JP5222230B2 - Vacuum circuit breaker pressure diagnostic device - Google Patents

Vacuum circuit breaker pressure diagnostic device Download PDF

Info

Publication number
JP5222230B2
JP5222230B2 JP2009130598A JP2009130598A JP5222230B2 JP 5222230 B2 JP5222230 B2 JP 5222230B2 JP 2009130598 A JP2009130598 A JP 2009130598A JP 2009130598 A JP2009130598 A JP 2009130598A JP 5222230 B2 JP5222230 B2 JP 5222230B2
Authority
JP
Japan
Prior art keywords
circuit breaker
vacuum circuit
voltage
diagnostic device
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009130598A
Other languages
Japanese (ja)
Other versions
JP2010277909A (en
Inventor
歩 森田
悟 梶原
朗 高濱
正人 赤木
英之 松本
保 卯月
知樹 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2009130598A priority Critical patent/JP5222230B2/en
Publication of JP2010277909A publication Critical patent/JP2010277909A/en
Application granted granted Critical
Publication of JP5222230B2 publication Critical patent/JP5222230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明は、開閉装置などで用いられる真空遮断器の圧力診断装置に係り、更に詳しくは、開閉装置の運転中に真空遮断器の圧力健全性を診断できる真空遮断器の圧力診断装置に関する。   The present invention relates to a pressure diagnostic device for a vacuum circuit breaker used in a switchgear and the like, and more particularly to a pressure diagnostic device for a vacuum circuit breaker that can diagnose the pressure soundness of the vacuum circuit breaker during operation of the switchgear.

近年、低コスト・省スペース化のニーズに応えるべく、真空遮断器を絶縁容器内に収納した開閉装置や、単一真空容器内に遮断、断路、接地の複数の機能を併せ持つ開閉装置などが、製品化されている(例えば、特許文献1)。   In recent years, in order to meet the needs for low cost and space saving, switchgear with vacuum circuit breaker housed in an insulating container, switchgear with multiple functions of shutoff, disconnection and grounding in a single vacuum container, etc. It has been commercialized (for example, Patent Document 1).

特開平9−153320号公報JP 9-153320 A

真空遮断器の耐電圧性能および遮断性能は、構成部品である真空容器の内部の圧力に依存する。一般に、真空中の放電特性を示すものとして、真空容器の内部の圧力と電極間距離との積に対する放電電圧の相関を表すパッシェンカーブが知られている。図5は、電極間のギャップ長さが5mmのときの真空容器の内部の圧力と放電電圧との相関を示す特性図である。図5に示すように、真空容器の内部の圧力がある値以上に上昇すると(真空度が低下すると)、急激に絶縁性能が低下する。真空遮断器では、真空容器の破損故障ばかりでなく、雰囲気ガスの長期的透過によっても圧力が上昇する可能性があるため、定期的な点検が要求されている。   The withstand voltage performance and the breaking performance of the vacuum circuit breaker depend on the pressure inside the vacuum vessel which is a component. In general, a Paschen curve representing a correlation between a discharge voltage and a product of a pressure inside a vacuum vessel and a distance between electrodes is known as an indicator of discharge characteristics in vacuum. FIG. 5 is a characteristic diagram showing the correlation between the pressure inside the vacuum vessel and the discharge voltage when the gap length between the electrodes is 5 mm. As shown in FIG. 5, when the pressure inside the vacuum vessel rises above a certain value (when the degree of vacuum is lowered), the insulation performance is drastically lowered. The vacuum circuit breaker is required to be regularly inspected because the pressure may rise not only due to the failure of the vacuum vessel but also due to long-term permeation of the atmospheric gas.

一般的な点検方法としては、真空遮断器を開路状態とし、製造者が指定する値の電圧を極間に印加して、放電が発生しなければ、内部の圧力は正常と判断する、いわゆる耐電圧試験が行われている。従来の開閉装置では、真空遮断器を開閉装置の外部に引き出せる構造となっているものが多い。このため、開閉装置の母線を課電したまま点検対象の遮断器を取り外し、当該遮断器から供給される負荷を除くことによって、他のフィーダの運転状態を維持したまま、点検対象の遮断器の圧力健全性を点検することができる。一方、近年の開閉装置では、点検用の接地開閉器やケーブルヘッドから電圧を印加して真空遮断器の圧力健全性を評価する。いずれの開閉装置においても、搭載される真空遮断器の圧力健全性を確認するには、当該遮断器に接続される負荷を停電せざるを得ない。   As a general inspection method, the vacuum circuit breaker is opened, the voltage specified by the manufacturer is applied across the pole, and if no discharge occurs, the internal pressure is judged normal. A voltage test is being performed. Many conventional switchgears have a structure in which the vacuum circuit breaker can be pulled out of the switchgear. For this reason, the circuit breaker to be inspected is removed while the bus of the switchgear is applied and the load supplied from the circuit breaker is removed, so that the operation state of the other feeder is maintained and the circuit breaker to be inspected is maintained. Pressure health can be checked. On the other hand, in the recent switchgear, the voltage soundness of the vacuum circuit breaker is evaluated by applying a voltage from a grounding switch for inspection or a cable head. In any switchgear, in order to confirm the pressure soundness of the mounted vacuum circuit breaker, the load connected to the circuit breaker must be interrupted.

本発明は、上記の背景を鑑みて検討したもので、点検対象の遮断器を含み、開閉装置の全フィーダを停電させることなく、容易にかつ安全に、真空遮断器の圧力健全性を診断できる真空遮断器の圧力診断装置を提供することを目的としている。   The present invention has been studied in view of the above-described background, and includes a circuit breaker to be inspected, and can easily and safely diagnose the pressure soundness of the vacuum circuit breaker without causing a power failure in all feeders of the switchgear. It aims at providing the pressure diagnostic device of a vacuum circuit breaker.

上記の目的を達成するために、第1の発明は、接離自在な一対の接点と、該接点と電気的に絶縁された金属部とを内蔵した真空容器と、前記真空容器の内部から外部に貫通する前記一対の接点及び前記金属部のそれぞれに接続された導体とを備えた真空遮断器の圧力診断装置であって、前記金属部の導体に電気的に接続され、前記金属部を課電するための直流電圧発生装置と、一端を前記金属部に接続し、他端を接地に接続したコンデンサ列と、前記コンデンサ列の一部分の電位差を測定するための放電検出装置とで構成した前記金属部の電位変動を測定する手段とを備え、前記直流電圧発生装置は、直流電圧投入又は遮断時の過電圧を抑制するための抵抗を介して、前記コンデンサ列と接続するものとする。 In order to achieve the above object, the first invention provides a vacuum vessel including a pair of contacts that can be contacted and separated, and a metal part that is electrically insulated from the contacts, and from the inside of the vacuum vessel to the outside. A pressure diagnostic device for a vacuum circuit breaker comprising the pair of contacts penetrating through the metal and a conductor connected to each of the metal parts, wherein the metal parts are electrically connected to the conductors of the metal parts. The DC voltage generator for charging, the capacitor row having one end connected to the metal part and the other end connected to the ground, and the discharge detection device for measuring a potential difference of a part of the capacitor row Means for measuring the potential fluctuation of the metal part, and the DC voltage generator is connected to the capacitor string via a resistor for suppressing an overvoltage when the DC voltage is turned on or off .

また、第の発明は、第1の明において、前記直流電圧発生装置と前記金属部の電位変動を測定する手段とは、万一放電した際の電流を抑制するための抵抗を介して、前記金属部に接続するものとする。 The second invention is Oite the first inventions, the a means for measuring the voltage fluctuation of the DC voltage generator and the metal portion, the resistance for suppressing current when the event discharge And connected to the metal part.

更に、第の発明は、第1の明において、前記コンデンサ列の一部分と並列にインピーダンス整合用抵抗を接続するものとする。 Furthermore, the third invention, Oite the first inventions shall connect the impedance matching resistor in parallel with a portion of the capacitor banks.

また、第の発明は、第の発明において、前記コンデンサ列の一部分と並列にインピーダンス整合用抵抗を接続するものとする。 A fourth aspect of the present invention is Oite the second inventions, it is assumed to connect the impedance matching resistor in parallel with a portion of the capacitor banks.

更に、第の発明は、第の発明において、前記コンデンサ列、前記放電電流抑制抵抗、前記過電圧抑制抵抗および前記インピーダンス整合用抵抗を収納したユニットと、前記ユニットと電気的にそれぞれ接続する前記直流電圧発生装置と、前記放電検出装置と、前記ユニット内の前記放電電流抑制抵抗と前記金属部とを接続させる絶縁電線とを備えるものとする。 Further, the fifth invention, Oite the fourth inventions, the capacitor bank, the discharge current suppressing resistor, a unit accommodating the overvoltage suppression resistor and the resistor for the impedance matching, the unit electrically respectively The DC voltage generator to be connected, the discharge detector, and an insulated wire for connecting the discharge current suppressing resistor and the metal part in the unit are provided.

本発明の真空遮断器の圧力診断装置によれば、真空容器内に配置された金属部に直流電圧を重畳させ、接点と金属部との間に系統電圧に直流電圧を重畳した高電圧を印加可能としたので、真空遮断器を運転状態のまま、真空遮断器の真空圧力を診断することができる。この結果、開閉装置の母線及び点検対象の遮断器を含む全フィーダを停電させることなく、真空遮断器の圧力健全性を診断することができる。   According to the pressure diagnostic device for a vacuum circuit breaker of the present invention, a DC voltage is superimposed on a metal part arranged in a vacuum vessel, and a high voltage in which the DC voltage is superimposed on a system voltage is applied between the contact and the metal part. Since it was made possible, the vacuum pressure of the vacuum circuit breaker can be diagnosed while the vacuum circuit breaker is in operation. As a result, it is possible to diagnose the pressure soundness of the vacuum circuit breaker without causing a power failure in all feeders including the bus bar of the switchgear and the circuit breaker to be inspected.

本発明の真空遮断器の圧力診断装置の一実施の形態を接続した開閉装置を一部断面にて示す側面図である。It is a side view which shows the switchgear which connected one embodiment of the pressure diagnostic device of the vacuum circuit breaker of the present invention in a partial section. 図1におけるA矢視から見た開閉装置の正面図である。It is a front view of the switchgear seen from A arrow in FIG. 本発明の真空遮断器の圧力診断装置の一実施の形態を適用した開閉装置の動作を説明する側面図である。It is a side view explaining operation | movement of the switchgear to which one Embodiment of the pressure diagnostic apparatus of the vacuum circuit breaker of this invention is applied. 本発明の真空遮断器の圧力診断装置の一実施の形態における放電検出信号を示す説明図である。It is explanatory drawing which shows the discharge detection signal in one Embodiment of the pressure diagnostic apparatus of the vacuum circuit breaker of this invention. 電極間のギャップ長さが5mmのときの雰囲気圧力と放電電圧との相関を示す特性図である。It is a characteristic view which shows the correlation of atmospheric pressure and discharge voltage when the gap length between electrodes is 5 mm. 本発明の真空遮断器の圧力診断装置の他の実施の形態を接続した開閉装置を一部断面にて示す側面図である。It is a side view which shows the switchgear which connected other embodiments of the pressure diagnostic device of the vacuum circuit breaker of the present invention in a partial section. 本発明の真空遮断器の圧力診断装置の更に他の実施の形態を接続した開閉装置を一部断面にて示す側面図である。It is a side view which shows the switchgear which connected other embodiment of the pressure diagnostic apparatus of the vacuum circuit breaker of this invention in a partial cross section.

以下に、本発明の真空遮断器の圧力診断装置の実施の形態を図面を用いて説明する。
図1は本発明の真空遮断器の圧力診断装置の一実施の形態を接続した開閉装置を一部断面にて示す側面図、図2は図1におけるA矢視から見た開閉装置の正面図、図3は本発明の真空遮断器の圧力診断装置の一実施の形態を適用した開閉装置の動作を説明する側面図である。
Embodiments of a pressure diagnostic device for a vacuum circuit breaker according to the present invention will be described below with reference to the drawings.
FIG. 1 is a side view showing a partial cross section of a switchgear to which an embodiment of a pressure diagnostic device for a vacuum circuit breaker according to the present invention is connected, and FIG. 2 is a front view of the switchgear as viewed from arrow A in FIG. FIG. 3 is a side view for explaining the operation of the switchgear to which an embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention is applied.

まず、開閉装置1000の構造について説明する。図1及び図2において、例えば乾燥空気やSF6ガス等の絶縁ガス1Gを内部に封入した絶縁容器1は、相間絶縁性を向上させるための2枚の絶縁仕切板3間に、3個の真空バルブ11を収納し、エポキシ樹脂で成形された絶縁容器本体2と、絶縁容器本体2の下側と上側に設けられた本体絶縁板4B,固定絶縁板4Aと、固定絶縁板4Aに着脱自在に配置された母線絶縁板6とを備えている。絶縁容器1の外面には接地層を設け、作業員等が接触した際の安全を確保している。   First, the structure of the opening / closing device 1000 will be described. In FIG. 1 and FIG. 2, an insulating container 1 in which an insulating gas 1G such as dry air or SF6 gas is enclosed is provided with three vacuums between two insulating partition plates 3 for improving interphase insulation. The valve 11 is housed, and is detachably attached to the insulating container body 2 formed of epoxy resin, the main body insulating plate 4B, the fixed insulating plate 4A, and the fixed insulating plate 4A provided on the lower and upper sides of the insulating container main body 2. The bus-bar insulating plate 6 is provided. A grounding layer is provided on the outer surface of the insulating container 1 to ensure safety when an operator or the like comes into contact.

真空バルブ11は内部を真空密閉してあり、金属ケース12と金属ケース12の上側及び下側に突出したセラミック部材の絶縁ブッシング13、14を設け、上側絶縁ブッシング13と下側絶縁ブッシング14の外側に設けた封着金具15に固定導体16と金属部としての試験導体17を取り付け、両導体間の図1上の右側に可動導体19を設けている。真空バルブ11は図1に示すように側面視略T字形に形成している。   The inside of the vacuum valve 11 is vacuum-sealed, and provided with a metal case 12 and ceramic bushings 13, 14 protruding above and below the metal case 12, and outside the upper insulation bushing 13 and the lower insulation bushing 14. A fixed conductor 16 and a test conductor 17 as a metal part are attached to a sealing metal fitting 15 provided in FIG. 1, and a movable conductor 19 is provided on the right side of FIG. As shown in FIG. 1, the vacuum valve 11 is formed in a substantially T shape in a side view.

固定導体16は真空バルブ11の内部から上方の外部に向かって延び、外部で固定絶縁板4Aの支持部4Cに母線側導体23Aとともにボルト22で締め付け固定されている。固定導体16の内部先端には高融点金属部材例えばCu−Cr合金よりなる固定接点16Aが設けられている。母線側導体23Aは母線絶縁板6の母線23Bに接続している。   The fixed conductor 16 extends from the inside of the vacuum valve 11 toward the upper outside, and is fixed to the support portion 4C of the fixed insulating plate 4A by a bolt 22 together with the bus-side conductor 23A. A fixed contact 16A made of a refractory metal member such as a Cu—Cr alloy is provided at the inner end of the fixed conductor 16. The bus bar side conductor 23 </ b> A is connected to the bus bar 23 </ b> B of the bus bar insulating plate 6.

下側ブッシング14に設けた封着金具15の内径にベローズ25設け、ベローズ25に取り付けられた試験導体17は、絶縁ガイド24及び固定ガイド29により支持され、バネ26により可動導体19の接触に応じて軸方向に移動する。試験導体17は途中に設けたバネ26を圧縮している止板27や、複数の薄い銅板からなるフレキシブル導体28を、その突出端に嵌め込んだナット31で締め付け固定する。したがって、可動導体19が試験導体17と接触する際には、可動導体19の下方向への押圧力と試験導体17を上方向に向けるバネ26の圧縮力とが作用し、可動導体19と試験導体17との接触安定性を確保できる。なお、試験導体17はフレキシブル導体28を介して試験端子32に接続されている。   A bellows 25 is provided on the inner diameter of the sealing metal fitting 15 provided on the lower bushing 14, and the test conductor 17 attached to the bellows 25 is supported by an insulating guide 24 and a fixed guide 29, and responds to contact of the movable conductor 19 by a spring 26. To move in the axial direction. The test conductor 17 is fastened and fixed with a stop plate 27 compressing a spring 26 provided in the middle and a flexible conductor 28 made of a plurality of thin copper plates with a nut 31 fitted into the protruding end. Therefore, when the movable conductor 19 comes into contact with the test conductor 17, the downward pressing force of the movable conductor 19 and the compressive force of the spring 26 that directs the test conductor 17 upward act on the movable conductor 19 and the test conductor 17. Contact stability with the conductor 17 can be ensured. The test conductor 17 is connected to the test terminal 32 via the flexible conductor 28.

軸方向に対して直角方向に延びている可動導体19は、主軸35を支点として固定導体16と試験導体17との間を移動し、両者と接離する。固定接点16Aと可動接点19Aとの接離によって、主回路の投入および遮断が実現される。   The movable conductor 19 extending in a direction perpendicular to the axial direction moves between the fixed conductor 16 and the test conductor 17 with the main shaft 35 as a fulcrum, and is in contact with or separated from both. The main circuit is turned on and off by the contact and separation of the fixed contact 16A and the movable contact 19A.

可動導体19は真空バルブ11の内部から図1上の右側の外部に延びており、封着金具15に固定されているベローズ36を貫通している。このベローズ36により、真空気密を維持したまま、可動導体19の移動が可能になる。可動接点19Aの材料は上述の固定接点16Aと同じである。接続導体37にて可動導体19を挟持し、両導体の貫通穴に挿入した主軸35を、主軸35の先端のネジにナットを締め付けることで固定している(図示せず)。   The movable conductor 19 extends from the inside of the vacuum valve 11 to the outside on the right side in FIG. 1 and penetrates the bellows 36 fixed to the sealing fitting 15. With the bellows 36, the movable conductor 19 can be moved while maintaining vacuum hermeticity. The material of the movable contact 19A is the same as that of the fixed contact 16A described above. The movable conductor 19 is sandwiched between the connecting conductors 37, and the main shaft 35 inserted into the through holes of both conductors is fixed by tightening a nut to a screw at the tip of the main shaft 35 (not shown).

図3において、可動導体19の外側端と連結した操作機構部38を駆動することにより、可動導体19の内側部は主軸35を介して上、下方向に回動し、図3に示す4つの位置に停止することができる。即ち、可動導体19が回動するのに応じて、可動接点19Aが固定接点16Aに接触する入位置Y1と、入位置より下側に回動して電流を遮断する切位置Y2と、更に下側に回動して雷などで絶縁破壊しないこと及び負荷導体側で作業員が感電しない絶縁距離を充分に取った断路位置Y3と、更に下側に回動して可動導体19が試験導体17と接触した試験位置Y4の4つの位置である。   In FIG. 3, by driving the operating mechanism portion 38 connected to the outer end of the movable conductor 19, the inner portion of the movable conductor 19 is rotated upward and downward via the main shaft 35, and the four portions shown in FIG. Can stop in position. That is, as the movable conductor 19 rotates, the movable contact 19A contacts the fixed contact 16A, the turning position Y1, the cutting position Y2 that turns downward from the turning position to cut off the current, and the lower position It is turned to the side and does not break down due to lightning, etc., and the disconnection position Y3 has taken a sufficient insulation distance on the load conductor side so that the worker does not get an electric shock. Are four positions of the test position Y4 in contact with.

試験位置Y4では、試験端子32を接地すれば、ケーブル43に接続される負荷を接地できる。また、試験端子32から所定の直流電圧を印加し、ケーブル43の健全性を評価することもできる。この真空バルブ11では、SF6ガスなどよりも高絶縁媒体である真空中にて、可動接点19A、固定接点16A、試験導体17を一箇所に集合化したので、従来の開閉装置に比べて著しく小型化できる。   At the test position Y4, if the test terminal 32 is grounded, the load connected to the cable 43 can be grounded. Further, the soundness of the cable 43 can be evaluated by applying a predetermined DC voltage from the test terminal 32. In this vacuum valve 11, the movable contact 19A, the fixed contact 16A, and the test conductor 17 are gathered in one place in a vacuum that is a higher insulating medium than SF6 gas and the like, so that it is significantly smaller than a conventional switchgear. Can be

操作機構部38のU字金具38Aとこれに挿入した可動導体19の先端部とは、ピン38Bにて連結されている。U字金具38Aは絶縁操作ロッド38Cの一端に取り付けられている。絶縁操作ロッド38Cの他端とその一端を連結した操作レバー38Dは、その他端をシャフト38Eに取り付けられている。この結果、絶縁容器1の外部に設けた操作機構(図示せず)にてシャフト38Eを回転させることで、可動導体19を上述したように移動させることができる。   The U-shaped metal fitting 38A of the operation mechanism portion 38 and the distal end portion of the movable conductor 19 inserted therein are connected by a pin 38B. The U-shaped fitting 38A is attached to one end of the insulating operation rod 38C. An operation lever 38D that connects the other end of the insulating operation rod 38C and one end thereof is attached to the shaft 38E at the other end. As a result, the movable conductor 19 can be moved as described above by rotating the shaft 38E by an operating mechanism (not shown) provided outside the insulating container 1.

接続導体37は負荷側導体41と接続している。負荷側導体41はL形通電部を形成し、その先端でケーブルヘッド45及び負荷ケーブル43に接続している。   The connection conductor 37 is connected to the load side conductor 41. The load-side conductor 41 forms an L-shaped energization part, and is connected to the cable head 45 and the load cable 43 at the tip thereof.

次に、圧力診断装置100の構成を図1を用いて説明する。
遮断器を開路状態とし、製造者が指定する値の電圧を極間に印加して、放電が発生しなければ、内部の圧力が正常と判断するのが一般的な圧力診断方法である。本実施の形態では、開閉装置1000を運転した状態、すなわち真空バルブ11内の固定導体16、固定接点16A、可動接点19Aおよび可動導体19が系統電圧に課電された状態(上述した可動導体19が入位置Y1に停止した状態)にて、試験端子32に直流電圧を印加する。このとき、主回路と試験端子32の間(真空バルブ11内の固定導体16と試験導体17の間)には、系統電圧に直流電圧が重畳された状態となり、この重畳電圧を上記の製造者が指定する値になるように設定すれば、一般的な真空遮断器の圧力診断方法と等価になる。つまり、開閉装置1000を運転したまま、系統電圧を積極的に利用して真空遮断器の圧力診断をすることができる。
Next, the configuration of the pressure diagnostic apparatus 100 will be described with reference to FIG.
A general pressure diagnostic method is to open the circuit breaker, apply a voltage specified by the manufacturer between the electrodes, and determine that the internal pressure is normal if no discharge occurs. In the present embodiment, the switchgear 1000 is operated, that is, the fixed conductor 16, the fixed contact 16A, the movable contact 19A and the movable conductor 19 in the vacuum valve 11 are charged to the system voltage (the movable conductor 19 described above). Is stopped at the entry position Y1), a DC voltage is applied to the test terminal 32. At this time, a DC voltage is superimposed on the system voltage between the main circuit and the test terminal 32 (between the fixed conductor 16 and the test conductor 17 in the vacuum valve 11). Is set to a value that is specified, it is equivalent to a general vacuum circuit breaker pressure diagnosis method. That is, it is possible to diagnose the pressure of the vacuum circuit breaker by actively using the system voltage while operating the switchgear 1000.

図1において、試験端子32には、直流電圧を印加するためのゴムブッシング101が取り付けられている。試験端子自身に十分な絶縁性能がある場合には、このゴムブッシング101は不要である。ゴムブッシング101の中心導体102を試験端子32にねじ込み、ゴムブッシング101を試験端子32と中心導体102で挟持する。中心導体102の先端には絶縁電線103の一端が取り付けられている。絶縁電線103の他端は、ユニット104の高圧端子105に接続されている。   In FIG. 1, a rubber bushing 101 for applying a DC voltage is attached to the test terminal 32. If the test terminal itself has a sufficient insulation performance, the rubber bushing 101 is unnecessary. The center conductor 102 of the rubber bushing 101 is screwed into the test terminal 32, and the rubber bushing 101 is sandwiched between the test terminal 32 and the center conductor 102. One end of an insulated wire 103 is attached to the tip of the center conductor 102. The other end of the insulated wire 103 is connected to the high voltage terminal 105 of the unit 104.

直流電圧発生装置106の出力は、ユニット104の直流電圧入力端子107に接続している。ユニット104と直流電圧発生装置106の接地は、両者とも開閉装置1000の接地母線に接続している。なお、この直流電圧発生装置106は、電気設備点検作業者が所有している絶縁抵抗計でも代用することができる。   The output of the DC voltage generator 106 is connected to the DC voltage input terminal 107 of the unit 104. Both the unit 104 and the DC voltage generator 106 are connected to the ground bus of the switchgear 1000. The DC voltage generator 106 can be replaced by an insulation resistance meter owned by an electric equipment inspection operator.

次に、上述したユニット104の内部構成を図1を用いて説明する。
ユニット104には、3つの抵抗A、B、Cと2つのコンデンサC0、C1の計5つの素子が収納されている。高圧端子105に一端が接続された抵抗Aは、診断中に主回路と試験端子32との間で放電が発生しても、その放電電流を人間が感じる限界(感知限界)以下に抑制するためのものである。この抵抗Aによって、万一、ユニット104内の他の素子が故障して、作業者が操作する直流電圧発生装置106や放電検出装置108側に高電圧が出力されたとしても、作業者の安全を確保できる。
Next, the internal configuration of the unit 104 will be described with reference to FIG.
The unit 104 contains a total of five elements, three resistors A, B, and C and two capacitors C0 and C1. The resistor A, one end of which is connected to the high-voltage terminal 105, suppresses the discharge current below the limit (sensing limit) felt by humans even if a discharge occurs between the main circuit and the test terminal 32 during diagnosis. belongs to. Even if other elements in the unit 104 break down due to this resistance A and a high voltage is output to the DC voltage generator 106 or the discharge detector 108 operated by the operator, the safety of the operator Can be secured.

なお、人間の感知限界は約1mAと言われており、例えば、系統電圧22kVの場合には、抵抗Aの値を下記式で定まる12.7MΩ以上にすれば、作業者の安全が確保できる。   The human detection limit is said to be about 1 mA. For example, when the system voltage is 22 kV, the safety of the worker can be ensured by setting the resistance A to 12.7 MΩ or more determined by the following equation.

対地電圧22/√3kV÷感知限界1mA=12.7MΩ・・・(1)
抵抗Bは、その一端を直流電圧入力端子107に接続する。抵抗Bは直流電圧発生装置106を投入遮断(ON・OFF)したときの過電圧を抑制するためのもので、詳細な説明は後述する。なお、抵抗Bの他端は抵抗Aの他端に接続されている。すなわち、抵抗Aおよび抵抗Bを介して、直流電圧が試験端子32に印加される。
Ground voltage 22 / √3kV ÷ Sensing limit 1mA = 12.7MΩ ・ ・ ・ (1)
One end of the resistor B is connected to the DC voltage input terminal 107. The resistor B is for suppressing overvoltage when the DC voltage generator 106 is turned on and off (ON / OFF), and will be described in detail later. Note that the other end of the resistor B is connected to the other end of the resistor A. That is, a DC voltage is applied to the test terminal 32 via the resistor A and the resistor B.

主回路から試験端子32への放電はコンデンサ分圧方式にて検出する。コンデンサC0とC1を直列接続したコンデンサ列を用意し、その一端を抵抗Aと抵抗Bの接続点に、他端を接地に接続する。コンデンサ列の接地側のコンデンサC1の両端の電位差が、放電検出装置108の入力となる。主回路から試験端子32への放電によって抵抗Aと抵抗Bの接続点に高電圧が誘起され、同電圧のコンデンサC0とC1の分圧比分が放電検出装置108に入力される。   The discharge from the main circuit to the test terminal 32 is detected by a capacitor voltage dividing method. A capacitor string in which capacitors C0 and C1 are connected in series is prepared, and one end thereof is connected to a connection point between the resistors A and B and the other end is connected to the ground. The potential difference between both ends of the capacitor C1 on the ground side of the capacitor row becomes an input of the discharge detection device 108. A high voltage is induced at the connection point between the resistors A and B by the discharge from the main circuit to the test terminal 32, and the voltage dividing ratio of the capacitors C 0 and C 1 having the same voltage is input to the discharge detection device 108.

放電検出装置108には、放電波形を測定できるようにオシロスコープを用いてもよいし、あるいは、簡易的に、放電が発生したときに動作するブザー回路やリレー回路を接続してもよい。なお、コンデンサC1と並列に抵抗Cを接続しているが、これは、接続するオシロスコープ、ブザー回路、あるいはリレー回路の入力インピーダンスによって測定電圧が変化するのを防ぐためのインピーダンス整合用のもので、あらかじめある程度小さい抵抗を挿入している。   An oscilloscope may be used for the discharge detection device 108 so that the discharge waveform can be measured, or a buzzer circuit or a relay circuit that operates when a discharge occurs may be simply connected. Note that a resistor C is connected in parallel with the capacitor C1, but this is for impedance matching to prevent the measurement voltage from changing due to the input impedance of the connected oscilloscope, buzzer circuit, or relay circuit. A small resistance is inserted in advance.

次に、上述した本発明の圧力診断装置100の使用手順を説明する。
先ず、試験端子32を高電圧検電器で検電し、真空バルブ11に圧力劣化が発生していないことを確認する。次に、絶縁操作棒(図示しない)によってゴムブッシング101を試験端子32に挿入し、同絶縁操作棒によって中心導体102を試験端子32に締め付け、ゴムブッシング101を固定する。絶縁電線103、ユニット104、直流電圧発生装置106、および放電検出装置108を接続しておき、絶縁操作棒にて絶縁電線103の他端を中心導体102に連結して、診断の準備が完了する。この状態にて、直流電圧発生装置106を投入(ON)し、放電検出装置108にて主回路から試験端子32への放電発生の有無を確認する。
Next, the procedure for using the pressure diagnostic apparatus 100 of the present invention described above will be described.
First, the test terminal 32 is detected by a high voltage voltage detector, and it is confirmed that no pressure deterioration has occurred in the vacuum valve 11. Next, the rubber bushing 101 is inserted into the test terminal 32 with an insulating operation rod (not shown), and the central conductor 102 is fastened to the test terminal 32 with the insulation operation rod to fix the rubber bushing 101. The insulated wire 103, the unit 104, the DC voltage generator 106, and the discharge detector 108 are connected, and the other end of the insulated wire 103 is connected to the center conductor 102 with an insulation operation rod, and the preparation for diagnosis is completed. . In this state, the DC voltage generator 106 is turned on (ON), and the discharge detector 108 confirms whether or not a discharge has occurred from the main circuit to the test terminal 32.

次に、本発明の圧力診断装置100の動作原理を図1及び図4を用いて説明する。図4は、本発明の真空遮断器の圧力診断装置の一実施の形態における放電検出信号を示す説明図である。具体的には、直流電圧発生装置106にて直流電圧を投入遮断(ON・OFF)した時、および主回路と放電端子32の間に放電が発生した時の放電検出装置108への入力信号波形を示す。   Next, the principle of operation of the pressure diagnostic apparatus 100 of the present invention will be described with reference to FIGS. FIG. 4 is an explanatory diagram showing a discharge detection signal in one embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention. Specifically, the input signal waveform to the discharge detection device 108 when the DC voltage is turned on and off (ON / OFF) by the DC voltage generator 106 and when a discharge occurs between the main circuit and the discharge terminal 32. Indicates.

直流電圧発生装置106を投入(ON)すると、主回路−試験端子間で放電が発生しない場合、直流電圧発生装置106−抵抗B−コンデンサC0−コンデンサC1−接地−直流電圧発生装置106の回路にて過渡現象が発生し、コンデンサC1の両端、すなわち放電検出装置108の入力信号は、図4の波形W1のようになる。抵抗Bが存在しない場合には、過渡電圧のピークが上昇して波形W11のようになり、放電検出装置108の許容入力電圧を超えてしまう。   When the DC voltage generator 106 is turned on (ON), if no discharge is generated between the main circuit and the test terminal, the circuit of the DC voltage generator 106-resistor B-capacitor C0-capacitor C1-ground-DC voltage generator 106 is used. As a result, a transient phenomenon occurs, and both ends of the capacitor C1, that is, the input signal of the discharge detection device 108 has a waveform W1 in FIG. When the resistor B is not present, the peak of the transient voltage rises to a waveform W11, which exceeds the allowable input voltage of the discharge detection device 108.

主回路−試験端子間で放電しなければ、コンデンサC0は、印加した直流電圧で充電された状態となる。このとき、コンデンサC1は抵抗Cで短絡されているため、放電検出装置108の入力電圧はゼロに落ち着く(波形W2)。   If there is no discharge between the main circuit and the test terminal, the capacitor C0 is charged with the applied DC voltage. At this time, since the capacitor C1 is short-circuited by the resistor C, the input voltage of the discharge detection device 108 settles to zero (waveform W2).

直流電圧印加中に、主回路−試験端子間で放電が発生すると、コンデンサC0に蓄積された電荷が、抵抗A−試験端子32―真空バルブ11内の放電経路―主回路―系統に接続された変圧器―接地―コンデンサC1−コンデンサC0−抵抗Aの回路で放電され、放電検出装置108の入力信号は、波形W3に示すように、過渡振動に系統電圧の交流成分が重畳された電圧となる。   When a discharge occurs between the main circuit and the test terminal while the DC voltage is being applied, the electric charge accumulated in the capacitor C0 is connected to the resistor A, the test terminal 32, the discharge path in the vacuum valve 11, the main circuit, and the system. Discharged by the transformer-ground-capacitor C1-capacitor C0-resistor A circuit, the input signal of the discharge detector 108 becomes a voltage in which the AC component of the system voltage is superimposed on the transient vibration, as shown by the waveform W3. .

主回路−試験端子間の放電が停止すると、再び、直流電圧発生装置106−抵抗B−コンデンサC0−コンデンサC1−接地−直流電圧発生装置106の回路で過渡現象が発生し、コンデンサC0が直流電圧で充電され、コンデンサC1の両端、すなわち放電検出装置108の入力信号は、W1と同様になる(波形W4)。   When the discharge between the main circuit and the test terminal is stopped, a transient phenomenon occurs again in the circuit of the DC voltage generator 106-resistor B-capacitor C0-capacitor C1-ground-DC voltage generator 106, and the capacitor C0 becomes a DC voltage. The both ends of the capacitor C1, that is, the input signal of the discharge detection device 108 becomes the same as W1 (waveform W4).

直流電圧を遮断(OFF)すると、コンデンサC0に蓄積された電荷が、コンデンサC0−抵抗B−直流電圧発生装置106―接地―コンデンサC1−コンデンサC0の回路で放電され、放電検出装置108の入力信号は、波形W5のようになる。   When the DC voltage is cut off (OFF), the electric charge accumulated in the capacitor C0 is discharged by the circuit of the capacitor C0-resistance B-DC voltage generator 106-ground-capacitor C1-capacitor C0, and the input signal of the discharge detection device 108 Becomes a waveform W5.

なお、直流電圧を印加しない状態にて、主回路−試験端子間で放電が発生した場合には、放電検出装置108には交流成分だけが入力され、その波形はW6のようになる。   Note that when a discharge occurs between the main circuit and the test terminal in a state where no DC voltage is applied, only the AC component is input to the discharge detection device 108, and the waveform thereof becomes W6.

また、本実施の形態では、真空バルブ11内の固定導体16、固定接点16A、可動接点19Aおよび可動導体19が系統電圧に課電された状態(可動導体19が入位置Y1に停止した状態)において説明したが、固定接点16A、及び可動接点19Aのいずれか一方のみに系統電圧に課電された状態、可動導体19が切位置Y2に停止した状態、可動導体19が断路位置Y3に停止した状態のいずれかの状態のときにも、同様に真空遮断器の圧力診断を行うことができる。   In the present embodiment, the fixed conductor 16, the fixed contact 16A, the movable contact 19A and the movable conductor 19 in the vacuum valve 11 are charged to the system voltage (the movable conductor 19 is stopped at the entry position Y1). As described above, the state in which the system voltage is applied to only one of the fixed contact 16A and the movable contact 19A, the state in which the movable conductor 19 is stopped at the cut position Y2, and the movable conductor 19 is stopped at the disconnecting position Y3. Similarly, the vacuum circuit breaker pressure diagnosis can be performed in any state.

本発明の真空遮断器の圧力診断装置の一実施の形態によれば、真空容器内に配置された試験導体17に直流電圧を重畳させ、接点と試験導体17との間に系統電圧に直流電圧を重畳した高電圧を印加可能としたので、真空遮断器を運転状態のまま、真空遮断器の真空圧力を診断することができる。この結果、開閉装置の母線及び点検対象の遮断器を含む全フィーダを停電させることなく、真空遮断器の圧力健全性を診断することができる。また、万一、主回路−試験端子間で放電したり、ユニット104の他の素子が故障して、直流電圧発生装置106や放電検出装置108側に高電圧が出力されても、抵抗Aによって放電電流が人の感知限界以下に制限されるため、操作する作業者の安全を確保できる。さらに、この放電電流は系統の保護リレーの動作電流以下であるため、誤って、系統の地絡故障を起こす心配もない。   According to one embodiment of the pressure diagnostic device for a vacuum circuit breaker of the present invention, a DC voltage is superimposed on the test conductor 17 disposed in the vacuum vessel, and the DC voltage is added to the system voltage between the contact and the test conductor 17. Since a high voltage superimposed on can be applied, the vacuum pressure of the vacuum circuit breaker can be diagnosed while the vacuum circuit breaker is in an operating state. As a result, it is possible to diagnose the pressure soundness of the vacuum circuit breaker without causing a power failure in all feeders including the bus bar of the switchgear and the circuit breaker to be inspected. In addition, even if a discharge occurs between the main circuit and the test terminal, or other elements of the unit 104 break down and a high voltage is output to the DC voltage generator 106 or the discharge detector 108 side, the resistor A Since the discharge current is limited below the human detection limit, the operator's safety can be ensured. Furthermore, since this discharge current is less than the operating current of the protection relay of the system, there is no fear of causing a system ground fault by mistake.

次に、本発明の真空遮断器の圧力診断装置の他の実施の形態を図6を用いて説明する。図6は本発明の真空遮断器の圧力診断装置の他の実施の形態を接続した開閉装置を一部断面にて示す側面図である。この図6において図1と同符号のものは同一部分であるので、その詳細な説明は省略する。
本発明の真空遮断器の圧力診断装置100にて圧力診断実施中に、瞬時的な信号が発生した場合、この信号が真の放電か、あるいはノイズかの識別が難しいケースも想定される。このような場合、放電の発生をしばらくの間継続して監視したいということが多い。本発明の一実施の形態の場合、直流高電圧を印加することなどから、例えば、絶縁電線103の絶縁性の確保など、常時作業者が圧力診断装置近傍に滞在する必要がある。このため、数時間以上の継続監視期間が必要とされる場合には、本発明の一実施の形態では、対応することは難しかった。
本発明の真空遮断器の圧力診断装置の他の実施の形態を用いることにより、主回路から試験端子32への放電の発生を暫時監視することができる。この暫時監視の手順を以下に示す。
(1)絶縁操作棒にて絶縁電線103を試験端子32側から取り外す。この場合、主回路―試験端子間で放電が発生し、仮にこの放電が継続していても、ユニット104の抵抗Aによって放電電流が1mA以下に制限されているため、この状態におけるこの取り外しによるアークは、持続することなく安全上の問題はない。
(2)図6に示すように、放電検出装置108によって、主回路から試験端子32への放電を監視する。具体的には、ゴムブッシング101にモールドしておいた金属端子110と別途設けたコンデンサC2を計測用電線111により配線接続し、中心導体102−金属端子110間の静電容量とコンデンサC2の分圧回路によって、試験端子32の電位を監視する。
Next, another embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention will be described with reference to FIG. FIG. 6 is a side view showing, in partial cross section, a switchgear connected to another embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention. In FIG. 6, the same reference numerals as those in FIG. 1 are the same parts, and detailed description thereof is omitted.
When an instantaneous signal is generated during pressure diagnosis in the vacuum circuit breaker pressure diagnosis apparatus 100 of the present invention, it may be difficult to identify whether this signal is a true discharge or noise. In such a case, it is often desirable to continuously monitor the occurrence of discharge for a while. In the case of an embodiment of the present invention, since a direct current high voltage is applied, for example, it is necessary for an operator to always stay in the vicinity of the pressure diagnosis device, for example, to ensure insulation of the insulated wire 103. For this reason, in the case where a continuous monitoring period of several hours or more is required, it is difficult to cope with it in the embodiment of the present invention.
By using another embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention, the occurrence of discharge from the main circuit to the test terminal 32 can be monitored for a while. The procedure for this temporary monitoring is shown below.
(1) Remove the insulated wire 103 from the test terminal 32 side with an insulating operation rod. In this case, even if the discharge is generated between the main circuit and the test terminal and the discharge continues, the discharge current is limited to 1 mA or less by the resistance A of the unit 104. There is no safety problem without lasting.
(2) As shown in FIG. 6, the discharge from the main circuit to the test terminal 32 is monitored by the discharge detection device 108. Specifically, a metal terminal 110 molded on the rubber bushing 101 and a separately provided capacitor C2 are connected by a measurement electric wire 111, and the capacitance between the center conductor 102 and the metal terminal 110 is divided by the capacitor C2. The potential of the test terminal 32 is monitored by a pressure circuit.

本発明の真空遮断器の圧力診断装置の他の実施の形態によれば、中心導体102−金属端子110間の静電容量とコンデンサC2の分圧回路によって、試験端子32の電位を監視するので、高電圧になる部位の発生を防止することができる。この結果、圧力診断装置を安全にしばらくの間、無人で、真空遮断器の近傍に配置することができる。また、計測用電線111に対する絶縁性能は、特別なものでないため、例えば、開閉装置の筺体内に圧力診断装置を配置することも可能となり、開閉装置設備の運転信頼性を損なうことがない。   According to another embodiment of the pressure diagnostic device for a vacuum circuit breaker of the present invention, the potential of the test terminal 32 is monitored by the capacitance between the center conductor 102 and the metal terminal 110 and the voltage dividing circuit of the capacitor C2. , The occurrence of high voltage sites can be prevented. As a result, the pressure diagnostic device can be safely and unattended for a while and placed in the vicinity of the vacuum circuit breaker. Moreover, since the insulation performance with respect to the measurement electric wire 111 is not special, for example, it is possible to arrange a pressure diagnostic device in the enclosure of the switchgear, and the operation reliability of the switchgear equipment is not impaired.

次に、本発明の真空遮断器の圧力診断装置の更に他の実施の形態を図7を用いて説明する。図7は本発明の真空遮断器の圧力診断装置の更に他の実施の形態を接続した開閉装置を一部断面にて示す側面図である。
本発明の真空遮断器の圧力診断装置の更に他の実施の形態を用いることにより、ケーブルの健全性を評価する直流耐電圧試験が開閉装置1000を運転した状態のまま実施できる。具体的な手順としては、
(1)該当真空遮断器において、図7に示す試験位置Y4に可動導体16を位置させる。
(2)図7に示すように、絶縁電線103、ユニット104および直流電圧発生装置106を接続しておき、絶縁操作棒によって、絶縁電線103の他端を中心導体102に接続する。
(3)試験端子32に直流電圧を印加する。このとき、主回路とケーブル43の間には、系統電圧に直流電圧が重畳された状態となり、この重畳電圧を製造者が指定する耐電圧値になるように設定すればよい。
Next, still another embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention will be described with reference to FIG. FIG. 7 is a side view showing in partial cross section a switchgear connected to still another embodiment of a pressure diagnostic device for a vacuum circuit breaker according to the present invention.
By using still another embodiment of the pressure diagnostic device for a vacuum circuit breaker according to the present invention, a DC withstand voltage test for evaluating the soundness of a cable can be performed while the switchgear 1000 is operated. As a specific procedure,
(1) In the corresponding vacuum circuit breaker, the movable conductor 16 is positioned at the test position Y4 shown in FIG.
(2) As shown in FIG. 7, the insulated wire 103, the unit 104, and the DC voltage generator 106 are connected, and the other end of the insulated wire 103 is connected to the center conductor 102 by an insulation operation rod.
(3) A DC voltage is applied to the test terminal 32. At this time, a DC voltage is superimposed on the system voltage between the main circuit and the cable 43, and the superimposed voltage may be set to a withstand voltage value specified by the manufacturer.

本発明の真空遮断器の圧力診断装置の更に他の実施の形態によれば、母線23Bが課電された状態で、ケーブル43の健全性を評価する直流耐電圧試験が行える。この結果、仮に試験端子32側に放電しても、抵抗Aによって放電電流が人の感知限界以下に抑制されるため、直流電圧発生装置106を操作する作業者の安全を確保できる。また、放電電流は系統の保護リレーの動作電流以下であるため、系統の地絡故障が発生する恐れもない。   According to still another embodiment of the pressure diagnostic device for a vacuum circuit breaker of the present invention, a direct current withstand voltage test for evaluating the soundness of the cable 43 can be performed in a state where the bus bar 23B is energized. As a result, even if the test terminal 32 is discharged, the resistance A suppresses the discharge current below the human detection limit, so that the safety of the operator who operates the DC voltage generator 106 can be ensured. Further, since the discharge current is equal to or less than the operating current of the system protection relay, there is no possibility of a system ground fault occurring.

1 絶縁容器
11 真空バルブ
32 試験端子
100 圧力診断装置
101 ゴムブッシング
103 絶縁電線
104 ユニット
106 直流電圧発生装置
108 放電検出装置
A 抵抗
B 抵抗
C 抵抗
C0 コンデンサ
C1 コンデンサ
DESCRIPTION OF SYMBOLS 1 Insulation container 11 Vacuum valve 32 Test terminal 100 Pressure diagnostic device 101 Rubber bushing 103 Insulated wire 104 Unit 106 DC voltage generator 108 Discharge detection device A Resistance B Resistance C Resistance C0 Capacitor C1 Capacitor

Claims (5)

接離自在な一対の接点と、該接点と電気的に絶縁された金属部とを内蔵した真空容器と、前記真空容器の内部から外部に貫通する前記一対の接点及び前記金属部のそれぞれに接続された導体とを備えた真空遮断器の圧力診断装置であって、
前記金属部の導体に電気的に接続され、前記金属部を課電するための直流電圧発生装置と、
一端を前記金属部に接続し、他端を接地に接続したコンデンサ列と、前記コンデンサ列の一部分の電位差を測定するための放電検出装置とで構成した前記金属部の電位変動を測定する手段とを備え
前記直流電圧発生装置は、直流電圧投入又は遮断時の過電圧を抑制するための抵抗を介して、前記コンデンサ列と接続する
ことを特徴とする真空遮断器の圧力診断装置。
Connected to each of the pair of contacts and the metal part penetrating from the inside of the vacuum container to the outside, a vacuum container containing a pair of contactable and separable contacts, and a metal part electrically insulated from the contact A vacuum circuit breaker pressure diagnostic device comprising:
A direct-current voltage generator electrically connected to the conductor of the metal part and for applying power to the metal part;
Means for measuring potential fluctuations in the metal part, comprising a capacitor string having one end connected to the metal part and the other end connected to the ground, and a discharge detector for measuring a potential difference of a part of the capacitor string; With
The DC voltage generator is connected to the capacitor row through a resistor for suppressing an overvoltage when a DC voltage is turned on or off, and the pressure diagnostic device for a vacuum circuit breaker.
請求項1に記載の真空遮断器の圧力診断装置において、
前記直流電圧発生装置と前記金属部の電位変動を測定する手段とは、万一放電した際の電流を抑制するための抵抗を介して、前記金属部に接続する
ことを特徴とする真空遮断器の圧力診断装置。
The pressure diagnostic device for a vacuum circuit breaker according to claim 1 ,
The DC voltage generator and the means for measuring the potential fluctuation of the metal part are connected to the metal part via a resistor for suppressing current in the event of discharge. Pressure diagnostic device.
請求項1に記載の真空遮断器の圧力診断装置において、
前記コンデンサ列の一部分と並列にインピーダンス整合用抵抗を接続する
ことを特徴とする真空遮断器の圧力診断装置。
The pressure diagnostic device for a vacuum circuit breaker according to claim 1 ,
An impedance matching resistance is connected in parallel with a part of the capacitor row.
請求項2に記載の真空遮断器の圧力診断装置において、
前記コンデンサ列の一部分と並列にインピーダンス整合用抵抗を接続する
ことを特徴とする真空遮断器の圧力診断装置。
The pressure diagnostic device for a vacuum circuit breaker according to claim 2 ,
An impedance matching resistance is connected in parallel with a part of the capacitor row.
請求項4に記載の真空遮断器の圧力診断装置において、
前記コンデンサ列、前記放電電流抑制抵抗、前記過電圧抑制抵抗および前記インピーダンス整合用抵抗を収納したユニットと、
前記ユニットと電気的にそれぞれ接続する前記直流電圧発生装置と、前記放電検出装置と、
前記ユニット内の前記放電電流抑制抵抗と前記金属部とを接続させる絶縁電線とを備える
ことを特徴とする真空遮断器の圧力診断装置。
The pressure diagnostic device for a vacuum circuit breaker according to claim 4 ,
A unit containing the capacitor array, the discharge current suppression resistor, the overvoltage suppression resistor and the impedance matching resistor;
The DC voltage generator electrically connected to the unit, the discharge detector,
A pressure diagnostic apparatus for a vacuum circuit breaker, comprising: an insulated wire that connects the discharge current suppression resistor and the metal part in the unit.
JP2009130598A 2009-05-29 2009-05-29 Vacuum circuit breaker pressure diagnostic device Active JP5222230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130598A JP5222230B2 (en) 2009-05-29 2009-05-29 Vacuum circuit breaker pressure diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130598A JP5222230B2 (en) 2009-05-29 2009-05-29 Vacuum circuit breaker pressure diagnostic device

Publications (2)

Publication Number Publication Date
JP2010277909A JP2010277909A (en) 2010-12-09
JP5222230B2 true JP5222230B2 (en) 2013-06-26

Family

ID=43424681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130598A Active JP5222230B2 (en) 2009-05-29 2009-05-29 Vacuum circuit breaker pressure diagnostic device

Country Status (1)

Country Link
JP (1) JP5222230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104440649A (en) * 2013-09-19 2015-03-25 天津中电华利电器科技集团有限公司 Circuit breaker detection equipment
CN104459214A (en) * 2013-09-19 2015-03-25 天津中电华利电器科技集团有限公司 Compressing device for circuit breaker detection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235113A (en) * 1988-03-14 1989-09-20 Toshiba Corp Defective vacuum detecting device
JP2948154B2 (en) * 1995-09-27 1999-09-13 株式会社日立製作所 Insulated switchgear
TW405135B (en) * 1998-03-19 2000-09-11 Hitachi Ltd Vacuum insulated switch apparatus
JPH11273513A (en) * 1998-03-24 1999-10-08 Mitsubishi Electric Corp Vacuum switch gear
JP2000173418A (en) * 1998-12-10 2000-06-23 Mitsubishi Electric Corp Vacuum load-break switch
JP2006202699A (en) * 2005-01-24 2006-08-03 Hitachi Ltd Vacuum pressure surveillance device and method of vacuum switchgear

Also Published As

Publication number Publication date
JP2010277909A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
EP2088609A2 (en) Encapsulated pole unit conductor assembly for an encapsulated pole unit and medium voltage circuit interrupter including the same
TWI313019B (en)
KR101911057B1 (en) Leakage current tester on hot line state
WO2001065653A1 (en) Gas insulated device and failure rating method
US7253630B1 (en) Electro-optical voltage sensor circuit monitoring leakage or loss of vacuum of a vacuum interrupter and vacuum circuit interrupter including the same
JPH07111855B2 (en) Tank type circuit breaker
CN101483114B (en) Method of diagnosing vacuum pressure of vacuum switchgear
JP5222230B2 (en) Vacuum circuit breaker pressure diagnostic device
US20240106204A1 (en) Arc mitigation devices and systems
Jeyaraj et al. Effective and efficient circuit breaker analysis
US5124687A (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
CN116381382A (en) Novel 10kV switch room risk prompt device for transformer substation
US20100027182A1 (en) Device for protecting an electrical installation, corresponding method and use
JP4728797B2 (en) Gas insulated power equipment
CN102201296B (en) Vacuum switch and vacuum insulated switchgear
JP5501263B2 (en) Vacuum insulated switchgear and vacuum insulated switchgear
Jonsson Advantages vs. risks with on-line monitoring of transformer bushings
EP4447240A1 (en) System for monitoring operation characteristics of power switch
KR20230087344A (en) Monitoring system for operation characteristics of Power Switches
US20230326632A1 (en) A gas insulated surge arrester and a gas insulated surge arrester monitoring system
JP3184206B2 (en) Power equipment, power transmission and distribution unit and trip method thereof
US11842866B2 (en) Pressure monitoring device and pressure monitoring method for vacuum valve
JP7478689B2 (en) Switchgear
JP3339705B2 (en) Gas insulated switchgear
KR20240104915A (en) Ground condition monitoring device of gas-insulated switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250