JP5222190B2 - Doppler sensor - Google Patents

Doppler sensor Download PDF

Info

Publication number
JP5222190B2
JP5222190B2 JP2009068755A JP2009068755A JP5222190B2 JP 5222190 B2 JP5222190 B2 JP 5222190B2 JP 2009068755 A JP2009068755 A JP 2009068755A JP 2009068755 A JP2009068755 A JP 2009068755A JP 5222190 B2 JP5222190 B2 JP 5222190B2
Authority
JP
Japan
Prior art keywords
signal
transmission
frequency
doppler
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009068755A
Other languages
Japanese (ja)
Other versions
JP2010223623A (en
Inventor
忠 村上
たまみ 側垣
成夫 五島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009068755A priority Critical patent/JP5222190B2/en
Publication of JP2010223623A publication Critical patent/JP2010223623A/en
Application granted granted Critical
Publication of JP5222190B2 publication Critical patent/JP5222190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ドップラセンサに関するものである。   The present invention relates to a Doppler sensor.

従来から、例えばミリ波のような電波(送信波)を検出範囲に照射するとともに、検出範囲で反射された電波(反射波)を受信し、送信波と反射波とから得られるドップラ信号を用いて人体等の移動体を検出するドップラセンサが提供されている。この種のドップラセンサは、例えば、人体の検出に応じて光源の点灯・消灯を切り替える照明システムにおいて、人体の検出に用いられている(例えば、特許文献1参照)。   Conventionally, for example, a radio wave (transmission wave) such as a millimeter wave is irradiated on a detection range, a radio wave reflected by the detection range (reflection wave) is received, and a Doppler signal obtained from the transmission wave and the reflection wave is used. A Doppler sensor for detecting a moving body such as a human body is provided. This type of Doppler sensor is used for detecting a human body in, for example, an illumination system that switches on / off a light source in accordance with detection of a human body (see, for example, Patent Document 1).

人体を検出するセンサしては他には例えば人体から放射される熱線を検出する熱線センサがあるが、ドップラセンサは熱線センサに比べて遠距離の人体を検出することができるという利点があるため、天井が高い建物内で天井に取り付けられるような使用形態に適している。   Other sensors that detect the human body include, for example, a heat ray sensor that detects a heat ray emitted from the human body, but a Doppler sensor has an advantage that it can detect a human body at a longer distance than a heat ray sensor. It is suitable for use in such a way that it is attached to the ceiling in a building with a high ceiling.

特開2001−238272号公報JP 2001-238272 A

しかし、ドップラセンサ自体が振動すると、静止した物体とドップラセンサとの間に相対速度が発生することにより、静止した物体で反射した反射波にもドップラシフトが生じ、実際には人体が存在しないにも関わらず人体が検出されるという誤検出が発生する可能性がある。   However, when the Doppler sensor itself vibrates, a relative velocity is generated between the stationary object and the Doppler sensor, so that the Doppler shift also occurs in the reflected wave reflected by the stationary object, and there is actually no human body. Nevertheless, a false detection that a human body is detected may occur.

また、上記のようにドップラセンサが天井に取り付けられて用いられる場合であって、天井の下側にダクトが露出して配設されている場合、ダクトによる死角が発生することを避けるためにドップラセンサは天井面から吊下げ支持されることがあり、このような場合には特に上記のような誤検出が発生しやすくなる。   Further, when the Doppler sensor is used by being attached to the ceiling as described above, and the duct is exposed and arranged below the ceiling, the Doppler is avoided in order to avoid a blind spot caused by the duct. The sensor may be supported by being suspended from the ceiling surface. In such a case, the above-described erroneous detection is particularly likely to occur.

本発明は、上記事由に鑑みて為されたものであり、その目的は、誤検出が抑えられるドップラセンサを提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a Doppler sensor capable of suppressing erroneous detection.

請求項1の発明は、所定の検出範囲に電波を送信するとともに検出範囲からの電波を受信し検出範囲に存在する移動物体との距離の変化速度に応じた周波数のドップラ信号を含む出力を生成する送受信回路と、送受信回路の出力を解析して検出範囲における移動物体の有無を判定する信号処理回路とを備え、送受信回路は、所定の周波数の送信信号を生成する発振器と、送信信号が変換された電波である送信波を検出範囲に対して送信する送信アンテナと、送信アンテナから送信された送信波が検出範囲において反射された電波である反射波を受信して受信信号に変換する受信アンテナと、発振器が出力した送信信号と受信アンテナが出力した受信信号とを混合して送信信号の周波数と受信信号の周波数との差の周波数を有するドップラ信号を信号処理回路に出力するミキサとを有し、信号処理回路は、送受信回路が出力したドップラ信号を高速フーリエ変換するFFT部と、FFT部の出力において所定のノイズ判定時間以上にわたって振幅が所定のノイズ判定振幅以上であり続けている周波数であるノイズ周波数が存在する場合には、ノイズ周波数のうち最も低い周波数である除去対象周波数を得るとともにドップラ信号において除去対象周波数の成分を少なくとも減衰させるようにドップラ信号を整形した整形信号を生成して出力し、ノイズ周波数が存在しない場合には、ドップラ信号をそのまま整形信号として出力する信号整形部と、信号整形部が出力した整形信号に基いて検出範囲に移動物体が存在するか否かを判定する判定部とを有することを特徴とする。   The invention according to claim 1 transmits an electric wave to a predetermined detection range, receives an electric wave from the detection range, and generates an output including a Doppler signal having a frequency corresponding to a changing speed of a distance from a moving object existing in the detection range. And a signal processing circuit that analyzes the output of the transmission / reception circuit and determines the presence or absence of a moving object in the detection range. The transmission / reception circuit converts the transmission signal into an oscillator that generates a transmission signal of a predetermined frequency. Transmitting antenna that transmits a transmitted wave that is a transmitted radio wave to a detection range, and a receiving antenna that receives a reflected wave that is a radio wave reflected from the detection range by the transmission antenna and converts it to a received signal And a Doppler signal having a difference between the frequency of the transmission signal and the frequency of the reception signal by mixing the transmission signal output from the oscillator and the reception signal output from the reception antenna And a mixer that outputs to the signal processing circuit. The signal processing circuit includes an FFT unit that performs a fast Fourier transform on the Doppler signal output from the transmission / reception circuit, and a predetermined noise level at the output of the FFT unit over a predetermined noise determination time. When there is a noise frequency that is a frequency that continues to be equal to or greater than the determination amplitude, a Doppler is obtained so as to obtain a removal target frequency that is the lowest of the noise frequencies and at least attenuate a component of the removal target frequency in the Doppler signal. Generate and output a shaped signal that is shaped signal, and when there is no noise frequency, the signal shaping unit that outputs the Doppler signal as it is as a shaped signal, and the detection range based on the shaped signal output by the signal shaping unit And a determination unit that determines whether or not a moving object exists.

この発明によれば、ノイズ周波数が存在する場合にはノイズ周波数のうち最も低い周波数である除去対象周波数の成分が少なくとも減衰するようにドップラ信号が整形された整形信号に基いて移動物体の存否が判定されるので、常にドップラ信号がそのまま判定に用いられる場合に比べ、ドップラセンサ自体の振動による誤検出が抑えられる。   According to the present invention, when a noise frequency is present, the presence or absence of a moving object is determined based on the shaped signal obtained by shaping the Doppler signal so that the component of the removal target frequency that is the lowest frequency among the noise frequencies is attenuated. Since the determination is made, erroneous detection due to vibration of the Doppler sensor itself can be suppressed as compared with the case where the Doppler signal is always used for determination.

請求項2の発明は、請求項1の発明において、信号整形部は、ノイズ周波数が存在する場合には、除去対象周波数の逆数であるノイズ周期を用い、整形信号の強度を、送受信回路がノイズ周期前に出力したドップラ信号の強度Vpcと、送受信回路が出力したドップラ信号の強度のノイズ周期分の平均値Vavとの差(Vpc−Vav)を、最新のドップラ信号の強度Vorから減じた強度(Vor−Vpc+Vav)とすることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, when the noise frequency exists, the signal shaping unit uses a noise period that is the reciprocal of the frequency to be removed, and the intensity of the shaped signal is transmitted to The intensity obtained by subtracting the difference (Vpc−Vav) between the intensity Vpc of the Doppler signal output before the period and the average value Vav for the noise period of the intensity of the Doppler signal output from the transmission / reception circuit from the intensity Vor of the latest Doppler signal. (Vor−Vpc + Vav).

請求項1の発明によれば、ノイズ周波数が存在する場合にはノイズ周波数のうち最も低い周波数である除去対象周波数の成分が少なくとも減衰するようにドップラ信号が整形された整形信号に基いて移動物体の存否が判定されるので、常にドップラ信号がそのまま判定に用いられる場合に比べ、ドップラセンサ自体の振動による誤検出が抑えられる。   According to the first aspect of the present invention, when there is a noise frequency, the moving object is based on the shaped signal obtained by shaping the Doppler signal so that the component of the removal target frequency, which is the lowest frequency among the noise frequencies, is attenuated. Therefore, erroneous detection due to vibration of the Doppler sensor itself can be suppressed as compared with the case where the Doppler signal is always used for the determination as it is.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. FFT部の出力の一例を示す説明図である。It is explanatory drawing which shows an example of the output of an FFT part. 整形信号の波形の一例を示す説明図である。It is explanatory drawing which shows an example of the waveform of a shaping signal.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本実施形態は、図1に示すように、所定の検出範囲(図示せず)に電波を送信するとともに検出範囲からの電波を受信し検出範囲に存在する移動物体(図示せず)との距離の変化速度に応じた周波数のドップラ信号を含む出力を生成する送受信回路1と、送受信回路1の出力を解析して検出範囲における移動物体の有無を判定する信号処理回路2とを備える。   In the present embodiment, as shown in FIG. 1, a distance between a radio wave transmitted to a predetermined detection range (not shown), a radio wave from the detection range, and a moving object (not shown) existing in the detection range. A transmission / reception circuit 1 that generates an output including a Doppler signal having a frequency corresponding to a change rate of the signal, and a signal processing circuit 2 that analyzes the output of the transmission / reception circuit 1 and determines the presence or absence of a moving object in the detection range.

具体的に説明すると、送受信回路1は、所定の周波数の送信信号を生成する発振器11と、送信信号が変換された電波である送信波を検出範囲に対して送信する送信アンテナ12と、送信アンテナ12から送信された送信波が検出範囲において反射された電波である反射波を受信して受信信号に変換する受信アンテナ13と、発振器11が出力した送信信号と受信アンテナ13が出力した受信信号とを混合(乗算)した混合信号を生成するとともに送信信号の周波数と受信信号の周波数との差の周波数を有するドップラ信号を混合信号から抽出して信号処理回路2に出力するミキサ14とを有する。つまり、ミキサ14は、混合信号において送信信号の周波数と受信信号の周波数との和の周波数の成分を選択的に減衰させることでドップラ信号を抽出して出力するローパスフィルタを含む。送信信号の周波数は例えば24GHzである。   More specifically, the transmission / reception circuit 1 includes an oscillator 11 that generates a transmission signal having a predetermined frequency, a transmission antenna 12 that transmits a transmission wave, which is a radio wave converted from the transmission signal, to a detection range, and a transmission antenna. A receiving antenna 13 that receives a reflected wave, which is a radio wave reflected from the detection range in the detection range, and converts it into a received signal; a transmission signal output from the oscillator 11; and a received signal output from the receiving antenna 13. And a mixer 14 that extracts a Doppler signal having a frequency difference between the frequency of the transmission signal and the frequency of the reception signal and outputs the signal to the signal processing circuit 2. That is, the mixer 14 includes a low-pass filter that extracts and outputs a Doppler signal by selectively attenuating the frequency component of the sum of the frequency of the transmission signal and the frequency of the reception signal in the mixed signal. The frequency of the transmission signal is 24 GHz, for example.

信号処理回路2は、送受信回路1のミキサ14が出力したドップラ信号を増幅して出力する増幅部21を有する。増幅部21は、送信信号の周波数と受信信号の周波数との差の周波数に相当する比較的に低い周波数に対して増幅率が高いという特性を有しており、これによりS/N比が改善される。また、信号処理回路2は、増幅部21が出力したドップラ信号を高速フーリエ変換するFFT部22と、増幅部21の出力とFFT部22の出力とに応じた整形信号を出力する信号整形部23と、信号整形部23が出力した整形信号に基いて検出範囲に移動物体が存在するか否かを判定する判定部24とを有する。   The signal processing circuit 2 includes an amplifying unit 21 that amplifies and outputs the Doppler signal output from the mixer 14 of the transmission / reception circuit 1. The amplifying unit 21 has a characteristic that the amplification factor is high at a relatively low frequency corresponding to the frequency of the difference between the frequency of the transmission signal and the frequency of the reception signal, thereby improving the S / N ratio. Is done. The signal processing circuit 2 also includes an FFT unit 22 that performs fast Fourier transform on the Doppler signal output from the amplification unit 21, and a signal shaping unit 23 that outputs a shaping signal corresponding to the output of the amplification unit 21 and the output of the FFT unit 22. And a determination unit 24 that determines whether there is a moving object in the detection range based on the shaping signal output from the signal shaping unit 23.

具体的には、信号整形部23は、入力段にA/D変換回路(図示せず)を有しており、このA/D変換回路によってA/D変換されたドップラ信号の強度(電圧値)の履歴を、所定の保存時間分記憶し随時更新している。さらに、信号整形部23は、FFT部22の出力を随時参照し、FFT部22の出力において各周波数の振幅|V|をそれぞれ所定のノイズ判定振幅Vthと比較し、振幅|V|がノイズ判定振幅Vth以上である周波数が存在する場合にはその周波数について振幅|V|がノイズ判定振幅Vth以上となった回数を計数する。そして、所定のノイズ判定回数以上にわたって振幅がノイズ判定振幅以上であり続けている周波数(以下、「ノイズ周波数」と呼ぶ。)が少なくとも1個存在する場合には、ノイズ周波数のうち最も低いものを除去対象周波数とし、除去対象周波数の逆数(すなわち周期)をノイズ周期Ta(図3参照)とする。つまり、信号整形部23がFFT部の出力を参照する周期、言い換えるとFFT部22の出力の周期(窓関数の幅)に、上記のノイズ判定回数を乗じたものが、請求項におけるノイズ判定時間になるのであり、このノイズ判定時間は例えば10秒である。例えば、図2のように2個の周波数fa,fbでそれぞれノイズ判定回数にわたって振幅|V|がノイズ判定振幅Vthを上回った場合、より低い周波数faの逆数1/faが上記のノイズ周期Taとされる。   Specifically, the signal shaping unit 23 has an A / D conversion circuit (not shown) at the input stage, and the intensity (voltage value) of the Doppler signal A / D converted by the A / D conversion circuit. ) Is stored for a predetermined storage time and updated as needed. Further, the signal shaping unit 23 refers to the output of the FFT unit 22 as needed, compares the amplitude | V | of each frequency with the predetermined noise determination amplitude Vth in the output of the FFT unit 22, and the amplitude | V | If there is a frequency that is equal to or greater than the amplitude Vth, the number of times that the amplitude | V | If there is at least one frequency (hereinafter referred to as “noise frequency”) whose amplitude continues to be equal to or greater than the noise determination amplitude over a predetermined number of noise determination times, the lowest noise frequency is selected. The frequency to be removed is set, and the reciprocal (that is, the cycle) of the frequency to be removed is set to a noise cycle Ta (see FIG. 3). That is, the noise determination time in the claims is obtained by multiplying the cycle in which the signal shaping unit 23 refers to the output of the FFT unit, in other words, the cycle of the output of the FFT unit 22 (the width of the window function) by the number of times of noise determination. This noise determination time is, for example, 10 seconds. For example, as shown in FIG. 2, when the amplitude | V | exceeds the noise determination amplitude Vth over the number of times of noise determination at the two frequencies fa and fb, the reciprocal 1 / fa of the lower frequency fa is the noise cycle Ta. Is done.

信号整形部23は、上記のようなノイズ周波数が存在せずノイズ周期Taが得られない期間には、図3のタイミングt1以前のように、増幅部21が出力したドップラ信号の強度(電圧値)Vorをそのまま整形信号の強度Vとして出力する。一方、信号整形部23は、ノイズ周波数が存在しノイズ周期Taが得られている期間には、図3のタイミングt1以後のように、増幅部21がノイズ周期Ta前に出力したドップラ信号の強度Vpcと、増幅部21が出力したドップラ信号の強度のノイズ周期Ta分の平均値(つまり長さがノイズ周期Taの期間であって最新の期間内での平均値であり、いわゆる単純移動平均)Vavとの差(Vpc−Vav)を、最新のドップラ信号の強度Vorから減じた強度(Vor−Vpc+Vav)を演算してこれを整形信号の強度Vとする。つまり、ドップラ信号において上記のノイズ判定時間(例えば10秒)にわたって周期的に繰り返されている成分は送受信回路1自体の振動に起因するノイズであると見なして、これを上記演算によってドップラ信号から除去するのである。   In the period when the noise frequency does not exist and the noise period Ta cannot be obtained, the signal shaping unit 23 is the intensity (voltage value) of the Doppler signal output by the amplification unit 21 before the timing t1 in FIG. ) Output Vor as the intensity V of the shaped signal as it is. On the other hand, during the period in which the noise frequency is present and the noise period Ta is obtained, the signal shaping unit 23 is the intensity of the Doppler signal output by the amplifying unit 21 before the noise period Ta, as after the timing t1 in FIG. The average value of Vpc and the noise period Ta of the intensity of the Doppler signal output from the amplifying unit 21 (that is, the average value within the latest period of the noise period Ta and the so-called simple moving average) The intensity (Vor−Vpc + Vav) obtained by subtracting the difference (Vpc−Vav) from Vav from the intensity Vor of the latest Doppler signal is calculated as the intensity V of the shaped signal. That is, in the Doppler signal, the component that is periodically repeated over the noise determination time (for example, 10 seconds) is regarded as noise caused by vibration of the transmission / reception circuit 1 itself, and is removed from the Doppler signal by the above calculation. To do.

判定部24は、信号整形部23が出力した整形信号の強度(以下、「整形強度」と呼ぶ。)Vの履歴を、新しいものから所定の監視期間(例えば5秒間)分だけ記憶して随時更新している。さらに、判定部24は、監視期間分の整形強度の平均値(いわゆる単純移動平均。以下、「監視平均強度」と呼ぶ。)Vmと、整形強度Vの上側ピーク値(すなわち、増加から減少に転じる直前の整形強度Vの値)の監視期間内での平均値Vuと整形強度Vの下側ピーク値(すなわち、減少から増加に転じる直前の整形強度Vの値)の監視期間内での平均値Vlとの差の半分(以下、「監視平均振幅」と呼ぶ。)Vp=(Vu−Vl)/2と、監視平均振幅Vpの1.5倍と監視平均強度Vmとの和である存在判定閾値Vb=Vm+1.5Vpとを随時演算するとともに、得られた存在判定閾値Vbと最新の整形強度Vとを随時比較し、最新の整形強度Vが存在判定閾値Vb以上であれば移動物体が存在すると判定し、最新の整形強度Vが存在判定閾値Vb未満であれば移動物体が存在しないと判定して、判定結果に応じた電圧値の判定信号を出力する。   The determination unit 24 stores the history of the strength of the shaped signal output from the signal shaping unit 23 (hereinafter referred to as “shaping strength”) V for a predetermined monitoring period (for example, 5 seconds) from the newest time, and from time to time. It has been updated. Furthermore, the determination unit 24 determines the average value of the shaping intensity for the monitoring period (so-called simple moving average; hereinafter referred to as “monitoring average intensity”) Vm and the upper peak value of the shaping intensity V (that is, from increasing to decreasing). The average value Vu within the monitoring period of the shaping intensity V immediately before turning) and the average value within the monitoring period of the lower peak value of the shaping intensity V (that is, the value of the shaping intensity V immediately before changing from increasing to decreasing). Half of the difference from the value Vl (hereinafter referred to as “monitoring average amplitude”) Vp = (Vu−Vl) / 2, the presence of 1.5 times the monitoring average amplitude Vp and the monitoring average intensity Vm The determination threshold Vb = Vm + 1.5Vp is calculated as needed, and the obtained presence determination threshold Vb is compared with the latest shaping strength V as needed. If the latest shaping strength V is equal to or greater than the presence determination threshold Vb, the moving object It is determined that it exists, and the latest shaping strength V exists. It is determined that the moving object does not exist is less than the determination threshold value Vb, and outputs a determination signal of the voltage value corresponding to the determination result.

判定部24が出力する判定信号に示された判定結果は、例えば、電気的な光源をオンオフする照明制御システム(図示せず)において、光源が消灯した状態で移動物体(主に人体)が存在すると判定されたときに光源の点灯を開始させ、その後に移動物体が存在すると判定されない状態が所定の点灯保持時間だけ継続したときに光源を消灯させるといった制御に用いられる。増幅部21は、用途に応じて、検出すべき移動物体(例えば人体)の通常の移動速度に応じた周波数の成分を選択的に増幅するように設計される。   The determination result indicated by the determination signal output from the determination unit 24 is, for example, that there is a moving object (mainly a human body) with the light source turned off in an illumination control system (not shown) that turns on and off the electrical light source. Then, the light source is turned on when it is determined, and the light source is turned off when a state where it is not determined that a moving object is present continues for a predetermined lighting holding time. The amplifying unit 21 is designed to selectively amplify a frequency component corresponding to a normal moving speed of a moving object (for example, a human body) to be detected, depending on the application.

上記のような送受信回路1及び信号処理回路2の各構成は電子回路を適宜用いて周知技術で実現可能であるので、詳細な図示並びに説明は省略する。   Each configuration of the transmission / reception circuit 1 and the signal processing circuit 2 as described above can be realized by a well-known technique using an electronic circuit as appropriate, and thus detailed illustration and description thereof are omitted.

上記構成によれば、ドップラ信号において所定のノイズ判定振幅以上の振幅を所定のノイズ判定時間以上にわたって維持しているノイズ周波数が存在する場合には、ノイズ周波数のうち最も低い周波数である除去対象周波数の成分がドップラ信号から除去された整形信号に基いて移動物体の存否が判定されるので、常にドップラ信号がそのまま判定部24に入力されて判定に用いられる場合に比べ、ドップラセンサ(送受信回路1)自体の振動による誤検出が抑えられる。従って、送受信回路1を天井から吊下げ支持するような使用形態に適する。   According to the above configuration, when there is a noise frequency that maintains an amplitude equal to or greater than the predetermined noise determination amplitude in the Doppler signal over the predetermined noise determination time, the removal target frequency that is the lowest frequency among the noise frequencies Since the presence / absence of the moving object is determined based on the shaping signal from which the component is removed from the Doppler signal, the Doppler sensor (transmission / reception circuit 1) is used as compared with the case where the Doppler signal is always input to the determination unit 24 and used for the determination. ) False detection due to its own vibration is suppressed. Therefore, it is suitable for a usage pattern in which the transmission / reception circuit 1 is supported by being suspended from the ceiling.

なお、ノイズ周波数が存在する期間における信号整形部23の動作を上記のようなものとする代わりに、周波数特性が可変であってノイズ周波数が存在する期間にはドップラ信号において主に除去対象周波数の成分を減衰させることで整形信号を生成する可変フィルタ(図示せず)を信号整形部23に設けてもよい。上記のような可変フィルタは周知技術で実現可能であるので図示並びに詳細な説明は省略する。   Instead of the operation of the signal shaping unit 23 in the period in which the noise frequency is present as described above, in the period in which the frequency characteristic is variable and the noise frequency is present, mainly the removal target frequency in the Doppler signal. A variable filter (not shown) that generates a shaped signal by attenuating the component may be provided in the signal shaping unit 23. Since the variable filter as described above can be realized by a well-known technique, illustration and detailed description thereof are omitted.

1 送受信回路
2 信号処理回路
11 発振器
12 送信アンテナ
13 受信アンテナ
14 ミキサ
21 増幅部
22 FFT部
23 信号整形部
24 判定部
DESCRIPTION OF SYMBOLS 1 Transmission / reception circuit 2 Signal processing circuit 11 Oscillator 12 Transmission antenna 13 Reception antenna 14 Mixer 21 Amplification part 22 FFT part 23 Signal shaping part 24 Determination part

Claims (2)

所定の検出範囲に電波を送信するとともに検出範囲からの電波を受信し検出範囲に存在する移動物体との距離の変化速度に応じた周波数のドップラ信号を含む出力を生成する送受信回路と、
送受信回路の出力を解析して検出範囲における移動物体の有無を判定する信号処理回路とを備え、
送受信回路は、所定の周波数の送信信号を生成する発振器と、送信信号が変換された電波である送信波を検出範囲に対して送信する送信アンテナと、送信アンテナから送信された送信波が検出範囲において反射された電波である反射波を受信して受信信号に変換する受信アンテナと、発振器が出力した送信信号と受信アンテナが出力した受信信号とを混合して送信信号の周波数と受信信号の周波数との差の周波数を有するドップラ信号を信号処理回路に出力するミキサとを有し、
信号処理回路は、送受信回路が出力したドップラ信号を高速フーリエ変換するFFT部と、FFT部の出力において所定のノイズ判定時間以上にわたって振幅が所定のノイズ判定振幅以上であり続けている周波数であるノイズ周波数が存在する場合には、ノイズ周波数のうち最も低い周波数である除去対象周波数を得るとともにドップラ信号において除去対象周波数の成分を少なくとも減衰させるようにドップラ信号を整形した整形信号を生成して出力し、ノイズ周波数が存在しない場合には、ドップラ信号をそのまま整形信号として出力する信号整形部と、信号整形部が出力した整形信号に基いて検出範囲に移動物体が存在するか否かを判定する判定部とを有することを特徴とするドップラセンサ。
A transmission / reception circuit that transmits a radio wave to a predetermined detection range, receives a radio wave from the detection range, and generates an output including a Doppler signal having a frequency according to a change speed of a distance from a moving object existing in the detection range;
A signal processing circuit that analyzes the output of the transmission / reception circuit and determines the presence or absence of a moving object in the detection range;
The transmission / reception circuit includes an oscillator that generates a transmission signal having a predetermined frequency, a transmission antenna that transmits a transmission wave, which is a radio wave converted from the transmission signal, to the detection range, and a transmission wave transmitted from the transmission antenna. The frequency of the transmission signal and the frequency of the reception signal by mixing the reception antenna that receives the reflected wave, which is the reflected radio wave, and converting it to the reception signal, and the transmission signal output by the oscillator and the reception signal output by the reception antenna And a mixer that outputs a Doppler signal having a difference frequency to the signal processing circuit,
The signal processing circuit includes an FFT unit that performs a fast Fourier transform on the Doppler signal output from the transmission / reception circuit, and noise having a frequency at which the amplitude continues to be equal to or greater than a predetermined noise determination amplitude over the predetermined noise determination time in the output of the FFT unit. If there is a frequency, it obtains the removal target frequency that is the lowest of the noise frequencies, and generates and outputs a shaped signal that shapes the Doppler signal so that the Doppler signal attenuates at least the component of the removal target frequency. When there is no noise frequency, a signal shaping unit that outputs the Doppler signal as it is as a shaping signal, and a determination for determining whether or not there is a moving object in the detection range based on the shaping signal output by the signal shaping unit And a Doppler sensor.
信号整形部は、ノイズ周波数が存在する場合には、除去対象周波数の逆数であるノイズ周期を用い、整形信号の強度を、送受信回路がノイズ周期前に出力したドップラ信号の強度Vpcと、送受信回路が出力したドップラ信号の強度のノイズ周期分の平均値Vavとの差(Vpc−Vav)を、最新のドップラ信号の強度Vorから減じた強度(Vor−Vpc+Vav)とすることを特徴とする請求項1記載のドップラセンサ。   When there is a noise frequency, the signal shaping unit uses a noise period that is the reciprocal of the removal target frequency, the intensity of the shaped signal, the intensity Vpc of the Doppler signal output by the transmission / reception circuit before the noise period, and the transmission / reception circuit The difference (Vpc−Vav) from the average value Vav for the noise period of the Doppler signal intensity outputted from is set to the intensity (Vor−Vpc + Vav) obtained by subtracting from the latest Doppler signal intensity Vor. The Doppler sensor according to 1.
JP2009068755A 2009-03-19 2009-03-19 Doppler sensor Active JP5222190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068755A JP5222190B2 (en) 2009-03-19 2009-03-19 Doppler sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068755A JP5222190B2 (en) 2009-03-19 2009-03-19 Doppler sensor

Publications (2)

Publication Number Publication Date
JP2010223623A JP2010223623A (en) 2010-10-07
JP5222190B2 true JP5222190B2 (en) 2013-06-26

Family

ID=43040981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068755A Active JP5222190B2 (en) 2009-03-19 2009-03-19 Doppler sensor

Country Status (1)

Country Link
JP (1) JP5222190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358560B2 (en) * 2014-09-25 2018-07-18 Toto株式会社 Detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331734A (en) * 1993-05-19 1994-12-02 Fujitsu Ten Ltd Ground speed radar for vehicle
JPH08268194A (en) * 1995-03-31 1996-10-15 Isuzu Motors Ltd Safety confirming device
FR2745093B1 (en) * 1996-02-21 1998-04-24 Legrand Sa METHOD AND DEVICE FOR DETECTING THE PRESENCE OF A LIVING BEING OF A PARTICULAR SPECIES IN A SPACE MONITORED BY A DOPPLER SENSOR
JP2001166043A (en) * 1999-12-10 2001-06-22 Mazda Motor Corp Object position detector
JP4835208B2 (en) * 2006-03-07 2011-12-14 Toto株式会社 Urinal washing device and urinal washing system

Also Published As

Publication number Publication date
JP2010223623A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5584442B2 (en) Object detection device and illumination system including the same
JP4120679B2 (en) Radar
JP2012168048A (en) Doppler sensor and lighting fixture using the doppler sensor
US9185779B2 (en) Sensor device for reducing erroneous activation of a light source
US7176829B2 (en) Microwave sensor
JP2009266212A (en) Microwave sensor apparatus and microwave sensor system
JP2005140542A (en) Detector
JPWO2018163677A1 (en) Radar equipment
JP6081661B2 (en) Reducing interference in sensing
JP5222190B2 (en) Doppler sensor
JP4783130B2 (en) Microwave Doppler sensor
JP2010185706A (en) Ultrasonic sensor system
JP4762739B2 (en) Transceiver
US20220137201A1 (en) Luminaire, and a corresponding method
US9647648B2 (en) Signal processor
JP2006170816A (en) Pulse specifications detection circuit
JP2016520972A (en) Functional control of space
JP2019144082A (en) Fmcw radar device
JP2018119935A (en) Radar device, method of controlling radar device, and radar system
TWI764420B (en) Radar detector and interference supression method using radar detector
JP2011247717A (en) Distance sensor
EP3581851A1 (en) Method and system for detecting the presence and/or the absence of a cooking vessel on a gas cooking appliance with at least one gas burner
KR102457746B1 (en) Method for measuring distance using radar phase unwrapping, and monitoring apparatus using the method
JP2003222672A (en) Radar apparatus
JPH09230027A (en) Radar equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150