JP5222769B2 - Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator - Google Patents

Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator Download PDF

Info

Publication number
JP5222769B2
JP5222769B2 JP2009082320A JP2009082320A JP5222769B2 JP 5222769 B2 JP5222769 B2 JP 5222769B2 JP 2009082320 A JP2009082320 A JP 2009082320A JP 2009082320 A JP2009082320 A JP 2009082320A JP 5222769 B2 JP5222769 B2 JP 5222769B2
Authority
JP
Japan
Prior art keywords
wedge
optical
optical isolator
polarizer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009082320A
Other languages
Japanese (ja)
Other versions
JP2010237268A (en
Inventor
太郎 中村
利光 稲垣
秀明 油利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2009082320A priority Critical patent/JP5222769B2/en
Publication of JP2010237268A publication Critical patent/JP2010237268A/en
Application granted granted Critical
Publication of JP5222769B2 publication Critical patent/JP5222769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光アイソレータ用楔型複屈折率偏光子および光アイソレータに関し、さらに詳しくは、偏波無依存型の光アイソレータに用いられる一対の楔型複屈折率偏光子と、この楔型複屈折率偏光子を用いた光アイソレータの製造方法および光アイソレータに関するものである。   The present invention relates to a wedge-type birefringence polarizer and an optical isolator for an optical isolator, and more specifically, a pair of wedge-type birefringence polarizers used for a polarization-independent optical isolator and the wedge-type birefringence. The present invention relates to an optical isolator manufacturing method using an optical polarizer and an optical isolator.

たとえば、波長多重光通信システムの中継器を構成する光増幅器には、光信号出力を一方向だけに伝送させるための部品として偏波無依存型の光アイソレータが用いられている。   For example, in an optical amplifier constituting a repeater of a wavelength division multiplexing optical communication system, a polarization-independent optical isolator is used as a component for transmitting an optical signal output in only one direction.

この偏波無依存型光アイソレータは、図5に示すように、入射光を導入する入力側光ファイバ1Aと出射光を導出する出力側光ファイバ1Bの間に、入光用コリメータレンズ2A、第1の楔型複屈折率偏光子3A、45度ファラディ回転子4、第2の楔型複屈折率偏光子3B、出光用コリメータレンズ2Bを順次配置したものであって、各構成要素はそれぞれケーシング6内に位置決めされた状態で組み込まれている(たとえば、特許文献1,2参照)。   As shown in FIG. 5, this polarization-independent optical isolator includes a light incident collimator lens 2A, a first collimator lens 2A between an input optical fiber 1A for introducing incident light and an output optical fiber 1B for extracting outgoing light. 1 wedge-type birefringence polarizer 3A, 45-degree Faraday rotator 4, second wedge-type birefringence polarizer 3B, and output collimator lens 2B are sequentially arranged, and each component is a casing. 6 (see Patent Documents 1 and 2, for example).

第1の楔型複屈折率偏光子3A、45度ファラディ回転子4、第2の楔型複屈折率偏光子3Bはアイソレータ・ユニット5を形成する。同図に示す例ではユニット5が1つだけの1段構成であるが、アイソレーション(入出力分離性能)を高めるためにユニット5を複数段(2段)直列に重ねた多段構成とする場合もある。   The first wedge-type birefringence polarizer 3A, the 45-degree Faraday rotator 4, and the second wedge-type birefringence polarizer 3B form an isolator unit 5. In the example shown in the figure, the unit 5 has a single-stage configuration, but in order to improve isolation (input / output separation performance), the unit 5 has a multi-stage configuration in which a plurality of stages (two stages) are stacked in series. There is also.

この光アイソレータで用いられている楔型複屈折率偏光子3A,3Bは、図6に示すように、光路Lz方向に対して垂直面aとテーパ面bをそれぞれ有する。2つの偏光子3A,3Bは、互いに同じ光学特性に揃えられている(ペアリングされている)とともに、それぞれの垂直面a,aが光路Lz方向に直交し、かつ垂直面a,a同士およびテーパ面b,b同士が互いに平行するように位置決めされた状態で設置される。これは、挿入損失とくに順方向での伝送損失を低く抑えるためである。   As shown in FIG. 6, the wedge-type birefringence polarizers 3A and 3B used in this optical isolator each have a vertical surface a and a tapered surface b with respect to the optical path Lz direction. The two polarizers 3A and 3B are aligned (paired) with the same optical characteristics, and the vertical surfaces a and a are orthogonal to the optical path Lz direction, and the vertical surfaces a and a and The taper surfaces b and b are installed in a state where they are positioned so as to be parallel to each other. This is to keep the insertion loss, particularly the transmission loss in the forward direction, low.

特公昭61−58811Shoko 61-58811 特公昭61−58809JP-B 61-58809

光アイソレータでは、アイソレーションを高く確保するとともに、挿入損失をできるだけ低く抑えることが求められている。このためには、各構成要素とくに楔型複屈折率偏光子3A,3Bを精度良く組み込む必要がある。   Optical isolators are required to ensure high isolation and to keep insertion loss as low as possible. For this purpose, it is necessary to incorporate each component, in particular, the wedge-type birefringence polarizers 3A and 3B with high accuracy.

従来においては、楔型複屈折率偏光子の外形状を基準にして組立を行っていた。しかし、デバイスサイズの縮小にともない、要求される組立精度を得ること困難になってきた。また、光学的に無効となる光成分(伝送方向以外に漏れる光)をカメラで捉え、このカメラの撮像を手がかりにして組立時の位置決め調整を行う方法もあるが、この方法による組立精度にも限界があった。   In the past, assembly was performed based on the outer shape of the wedge-shaped birefringent polarizer. However, as the device size is reduced, it has become difficult to obtain the required assembly accuracy. In addition, there is a method of capturing optical components that are optically invalid (light leaking in directions other than the transmission direction) with a camera, and using this camera as a clue to adjust positioning during assembly. There was a limit.

さらに、挿入損失を減らすためには、楔型複屈折率偏光子3A,3Bの特性とくにテーパ角度が良く揃っていること、いわゆるペアリング精度の良いことが必要である。このペアリング精度を確保する方法として、従来は、同じ生産ロットで造られたもの同士を組み合わせることが行われていた。これは、同じ生産条件によって製造されたものは特性も同じになるであろうという期待に基づくものであるが、これだけでは、光アイソレータ用楔型複屈折率偏光子に要求されるペアリング精度を確保できないことが、本発明者らによってあきらかにされた。   Furthermore, in order to reduce insertion loss, it is necessary that the characteristics of the wedge-type birefringent polarizers 3A and 3B, in particular, the taper angles are well aligned, that is, so-called pairing accuracy is good. As a method for ensuring the pairing accuracy, conventionally, products manufactured in the same production lot have been combined. This is based on the expectation that those manufactured under the same production conditions will have the same characteristics, but this alone provides the pairing accuracy required for wedge-type birefringent polarizers for optical isolators. It was made clear by the present inventors that it cannot be ensured.

楔型複屈折率偏光子3A,3Bは、図7に示すように、予備加工された長尺の光学素材(複屈折率材料)から切り出して造るが、同じ素材から切り出されたものでも、その光学特性には微妙なバラツキがあり、これが光アイソレータの挿入損失低減を妨げる大きな阻害要因になることが判明した。   As shown in FIG. 7, the wedge-shaped birefringence polarizers 3A and 3B are cut from a prefabricated long optical material (birefringence material), but even if they are cut from the same material, It has been found that there are subtle variations in optical characteristics, and this is a major impediment to hindering insertion loss reduction of optical isolators.

本発明は以上のような問題を解決するものであって、その目的は、偏波無依存型光アイソレータの挿入損失を簡単かつ再現性良く低減させるのにとくに有効な楔型複屈折率偏光子、この楔型複屈折率偏光子を用いた光アイソレータの製造方法、および挿入損失とそのバラツキの小さな光アイソレータを提供することにある。   The present invention solves the above problems, and its object is to provide a wedge-type birefringent polarizer that is particularly effective for reducing the insertion loss of a polarization-independent optical isolator easily and with good reproducibility. Another object of the present invention is to provide an optical isolator manufacturing method using the wedge-shaped birefringence polarizer, and an optical isolator with small insertion loss and variation.

本発明が提供する解決手段は以下のとおりである。
(1)入射光を導入する入力側光ファイバと出射光を導出する出力側光ファイバ間に、入光用コリメータレンズ、第1の楔型複屈折率偏光子、45度ファラディ回転子、第2の楔型複屈折率偏光子、出光用コリメータレンズが、それぞれに位置決めされた状態でケーシング内に組み込まれている偏波無依存型光アイソレータにおいて使用される前記楔型複屈折率偏光子であって、
矩形板状の表面と裏面の一方が垂直面、他方が当該垂直面に対して傾斜するテーパ面で、当該傾斜を側方から見たときの断面形状が台形状であり、
前記垂直面と前記テーパ面を光の入出射面とするとともに、前記入出射面と異なる少なくとも一つの側面鏡面加工された光学平面である、
ことを特徴とする光アイソレータ用楔型複屈折率偏光子。
The solution provided by the present invention is as follows.
(1) An input collimator lens, a first wedge-type birefringence polarizer, a 45-degree Faraday rotator, a second optical fiber between an input-side optical fiber that introduces incident light and an output-side optical fiber that derives outgoing light The wedge-type birefringence polarizer and the light-emitting collimator lens are the wedge-type birefringence polarizer used in the polarization-independent optical isolator incorporated in the casing in a state where each is positioned. And
One of the front and back surfaces of the rectangular plate is a vertical surface, the other is a tapered surface inclined with respect to the vertical surface, and the cross-sectional shape when the inclination is viewed from the side is a trapezoid,
As well as the tapered surface and the vertical plane and incident and exit surfaces of the light, at least one side surface differs from the entering-emitting surface is mirror-finished optical plane,
A wedge-type birefringent polarizer for an optical isolator.

(2)手段(1)において、台形断面をなす楔型の底辺側面に上記光学平面を形成したことを特徴とする光アイソレータ用楔型複屈折率偏光子。
(3)手段(1)(2)に記載の光アイソレータ用楔型複屈折率偏光子を用いた偏波無依存型光アイソレータの製造方法であって、上記光学平面を光学位置基準にして行われる光学測定に基づいてペアリングされた複数の楔型複屈折率偏光子を使用し、これらの楔型複屈折率偏光子を上記ケーシング内に組み込む際にはそれぞれ上記光学平面を位置基準にして位置決めを行うことを特徴とする光アイソレータの製造方法。
(4)手段(1)(2)に記載の光アイソレータ用楔型複屈折率偏光子を用いたことを特徴とする光アイソレータ。
(2) A wedge-type birefringence polarizer for an optical isolator characterized in that the optical plane is formed on a wedge-shaped bottom side surface having a trapezoidal cross section in the means (1).
(3) A method for manufacturing a polarization-independent optical isolator using the wedge-type birefringent polarizer for optical isolators according to means (1) or (2), wherein the optical plane is used as an optical position reference. A pair of wedge-shaped birefringent polarizers paired on the basis of optical measurements, and when these wedge-shaped birefringent polarizers are assembled in the casing, the optical plane is used as a position reference, respectively. An optical isolator manufacturing method comprising positioning.
(4) An optical isolator using the wedge-type birefringent polarizer for optical isolators according to means (1) or (2).

光アイソレータの挿入損失を簡単かつ再現性良く効果的に低減させることができる。   The insertion loss of the optical isolator can be effectively reduced with good reproducibility.

本発明に係る楔型複屈折率偏光子の実施例を示す斜視図である。It is a perspective view which shows the Example of the wedge type birefringent polarizer which concerns on this invention. 本発明に係る楔型複屈折率偏光子のペアリングや位置決めを行う際の光学測定方法を例示する概略図である。It is the schematic which illustrates the optical measuring method at the time of performing pairing and positioning of the wedge type | mold birefringence polarizer which concerns on this invention. 本発明に係る楔型複屈折率偏光子を用いた1段構成の光アイソレータを示す概略図である。It is the schematic which shows the optical isolator of the 1 step | paragraph structure using the wedge type | mold birefringence polarizer which concerns on this invention. 本発明に係る楔型複屈折率偏光子を用いた2段構成の光アイソレータを示す概略図である。It is the schematic which shows the optical isolator of the 2 step | paragraph structure using the wedge type | mold birefringence polarizer which concerns on this invention. 偏波無依存型光アイソレータの構成概念を示す概略図である。It is the schematic which shows the structural concept of a polarization independent type optical isolator. 光アイソレータに用いられる楔型複屈折率偏光子の斜視図である。It is a perspective view of a wedge type birefringence polarizer used for an optical isolator. 楔型複屈折率偏光子の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of a wedge type | mold birefringence polarizer.

図1は本発明に係る光アイソレータ用楔型複屈折率偏光子3A,3Bを示す。同図に示す楔型複屈折率偏光子3A,3Bはそれぞれ矩形板状であって、光路Lz方向に対して垂直面aとテーパ面bを有する。また、台形断面をなす楔型の底辺側面dが、鏡面加工された光学平面31に形成されている。なお、底辺側面dと対向する頂辺側面cについては必ずしも光学平面であることを要しないが、この面cも光学平面にすることはもちろん好ましい。   FIG. 1 shows wedge-type birefringence polarizers 3A and 3B for an optical isolator according to the present invention. Each of the wedge-shaped birefringence polarizers 3A and 3B shown in the figure has a rectangular plate shape, and has a vertical surface a and a tapered surface b with respect to the optical path Lz direction. In addition, a wedge-shaped bottom side surface d having a trapezoidal cross section is formed on a mirror-finished optical plane 31. The top side surface c facing the bottom side surface d does not necessarily need to be an optical plane, but it is of course preferable that this surface c is also an optical plane.

2つの偏光子3A,3Bはその特性とくにテーパ角度が高精度に揃うべくペアリングされるが、このペアリングは、上記光学平面31を光学位置基準にして行われる光学測定に基づいて行われる。   The two polarizers 3A and 3B are paired so that their characteristics, in particular, the taper angles are aligned with high precision, and this pairing is performed based on optical measurement performed with the optical plane 31 as an optical position reference.

光学測定は、図2はその概略を例示するように、オートコリメータを用いて行われる。オートコリメータはレーザ・コリメート光L1〜L3の出射光と反射光の位置比較によりテーパ角度差などの特性差を高精度に測定することができる。このとき、その位置基準として上記光学平面31が用いられる。この光学平面31を基準にして光学測定される特性がもっとも良く一致するもの同士が選別されて使用される。つまり、ペアリングされる。   The optical measurement is performed using an autocollimator, as FIG. 2 schematically illustrates. The autocollimator can measure a characteristic difference such as a taper angle difference with high accuracy by comparing the positions of the emitted light and reflected light of the laser collimated lights L1 to L3. At this time, the optical plane 31 is used as the position reference. Those having the best matching optically measured characteristics with respect to the optical plane 31 are selected and used. That is, it is paired.

図3は、本発明に係る楔型複屈折率偏光子3A,3Bを用いて構成された偏波無依存型光アイソレータの実施例を示す。この実施例の光アイソレータは、入射光を導入する入力側光ファイバ1Aと出射光を導出する出力側光ファイバ1Bとの間に、入光用コリメータレンズ2A、第1の楔型複屈折率偏光子3A、45度ファラディ回転子4、第2の楔型複屈折率偏光子3B、出光用コリメータレンズ2Bを順次配置することにより構成されている。   FIG. 3 shows an embodiment of a polarization-independent optical isolator configured using wedge-type birefringence polarizers 3A and 3B according to the present invention. The optical isolator of this embodiment includes an incident collimator lens 2A and a first wedge-type birefringence polarization between an input side optical fiber 1A for introducing incident light and an output side optical fiber 1B for extracting outgoing light. The optical element 3A, the 45-degree Faraday rotator 4, the second wedge-type birefringence polarizer 3B, and the light-emitting collimator lens 2B are sequentially arranged.

各構成要素はそれぞれケーシング6内に位置決めされた状態で組み込まれているが、挿入損失にもっとも大きく影響する楔型複屈折率偏光子3A,3Bの組み込みについては、オートコリメータによる光学測定下で、テーパ角などを高精度に位置決めしながら行われる。この位置決めも上記光学平面31を基準にすることにより再現性良く高精度に行わせることができる。   Each component is incorporated in a state in which it is positioned in the casing 6, but the incorporation of the wedge-shaped birefringence polarizers 3A and 3B, which has the greatest influence on the insertion loss, is performed under optical measurement using an autocollimator. This is performed while positioning the taper angle with high accuracy. This positioning can also be performed with high reproducibility and high accuracy by using the optical plane 31 as a reference.

図3に示した光アイソレータはユニット5が1つだけの1段構成であるが、本発明は、図4に示すように、複数段(2段)のアイソレータ・ユニット51,52を直列に重ねた多段構成とする場合にも有効である。   The optical isolator shown in FIG. 3 has a single-stage configuration with only one unit 5. However, in the present invention, as shown in FIG. 4, a plurality of (two-stage) isolator units 51 and 52 are stacked in series. This is also effective when a multi-stage configuration is used.

この多段構成の光アイソレータは、アイソレーションを高くすることができる反面、ユニット51,52間の光学軸合わせが難しいという問題があったが、本発明では、楔型の少なくとも1つの側面に光学平面31が形成された楔型複屈折率偏光子3A,3Bを用いることにより、その光学軸合わせも簡単かつ再現性良く、しかも高精度に行わせることができる。   Although this multi-stage optical isolator can increase the isolation, there is a problem that it is difficult to align the optical axes between the units 51 and 52. However, in the present invention, an optical plane is provided on at least one side surface of the wedge shape. By using the wedge-shaped birefringence polarizers 3A and 3B on which 31 is formed, the optical axis alignment can be performed easily, with good reproducibility, and with high accuracy.

以上のように本発明に係る光アイソレータ用楔型複屈折率偏光子3A,3Bは、その楔型の少なくとも1つの側面を鏡面加工された光学平面としたことにより、次のような効果が得られる。
(1)対で使用する楔型複屈折率偏光子3A,3Bのテーパ角度差により生じる光成分を
減らすことができる。
(2)対で使用する楔型複屈折率偏光子3A,3Bの組立対称性が悪いことにより生じる光成分を減らすことができる。
(3)対で使用する楔型複屈折率偏光子3A,3Bの光学軸角度誤差と、ファラディ回転子4の回転角が、異なることにより生じる光成分を減らすことができる。
(4)2段(多段)で使用する場合、1段目と2段目間の光学軸にズレがあることにより生じる光成分を減らすことができる。
As described above, the wedge-type birefringence polarizers 3A and 3B for optical isolators according to the present invention have the following effects by using at least one side surface of the wedge shape as a mirror-finished optical plane. It is done.
(1) The light component produced by the difference in taper angle between the wedge-type birefringent polarizers 3A and 3B used in pairs can be reduced.
(2) Light components generated due to poor assembly symmetry of the wedge type birefringent polarizers 3A and 3B used in pairs can be reduced.
(3) It is possible to reduce the light component generated when the optical axis angle error of the wedge-shaped birefringence polarizers 3A and 3B used in pairs and the rotation angle of the Faraday rotator 4 are different.
(4) When used in two stages (multistage), it is possible to reduce the light component generated due to a shift in the optical axis between the first and second stages.

以上のようにして光アイソレータで無効となる光成分を低減させられることにより、挿入損失が小さく、またそのバラツキも小さな光アイソレータを再現性良く得ることができる。   As described above, by reducing the optical components that are ineffective in the optical isolator, it is possible to obtain an optical isolator with low insertion loss and small variation with good reproducibility.

1A,1B 光ファイバ
2A,2B コリメータレンズ
3,3A,3B 楔型複屈折率偏光子
31 鏡面加工された光学平面
4 ファラディ回転子
5,51,52 のアイソレータ・ユニット
6 ケーシング
Lz 光路
a 垂直面
b テーパ面
d 楔型の底辺側面
c 楔型の頂辺側面
DESCRIPTION OF SYMBOLS 1A, 1B Optical fiber 2A, 2B Collimator lens 3, 3A, 3B Wedge-type birefringence polarizer 31 Mirror-finished optical plane 4 Faraday rotator 5, 51, 52 isolator unit 6 Casing Lz Optical path a Vertical plane b Tapered surface d Wedge-shaped bottom side c Cedge-shaped top side

Claims (4)

入射光を導入する入力側光ファイバと出射光を導出する出力側光ファイバ間に、入光用コリメータレンズ、第1の楔型複屈折率偏光子、45度ファラディ回転子、第2の楔型複屈折率偏光子、出光用コリメータレンズが、それぞれに位置決めされた状態でケーシング内に組み込まれている偏波無依存型光アイソレータにおいて使用される前記楔型複屈折率偏光子であって、
矩形板状の表面と裏面の一方が垂直面、他方が当該垂直面に対して傾斜するテーパ面で、当該傾斜を側方から見たときの断面形状が台形状であり、
前記垂直面と前記テーパ面を光の入出射面とするとともに、前記入出射面と異なる少なくとも一つの側面鏡面加工された光学平面である、
ことを特徴とする光アイソレータ用楔型複屈折率偏光子。
Between an input-side optical fiber for introducing incident light and an output-side optical fiber for deriving outgoing light, a collimator lens for incident light, a first wedge-shaped birefringent polarizer, a 45-degree Faraday rotator, and a second wedge-shaped The wedge-type birefringence polarizer used in a polarization-independent optical isolator in which a birefringence polarizer and a collimating lens for light emission are respectively positioned and incorporated in a casing,
One of the front and back surfaces of the rectangular plate is a vertical surface, the other is a tapered surface inclined with respect to the vertical surface, and the cross-sectional shape when the inclination is viewed from the side is a trapezoid,
As well as the tapered surface and the vertical plane and incident and exit surfaces of the light, at least one side surface differs from the entering-emitting surface is mirror-finished optical plane,
A wedge-type birefringent polarizer for an optical isolator.
請求項1において、台形断面をなす楔型の底辺側面に上記光学平面を形成したことを特徴とする光アイソレータ用楔型複屈折率偏光子。   2. The wedge-type birefringent polarizer for an optical isolator according to claim 1, wherein the optical plane is formed on a side surface of a wedge-shaped base having a trapezoidal cross section. 請求項1または2に記載の光アイソレータ用楔型複屈折率偏光子を用いた偏波無依存型光アイソレータの製造方法であって、上記光学平面を光学位置基準にして行われる光学測定に基づいてペアリングされた複数の楔型複屈折率偏光子を使用し、これらの楔型複屈折率偏光子を上記ケーシング内に組み込む際にはそれぞれ上記光学平面を位置基準にして位置決めを行うことを特徴とする光アイソレータの製造方法。 A method of manufacturing a polarization-independent optical isolator using the wedge-type birefringent polarizer for an optical isolator according to claim 1 or 2, wherein the optical plane is based on an optical measurement based on the optical position. A plurality of paired wedge-type birefringent polarizers are used, and when these wedge-type birefringent polarizers are assembled in the casing, positioning is performed with the optical plane as a position reference. A method for manufacturing an optical isolator. 請求項1または2に記載の光アイソレータ用楔型複屈折率偏光子を用いたことを特徴とする光アイソレータ。 Optical isolator characterized by using a wedge-shaped birefringent polarizer for an optical isolator according to claim 1 or 2.
JP2009082320A 2009-03-30 2009-03-30 Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator Active JP5222769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082320A JP5222769B2 (en) 2009-03-30 2009-03-30 Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082320A JP5222769B2 (en) 2009-03-30 2009-03-30 Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator

Publications (2)

Publication Number Publication Date
JP2010237268A JP2010237268A (en) 2010-10-21
JP5222769B2 true JP5222769B2 (en) 2013-06-26

Family

ID=43091668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082320A Active JP5222769B2 (en) 2009-03-30 2009-03-30 Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator

Country Status (1)

Country Link
JP (1) JP5222769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772841A (en) * 2017-03-16 2017-05-31 电子科技大学 A kind of photo-coupler for High-speed Rotating-mirror Camera speed probe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327811A (en) * 1986-07-22 1988-02-05 Fujitsu Ltd Optical isolator
JP4079228B2 (en) * 1996-12-12 2008-04-23 富士通株式会社 Optical device having optical circulator function
JP3339359B2 (en) * 1997-05-13 2002-10-28 株式会社ニコン Manufacturing method of cross dichroic prism
JP2003248206A (en) * 2002-02-25 2003-09-05 Tdk Corp Variable optical attenuator
JP2006145720A (en) * 2004-11-18 2006-06-08 Seiko Epson Corp Polarization conversion element, lighting device, and projector
JP2010217244A (en) * 2009-03-13 2010-09-30 Epson Toyocom Corp Method for manufacturing prism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772841A (en) * 2017-03-16 2017-05-31 电子科技大学 A kind of photo-coupler for High-speed Rotating-mirror Camera speed probe

Also Published As

Publication number Publication date
JP2010237268A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5826286B2 (en) Multi-core collimator
US9519151B2 (en) Optical multiplexer and transmitter optical subassembly
CA2851047C (en) Method and system for simultaneous measurement of strain and temperature utilizing dual core fiber
US9588150B2 (en) Electric current measuring apparatus
JP2021501364A5 (en)
WO2018098858A1 (en) Optical multiplexer/demultiplexer optical interface device for high-speed optical module
CA2353010A1 (en) Optical coupling device and method
JP2010223991A (en) Optical wavelength filter and optical multiplex/demultiplex element
US20050270529A1 (en) Stokes parameter measurement device and method
JP5222769B2 (en) Wedge-type birefringent polarizer for optical isolator, method for manufacturing optical isolator, and optical isolator
JP4714811B2 (en) Optical isolator and optical device
JP2016118750A (en) Chip type handle fiber multiplexer and chip type multi-wavelength light source
WO2015100625A1 (en) Collimator array and collimator array assembly method
JP6540576B2 (en) Light modulation device
WO2013011720A1 (en) Photo module
CN110568637B (en) Optical fiber isolator, laser and industrial equipment
CN208984906U (en) A kind of integrated free space optical circulator
JP5502271B2 (en) Bidirectional optical module and optical pulse tester
JP2020134609A (en) Optical element
US20100265582A1 (en) Optical isolators
JP2975497B2 (en) In-line optical isolator
CN211180288U (en) Linear polarization full polarization-maintaining mode-locked optical fiber wavelength division multiplexing device
JP2014035378A (en) Mach-zehnder multi-chip module and packaging method of the same
JP4019418B2 (en) Multi-multiplexing / demultiplexing module
JP2977926B2 (en) Optical circulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250