JP5221080B2 - Operation method of motor driven compressor - Google Patents

Operation method of motor driven compressor Download PDF

Info

Publication number
JP5221080B2
JP5221080B2 JP2007213461A JP2007213461A JP5221080B2 JP 5221080 B2 JP5221080 B2 JP 5221080B2 JP 2007213461 A JP2007213461 A JP 2007213461A JP 2007213461 A JP2007213461 A JP 2007213461A JP 5221080 B2 JP5221080 B2 JP 5221080B2
Authority
JP
Japan
Prior art keywords
compressor
motor
gas flow
suction
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007213461A
Other languages
Japanese (ja)
Other versions
JP2009047059A (en
Inventor
司 島川
知晃 武田
忠 川原
裕明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Compressor Corp
Original Assignee
Mitsubishi Heavy Industries Compressor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Compressor Corp filed Critical Mitsubishi Heavy Industries Compressor Corp
Priority to JP2007213461A priority Critical patent/JP5221080B2/en
Publication of JP2009047059A publication Critical patent/JP2009047059A/en
Application granted granted Critical
Publication of JP5221080B2 publication Critical patent/JP5221080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Description

本発明は、化学プラント等における大型モータ駆動式圧縮機の運転方法に関する。   The present invention relates to a method for operating a large motor-driven compressor in a chemical plant or the like.

この種圧縮機の運転方法として、圧縮機の吸入口に吸入されるガス流路に介装され、圧縮機の吸込圧力に応じて開度制御されるインレットガイドベーンと、前記圧縮機の吐出口から吐出されて前記圧縮機の吸入口に通じるガス流路に介装され、圧縮機の吸入ガス流量に応じて開度制御されるアンチサージ弁とを備え、アンチサージ弁による流量制御によりサージング現象の発生を防止すると共に、インレットガイドベーンによる吸込圧力制御によりオーバートルクの発生を防止しトリップを回避して運転することは良く知られている(特許文献1)。   As an operation method of this type of compressor, an inlet guide vane that is interposed in a gas flow path sucked into a suction port of the compressor and whose opening degree is controlled according to the suction pressure of the compressor, and a discharge port of the compressor An anti-surge valve that is disposed in a gas flow path that is discharged from the compressor and communicates with the suction port of the compressor, and whose opening degree is controlled according to the suction gas flow rate of the compressor. It is well known to operate while avoiding tripping by preventing the occurrence of over-torque and preventing the occurrence of over-torque by suction pressure control by an inlet guide vane (Patent Document 1).

また、この種圧縮機は、モータ設備容量に基づき駆動されるため、圧縮機が運転上想定される最大容量をモータ設備が保有する必要がある。この最大容量は、圧縮機の場合、立上時に発生することが多く、専ら立上時用にモータが定格以上に運転できるようになっている特性を用いてその最大駆動力と定格容量を加味してモータ容量が決定されている。   In addition, since this type of compressor is driven based on the motor equipment capacity, the motor equipment needs to have the maximum capacity assumed for the operation of the compressor. In the case of a compressor, this maximum capacity often occurs at the time of start-up, and the maximum driving force and rated capacity are taken into account using the characteristics that allow the motor to operate more than rated for start-up. Thus, the motor capacity is determined.

特開2006−316759号公報JP 2006-316759 A

ところが、この際のモータ容量は、立上時の駆動力を確保するために、定格以上に大きなモータを準備することが多い。   However, in this case, a motor having a motor capacity larger than the rated value is often prepared in order to secure a driving force at the time of startup.

また、立上時のモータ駆動力を低減するために、圧縮機の入側に流量制御弁を配置していることがあるが、流量制御弁と圧縮機との間における容積が応答性を鈍らせるために余裕を持った制御が要求されており、結局、圧縮機駆動用モータにおいて設備費の低減と最適設計による高効率操業が不十分であった。   In order to reduce the motor driving force at startup, a flow control valve may be arranged on the inlet side of the compressor, but the volume between the flow control valve and the compressor slows down the responsiveness. In order to achieve this, control with a margin is required, and as a result, in the compressor drive motor, the equipment cost reduction and the high-efficiency operation by the optimum design are insufficient.

そこで、本発明の目的は、圧縮機駆動用モータにおいて設備費の低減と最適設計が十分に図れるモータ駆動式圧縮機の運転方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for operating a motor-driven compressor that can sufficiently reduce the equipment cost and optimize the design of a compressor driving motor.

上記の課題を解決するための本発明に係るモータ駆動式圧縮機の運転方法は、
化学プラントにおける高電圧・高電力モータで駆動される遠心圧縮機と、
前記圧縮機の吐出口から吐出されて前記圧縮機の吸入口に通じるガス流路に介装されるインレットガイドベーンと、
前記圧縮機の吐出口から吐出されて前記圧縮機の吸入口に通じるガス流路に介装され、圧縮機の吸入ガス流量に応じて開度制御されるアンチサージ弁と、
を備え、
前記圧縮機の吐出圧力が吐出圧力制御ラインになるように前記高電圧・高電力モータの回転数を制御するようにしたモータ駆動式圧縮機の運転方法において、
前記圧縮機の性能曲線におけるサージラインと平行でかつアンチサージ制御ラインより運転側に立上用制御ラインを設定し、
前記圧縮機の立上時には、前記インレットガイドベーンの開度を圧縮機の吸込圧力及び吐出圧力に応じて制御し、前記立上用制御ラインに沿って圧縮機を立ち上げていくこと、
を特徴とする。
In order to solve the above problems, the operation method of the motor-driven compressor according to the present invention is as follows:
A centrifugal compressor driven by a high voltage / high power motor in a chemical plant;
An inlet guide vane that is disposed in a gas flow path that is discharged from a discharge port of the compressor and communicates with a suction port of the compressor;
An anti-surge valve that is disposed in a gas flow path that is discharged from a discharge port of the compressor and communicates with a suction port of the compressor, and whose opening degree is controlled according to a suction gas flow rate of the compressor;
With
In the operation method of the motor-driven compressor , wherein the rotational speed of the high-voltage / high-power motor is controlled so that the discharge pressure of the compressor becomes a discharge pressure control line ,
Set the startup control line parallel to the surge line in the performance curve of the compressor and on the operation side from the anti-surge control line,
When starting up the compressor , the opening of the inlet guide vane is controlled according to the suction pressure and discharge pressure of the compressor, and the compressor is started up along the startup control line,
It is characterized by.

また、前記立上用制御ラインは、サージラインに対してガス流量が30%以内に設定されることを特徴とする。   The startup control line is characterized in that the gas flow rate is set within 30% with respect to the surge line.

本発明に係るモータ駆動式圧縮機の運転方法によれば、インレットガイドベーンによる吸込圧力制御により、最適な制御性を有するモータ駆動による立上時の駆動力制限を実現し、低容量モータによる圧縮機の立上を実現することができる。   According to the operation method of the motor-driven compressor according to the present invention, the suction pressure control by the inlet guide vane realizes the driving force limitation at the start-up by the motor drive having the optimum controllability, and the compression by the low capacity motor The start-up of the machine can be realized.

以下、本発明に係るモータ駆動式圧縮機の運転方法を実施例により図面を用いて詳細に説明する。   Hereinafter, the operation method of the motor drive type compressor concerning the present invention is explained in detail using an example using a drawing.

図1は本発明の一実施例を示すモータ駆動式圧縮機の立上時の制御ブロック図、図2はモータ駆動式圧縮機の性能曲線を示すグラフ、図3はモータ駆動式圧縮機の全運転時の制御ブロック図である。   FIG. 1 is a control block diagram at the time of start-up of a motor-driven compressor showing an embodiment of the present invention, FIG. 2 is a graph showing a performance curve of the motor-driven compressor, and FIG. It is a control block diagram at the time of driving | operation.

図3に示すように、化学プラントにおける遠心式圧縮機10のロータ軸は、クラッチ11及びギア12を介して高電圧・高電力の電動モータ13の出力軸に連結されている。   As shown in FIG. 3, the rotor shaft of the centrifugal compressor 10 in the chemical plant is connected to the output shaft of a high voltage / high power electric motor 13 via a clutch 11 and a gear 12.

圧縮機10の吸入口10aには吸入配管(ガス流路)14が接続され、この吸入配管14が入口側配管(ガス流路)15を介して入口ヘッダ16に接続されている。一方、圧縮機10の吐出口10bには吐出配管(ガス流路)17が接続され、この吐出配管17が出口側配管(ガス流路)18を介して出口ヘッダ19に接続されている。また、吸入配管14と入口側配管15の分岐管部と、吐出配管17と出口側配管18の分岐管部とが連通管(ガス流路)20で接続される。   A suction pipe (gas flow path) 14 is connected to the suction port 10 a of the compressor 10, and the suction pipe 14 is connected to an inlet header 16 via an inlet side pipe (gas flow path) 15. On the other hand, a discharge pipe (gas flow path) 17 is connected to the discharge port 10 b of the compressor 10, and this discharge pipe 17 is connected to an outlet header 19 via an outlet side pipe (gas flow path) 18. A branch pipe portion of the suction pipe 14 and the inlet side pipe 15 and a branch pipe portion of the discharge pipe 17 and the outlet side pipe 18 are connected by a communication pipe (gas flow path) 20.

前記吸入配管14には、圧縮機吸込圧力Psを検出する吸入側圧力計21と圧縮機吸込流量Fsを検出する吸入側流量計22とインレットガイドベーン(以下、IGVと称す)23とが介装される。また、入口側配管15には、逆止弁24が介装される。一方、吐出配管17には、圧縮機吐出圧力Pdを検出する吐出側圧力計25が介装される。また、出口側配管18には、逆止弁26が介装される。そして、連通管20には、アンチサージ弁27が介装される。   The suction pipe 14 is provided with a suction side pressure gauge 21 for detecting the compressor suction pressure Ps, a suction side flowmeter 22 for detecting the compressor suction flow rate Fs, and an inlet guide vane (hereinafter referred to as IGV) 23. Is done. Further, a check valve 24 is interposed in the inlet side pipe 15. On the other hand, a discharge side pressure gauge 25 that detects the compressor discharge pressure Pd is interposed in the discharge pipe 17. A check valve 26 is interposed in the outlet side pipe 18. An antisurge valve 27 is interposed in the communication pipe 20.

前記吸入側圧力計21の検出信号は、圧縮機制御装置30のIGV制御器(IGVC)33と立上用制御器(SC)34に入力される。また、吸入側流量計22の検出信号は、アンチサージ弁制御器(ASVC)32に入力される。また、吐出側圧力計25の検出信号はモータ制御器(MC)31と立上用制御器(SC)34に入力される。   The detection signal of the suction side pressure gauge 21 is input to an IGV controller (IGVC) 33 and a startup controller (SC) 34 of the compressor control device 30. Further, the detection signal of the suction side flow meter 22 is input to an anti-surge valve controller (ASVC) 32. Further, the detection signal of the discharge side pressure gauge 25 is input to the motor controller (MC) 31 and the start-up controller (SC) 34.

前記モータ制御器(MC)31は、吐出側圧力計25の検出信号に応じて、所定の吐出圧力(図2の吐出圧力制御ラインLd参照)になるようにモータ13の回転数を制御する。また、アンチサージ弁制御器(ASVC)32は、吸入側流量計22の検出信号に応じて、圧縮機10がサージング現象を生起しないようにアンチサージ弁27の開度を制御する。また、IGV制御器(IGVC)33は、吸入側圧力計21の検出信号に応じて、所定の吸入圧力になるようにIGV23の開度を制御する。   The motor controller (MC) 31 controls the rotation speed of the motor 13 so as to be a predetermined discharge pressure (see the discharge pressure control line Ld in FIG. 2) in accordance with the detection signal of the discharge side pressure gauge 25. Further, the anti-surge valve controller (ASVC) 32 controls the opening degree of the anti-surge valve 27 according to the detection signal of the suction side flow meter 22 so that the compressor 10 does not cause a surging phenomenon. Further, the IGV controller (IGVC) 33 controls the opening degree of the IGV 23 so as to reach a predetermined suction pressure in accordance with the detection signal of the suction side pressure gauge 21.

そして、前記立上用制御器(SC)34は、図1にも示すように、圧縮機10の立上時には、吸入側圧力計21と吐出側圧力計25の検出信号に応じて、基本的には、IGV駆動装置35により、IGV23の開度を制御するようになっている。   As shown in FIG. 1, the start-up controller (SC) 34 is basically configured according to detection signals from the suction side pressure gauge 21 and the discharge side pressure gauge 25 when the compressor 10 is started up. The IGV driving device 35 controls the opening of the IGV 23.

この際、立上用制御器(SC)34は、図2に示す性能曲線におけるサージラインLaと略平行でかつアンチサージ制御ラインLbより運転側(内側)に仮想の立上用制御ラインLcを設定し、前記IGV23の開度を徐々に増大させて、前記立上用制御ラインLcに沿って圧縮機10を立ち上げていくようになっている。即ち、立上時の運転点を、立上用制御ラインLc上を移動させるのである。   At this time, the startup controller (SC) 34 provides a virtual startup control line Lc that is substantially parallel to the surge line La in the performance curve shown in FIG. 2 and closer to the operation side (inside) than the anti-surge control line Lb. The compressor 10 is started up along the startup control line Lc by gradually increasing the opening of the IGV 23. That is, the operating point at the time of startup is moved on the startup control line Lc.

前記立上用制御ラインLcは、制御の応答性等を考慮して、サージラインLaに対してガス流量が略30%以内(図2の例では略20%以内)に設定される。尚、アンチサージ制御ラインLbは、一般的に、サージラインLaに対してガス流量が略10%以内に設定される。また、図2に示す性能曲線は、横軸に体積流量Q、縦軸に吐出圧力Pdをとり、これらの関係を、IGV開度をパラメータとして示したもので、図中Ldは前述した(目標)吐出圧力制御ラインである。   The startup control line Lc is set to have a gas flow rate of approximately 30% or less (approximately 20% or less in the example of FIG. 2) with respect to the surge line La in consideration of control responsiveness and the like. The anti-surge control line Lb is generally set to have a gas flow rate within about 10% with respect to the surge line La. The performance curve shown in FIG. 2 shows the relationship between the volume flow rate Q on the horizontal axis and the discharge pressure Pd on the vertical axis, with the IGV opening as a parameter. ) Discharge pressure control line.

このように構成されるため、圧縮機10の定常運転時には、アンチサージ弁制御器(ASVC)32によるアンチサージ弁27の流量制御によりサージング現象の発生を防止すると共に、IGV制御器(IGVC)33によるIGV23の圧縮機吸込圧力(Ps)制御によりオーバートルクの発生を防止し電動モータ13のトリップを回避して運転される。   With this configuration, during steady operation of the compressor 10, generation of a surging phenomenon is prevented by controlling the flow rate of the anti-surge valve 27 by the anti-surge valve controller (ASVC) 32, and an IGV controller (IGVC) 33. By controlling the compressor suction pressure (Ps) of the IGV 23 by the IGV 23, it is possible to prevent the occurrence of overtorque and avoid the trip of the electric motor 13.

一方、圧縮機10の立上(起動)時には、立上用制御器(SC)34により、基本的には、IGV23の開度を徐々に増大させて、圧縮機10の性能曲線におけるサージラインLaと略平行でかつサージラインLaに対してガス流量が略20%以内に設定された立上用制御ラインLcに沿って圧縮機10が立ち上げられる。   On the other hand, when the compressor 10 is started up (started up), the controller for starting up (SC) 34 basically increases the opening of the IGV 23 gradually so that the surge line La in the performance curve of the compressor 10 is increased. The compressor 10 is started up along a startup control line Lc that is approximately parallel to the surge line La and the gas flow rate is set to be within about 20% with respect to the surge line La.

これにより、アンチサージ弁制御器(ASVC)32によるアンチサージ制御を生かしつつ、IGV23による圧縮機吸込圧力(Ps)制御により、オーバートルクの発生を防止して圧縮機10を効果的に立ち上げられる。即ち、最適な制御性を有するモータ駆動による立上時の駆動力制限を実現し、低容量モータによる圧縮機10の立上を実現することができるのである。   As a result, the compressor 10 can be effectively started up by preventing the occurrence of over-torque by the compressor suction pressure (Ps) control by the IGV 23 while making use of the anti-surge control by the anti-surge valve controller (ASVC) 32. . That is, it is possible to realize the drive force limitation at the time of start-up by motor drive having optimum controllability, and to realize the start-up of the compressor 10 by a low capacity motor.

本発明の一実施例を示すモータ駆動式圧縮機の立上時の制御ブロック図である。It is a control block diagram at the time of starting of the motor drive type compressor which shows one Example of this invention. モータ駆動式圧縮機の性能曲線を示すグラフである。It is a graph which shows the performance curve of a motor drive type compressor. モータ駆動式圧縮機の全運転時の制御ブロック図である。It is a control block diagram at the time of all the driving | operations of a motor drive type compressor.

符号の説明Explanation of symbols

10 遠心式圧縮機
11 クラッチ
12 ギア
13 電動モータ
14 吸入配管(ガス流路)
15 入口側配管(ガス流路)
16 入口ヘッダ
17 吐出配管(ガス流路)
18 出口側配管(ガス流路)
19 出口ヘッダ
20 連通管(ガス流路)
21 吸入側圧力計
22 吸入側流量計
23 インレットガイドベーン(IGV)
24 逆止弁
25 吐出側圧力計
26 逆止弁
27 アンチサージ弁
30 圧縮機制御装置
31 モータ制御器(MC)
32 アンチサージ弁制御器(ASVC)
33 IGV制御器(IGVC)
34 立上用制御器(SC)
35 IGV駆動装置
DESCRIPTION OF SYMBOLS 10 Centrifugal compressor 11 Clutch 12 Gear 13 Electric motor 14 Suction piping (gas flow path)
15 Inlet side piping (gas flow path)
16 Inlet header 17 Discharge piping (gas flow path)
18 Outlet piping (gas flow path)
19 Outlet header 20 Communication pipe (gas flow path)
21 Suction side pressure gauge 22 Suction side flow meter 23 Inlet guide vane (IGV)
24 Check Valve 25 Discharge Side Pressure Gauge 26 Check Valve 27 Anti Surge Valve 30 Compressor Controller 31 Motor Controller (MC)
32 Anti-surge valve controller (ASVC)
33 IGV Controller (IGVC)
34 Controller for startup (SC)
35 IGV drive

Claims (2)

化学プラントにおける高電圧・高電力モータで駆動される遠心圧縮機と、
前記圧縮機の吐出口から吐出されて前記圧縮機の吸入口に通じるガス流路に介装されるインレットガイドベーンと、
前記圧縮機の吐出口から吐出されて前記圧縮機の吸入口に通じるガス流路に介装され、圧縮機の吸入ガス流量に応じて開度制御されるアンチサージ弁と、
を備え、
前記圧縮機の吐出圧力が吐出圧力制御ラインになるように前記高電圧・高電力モータの回転数を制御するようにしたモータ駆動式圧縮機の運転方法において、
前記圧縮機の性能曲線におけるサージラインと平行でかつアンチサージ制御ラインより運転側に立上用制御ラインを設定し、
前記圧縮機の立上時には、前記インレットガイドベーンの開度を圧縮機の吸込圧力及び吐出圧力に応じて制御し、前記立上用制御ラインに沿って圧縮機を立ち上げていくこと、
を特徴とするモータ駆動式圧縮機の運転方法。
A centrifugal compressor driven by a high voltage / high power motor in a chemical plant;
An inlet guide vane that is disposed in a gas flow path that is discharged from a discharge port of the compressor and communicates with a suction port of the compressor;
An anti-surge valve that is disposed in a gas flow path that is discharged from a discharge port of the compressor and communicates with a suction port of the compressor, and whose opening degree is controlled according to a suction gas flow rate of the compressor;
With
In the operation method of the motor-driven compressor , wherein the rotational speed of the high-voltage / high-power motor is controlled so that the discharge pressure of the compressor becomes a discharge pressure control line ,
Set the startup control line parallel to the surge line in the performance curve of the compressor and on the operation side from the anti-surge control line,
When starting up the compressor , the opening of the inlet guide vane is controlled according to the suction pressure and discharge pressure of the compressor, and the compressor is started up along the startup control line,
A method for operating a motor driven compressor.
前記立上用制御ラインは、サージラインに対してガス流量が30%以内に設定されることを特徴とする請求項1に記載のモータ駆動式圧縮機の運転方法。   2. The motor-driven compressor operating method according to claim 1, wherein the startup control line has a gas flow rate set within 30% of a surge line. 3.
JP2007213461A 2007-08-20 2007-08-20 Operation method of motor driven compressor Expired - Fee Related JP5221080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213461A JP5221080B2 (en) 2007-08-20 2007-08-20 Operation method of motor driven compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213461A JP5221080B2 (en) 2007-08-20 2007-08-20 Operation method of motor driven compressor

Publications (2)

Publication Number Publication Date
JP2009047059A JP2009047059A (en) 2009-03-05
JP5221080B2 true JP5221080B2 (en) 2013-06-26

Family

ID=40499504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213461A Expired - Fee Related JP5221080B2 (en) 2007-08-20 2007-08-20 Operation method of motor driven compressor

Country Status (1)

Country Link
JP (1) JP5221080B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114786A1 (en) 2009-03-30 2010-10-07 Tm Ge Automation Systems Llc Compressor surge control system and method
JP5514047B2 (en) 2010-09-02 2014-06-04 株式会社日立製作所 Apparatus and method for simulating motor-driven compressor system
JP5634907B2 (en) 2011-02-10 2014-12-03 株式会社日立製作所 Compressor control device and control method
KR102247596B1 (en) * 2014-01-24 2021-05-03 한화파워시스템 주식회사 Compressor system and method for controlling thereof
CN105370629B (en) * 2014-08-26 2017-08-04 沈阳鼓风机集团自动控制系统工程有限公司 PTA device energy recovery control methods
KR102162346B1 (en) * 2015-09-08 2020-10-07 한국조선해양 주식회사 Apparatus for compressing and supplying gas
KR102249971B1 (en) * 2015-10-30 2021-05-10 한국조선해양 주식회사 Gas Compressor Systems
KR102249975B1 (en) * 2015-10-30 2021-05-10 한국조선해양 주식회사 Gas Compressor Systems
KR102279918B1 (en) * 2015-11-12 2021-07-23 한국조선해양 주식회사 Gas Compressor Systems
KR102279911B1 (en) * 2015-11-12 2021-07-23 한국조선해양 주식회사 Gas Compressor Systems
KR102474752B1 (en) * 2017-08-08 2022-12-05 한화파워시스템 주식회사 Inlet guide vane control device, system and method for controlling compressor
CN115419831B (en) * 2022-08-10 2024-09-10 中国石油化工股份有限公司 Device for reducing steam consumption of low-pressure nitrogen compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139210A (en) * 1977-05-11 1978-12-05 Hitachi Ltd Control method of turbo compressor
JPS61201900A (en) * 1985-03-05 1986-09-06 Hitachi Ltd Capacity controller for compressor
JPH1047079A (en) * 1996-08-05 1998-02-17 Mitsubishi Heavy Ind Ltd Anti-surge controller
JPH1162886A (en) * 1997-08-28 1999-03-05 Mitsubishi Heavy Ind Ltd Gas supplying system to plant and method for controlling it
US7210895B2 (en) * 2002-08-12 2007-05-01 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor
JP2005016464A (en) * 2003-06-27 2005-01-20 Ishikawajima Harima Heavy Ind Co Ltd Compression device
JP2006316759A (en) * 2005-05-16 2006-11-24 Mitsubishi Heavy Ind Ltd Compression device

Also Published As

Publication number Publication date
JP2009047059A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5221080B2 (en) Operation method of motor driven compressor
JP6222993B2 (en) 2-shaft gas turbine
CN108317132B (en) Control system for preventing rotation overload of impeller of sand throwing fire extinguishing vehicle
JP2000291449A (en) Gas turbine start method
JP5320366B2 (en) Compression device
CN113464444B (en) Multi-runner guide vane type middle-open multi-stage centrifugal pump
JP5486489B2 (en) Control method of turbo compressor
CN102840136B (en) Steam drive type compression device
JP2012524204A (en) Roughing method for positive displacement pumps
JP7430035B2 (en) Vacuum exhaust equipment and its operating method
JP3916418B2 (en) Control method of screw compressor
CN111902631B (en) Gas compressor
WO2016112441A1 (en) Method for controlling the speed of a compressor/vacuum pump
KR101409578B1 (en) Steam driven compressor
JP2006316759A (en) Compression device
KR20140106975A (en) compression device having pressure control device and pressure control method using the same
EP3245403B1 (en) Method for controlling the speed of a compressor/vacuum pump
JP5163962B2 (en) Steam system
JP2006312900A (en) Compressed gas supply device
JP3606701B2 (en) Pump operation control device
CN114087189B (en) Low-load starting system and starting method of oil-free screw compressor
CN102454615A (en) Multi-stage centrifugal pump
WO2017110129A1 (en) Centrifugal compressor and multistage compression device
JP2009091919A (en) Multistage vacuum pump device
CN112983879B (en) Starting control method of high-speed turbine vacuum pump and vacuum pumping system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees