JP5221913B2 - Battery storage unit - Google Patents

Battery storage unit Download PDF

Info

Publication number
JP5221913B2
JP5221913B2 JP2007223056A JP2007223056A JP5221913B2 JP 5221913 B2 JP5221913 B2 JP 5221913B2 JP 2007223056 A JP2007223056 A JP 2007223056A JP 2007223056 A JP2007223056 A JP 2007223056A JP 5221913 B2 JP5221913 B2 JP 5221913B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
battery
refrigerant flow
battery modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007223056A
Other languages
Japanese (ja)
Other versions
JP2009059473A (en
Inventor
義一 西田
謙二 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007223056A priority Critical patent/JP5221913B2/en
Priority to US12/199,399 priority patent/US20090061305A1/en
Priority to CN2008102126371A priority patent/CN101378110B/en
Publication of JP2009059473A publication Critical patent/JP2009059473A/en
Application granted granted Critical
Publication of JP5221913B2 publication Critical patent/JP5221913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、複数の電池モジュールが筐体内に並列に配置され、電気自動車等の電源として用いられる電池格納ユニットに関するものである。   The present invention relates to a battery storage unit in which a plurality of battery modules are arranged in parallel in a casing and used as a power source for an electric vehicle or the like.

電気自動車の駆動電源として、略円柱状の複数の電池モジュールを筐体内に並列に配置するとともに、隣接する内部の電池モジュール同士を、導電部材を介して直列に接続した電池格納ユニットが知られている。   As a driving power source for an electric vehicle, a battery storage unit is known in which a plurality of substantially cylindrical battery modules are arranged in parallel in a casing, and adjacent internal battery modules are connected in series via a conductive member. Yes.

この種の電池格納ユニットにおいては、電気の充放電によって各電池モジュールが熱を発するため、電池モジュールの性能を有効利用するためには電池モジュールを効率良く冷却する必要がある。
このため、これに対処する電池格納ユニットとして、筐体に冷媒の導入口と排出口を設け、導入口から取り入れた空気等の冷媒を各電池モジュールの外周面に当て、外周面を通して電池モジュール全体を冷却するものが開発されている(例えば、特許文献1参照)。
特開2006−134853号公報
In this type of battery storage unit, each battery module generates heat due to charging / discharging of electricity, and therefore it is necessary to efficiently cool the battery module in order to effectively use the performance of the battery module.
For this reason, as a battery storage unit that copes with this, the housing is provided with a refrigerant inlet and outlet, the refrigerant such as air taken from the inlet is applied to the outer peripheral surface of each battery module, and the entire battery module is passed through the outer peripheral surface. Has been developed (see, for example, Patent Document 1).
JP 2006-134893 A

しかし、この従来の電池格納ユニットは、筐体内の電池モジュールのうちの主に外周面を冷媒によって冷却するものであるため、各電池モジュールに対する冷却効率の点では未だ充分とは言えず、各電池モジュールを充分に冷却するためには、大流量の冷媒を各電池モジュールの外周面に誘導しなければならない。このため、この従来の電池格納ユニットにおいては、筐体内で隣接する電池モジュール間に充分な間隔をあけて、断面積の大きい冷媒流路を形成しなければならず、ユニット全体の大型化を避けることができない。   However, since this conventional battery storage unit mainly cools the outer peripheral surface of the battery modules in the housing with a refrigerant, it cannot be said that the cooling efficiency for each battery module is sufficient. In order to sufficiently cool the module, a large flow rate of refrigerant must be guided to the outer peripheral surface of each battery module. For this reason, in this conventional battery storage unit, it is necessary to form a refrigerant flow path having a large cross-sectional area with a sufficient space between adjacent battery modules in the casing, and avoiding an increase in size of the entire unit. I can't.

そこで、この発明は、筐体内の電池モジュールの冷却効率を高め、ユニット全体の小型化を図ることのできる電池格納ユニットを提供しようとするものである。   Therefore, the present invention is intended to provide a battery storage unit that can increase the cooling efficiency of the battery module in the casing and can reduce the size of the entire unit.

上記の課題を解決する請求項1に記載の発明は、略円柱状の複数の電池モジュール(例えば、後述の実施形態における電池モジュール3)が筐体(例えば、後述の実施形態における筐体2)内に並列に配列され、前記筐体内の隣接する電池モジュールの軸方向の端部の電極端子(例えば、後述の実施形態における電極端子5)同士が導電部材(例えば、後述の実施形態におけるバスバー12)を介して直列に接続された電池格納ユニットであって、前記複数の電池モジュールが保持部材(例えば、後述の実施形態における保持部材10)を介して前記筐体内にマトリクス状に設設され、前記筐体内の複数の電池モジュールの軸方向の端部に臨む領域に、前記電池モジュールの電極端子と導電部材の並びに沿わせて直線的に冷媒を流す第1冷媒流路(例えば、後述の実施形態における第1冷媒流路19)が設けられ、前記第1冷媒流路は、前記筐体の前記電池モジュールの軸方向の一端側に臨む領域と他端側に臨む領域にそれぞれ設けられ、前記筐体内の前記隣接する電池モジュール間の、同電池モジュールの軸方向に沿う隙間によって前記第1冷媒流路方向に冷媒を流す第2冷媒流路(例えば、後述の実施形態における第2冷媒流路11)が形成されていることを特徴とする。
これにより、各電池モジュールの軸方向の両側の電極端子と導電部材は、夫々が臨む第1冷媒流路を流れる冷媒によって冷却される。また、第2冷媒流路においては電池モジュールの軸方向の中心側から両側の第1冷媒流路に向かって冷媒が流れ、その冷媒の流れによって各電池モジュールの外周面が冷却される。
The invention according to claim 1, which solves the above problem, includes a plurality of substantially cylindrical battery modules (for example, a battery module 3 in an embodiment described later) as a casing (for example, a casing 2 in an embodiment described later). The electrode terminals (for example, electrode terminals 5 in the embodiments described later) arranged in parallel in the casing and in the axial direction of adjacent battery modules in the casing are electrically conductive members (for example, bus bars 12 in the embodiments described later). ), And the plurality of battery modules are provided in a matrix in the housing via a holding member (for example, a holding member 10 in an embodiment described later), A first refrigerant that flows linearly along an electrode terminal and a conductive member of the battery module in a region facing the axial ends of the plurality of battery modules in the housing. Tract (e.g., the first refrigerant flow path 19 in the embodiment) is provided, said first refrigerant flow path, facing the region and the other end facing the one end side in the axial direction of the battery modules of the housing A second refrigerant flow path (for example, to be described later) that is provided in each of the regions and causes the refrigerant to flow in the direction of the first refrigerant flow path by a gap along the axial direction of the battery modules between the adjacent battery modules in the casing. A second refrigerant flow path 11) in the form is formed.
As a result, the electrode terminals and the conductive member on both sides in the axial direction of each battery module are cooled by the refrigerant flowing through the first refrigerant flow channel facing each other. In the second refrigerant flow path, the refrigerant flows from the center side in the axial direction of the battery module toward the first refrigerant flow path on both sides, and the outer peripheral surface of each battery module is cooled by the flow of the refrigerant.

請求項に記載の発明は、略円柱状の複数の電池モジュール(例えば、後述の実施形態における電池モジュール3)が筐体(例えば、後述の実施形態における筐体2)内に並列に配列され、前記筐体内の隣接する電池モジュールの軸方向の端部の電極端子(例えば、後述の実施形態における電極端子5)同士が導電部材(例えば、後述の実施形態におけるバスバー12)を介して直列に接続された電池格納ユニットであって、前記複数の電池モジュールが保持部材(例えば、後述の実施形態における保持部材10)を介して前記筐体内にマトリクス状に設設され、前記筐体内の複数の電池モジュールの軸方向の端部に臨む領域に、前記電池モジュールの電極端子と導電部材の並びに沿わせて直線的に冷媒を流す第1冷媒流路(例えば、後述の実施形態における第1冷媒流路19)が設けられ、前記筐体内の前記隣接する電池モジュール間の、同電池モジュールの軸方向に沿う隙間によって前記第1冷媒流路方向に冷媒を流す第2冷媒流路(例えば、後述の実施形態における第2冷媒流路11)が形成され、前記筐体の第1冷媒流路内には、冷媒の流速を局部的に高める増速部(例えば、後述の実施形態における突起部20)が設けられていることを特徴とする。
これにより、第1冷媒流路に冷媒が流れると、増速部が冷媒の流速を局部的に高め、このとき増速部の近傍に発生する負圧が第1冷媒流路内に乱流を生じさせる。そして、乱流は第2冷媒流路の冷媒の流れを呼び込むことになる。
According to the second aspect of the present invention, a plurality of substantially cylindrical battery modules (for example, a battery module 3 in an embodiment described later) are arranged in parallel in a casing (for example, a casing 2 in an embodiment described later). The electrode terminals (for example, electrode terminals 5 in the embodiments described later) in the axial direction of adjacent battery modules in the casing are connected in series via the conductive member (for example, the bus bar 12 in the embodiments described later). A plurality of battery storage units connected to each other, wherein the plurality of battery modules are provided in a matrix in the housing via a holding member (for example, a holding member 10 in an embodiment described later), A first refrigerant flow path (for example, described later) that flows the refrigerant linearly along the electrode terminal and the conductive member of the battery module in a region facing the axial end of the battery module. The first refrigerant flow path 19) in the embodiment is provided, and the second refrigerant flows the refrigerant in the first refrigerant flow path direction by a gap along the axial direction of the battery module between the adjacent battery modules in the casing. A flow path (for example, a second refrigerant flow path 11 in an embodiment described later) is formed, and a speed increasing portion (for example, a later described speed increase) for locally increasing the flow velocity of the refrigerant is formed in the first refrigerant flow path of the casing. A protrusion 20) according to the embodiment is provided.
Thus, when the refrigerant flows through the first refrigerant flow path, the speed increasing portion locally increases the flow velocity of the refrigerant, and the negative pressure generated near the speed increasing portion at this time causes turbulent flow in the first refrigerant flow path. Cause it to occur. And a turbulent flow attracts the flow of the refrigerant | coolant of a 2nd refrigerant | coolant flow path.

請求項に記載の発明は、請求項に記載の電池格納ユニットにおいて、前記増速部は、前記電池モジュールの軸方向に沿う向きから前記導電部材に対面するように、前記筐体に形成された突起部(例えば、後述の実施形態における突起部20)によって構成されていることを特徴とする。 According to a third aspect of the present invention, in the battery storage unit according to the second aspect , the speed increasing portion is formed in the casing so as to face the conductive member from a direction along the axial direction of the battery module. It is characterized by being constituted by the projected part (for example, projection part 20 in the below-mentioned embodiment).

請求項1に記載の発明によれば、各電池モジュールの電極端子と導電部材の並びに沿って直線的に流れる第1冷媒流路の冷媒によって、電池モジュール内部からの放熱量の多い電極端子と導電部材を効率的に冷却することができ、しかも、第1冷媒流路の冷媒の流れによって誘発される第2冷媒流路の冷媒の流れによって各電池モジュールの外周面を冷却することができるため、筐体内の電池モジュールのより効率的な冷却が可能になり、その結果、ユニット全体を小型化することが可能になる。   According to the first aspect of the present invention, the electrode terminal and the conductive material having a large amount of heat radiation from the inside of the battery module are formed by the refrigerant in the first refrigerant flow channel that linearly flows along the electrode terminal and the conductive member of each battery module. Since the member can be efficiently cooled, and the outer peripheral surface of each battery module can be cooled by the refrigerant flow in the second refrigerant channel induced by the refrigerant flow in the first refrigerant channel, The battery module in the housing can be more efficiently cooled, and as a result, the entire unit can be reduced in size.

さらに、請求項に記載の発明によれば、筐体内の電池モジュールの軸方向の一端側に臨む領域と他端側に臨む領域に夫々第1冷媒流路が設けられているため、放熱量の多い各電池モジュールの両側の電極端子と導電部材をより効率良く冷却することができる。 Furthermore, according to the invention described in claim 1 , since the first refrigerant flow path is provided in each of the region facing the one end side in the axial direction and the region facing the other end side of the battery module in the casing, It is possible to more efficiently cool the electrode terminals and the conductive members on both sides of each battery module having a large amount.

請求項2に記載の発明によれば、各電池モジュールの電極端子と導電部材の並びに沿って直線的に流れる第1冷媒流路の冷媒によって、電池モジュール内部からの放熱量の多い電極端子と導電部材を効率的に冷却することができ、しかも、第1冷媒流路の冷媒の流れによって誘発される第2冷媒流路の冷媒の流れによって各電池モジュールの外周面を冷却することができるため、筐体内の電池モジュールのより効率的な冷却が可能になり、その結果、ユニット全体を小型化することが可能になる。
さらに、請求項に記載の発明によれば、第1冷媒流路内に設けられた増速部によって第2冷媒流路に効率良く冷媒の流れを生じさせることができるため、各電池モジュールの外周面に対する冷却効率をより高めることが可能になる。
According to the second aspect of the present invention, the electrode terminal having a large amount of heat radiation from the inside of the battery module is electrically connected to the conductive material by the refrigerant in the first refrigerant flow channel that linearly flows along the electrode terminal and the conductive member of each battery module. Since the member can be efficiently cooled, and the outer peripheral surface of each battery module can be cooled by the refrigerant flow in the second refrigerant channel induced by the refrigerant flow in the first refrigerant channel, The battery module in the housing can be more efficiently cooled, and as a result, the entire unit can be reduced in size.
Furthermore, according to the second aspect of the present invention, since the speed increasing portion provided in the first refrigerant flow path can efficiently generate the refrigerant flow in the second refrigerant flow path, It becomes possible to further improve the cooling efficiency for the outer peripheral surface.

請求項に記載の発明によれば、筐体に設けた突起部によって増速部が形成されているため、構造の簡素化によって製品コストの低減を図ることができる。 According to the third aspect of the invention, since the speed increasing portion is formed by the protrusion provided on the housing, the product cost can be reduced by simplifying the structure.

以下、この発明の各実施形態を図面に基づいて説明する。なお、以下の各実施形態の説明においては、同一部分に同一符号を付し、重複する部分の説明を省略するものとする。
最初に、図1〜図3に示すこの発明の第1の実施形態について説明する。
この実施形態の電池格納ユニット1は、ハイブリッド車を含む電気自動車の駆動電源として用いられるものであり、略直方体状の金属製の筐体2の内部に、複数の電池モジュール3…が並列に配列されて収容されている。電池モジュール3は、図3に示すように、モジュール本体4が円柱状に形成され、そのモジュール本体4の軸方向の両端面に正,負の電極端子5の各一方が設けられている。なお、この明細書において、電池モジュールとは、複数の単電池を直列に接続して円柱状に形成したもののほか、円柱状の単電池単体の場合も含むものとする。
Embodiments of the present invention will be described below with reference to the drawings. In the following description of each embodiment, the same parts are denoted by the same reference numerals, and the description of the overlapping parts is omitted.
First, a first embodiment of the present invention shown in FIGS. 1 to 3 will be described.
The battery storage unit 1 of this embodiment is used as a driving power source for an electric vehicle including a hybrid vehicle, and a plurality of battery modules 3 are arranged in parallel inside a substantially rectangular parallelepiped metal housing 2. Has been accommodated. As shown in FIG. 3, the battery module 3 has a module body 4 formed in a cylindrical shape, and one end of each of positive and negative electrode terminals 5 is provided on both end surfaces of the module body 4 in the axial direction. Note that in this specification, the battery module includes not only a single unit of a plurality of single cells connected in series and formed into a cylindrical shape, but also a single unit of single columnar cells.

筐体2は、相反する両側の端部に開口が設けられた角筒状の筐体本体6と、筐体本体6の両側の開口を閉塞する第1カバー7および第2カバー8を備え、両カバー7,8が筐体本体6にボルト結合等によって一体に結合されている。
ここで、説明の都合上、筐体本体6の両側の開口を結ぶ方向を「開口方向」と呼ぶものとすると、筐体本体6の内壁には、開口方向に沿う複数の支持壁9…が一体に形成され、その各支持壁9によって電池モジュール3が支持されるようになっている。
The housing 2 includes a rectangular tube-shaped housing body 6 having openings at opposite ends, and a first cover 7 and a second cover 8 that close the openings on both sides of the housing body 6. Both covers 7 and 8 are integrally coupled to the housing body 6 by bolt coupling or the like.
Here, for convenience of explanation, if the direction connecting the openings on both sides of the housing body 6 is referred to as the “opening direction”, the inner wall of the housing body 6 has a plurality of support walls 9 along the opening direction. The battery modules 3 are integrally formed and supported by the support walls 9.

電池モジュール3…は、各モジュール3の軸方向を筐体本体6の開口方向に沿わせるようにして筐体本体6内に並列に配列され、図2に示すように、開口方向から見たときに全体が縦横に規則正しく整列するようにマトリクス状に配置されている。この実施形態の例の場合、電池モジュール3…は2段8列に配置されている。そして、各段と各列の隣接する電池モジュール3,3の間には、筐体本体6の開口方向に沿う保持部材10が介装されている。したがって、図2に示すように筐体本体6の内側には、複数の電池モジュール3…が前述した複数の支持壁9…と保持部材10…とともに碁盤目状に配置されている。
ここで、各支持壁9と保持部材10の電池モジュール3の外周面と接触する面は、同モジュール3の外周面に沿う円弧状に形成されており、各電池モジュール3の周囲は保持部材10や支持壁9によって軸方向に延出する4つの空間に画成されている。この画成された複数の空間は後述する第2冷媒流路11を構成するようになっている。
The battery modules 3 are arranged in parallel in the housing body 6 so that the axial direction of each module 3 is along the opening direction of the housing body 6, and when viewed from the opening direction as shown in FIG. Are arranged in a matrix so as to be regularly aligned vertically and horizontally. In the case of the example of this embodiment, the battery modules 3 are arranged in two rows and eight rows. And between the battery modules 3 and 3 which adjoin each stage and each row | line | column, the holding member 10 along the opening direction of the housing body 6 is interposed. Therefore, as shown in FIG. 2, a plurality of battery modules 3... Are arranged in a grid pattern along with the above-described support walls 9 and holding members 10.
Here, the surface of each support wall 9 and the holding member 10 that contacts the outer peripheral surface of the battery module 3 is formed in an arc shape along the outer peripheral surface of the module 3, and the periphery of each battery module 3 is the holding member 10. And the support wall 9 defines four spaces extending in the axial direction. The plurality of defined spaces constitute a second refrigerant flow path 11 to be described later.

また、前述のようにして筐体本体6の内側に配置される電池モジュール3…は、隣接するもの同士の正極と負極が逆向きになるようにセットされ、隣接する電極端子5,5が導電部材であるバスバー12によって適宜連結されている。このバスバー12による電極端子5,5の連結は、筐体本体6内の総ての電池モジュール3…が直列接続されるようにして行われている。   Further, the battery modules 3 arranged inside the housing body 6 as described above are set so that the positive and negative electrodes of adjacent ones are opposite to each other, and the adjacent electrode terminals 5 and 5 are electrically conductive. They are appropriately connected by a bus bar 12 as a member. The connection of the electrode terminals 5 and 5 by the bus bar 12 is performed such that all the battery modules 3 in the housing body 6 are connected in series.

バスバー12は、導電性の金属板によって断面ハット状に形成され、中央の段差状の屈曲凸部13を挟む両側の縁部が夫々電極端子5の端面にねじ14によって結合されている。なお、バスバー12は、屈曲凸部13が電池モジュール3の軸方向外側に突出する向きにおいて各電極端子5に結合されている。   The bus bar 12 is formed in a hat shape in cross section by a conductive metal plate, and both edge portions sandwiching the central step-shaped bent convex portion 13 are coupled to the end face of the electrode terminal 5 by screws 14. The bus bar 12 is coupled to each electrode terminal 5 in a direction in which the bent convex portion 13 protrudes outward in the axial direction of the battery module 3.

一方、第1カバー7は、筐体本体6の端面の形状に対応する天井壁7aと、筐体本体6の周壁に対応する側壁7b…を有しており、第1カバー7の延出幅の短い一方の側壁7bと、それに対向する他方の側壁7bには、冷却空気(冷却媒体)の導入口15と排出口16が夫々形成されている。この第1カバー7の排出口16には吸引ダクト17が接続され、その吸引ダクト17には、筐体2内から空気を吸引するための吸引ファン18が接続されている。導入口15と排出口16は各側壁7b,7bの対向位置に設けられており、吸引ファン18による空気の吸引が開始されると、導入口15から吸い入れられた空気が筐体2内を排出口16に向かって直線的に進み、排出口16と吸引ダクト17を通して吸引ファン18に吸い込まれるようになっている。導入口15と排出口16を直線的に結ぶ第1カバー7内のこの流路は、この発明における第1冷媒流路19を構成している。この第1冷媒流路19は、筐体本体6に配置された複数の電池モジュール3…の軸方向の一端側の電極端子5とバスバー12に臨んでいる。 On the other hand, the first cover 7 has a ceiling wall 7 a corresponding to the shape of the end face of the housing body 6 and side walls 7 b corresponding to the peripheral wall of the housing body 6. The short side wall 7b and the other side wall 7b opposite to the side wall 7b are respectively provided with an inlet 15 and an outlet 16 for cooling air (cooling medium). A suction duct 17 is connected to the discharge port 16 of the first cover 7, and a suction fan 18 for sucking air from the inside of the housing 2 is connected to the suction duct 17. The introduction port 15 and the discharge port 16 are provided at positions opposite to the side walls 7b, 7b, and when the suction of the air by the suction fan 18 is started, the air sucked from the introduction port 15 passes through the inside of the housing 2. It advances linearly toward the discharge port 16 and is sucked into the suction fan 18 through the discharge port 16 and the suction duct 17. This flow path in the first cover 7 that linearly connects the introduction port 15 and the discharge port 16 constitutes the first refrigerant flow channel 19 in the present invention. The first refrigerant channel 19 faces the electrode terminal 5 and the bus bar 12 on one end side in the axial direction of the plurality of battery modules 3 disposed in the housing body 6.

また、第1カバー7の天井壁7aには、第1冷媒流路19に臨む複数の突起部20…が形成されている。この突起部20は、天井壁7aのうちの、第1冷媒流路19に臨む各バスバー12に対向して設けられ、各突起部20の頂部がバスバー12の屈曲凸部13と対面し、対面した両者の間の隙間によって第1冷媒流路19を通過する冷却空気の流れを部分的に絞るようになっている。なお、この実施形態の場合、突起部20が冷却空気の速度を速める増速部を構成している。   In addition, a plurality of protrusions 20 are formed on the ceiling wall 7 a of the first cover 7 so as to face the first refrigerant flow path 19. This protrusion 20 is provided to face each bus bar 12 facing the first refrigerant flow path 19 in the ceiling wall 7 a, and the top of each protrusion 20 faces the bent convex part 13 of the bus bar 12. The flow of the cooling air passing through the first refrigerant flow path 19 is partially restricted by the gap between the two. In the case of this embodiment, the protrusion 20 constitutes a speed increasing portion that increases the speed of the cooling air.

また、第2カバー8は、第1カバー7と同様に、筐体本体6の端面の形状に対応する天井壁8aと、筐体本体6の周壁に対応する4面の側壁8b…を有しており、側壁8b…のうちの1つには冷却空気を外部から取り入れるための取り入れ口21(冷媒取り入れ口)が形成されている。この取り入れ口21から取り入れられた空気は、筐体本体6内の電池モジュール3…の軸方向に沿う各第2冷媒流路11…を通って第1冷媒流路19に吸い入れられる。   Similarly to the first cover 7, the second cover 8 has a ceiling wall 8 a corresponding to the shape of the end surface of the housing body 6, and four side walls 8 b corresponding to the peripheral wall of the housing body 6. One of the side walls 8b is formed with an intake 21 (coolant intake) for taking in cooling air from the outside. The air taken in from the intake 21 is sucked into the first refrigerant flow path 19 through the second refrigerant flow paths 11 along the axial direction of the battery modules 3 in the housing body 6.

以上の構成において、電池格納ユニット1の使用時に吸引ファン18が駆動されると、筐体2の導入口15から取り入れられた冷却空気が第1冷媒流路19を直線的に進んで吸引ダクト17に吸い入れられるとともに、第1冷媒流路19を流れる冷却空気の流れによって第2冷媒流路11の一端側に負圧が生じ、その負圧によって取り入れ口21から取り入れられた冷却空気が第2冷媒流路11を通って第1冷媒流路19に引き込まれる。このとき、第1冷媒流路19を直線的に流れる冷却空気によって各電池モジュール3の一端側の電極端子5とバスバー12が冷却されるとともに、第2冷媒流路11を流れる冷却空気によって各電池モジュール3の外周面が冷却される。   In the above configuration, when the suction fan 18 is driven when the battery storage unit 1 is used, the cooling air taken in from the inlet 15 of the housing 2 advances linearly through the first refrigerant flow path 19 and the suction duct 17. The negative pressure is generated at one end of the second refrigerant flow path 11 by the flow of the cooling air flowing through the first refrigerant flow path 19, and the cooling air taken in from the intake port 21 by the negative pressure is second. The refrigerant is drawn into the first refrigerant flow path 19 through the refrigerant flow path 11. At this time, the electrode terminal 5 and the bus bar 12 on one end side of each battery module 3 are cooled by the cooling air flowing linearly through the first refrigerant flow path 19, and each battery is cooled by the cooling air flowing through the second refrigerant flow path 11. The outer peripheral surface of the module 3 is cooled.

この電池格納ユニット1は、第1冷媒流路19を流れる冷却空気が、筐体2内において電池モジュール3…の電極端子5…とバスバー12…の並びに沿って直線的に流れるため、各電池モジュール3の発熱部に熱伝導性の高い材料を介して直結されている電極端子5とバスバー12を大流量の冷却空気によって効率良く冷却することができる。また、第1冷媒流路19に比較すれば小流量ながら、各電池モジュール3の外周面には、第2冷媒流路11を通して冷却空気が流れるため、筐体2の内部に熱がこもるのを確実に防止することができる。
したがって、この電池格納ユニット1においては、電池モジュール3…の外周域に大断面積の冷媒流路を設けることなく、筐体2内の電池モジュール3…を効率良く冷却することができるため、充分な冷却性能を確保しつつユニット全体の小型化を図ることができる。
In the battery storage unit 1, the cooling air flowing through the first refrigerant flow path 19 flows linearly along the electrode terminals 5 of the battery modules 3 and the bus bars 12 in the housing 2. Thus, the electrode terminal 5 and the bus bar 12 directly connected to the heat generating part 3 through a material having high thermal conductivity can be efficiently cooled by the large amount of cooling air. In addition, since the cooling air flows through the second refrigerant flow path 11 on the outer peripheral surface of each battery module 3 while the flow rate is small compared to the first refrigerant flow path 19, heat is trapped inside the housing 2. It can be surely prevented.
Therefore, in this battery storage unit 1, the battery modules 3 in the housing 2 can be efficiently cooled without providing a refrigerant passage having a large cross-sectional area in the outer peripheral area of the battery modules 3. The entire unit can be reduced in size while ensuring a sufficient cooling performance.

ところで、図4は、この実施形態のように電極端子5の冷却を行う場合と、電極端子5の冷却を行わない場合の電池モジュール3の中心部の温度変化の様子を調べた結果を示すものであり、同図からも明らかなように、電極端子5の冷却を行う場合には早期に電池モジュール3の中心部の温度を低下させることができる。
また、図5は、電極端子5の冷却を行う場合において、第1冷媒流路と第2冷媒流路への冷媒の分配量と、冷却能力との関係を、端子締結部寸法つまり電極端子5のサイズ毎に比較した結果を示すものである。同図からも明らかなように、電極端子5の冷却を行う場合には、第2冷媒流路に対し第1冷媒流路への分配量の方が大きく、また端子締結部寸法が大きな電極端子5において冷却能力を高くすることができる。
したがって、この実施形態のように、第1冷媒流路19に臨むバスバー12に屈曲凸部13を設けてサイズを大きくすることは、電池モジュール3に対する冷却効率を高めるうえで有利となる。
By the way, FIG. 4 shows the result of investigating the state of temperature change at the center of the battery module 3 when the electrode terminal 5 is cooled as in this embodiment and when the electrode terminal 5 is not cooled. As can be seen from the figure, when the electrode terminal 5 is cooled, the temperature of the central portion of the battery module 3 can be lowered at an early stage.
FIG. 5 shows the relationship between the distribution amount of the refrigerant to the first refrigerant flow path and the second refrigerant flow path and the cooling capacity when the electrode terminal 5 is cooled. The result compared for every size is shown. As is apparent from the figure, when the electrode terminal 5 is cooled, the electrode terminal 5 has a larger distribution amount to the first refrigerant channel than the second refrigerant channel, and a larger terminal fastening portion dimension. In 5, the cooling capacity can be increased.
Therefore, as in this embodiment, it is advantageous to increase the size of the bus bar 12 facing the first refrigerant flow path 19 by providing the bent protrusions 13 to increase the size of the battery module 3.

また、この実施形態の電池格納ユニット1は、筐体2の第1カバー7に、バスバー12の頂部に対向する突起部20が設けられ、第1冷媒流路19内を通過する冷却空気の流れがこの突起部20によって作られるバスバー12との隙間によって絞られるようになっているため、その絞り部分の周囲に発生する乱流によって第2冷媒流路11内の冷却空気を第1冷媒流路19側に効率良く引き込むことができる。したがって、隣接する電池モジュール3,3間の隙間を充分に狭めることができるため、ユニット全体の小型化を図るうえで有利となる。特に、この実施形態の構造の場合、第1カバー7に突起部20を形成しただけの簡素な構造であるため、製品コストが高騰するを抑制することができる。   In the battery storage unit 1 of this embodiment, the first cover 7 of the housing 2 is provided with a protrusion 20 that faces the top of the bus bar 12, and the flow of cooling air that passes through the first refrigerant flow path 19. Is restricted by the gap between the protrusion 20 and the bus bar 12, so that the cooling air in the second refrigerant passage 11 is circulated by the turbulent flow generated around the restriction portion. It can be efficiently pulled into the 19 side. Therefore, the gap between the adjacent battery modules 3 and 3 can be sufficiently narrowed, which is advantageous in reducing the size of the entire unit. In particular, in the case of the structure of this embodiment, since the structure is a simple structure in which the protrusions 20 are formed on the first cover 7, it is possible to suppress an increase in product cost.

また、この電池格納ユニット1では、筐体2内の電池モジュール3…の軸方向の一側に臨む領域にのみ第1冷媒流路19を設け、筐体2の他端側には取り入れ口21のみを設けた構造を採用しているため、電池モジュール3…に対する充分な冷却性能を確保しつつ、ユニット全体の小型化と製品コストの削減を図ることができる。   Further, in the battery storage unit 1, the first refrigerant channel 19 is provided only in a region facing one side in the axial direction of the battery modules 3 in the housing 2, and the intake port 21 is provided on the other end side of the housing 2. Therefore, it is possible to reduce the size of the entire unit and reduce the product cost while ensuring sufficient cooling performance for the battery modules 3.

ただし、第1冷媒流路19は、筐体2内の電池モジュール3…の軸方向の両側に設けることも可能である。   However, the first refrigerant channel 19 can also be provided on both sides of the battery modules 3 in the housing 2 in the axial direction.

図6は、筐体2内の電池モジュール3…の軸方向の両側に第1冷媒流路19を設けたこの発明の第2の実施形態を示すものである。
この実施形態の電池格納ユニット101は、第2カバー8の側壁8bにも第1カバーと同様の導入口15Aと排出口16Aが設けられ、電池モジュール3…の軸方向の他端の電極端子5…とバスバー12…の並びに沿うよう第1冷媒流路19が形成されており、排出口16Aは吸引ダクト17Aを介して吸引ファン18に接続されている。また、第2カバー8の天井壁8aには、電池モジュール3…の軸方向の他端のバスバー12…の各屈曲凸部13に対向するように突起部20A…が形成され、突起部20Aとバスバー12…の間の隙間によって絞り作用が得られるようになっている。
FIG. 6 shows a second embodiment of the present invention in which the first refrigerant flow path 19 is provided on both axial sides of the battery modules 3 in the housing 2.
In the battery storage unit 101 of this embodiment, the side wall 8b of the second cover 8 is also provided with the same inlet 15A and outlet 16A as the first cover, and the electrode terminal 5 at the other end in the axial direction of the battery modules 3. The first refrigerant flow path 19 is formed along the line of the bus bars 12 and the discharge port 16A is connected to the suction fan 18 via the suction duct 17A. Further, on the ceiling wall 8a of the second cover 8, projections 20A are formed so as to face the bent projections 13 of the bus bars 12 at the other end of the battery module 3 in the axial direction. A squeezing action is obtained by a gap between the bus bars 12.

この電池格納ユニット101の場合、吸引ファン18が作動すると、筐体2内の2つの第1冷媒流路19,19に冷却空気が流れ、この各第1冷媒流路19の冷却空気の流れによって第2冷媒流路の両端部に負圧が生じ、その負圧によって第2冷媒流路11…の軸方向の中心側から冷却空気が両側の第1冷媒流路19,19に吸い入れられる。そして、この第2冷媒流路11…から各第1冷媒流路19への冷却空気の流れは、第1冷媒流路19の突起部20,20Aの周辺に生じる乱流によって促進される。   In the case of this battery storage unit 101, when the suction fan 18 is activated, cooling air flows into the two first refrigerant flow paths 19, 19 in the housing 2, and the flow of cooling air in each of the first refrigerant flow paths 19 A negative pressure is generated at both ends of the second refrigerant flow path, and cooling air is sucked into the first refrigerant flow paths 19 and 19 on both sides from the axial center side of the second refrigerant flow paths 11. The flow of the cooling air from the second refrigerant flow paths 11 to the first refrigerant flow paths 19 is promoted by the turbulent flow generated around the protrusions 20 and 20A of the first refrigerant flow path 19.

したがって、この電池格納ユニット101においては、筐体2内の電池モジュール3…の軸方向の両側の電極端子5…とバスバー12…が、夫々両側に配置されている第1冷媒流路19,19によって直接的に冷却されるため、各電池モジュール3をより効率良く冷却することができる。   Therefore, in this battery storage unit 101, the first refrigerant flow paths 19, 19 in which the electrode terminals 5 on the both sides in the axial direction of the battery modules 3 in the housing 2 and the bus bars 12 are arranged on both sides, respectively. Therefore, each battery module 3 can be cooled more efficiently.

なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の実施形態においては、第1カバー7や第2カバー8にバスバー12に対向する突起部20を形成して増速部としたが、図7に示す第3の実施形態の電池格納ユニット201ように、第1カバーや第2カバーに所定隙間をもって相互に対向する一対の突起部30a,30bを設け、その対を成す突起部30a,30bによって増速部を構成するようにしても良い。また、上記の各実施形態においては、第1冷媒流路19の排出口16に吸引ファン18を接続したが、第1冷媒流路19の導入口15に冷却空気の圧送装置を接続するようにしても良い。   In addition, this invention is not limited to said embodiment, A various design change is possible in the range which does not deviate from the summary. For example, in the above embodiment, the first cover 7 and the second cover 8 are formed with the protrusion 20 facing the bus bar 12 to form the speed increasing portion, but the battery storage of the third embodiment shown in FIG. Like the unit 201, the first cover and the second cover are provided with a pair of projecting portions 30a and 30b facing each other with a predetermined gap, and the speed increasing portion is configured by the projecting portions 30a and 30b forming the pair. good. Further, in each of the above embodiments, the suction fan 18 is connected to the discharge port 16 of the first refrigerant flow path 19, but a cooling air pumping device is connected to the introduction port 15 of the first refrigerant flow path 19. May be.

この発明の第1の実施形態を示す図2のA−A断面に対応する断面図。Sectional drawing corresponding to the AA cross section of FIG. 2 which shows 1st Embodiment of this invention. 同実施形態を示すもので、第2カバーを取り去った電池格納ユニットの端面図。The end view of the battery storage unit which shows the same embodiment and removed the 2nd cover. 同実施形態を示す電池モジュールの斜視図。The perspective view of the battery module which shows the same embodiment. 電極端子で冷却を行う場合と、行わない場合の電池モジュールの中心部での温度変化の様子を調べた特性図。The characteristic view which investigated the mode of the temperature change in the center part of the battery module when not cooling with the electrode terminal. 端子締結部のサイズおよび冷媒の流路と冷却能力の関係を調べた特性図。The characteristic view which investigated the relationship between the size of a terminal fastening part, the flow path of a refrigerant | coolant, and cooling capacity. この発明の第2の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment of this invention. この発明の第3の実施形態を示す図2に対応の端面図。The end elevation corresponding to Drawing 2 showing a 3rd embodiment of this invention.

符号の説明Explanation of symbols

1,101,201…電池格納ユニット
2…筐体
3…電池モジュール
5…電極端子
10…保持部材
11…第2冷媒流路
12…バスバー(導電部材)
19…第1冷媒流路
20,20A…突起部(増速部)
21…取り入れ口(冷媒取り入れ口)
30a,30b…突起部(増速部)
DESCRIPTION OF SYMBOLS 1,101,201 ... Battery storage unit 2 ... Housing 3 ... Battery module 5 ... Electrode terminal 10 ... Holding member 11 ... Second refrigerant flow path 12 ... Bus bar (conductive member)
19 ... 1st refrigerant | coolant flow path 20, 20A ... Protrusion part (speed increasing part)
21 ... intake (refrigerant intake)
30a, 30b ... Projection (speed increasing part)

Claims (3)

略円柱状の複数の電池モジュールが筐体内に並列に配列され、前記筐体内の隣接する電池モジュールの軸方向の端部の電極端子同士が導電部材を介して直列に接続された電池格納ユニットであって、
前記複数の電池モジュールが保持部材を介して前記筐体内にマトリクス状に配設され、
前記筐体内の複数の電池モジュールの軸方向の端部に臨む領域に、前記電池モジュールの電極端子と導電部材の並びに沿わせて直線的に冷媒を流す第1冷媒流路が設けられ、
前記第1冷媒流路は、前記筐体の前記電池モジュールの軸方向の一端側に臨む領域と他端側に臨む領域にそれぞれ設けられ、
前記筐体内の前記隣接する電池モジュール間の、同電池モジュールの軸方向に沿う隙間によって前記第1冷媒流路方向に冷媒を流す第2冷媒流路が形成されていることを特徴とする電池格納ユニット。
A battery storage unit in which a plurality of substantially cylindrical battery modules are arranged in parallel in a casing, and electrode terminals at axial ends of adjacent battery modules in the casing are connected in series via a conductive member. There,
The plurality of battery modules are arranged in a matrix in the housing via a holding member,
A first refrigerant flow path is provided in the region facing the axial ends of the plurality of battery modules in the housing to flow the refrigerant linearly along the electrode terminals and the conductive members of the battery module,
The first refrigerant flow path is provided in a region facing one end side in the axial direction of the battery module of the casing and a region facing the other end side, respectively.
A battery housing, wherein a second refrigerant flow path for flowing the refrigerant in the first refrigerant flow path direction is formed by a gap along the axial direction of the battery module between the adjacent battery modules in the casing. unit.
略円柱状の複数の電池モジュールが筐体内に並列に配列され、前記筐体内の隣接する電池モジュールの軸方向の端部の電極端子同士が導電部材を介して直列に接続された電池格納ユニットであって、
前記複数の電池モジュールが保持部材を介して前記筐体内にマトリクス状に配設され
前記筐体内の複数の電池モジュールの軸方向の端部に臨む領域に、前記電池モジュールの電極端子と導電部材の並びに沿わせて直線的に冷媒を流す第1冷媒流路が設けられ、
前記筐体内の前記隣接する電池モジュール間の、同電池モジュールの軸方向に沿う隙間によって前記第1冷媒流路方向に冷媒を流す第2冷媒流路が形成され、
前記筐体の第1冷媒流路内には、冷媒の流速を局部的に高める増速部が設けられていることを特徴とする電池格納ユニット。
A battery storage unit in which a plurality of substantially cylindrical battery modules are arranged in parallel in a casing, and electrode terminals at axial ends of adjacent battery modules in the casing are connected in series via a conductive member. There,
The plurality of battery modules are arranged in a matrix in the housing via a holding member ,
A first refrigerant flow path is provided in the region facing the axial ends of the plurality of battery modules in the housing to flow the refrigerant linearly along the electrode terminals and the conductive members of the battery module,
A second refrigerant flow path for flowing the refrigerant in the first refrigerant flow path direction is formed by a gap along the axial direction of the battery module between the adjacent battery modules in the housing,
A battery storage unit, wherein a speed increasing portion for locally increasing a flow rate of the refrigerant is provided in the first refrigerant flow path of the casing.
前記増速部は、前記電池モジュールの軸方向に沿う向きから前記導電部材に対面するように、前記筐体に形成された突起部によって構成されていることを特徴とする請求項2に記載の電池格納ユニット。The said speed increasing part is comprised by the projection part formed in the said housing | casing so that it might face the said electrically-conductive member from the direction in alignment with the axial direction of the said battery module. Battery storage unit.
JP2007223056A 2007-08-29 2007-08-29 Battery storage unit Expired - Fee Related JP5221913B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007223056A JP5221913B2 (en) 2007-08-29 2007-08-29 Battery storage unit
US12/199,399 US20090061305A1 (en) 2007-08-29 2008-08-27 Battery container unit
CN2008102126371A CN101378110B (en) 2007-08-29 2008-08-27 Battery container unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223056A JP5221913B2 (en) 2007-08-29 2007-08-29 Battery storage unit

Publications (2)

Publication Number Publication Date
JP2009059473A JP2009059473A (en) 2009-03-19
JP5221913B2 true JP5221913B2 (en) 2013-06-26

Family

ID=40421527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223056A Expired - Fee Related JP5221913B2 (en) 2007-08-29 2007-08-29 Battery storage unit

Country Status (2)

Country Link
JP (1) JP5221913B2 (en)
CN (1) CN101378110B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114311A2 (en) * 2009-04-01 2010-10-07 주식회사 엘지화학 Battery module having improved safety
JP5490459B2 (en) * 2009-07-22 2014-05-14 三洋電機株式会社 Pack battery
JP5663962B2 (en) * 2010-05-31 2015-02-04 ソニー株式会社 Battery unit
JP4918611B1 (en) * 2010-11-09 2012-04-18 三菱重工業株式会社 Battery system
US9905821B2 (en) 2010-11-15 2018-02-27 Volkswagen Ag Vehicle battery packaging
JP5561117B2 (en) * 2010-11-23 2014-07-30 株式会社デンソー Assembled battery
JP5663282B2 (en) * 2010-12-01 2015-02-04 カルソニックカンセイ株式会社 Assembled battery
JP5736627B2 (en) * 2010-12-20 2015-06-17 エルジー・ケム・リミテッド Lithium secondary battery cooling system
JP2012216360A (en) * 2011-03-31 2012-11-08 Sanyo Electric Co Ltd Battery module
JP5484426B2 (en) * 2011-10-26 2014-05-07 豊田合成株式会社 Battery module and battery unit
JP5692132B2 (en) * 2012-03-21 2015-04-01 トヨタ自動車株式会社 Power storage device
JP2013197017A (en) * 2012-03-22 2013-09-30 Toshiba Corp Battery pack and conductive member
KR102024002B1 (en) * 2012-07-05 2019-09-23 에스케이이노베이션 주식회사 Battery pack
JP5967477B2 (en) 2012-07-13 2016-08-10 三菱自動車工業株式会社 Battery pack
DE102013209391A1 (en) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Battery cell assembly
CN103346362B (en) * 2013-06-20 2016-04-13 华南理工大学 A kind of battery of electric vehicle air-cooling apparatus
JP6658387B2 (en) * 2016-07-29 2020-03-04 株式会社デンソー Battery pack
CN106374158B (en) * 2016-09-19 2019-02-26 苏州达方电子有限公司 Battery modules
CN106711359A (en) * 2016-12-28 2017-05-24 常州普莱德新能源电池科技有限公司 Battery module
JP2018163732A (en) * 2017-03-24 2018-10-18 三菱自動車工業株式会社 Battery case
KR102258173B1 (en) 2017-04-07 2021-06-08 주식회사 엘지에너지솔루션 Battery module and battery pack including the same
CN108023035B (en) * 2018-01-10 2024-02-20 华霆(合肥)动力技术有限公司 Battery module, battery system and electric automobile
KR102389184B1 (en) * 2018-09-13 2022-04-20 주식회사 엘지에너지솔루션 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
CN109786611B (en) * 2019-02-02 2024-01-16 广东微电新能源有限公司 Battery device and electronic apparatus
CN215869544U (en) * 2021-07-21 2022-02-18 上汽通用五菱汽车股份有限公司 Battery heat abstractor and battery device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329515A (en) * 1998-05-07 1999-11-30 Nissan Motor Co Ltd Battery module for electric vehicle and battery structure using battery module in rows
JPH11329518A (en) * 1998-05-21 1999-11-30 Toshiba Battery Co Ltd Battery system
JP4423695B2 (en) * 1999-02-23 2010-03-03 トヨタ自動車株式会社 Battery
JP4572019B2 (en) * 1999-10-08 2010-10-27 パナソニック株式会社 Assembled battery
JP2003288952A (en) * 2002-03-28 2003-10-10 Honda Motor Co Ltd Battery type power source device
JP2005285454A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
JP2005285456A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
KR20060027578A (en) * 2004-09-23 2006-03-28 삼성에스디아이 주식회사 System for controlling temperature of secondary battery module
JP2006210185A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Cooling structure of secondary battery and cooling structure of battery pack
KR100684768B1 (en) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 Secondary battery module
JP2009054303A (en) * 2007-08-23 2009-03-12 Toyota Motor Corp Battery pack

Also Published As

Publication number Publication date
JP2009059473A (en) 2009-03-19
CN101378110A (en) 2009-03-04
CN101378110B (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5221913B2 (en) Battery storage unit
JP4242665B2 (en) Battery pack cooling device and secondary battery
JP4440553B2 (en) Battery pack cooling device
US20090061305A1 (en) Battery container unit
JP4726691B2 (en) Battery module
US7112387B2 (en) Battery power supply device
JP6405912B2 (en) Battery pack
JP5096842B2 (en) Battery storage unit
US20070026300A1 (en) Battery module
JP2006278327A (en) Secondary battery module
WO2012073415A1 (en) Battery pack
JP6497585B2 (en) Power supply
JP6238106B2 (en) Power storage module, power storage device, and air path connecting member
JP5285489B2 (en) Battery assembly
US20180241106A1 (en) Battery pack
JP4698344B2 (en) Assembled battery
JP2014130780A (en) Battery module and battery unit
JP5036194B2 (en) Power supply for vehicle
JP4086490B2 (en) Power supply
JP7309259B2 (en) Battery module and battery pack containing same
JP4314044B2 (en) Battery pack
JP2004311157A (en) Cooling structure of battery pack
JP2008130330A (en) Cooling structure of battery box and assembly method of battery box
KR100627396B1 (en) Secondary battery module
JP6390548B2 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees