the same manner as in Example 1 except that the thickness of the electron transport layer was 30 nm. When this device was made to emit light at a current density of 4 mA / cm 2 , it emitted light with an emission luminance of 70 cd / m 2 , a drive voltage of 5.9 V, and an emission efficiency of 0.9 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours, but one of the four elements was short-circuited after 350 hours and stopped emitting light.

実施例
電子輸送層の膜厚を25nmにした他は実施例と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は65cd/m、駆動電圧は5.6V、発光効率は0.8lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかったが、4素子のうち1つが300時間後にショートし発光しなくなった。
Example 4
A device was fabricated in the same manner as in Example 1 except that the thickness of the electron transport layer was 25 nm. When this device was made to emit light at a current density of 4 mA / cm 2 , it emitted light with an emission luminance of 65 cd / m 2 , a drive voltage of 5.6 V, and an emission efficiency of 0.8 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours, but one of the four elements was short-circuited after 300 hours and did not emit light.

比較例3
セシウムをドーピングしないで電子輸送層を積層した他は実施例と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は69cd/m、駆動電圧は8.1V、発光効率は0.5lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、800時間後に輝度が半減した。
Comparative Example 3
A device was fabricated in the same manner as in Example 1 except that the electron transport layer was laminated without doping cesium. When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 69 cd / m 2 , a drive voltage of 8.1 V, and an emission efficiency of 0.5 lm / W. When this element was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was reduced by half after 800 hours.

実施例
電子輸送層として、ETL−5のノンドープ層を15nm設け、次にETL−5とセシウムをモル比で約3:1の割合で55nm共蒸着した他は参考例6と同様にして素子を作製した。この素子を4mA/cmの電流密度で発光させたところ、発光輝度は98cd/m、駆動電圧は6.3V、発光効率は0.9lm/Wで発光した。この素子を初期輝度200cd/mで連続駆動したところ、1000時間後も輝度が半減しなかった。
Example 5
A device was fabricated in the same manner as in Reference Example 6 except that an ETL-5 non-doped layer of 15 nm was provided as an electron transport layer, and then ETL-5 and cesium were co-deposited at a molar ratio of about 3: 1 to 55 nm. . When this device was made to emit light at a current density of 4 mA / cm 2, the device emitted light at an emission luminance of 98 cd / m 2 , a drive voltage of 6.3 V, and an emission efficiency of 0.9 lm / W. When this device was continuously driven at an initial luminance of 200 cd / m 2 , the luminance was not halved even after 1000 hours.

発明の効果Effect of the invention

本発明により、高発光効率、低駆動電圧でかつ高耐久性の発光素子を提供することができる。  According to the present invention, a light-emitting element with high emission efficiency, low driving voltage, and high durability can be provided.

Claims (3)

基板上に形成された第一電極上に、少なくとも有機化合物からなる発光層および電子輸送層を含む薄膜層と、薄膜層上に形成された第二電極とを含む発光素子において、前記電子輸送層は分子量が400以上の有機化合物からなり、前記電子輸送層の少なくとも一部分にドナー性不純物がドーピングされており、前記有機化合物が非金属錯体系複素環化合物であって、ベンゾキノリン骨格を有する化合物であることを特徴とする発光素子。
On the first electrode formed on the substrate, in the light emitting device including at least a light emitting layer made of an organic compound and a thin film layer including an electron transport layer, and a second electrode formed on the thin film layer, the electron transport layer consists molecular weight of 400 or more organic compounds, said at least a portion of the electron transport layer has a donor impurity is doped, the organic compound is a non-metallic complex based heterocyclic compounds, compounds having a base Nzokinorin bone rated A light emitting element characterized by the above.
ドナー性不純物がアルカリ金属であることを特徴とする請求項1記載の発光素子。
Claim 1 Symbol placement of the light emitting element donor impurities, characterized in that an alkali metal.
電子輸送層および発光層の合計膜厚が50nm以上であることを特徴とする請求項1または2記載の発光素子。 The light emitting device according to claim 1 or 2, wherein the total thickness of the electron transport layer and the light emitting layer is 50 nm or more.
JP2001271543A 2001-09-07 2001-09-07 Light emitting element Expired - Lifetime JP5223163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271543A JP5223163B2 (en) 2001-09-07 2001-09-07 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271543A JP5223163B2 (en) 2001-09-07 2001-09-07 Light emitting element

Publications (3)

Publication Number Publication Date
JP2003086381A JP2003086381A (en) 2003-03-20
JP2003086381A5 JP2003086381A5 (en) 2008-10-16
JP5223163B2 true JP5223163B2 (en) 2013-06-26

Family

ID=19097036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271543A Expired - Lifetime JP5223163B2 (en) 2001-09-07 2001-09-07 Light emitting element

Country Status (1)

Country Link
JP (1) JP5223163B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141817B2 (en) 2001-11-30 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7074534B2 (en) 2002-07-10 2006-07-11 E. I. Du Pont De Nemours And Company Polymeric charge transport compositions and electronic devices made with such compositions
KR100757721B1 (en) * 2002-11-06 2007-09-11 가부시키가이샤 도요다 지도숏키 Organic electroluminescent device
DE10356099A1 (en) * 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh Organic electroluminescent element
US7777407B2 (en) 2005-05-04 2010-08-17 Lg Display Co., Ltd. Organic light emitting devices comprising a doped triazine electron transport layer
US8487527B2 (en) 2005-05-04 2013-07-16 Lg Display Co., Ltd. Organic light emitting devices
US7750561B2 (en) 2005-05-20 2010-07-06 Lg Display Co., Ltd. Stacked OLED structure
US7811679B2 (en) 2005-05-20 2010-10-12 Lg Display Co., Ltd. Display devices with light absorbing metal nanoparticle layers
US7795806B2 (en) 2005-05-20 2010-09-14 Lg Display Co., Ltd. Reduced reflectance display devices containing a thin-layer metal-organic mixed layer (MOML)
US7943244B2 (en) 2005-05-20 2011-05-17 Lg Display Co., Ltd. Display device with metal-organic mixed layer anodes
US7728517B2 (en) 2005-05-20 2010-06-01 Lg Display Co., Ltd. Intermediate electrodes for stacked OLEDs
KR101418266B1 (en) 2005-12-28 2014-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxadiazole derivative, and light emitting element, light emitting device, and electronic device using the oxadiazole derivative
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
KR101148859B1 (en) * 2008-03-19 2012-05-29 도레이 카부시키가이샤 Luminescent element material and luminescent element
JP5607959B2 (en) 2009-03-20 2014-10-15 株式会社半導体エネルギー研究所 Carbazole derivatives, light-emitting elements, light-emitting devices, and electronic devices
WO2012024132A2 (en) * 2010-08-16 2012-02-23 University Of Washington Through Its Center For Commercialization Solution-processable electron-transport materials and related organic optoelectronic devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157473A (en) * 1993-12-06 1995-06-20 Chisso Corp Triazine derivative, its production and electric field luminescent element using the same
JP2918150B2 (en) * 1995-07-17 1999-07-12 チッソ株式会社 Organic electroluminescent device using silacyclopentadiene derivative
JP3656318B2 (en) * 1996-04-26 2005-06-08 東洋インキ製造株式会社 Organic electroluminescence device material and organic electroluminescence device using the same
JPH10270171A (en) * 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JPH10340786A (en) * 1997-06-09 1998-12-22 Toyo Ink Mfg Co Ltd Organic electroluminecent element material and organic electroluminescent element using it
JP3266573B2 (en) * 1998-04-08 2002-03-18 出光興産株式会社 Organic electroluminescence device
JP3924943B2 (en) * 1998-08-24 2007-06-06 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device using the same
JP2000150152A (en) * 1998-11-16 2000-05-30 Toyo Ink Mfg Co Ltd Organic electroluminescence display device

Also Published As

Publication number Publication date
JP2003086381A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP4876333B2 (en) Light emitting element
JP4876311B2 (en) Light emitting element
KR101030158B1 (en) Organic electroluminescent element
US6121727A (en) Organic electroluminescent device
JP4725056B2 (en) Light emitting device material and light emitting device
EP0825804A2 (en) Blue organic electroluminescent devices
JP5223163B2 (en) Light emitting element
JP2002352961A (en) Organic electroluminescent device
JP2002100482A (en) Organic electroluminescence element
JP2010027761A (en) Light emitting element
JP4089331B2 (en) Light emitting element
JP3924869B2 (en) Organic thin film light emitting device
JP2005093425A (en) Light emitting device
JP4590678B2 (en) Light emitting element
JP3129200B2 (en) Light emitting element
JPH08143862A (en) Light-emitting element
JP2002367786A (en) Luminous element
JP2001291590A5 (en)
JP3796787B2 (en) Light emitting element
JP3779625B2 (en) Light emitting element
JP2001297881A (en) Light emission element
JPH10208880A (en) Light emitting element
JPH07268317A (en) Light-emitting element
JP2002008866A (en) Light element
JP2004253373A (en) Organic el element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R151 Written notification of patent or utility model registration

Ref document number: 5223163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

EXPY Cancellation because of completion of term