JP5220343B2 - Ultra-high strength steel plate and automotive strength parts using the same - Google Patents

Ultra-high strength steel plate and automotive strength parts using the same Download PDF

Info

Publication number
JP5220343B2
JP5220343B2 JP2007127755A JP2007127755A JP5220343B2 JP 5220343 B2 JP5220343 B2 JP 5220343B2 JP 2007127755 A JP2007127755 A JP 2007127755A JP 2007127755 A JP2007127755 A JP 2007127755A JP 5220343 B2 JP5220343 B2 JP 5220343B2
Authority
JP
Japan
Prior art keywords
ultra
strength
high strength
steel sheet
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007127755A
Other languages
Japanese (ja)
Other versions
JP2007332457A (en
Inventor
秀行 笹岡
仁幹 小野
栄三郎 中西
義夫 岡田
忠信 井上
勇次 木村
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
National Institute for Materials Science
Original Assignee
Nissan Motor Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, National Institute for Materials Science filed Critical Nissan Motor Co Ltd
Priority to JP2007127755A priority Critical patent/JP5220343B2/en
Publication of JP2007332457A publication Critical patent/JP2007332457A/en
Application granted granted Critical
Publication of JP5220343B2 publication Critical patent/JP5220343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、超高強度鋼板及びこれを用いた自動車用強度部品に係り、更に詳細には、自動車部品などに適する成形性及び耐遅れ破壊性に優れた超高強度鋼板及びこれを用いた自動車用強度部品に関する。   The present invention relates to an ultra-high-strength steel sheet and an automotive strength part using the same, and more specifically, an ultra-high-strength steel sheet excellent in formability and delayed fracture resistance suitable for automobile parts and the like, and an automobile using the same. It relates to strength parts.

近年、自動車の衝突安全性と環境問題の両立を図るために車体を軽量化するという観点から、フロントサイドメンバー、リヤサイドメンバー、ロッカー、ピラー類等、複雑なプレス成形が必要となる部品へ適用しようとする試みが高まっており、超高強度鋼板における成形性の向上が切望されている。   In recent years, from the viewpoint of reducing the weight of the vehicle body in order to achieve both car crash safety and environmental issues, it will be applied to parts that require complex press molding, such as front side members, rear side members, lockers, and pillars. Attempts to improve formability in ultra-high strength steel sheets are eagerly desired.

従来、超高強度鋼板については、種々の強化策により材料強度の確保は可能であるが、高強度化に伴い成形性は低下する傾向にあった。即ち、高強度鋼板では、組織的不均一、硬質相と軟質相の局所的混在などに起因し、加工性は、高強度化に伴い大きく低下し、高強度化と成形性の両立は困難であるのが実情であった。
また、1180MPa以上の強度になると、水素脆化による遅れ破壊という新たな弊害が生じることが知られている。
Conventionally, for ultra-high-strength steel sheets, material strength can be secured by various strengthening measures, but formability tends to decrease with increasing strength. In other words, in high-strength steel sheets, due to structural inhomogeneity, local mixing of hard and soft phases, workability decreases greatly with increasing strength, and it is difficult to achieve both higher strength and formability. There was a real situation.
Further, it is known that when the strength becomes 1180 MPa or more, a new harmful effect of delayed fracture due to hydrogen embrittlement occurs.

このような背景から、成形性の優れた高強度鋼板としてTRIP(Transformation Induced Plasticity:加工誘起塑性)鋼板が注目されている。
TRIP鋼板は、加工変形により残留オーステナイトがマルテンサイトに誘起変態して大きな伸びが得られる鋼板である。
しかし、TRIP鋼板においても、残留オーステナイトの加工誘起変態に起因して遅れ破壊が助長されることが報告されている(例えば非特許文献1参照)。
山崎ら、「超高強度冷延鋼板の遅れ破壊特性に及ぼす残留オーステナイトと歪の影響」、鉄と鋼、1997年、Vol83、No.11、p66−71
Against this background, TRIP (Transformation Induced Plasticity) steel sheets have attracted attention as high-strength steel sheets with excellent formability.
A TRIP steel sheet is a steel sheet in which retained austenite is induced and transformed into martensite by processing deformation to obtain a large elongation.
However, it has been reported that delayed fracture is also promoted in TRIP steel sheets due to work-induced transformation of retained austenite (see Non-Patent Document 1, for example).
Yamazaki et al., “Effects of retained austenite and strain on delayed fracture properties of ultra-high strength cold-rolled steel sheets”, Iron and Steel, 1997, Vol 83, No. 11, p66-71

また、遅れ破壊特性については、ニオブ(Nb)などの析出物等を形成することにより耐遅れ破壊性向上させた高強度鋼板が提案されている(例えば特許文献1参照)。
しかし、成形性に関する知見は一切記載されておらず、超高強度鋼板における耐遅れ破壊性と成形性の両立が切望されている。
特開2005−68548号公報
As for delayed fracture characteristics, a high-strength steel sheet having improved delayed fracture resistance by forming precipitates such as niobium (Nb) has been proposed (see, for example, Patent Document 1).
However, no knowledge about formability is described, and there is an urgent need for both delayed fracture resistance and formability in ultra-high strength steel sheets.
JP 2005-68548 A

一方、本発明者らは、超高強度鋼板において、自動車用強度部品としての特性を十分に考慮したところ、成形性と耐遅れ破壊性を両立できる方法を見出すに至った。   On the other hand, the inventors of the present invention have found a method capable of achieving both formability and delayed fracture resistance when sufficiently considering the characteristics of an ultra-high-strength steel sheet as a strength component for automobiles.

本発明は、このような従来技術の有する課題及び新たな知見に鑑みてなされたものであり、その目的とするところは、優れた成形性及び耐遅れ破壊特性を兼ね備えた超高強度鋼板及びこれを用いた自動車用強度部品を提供することにある。   The present invention has been made in view of the problems and new knowledge of the prior art, and the object of the present invention is an ultra-high-strength steel sheet having excellent formability and delayed fracture resistance, and the same. An object of the present invention is to provide automotive strength parts using

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、所定の鋼板の基地組織を下部ベイナイト組織とし、旧オーステナイト粒径を細粒化することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by making the base structure of a predetermined steel plate a lower bainite structure and reducing the prior austenite grain size. The present invention has been completed.

即ち、本発明の超高強度鋼板は、質量比で、C:0.10%〜0.40%、Si:0.01%〜2.5%、Mn:0.1%〜1.0%、P:≦0.02%、S:≦0.013%、Cu:0.05%〜3.0%、Ni:0.05%〜3.0%、Cr:0.01%〜3.5%、Mo:0.10%〜2.0%を含有し、残部がFe及び不可避的不純物であって、基地組織が下部ベイナイトであると共に、平均旧オーステナイト粒径が3〜10μmであり、引張強度が980MPa以上、板状試験片を用いた引張試験による引張強さと破断応力の差である応力低下度(SD)が180MPa以上であることを特徴とする。 That is, the ultra-high-strength steel sheet of the present invention is, by mass ratio, C: 0.10% to 0.40%, Si: 0.01% to 2.5%, Mn: 0.1% to 1.0% , P: ≦ 0.02%, S : ≦ 0.013%, Cu: 0.05% ~3.0%, Ni: 0.05% ~3.0%, Cr: 0.01% ~3. 5%, containing Mo: 0.10% to 2.0%, the balance being Fe and inevitable impurities, the base structure is the lower bainite, and the average prior austenite particle size is 3 to 10 μm , The tensile strength is 980 MPa or more , and the stress reduction degree (SD), which is the difference between the tensile strength and the rupture stress by the tensile test using a plate-like test piece, is 180 MPa or more.

また、本発明の超高強度鋼板の他の好適形態は、さらに、鋼中にアルミニウム(Al)やニオブ(Nb)をAl:0.001%〜0.1%、Nb:0.005%〜1.0%の範囲で含有することや、熱延鋼板又は冷延鋼板であることを特徴とする。 Moreover, the other suitable form of the ultra-high-strength steel sheet of the present invention further includes aluminum (Al) or niobium (Nb) in the steel, Al: 0.001% to 0.1%, Nb: 0.005% to and Rukoto be contained at 1.0% range, characterized in that it is a hot-rolled steel sheet or cold-rolled steel sheet.

更に、本発明の自動車用強度部品は、上記超高強度鋼板を用いて成ることを特徴とする。 Furthermore, the automotive strength component of the present invention is characterized by using the above ultra-high strength steel plate.

所定の鋼板の基地組織を下部ベイナイト組織とし、旧オーステナイト粒径を細粒化することとしたため、優れた成形性及び耐遅れ破壊特性を兼ね備えた超高強度鋼板及びこれを用いた自動車用強度部品を提供できる。   Because the base structure of the specified steel sheet is the lower bainite structure and the prior austenite grain size is made finer, ultra-high strength steel sheets that have excellent formability and delayed fracture resistance, and automotive strength parts using the same Can provide.

以下、本発明の超高強度鋼板について、更に詳細に説明する。なお、本明細書及び特許請求の範囲において、濃度、含有量、充填量などについての「%」は、特記しない限り質量百分率を表すものとする。   Hereinafter, the ultra high strength steel sheet of the present invention will be described in more detail. In the present specification and claims, “%” for concentration, content, filling amount and the like represents a mass percentage unless otherwise specified.

上述の如く、本発明の超高強度鋼板は、銅(Cu)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)を含有して成る。また、基地組織は下部ベイナイトとする。更に、旧オーステナイト粒径は3〜10μmとする。 As described above, the ultra-high-strength steel sheet according to the present invention contains copper (Cu), nickel (Ni), chromium (Cr), and molybdenum (Mo). The base organization shall be lower bainite. Further, the prior austenite grain size is 3 to 10 μm .

このような構成により、引張強度が980MPa以上でありながら、従来の高強度鋼板に対して自動車用部品としての要求を満足するのに十分な成形性を示し、且つ耐遅れ破壊性が向上し、成形性と耐遅れ破壊性を両立することにより優れた効果を十分に発揮し、産業上有用な効果を奏する。   With such a configuration, while exhibiting a tensile strength of 980 MPa or more, the conventional high-strength steel sheet exhibits sufficient formability to satisfy the requirements as automotive parts, and the delayed fracture resistance is improved. By achieving both formability and delayed fracture resistance, excellent effects are sufficiently exhibited, and industrially useful effects are achieved.

ここで、本発明の超高強度鋼板においては、硬質相である下部ベイナイト組織を素地とすることにより、鋼板の引張強度が980MPa以上になる。より好ましくは、鋼板の引張強度は1180MPa以上であることが良い。   Here, in the ultra-high-strength steel sheet of the present invention, the tensile strength of the steel sheet becomes 980 MPa or more by using the lower bainite structure which is a hard phase as a base. More preferably, the tensile strength of the steel sheet is 1180 MPa or more.

旧オーステナイト粒径は1〜30μmに細粒化できる。旧オーステナイト粒径が30μmを超えると、深絞り性、張出し性、形状凍結性の向上が見込めなくなる。また、旧オーステナイト粒径が1μm未満では、機械的性質が劣化し易い上、製造上も困難となり易い。   The prior austenite particle size can be reduced to 1-30 μm. When the prior austenite particle size exceeds 30 μm, improvement in deep drawability, stretchability, and shape freezing property cannot be expected. Further, when the prior austenite particle size is less than 1 μm, the mechanical properties are likely to deteriorate, and the production tends to be difficult.

更に、上記旧オーステナイト粒径は3〜10μmにすることが好適である。このときは、深絞り性、張出し性、形状凍結性をより向上させ得るので、当該超高強度鋼板を用いて自動車部品を成形するときに要求される成形性を満足させ得る。   Further, the prior austenite particle size is preferably 3 to 10 μm. At this time, since the deep drawability, the stretchability, and the shape freezing property can be further improved, it is possible to satisfy the formability required when molding an automobile part using the ultra-high strength steel sheet.

また、本発明の超高強度鋼板は、添加成分として、
炭素(C)、クロム(Cr)を、C:0.10%〜0.40%、Cr:0.01%〜3.5%の割合で含有し、ケイ素(Si)、マンガン(Mn)を、Si:0.01%〜2.5%、Mn:0.1%〜1.0%、の割合で含有すると共に、
銅(Cu)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)を、Cu:0.05%〜3.0%、Ni:0.05%〜3.0%、Mo:0.10%〜2.0%の割合で含有し、
更に、不純物のリン(P)、硫黄(S)を、P:≦0.02%、S:≦0.013%の割合で含有し、
残部は鉄(Fe)及び不可避的不純物である。
In addition, the ultra-high strength steel sheet of the present invention, as an additive component,
Carbon (C) and chromium (Cr) are contained in a proportion of C: 0.10% to 0.40%, Cr: 0.01% to 3.5%, and silicon (Si) and manganese (Mn) are contained. , Si: 0.01% to 2.5%, Mn: 0.1% to 1.0%,
Copper (Cu), nickel (Ni), chromium (Cr), molybdenum (Mo), Cu: 0.05% to 3.0%, Ni: 0.05% to 3.0%, Mo: 0.10 % To 2.0%,
Further, phosphorus (P) and sulfur (S) as impurities are contained in a ratio of P: ≦ 0.02%, S: ≦ 0.013 %,
The balance is iron (Fe) and inevitable impurities.

このときは、微細な合金炭化物が含有されることにより、成形性を確保しつつ耐遅れ破壊性に優れる鋼板が得られる。
以下に各成分について説明する。
At this time, the steel alloy which is excellent in delayed fracture resistance is ensured, ensuring a moldability by containing a fine alloy carbide.
Each component will be described below.

C : Cは強度増加に最も有効な元素である。980MPa以上の強度を得るためには0.1%以上含有することが好適であるが、0.4%を超えると靭性劣化を招き易いことから、0.10〜0.40%含有することが良い。 C: C is the most effective element for increasing the strength. In order to obtain a strength of 980 MPa or more, it is preferable to contain 0.1% or more. However, if it exceeds 0.4%, it tends to cause toughness deterioration, so 0.10 to 0.40% is contained. good.

Cr: Crは焼入れ性向上に有効な元素であるとともにセメンタイト中に固溶して鋼板の強度上昇に有効な元素である。従って、少なくとも0.01%以上含有することが好適である。好ましくは1%以上含有させることが良いが、過剰に添加するとその効果が飽和するとともに靭性が低下してしまうため、上限を3.5%とすることが良い。 Cr: Cr is an element effective for improving the hardenability, and is an element effective for increasing the strength of the steel sheet by solid solution in cementite. Therefore, it is preferable to contain at least 0.01%. The content is preferably 1% or more, but if added excessively, the effect is saturated and the toughness is lowered, so the upper limit is preferably made 3.5%.

Mo: Moは本発明において重要な元素であり、焼入れ性向上の他、合金炭化物を形成することで微細粒化に有効であると共に、水素の置換にも有効である。しかし、0.10%未満では、合金炭化物の形成が困難になり易い。一方、Moは高価な合金元素であるため、0.1〜2.0%含有することが良い。 Mo: Mo is an important element in the present invention. In addition to improving hardenability, Mo is effective for fine graining by forming alloy carbide, and also effective for hydrogen replacement. However, if it is less than 0.10%, formation of alloy carbide tends to be difficult. On the other hand, since Mo is an expensive alloy element, it is preferable to contain 0.1 to 2.0%.

なお、成形性を確保しつつ良好な耐遅れ破壊性を確保するために、Moと同様な添加効果を示すNbを添加することもできるが、0.005%〜1.0%の範囲とすることが良い。 In addition, in order to ensure good delayed fracture resistance while securing formability, Nb that exhibits the same effect as Mo can be added, but the range is 0.005% to 1.0%. That is good.

P : Pは粒界強度を低下させるため、極力取り除きたい元素であり、上限を0.02%とすることが良い。 P: P is an element to be removed as much as possible in order to reduce the grain boundary strength, and the upper limit is preferably made 0.02%.

S : Sは粒界強度を低下させるため、極力取り除きたい元素であり、上限を0.013%とすることが良い。 S: S is an element to be removed as much as possible in order to reduce the grain boundary strength, and the upper limit is preferably made 0.013 %.

更に、本発明の超高強度鋼板は、添加成分として、銅(Cu)、ニッケル(Ni)の双方を、Cu:0.05%〜3.0%、Ni:0.05%〜3.0%の割合で含有することが良い。
以下に各成分について説明する。
Furthermore, the ultra high strength steel sheet of the present invention includes both copper (Cu) and nickel (Ni) as additive components, Cu: 0.05 % to 3.0%, Ni: 0.05 % to 3.0. It is good to contain in the ratio of%.
Each component will be described below.

Cu: Cuは強化に有効である上、自身の微細析出は遅れ破壊の抑制にも寄与するため、0.05%以上含有することが良い。また、過剰添加は加工性の劣化を招くことから、上限を3.0%とすることが良い。 Cu: Since Cu is effective for strengthening and its fine precipitation contributes to suppression of delayed fracture, it is preferable to contain 0.05 % or more. Moreover, since excessive addition causes deterioration of workability, the upper limit is preferably set to 3.0%.

Ni: Niは鋼板の焼入れ性を高めることにより鋼板の強度を確保できるとともに、耐食性の向上に有効な元素である。0.05%未満では所望の効果が得られず、一方、3.0%を越えると加工性が悪くなることから0.05〜3.0%含有することが良い。 Ni: Ni is an element effective in improving the corrosion resistance while ensuring the strength of the steel sheet by enhancing the hardenability of the steel sheet. If it is less than 0.05 %, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, the workability deteriorates, so 0.05 to 3.0% is preferable.

更にまた、本発明の超高強度鋼板は、添加成分として、シリコン(Si)、マンガン(Mn)の双方を、Si:0.01%〜2.5%、Mn:0.1%〜1.0%の割合で含有することが良い。
以下に各成分について説明する。
Furthermore, the ultra-high-strength steel sheet of the present invention contains both silicon (Si) and manganese (Mn) as additive components, Si: 0.01% to 2.5%, Mn: 0.1% to 1. It is good to contain in the ratio of 0%.
Each component will be described below.

Si: Siは脱酸及び強度増加に有効な元素である。従って、脱酸材として添加したもので鋼中に残るものも含め、含有量を0.2%以上とすることが良い。但し、過剰な添加は靭性劣化を起す場合があるため、上限を2.5%とすることが良い。 Si: Si is an element effective for deoxidation and strength increase. Therefore, it is preferable to make the content 0.2% or more including those added as a deoxidizer and remaining in the steel. However, since excessive addition may cause toughness deterioration, the upper limit is preferably 2.5%.

Mn: Mnは、鋼板の強度上昇に有効な元素である。0.1%未満では所望の効果が得られにくい。一方、含有量が多過ぎるとP、Sの共偏析を助長するだけでなく、靭性劣化を起すことがあるため、0.1〜1.0%含有することが良い。 Mn: Mn is an element effective for increasing the strength of the steel sheet. If it is less than 0.1%, it is difficult to obtain a desired effect. On the other hand, when the content is too large, not only co-segregation of P and S is promoted, but also toughness deterioration may be caused.

また、本発明の超高強度鋼板は、添加成分として、アルミニウム(Al)を、Al:0.001%〜0.1%の割合で含有することが良い。   Moreover, the ultra-high-strength steel sheet of the present invention preferably contains aluminum (Al) as an additive component at a ratio of Al: 0.001% to 0.1%.

Al: Alは脱酸のため添加するが、添加量が多過ぎると介在物が増加して加工性が劣化するため、0.001〜0.1%含有することが良い。 Al: Al is added for deoxidation, but if the addition amount is too large, inclusions increase and workability deteriorates, so 0.001 to 0.1% is preferably contained.

以上説明した本発明の超高強度鋼板は、成形性が良好であることから、代表的には、熱延鋼板又は冷延鋼板で作製することができる。代表的な超高強度鋼板の板厚は、0.5〜2.3mmである。
また、成分設計の観点から、亜鉛めっきの表面処理を施すことができる。
同様に、フィルムラミネート処理を施すこともできる。
Since the ultrahigh strength steel sheet of the present invention described above has good formability, it can be typically made of a hot rolled steel sheet or a cold rolled steel sheet. The thickness of a typical ultra-high strength steel sheet is 0.5 to 2.3 mm.
Moreover, the surface treatment of galvanization can be performed from a viewpoint of component design.
Similarly, a film laminating process can also be performed.

次に、本発明の自動車用強度部品について説明する。
かかる自動車用強度部品は、上述の高強度薄鋼板を用いて成る。これにより成形性及び耐遅れ破壊性が共に優れた自動車用高強度部品が得られる。
具体的には、プレス成形(冷間、温間、熱間)、ハイドロ成形、ブロー成形、のいずれかの方法により、上記高強度薄鋼板を成形して得ることができる。
なお、通常、ピアス、トリム加工した部位は、残留応力が高く遅れ破壊の危険が高くなるが、本発明の自動車用強度部品は、切断加工部を有している場合でも、遅れ破壊が少ないので有効である。
Next, the automotive strength component of the present invention will be described.
Such an automotive strength component is formed using the above-described high-strength thin steel sheet. As a result, a high-strength part for automobiles having excellent moldability and delayed fracture resistance can be obtained.
Specifically, the high-strength thin steel sheet can be formed by any one of press forming (cold, warm, hot), hydroforming, and blow molding.
Normally, the pierced and trimmed parts have a high residual stress and the risk of delayed fracture is high, but the strength parts for automobiles of the present invention have few delayed fractures even when they have a cut part. It is valid.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1〜5、比較例1〜6)
表1に示す成分の鋼を用い、表2に示す製造条件により、各例の鋼板を作製した。
各例の鋼板について、引張強度、SD(一様伸び後の応力低下度)、組織、成形評価、遅れ破壊評価を行った。これらの試験結果を表3に示す。
また、各特性の評価は下記の要領で実施した。比較例3〜6(E,F,G,H)の鋼は市販品を使用した。
(Examples 1-5, Comparative Examples 1-6)
Using the steels having the components shown in Table 1, steel plates of each example were produced under the manufacturing conditions shown in Table 2.
For each steel plate, tensile strength, SD (stress reduction after uniform elongation), structure, forming evaluation, and delayed fracture evaluation were performed. These test results are shown in Table 3.
Each characteristic was evaluated in the following manner. As the steels of Comparative Examples 3 to 6 (E, F, G, H), commercially available products were used.

Figure 0005220343
Figure 0005220343

Figure 0005220343
Figure 0005220343

Figure 0005220343
Figure 0005220343

1.機械特性値
(1)引張強度
引張強度はJIS Z2201の5号試験片を用い、JIS Z2241に準拠した引張試験を行い、評価した。
(2)応力低下度(SD)
図1は、板状試験片(例えば、JIS Z 2201に規定される5号試験片や13号試験片)を用いた引張試験による応力−歪線図を示す模式図である。引張強さ(TS)と破断応力の差を応力低下度(SD)と定義する。
応力低下度(SD)が180MPa以上の値を有するものは良好な靭延性を有していた。
1. Mechanical property value (1) Tensile strength Tensile strength was evaluated by conducting a tensile test in accordance with JIS Z2241 using No. 5 test piece of JIS Z2201.
(2) Degree of stress reduction (SD)
FIG. 1 is a schematic diagram showing a stress-strain diagram by a tensile test using a plate-like test piece (for example, a No. 5 test piece or a No. 13 test piece defined in JIS Z 2201). The difference between the tensile strength (TS) and the breaking stress is defined as the degree of stress reduction (SD).
Those having a stress reduction degree (SD) of 180 MPa or more had good toughness.

2.組織
(1)基地組織
基地組織は、断面を研磨後、ナイタール溶液によりエッチングし、光学顕微鏡100〜1000倍及びSEM観察1000〜5000倍を行って評価した。
2. Tissue (1) Base Tissue The base tissue was evaluated by polishing the cross section, etching with a nital solution, and performing optical microscope 100 to 1000 times and SEM observation 1000 to 5000 times.

(2)旧オーステナイト粒径
旧オーステナイト粒径は、基地組織が下部ベイナイトのものについて、JIS G0551に準拠して行い、評価した。
(2) Old austenite particle size The prior austenite particle size was evaluated in accordance with JIS G0551 for the base structure having the lower bainite.

3.成形性
成形性評価方法は、複雑なプレス成形が必要な自動車用部品への適用を念頭に置き、深絞り性評価、張出し性評価、形状凍結性評価の総合評価で評価を行った。それぞれの成形性評価方法について下記の要領で実施した。
3. Formability The formability evaluation method was evaluated by comprehensive evaluation of deep drawability evaluation, stretchability evaluation, and shape freezeability evaluation, with application to automotive parts that require complex press molding in mind. Each formability evaluation method was carried out in the following manner.

(1)深絞り性評価
図2に深絞り試験概要を示す。ポンチ肩半径5mm、直径50mmの円筒ポンチ4と、ダイ肩半径7mmのダイ1及びシワ押さえ2で構成される試験工具を用い、シワ押さえ2に50kNの加圧力を与えた状態で、3mm/秒の速度でポンチ4を移動させた。
このとき、試験片3のブランク直径を大きくしていき、破断することなく絞りきることのできるブランク直径を、最大ブランク直径Dとした。ポンチ直径と最大ブランク直径の比(D/50)をLDRと定義した。この値が大きいほど深絞り性が良い。
(1) Deep drawability evaluation FIG. 2 shows an outline of the deep draw test. Using a test tool composed of a cylindrical punch 4 having a punch shoulder radius of 5 mm and a diameter of 50 mm and a die 1 having a die shoulder radius of 7 mm and a wrinkle presser 2, a pressure of 50 kN is applied to the wrinkle presser 2 and 3 mm / second. The punch 4 was moved at a speed of
At this time, the blank diameter of the test piece 3 was increased, and the blank diameter that could be squeezed without breaking was designated as the maximum blank diameter D. The ratio of punch diameter to maximum blank diameter (D / 50) was defined as LDR. The larger this value, the better the deep drawability.

(2)張出し性評価
図3に深絞り試験概要を示す。半径50mmの球頭ポンチ4と、ダイ肩半径5mmのビードつきダイ1及びシワ押さえ2で構成される試験工具を用い、シワ押さえ2に高い加圧力を与え材料が周りから流入しない状態で、10mm/分の速度でポンチ4を移動させた。試験片3の寸法は200mm×200mmとし、ポンチ4が試験片3に接触してから、破断する直前までの移動距離を最大成形高さ(LDH)とした。この値が大きいほど張出し性が良い。
(2) Overhang property evaluation FIG. 3 shows an outline of the deep drawing test. Using a test tool comprised of a ball head punch 4 with a radius of 50 mm, a die 1 with a bead with a die shoulder radius of 5 mm, and a wrinkle retainer 2, a high pressure is applied to the wrinkle retainer 2, and no material flows in from the surroundings. The punch 4 was moved at a speed of / min. The dimension of the test piece 3 was 200 mm × 200 mm, and the moving distance from when the punch 4 contacted the test piece 3 to immediately before breaking was defined as the maximum molding height (LDH). The larger this value, the better the overhanging property.

(3)形状凍結性評価
図4に形状凍結性指標を評価するためのハット曲げ試験概要を示す。幅75mm、ポンチ肩半径5mmのポンチ4と、ダイ肩半径5mmのダイ1及びシワ押さえ2で構成される試験工具を用い、シワ押さえ2に200kNの加圧力を与え、10mm/分の速度でポンチ4を80mm移動させた。試験片3の寸法は300mm×50mmとした。ハット曲げ成形後の試験片3を試験機から取り出し、図5に示す方法で試験片3の曲率を測定した。この値が小さいほど形状凍結性が良い。
(3) Shape Freezing Evaluation FIG. 4 shows an outline of a hat bending test for evaluating a shape freezing index. Using a test tool composed of a punch 4 having a width of 75 mm and a punch shoulder radius of 5 mm, and a die 1 and a wrinkle presser 2 having a die shoulder radius of 5 mm, a pressurizing force of 200 kN is applied to the wrinkle presser 2 at a speed of 10 mm / min. 4 was moved 80 mm. The dimension of the test piece 3 was 300 mm × 50 mm. The test piece 3 after the hat bending molding was taken out from the testing machine, and the curvature of the test piece 3 was measured by the method shown in FIG. The smaller this value, the better the shape freezing property.

4.遅れ破壊
遅れ破壊試験評価方法は、100mm×50mmの短冊試験片をハット曲げ試験機で曲げ、曲げ戻し加工したあと壁部にピアス加工を行い、高い残留応力を持たせた試験片を、0.1mol/mの塩酸水溶液に100時間浸したときの亀裂の有無によって評価した。
4). Delayed Fracture Delayed Fracture Test Evaluation Method is a test method in which a 100 mm × 50 mm strip test piece is bent with a hat bending tester, bent back, and then subjected to piercing on the wall portion to give a high residual stress. Evaluation was based on the presence or absence of cracks when immersed in a 1 mol / m 3 hydrochloric acid aqueous solution for 100 hours.

表3に示すように、本発明の範囲内にある実施例1〜5の超高強度鋼板は、引張強度が980MPa以上の強度を示し、且つ自動車用部品としての要求を満足するのに十分な成形性を示しており、上記遅れ破壊試験において亀裂が発生しなかったことから、成形性と耐遅れ破壊性を兼ね備えている。
これらに対して、比較例1,2の鋼板は、引張強度は980MPa以上を示したが、成形性と遅れ破壊性の両立ができていない。また、比較例3〜6の鋼板は、成分が本発明の範囲から逸脱しており、一部は引張強度が980MPa未満であり、遅れ破壊は問題ないが、成形性が本発明鋼に対し劣っている。
As shown in Table 3, the ultra-high-strength steel plates of Examples 1 to 5 within the scope of the present invention have a tensile strength of 980 MPa or more, and are sufficient to satisfy the requirements as automotive parts. Since moldability is shown and no crack was generated in the delayed fracture test, it has both moldability and delayed fracture resistance.
On the other hand, although the steel plates of Comparative Examples 1 and 2 exhibited a tensile strength of 980 MPa or more, they were unable to achieve both formability and delayed fracture property. Further, the steel plates of Comparative Examples 3 to 6 have components that deviate from the scope of the present invention, and some of the tensile strength is less than 980 MPa, and there is no problem with delayed fracture, but the formability is inferior to the steel of the present invention. ing.

板状試験片(例えば、JIS Z 2201に規定される5号試験片や13号試験片)を用いた引張試験による応力−歪線図を示す模式図である。It is a schematic diagram which shows the stress-strain diagram by the tension test using a plate-shaped test piece (For example, No. 5 test piece prescribed | regulated to JISZ2201, and No. 13 test piece). 深絞り試験概要及び深絞り指標であるLDRの算出方法を示す概略図である。It is the schematic which shows the calculation method of LDR which is a deep drawing test outline | summary and a deep drawing index. 張出し試験概要並びに張出し指標であるLDHを示す概略図である。It is the schematic which shows LDH which is an overhang | projection test outline | summary and an overhang | projection parameter | index. ハット曲げ試験概要を示す概略図である。It is the schematic which shows a hat bending test outline | summary. 形状凍結指標である壁ソリ量(曲率)を示す概略図である。It is the schematic which shows the amount of wall warpage (curvature) which is a shape freezing index.

符号の説明Explanation of symbols

1 ダイ
2 シワ押さえ
3 試験片(鋼板)
4 ポンチ
1 Die 2 Wrinkle presser 3 Test piece (steel plate)
4 punches

Claims (9)

質量比で、C:0.10%〜0.40%、Si:0.01%〜2.5%、Mn:0.1%〜1.0%、P:≦0.02%、S:≦0.013%、Cu:0.05%〜3.0%、Ni:0.05%〜3.0%、Cr:0.01%〜3.5%、Mo:0.10%〜2.0%を含有し、残部がFe及び不可避的不純物であって、基地組織が下部ベイナイトであると共に、平均旧オーステナイト粒径が3〜10μmであり、引張強度が980MPa以上、板状試験片を用いた引張試験による引張強さと破断応力の差である応力低下度(SD)が180MPa以上であることを特徴とする超高強度鋼板。 By mass ratio, C: 0.10% to 0.40%, Si: 0.01% to 2.5%, Mn: 0.1% to 1.0%, P: ≦ 0.02%, S: ≦ 0.013%, Cu: 0.05% to 3.0%, Ni: 0.05% to 3.0%, Cr: 0.01% to 3.5%, Mo: 0.10% to 2 0.0% content, the balance being Fe and inevitable impurities, the base structure being lower bainite, the average prior austenite grain size being 3 to 10 μm , the tensile strength being 980 MPa or more , An ultra-high strength steel sheet having a stress reduction degree (SD) which is a difference between a tensile strength and a breaking stress by a tensile test used is 180 MPa or more . さらに、鋼中にAl:0.001%〜0.1%を含有することを特徴とする請求項1に記載の超高強度鋼板。 Furthermore, Al: 0.001%-0.1% is contained in steel, The ultra high strength steel plate of Claim 1 characterized by the above-mentioned. さらに、鋼中にNb:0.005%〜1.0%を含有することを特徴とする請求項1又は2に記載の超高強度鋼板。 Furthermore, Nb: 0.005%-1.0% is contained in steel, The ultra high strength steel plate of Claim 1 or 2 characterized by the above-mentioned. 熱延鋼板又は冷延鋼板であることを特徴とする請求項1〜のいずれか1つの項に記載の超高強度鋼板。 It is a hot-rolled steel plate or a cold-rolled steel plate, The ultra high strength steel plate as described in any one of Claims 1-3 characterized by the above-mentioned. 亜鉛めっきの表面処理を施したことを特徴とする請求項1〜のいずれか1つの項に記載の超高強度鋼板。 The ultra-high strength steel sheet according to any one of claims 1 to 4 , wherein a surface treatment of galvanization is performed. フィルムラミネート処理を施したことを特徴とする請求項1〜のいずれか1つの項に記載の超高強度鋼板。 The ultra high strength steel sheet according to any one of claims 1 to 5 , wherein a film laminating process is performed. 請求項1〜のいずれか1つの項に記載の超高強度鋼板を用いて成ることを特徴とする自動車用強度部品。 An automotive strength component comprising the ultra-high strength steel sheet according to any one of claims 1 to 6 . プレス成形、ハイドロ成形、ブロー成形、のいずれかの方法により成形されたことを特徴とする請求項に記載の自動車用強度部品。 The strength part for automobiles according to claim 7 , which is formed by any one of press molding, hydro molding, and blow molding. 切断加工部を有することを特徴とする請求項又はに記載の自動車用強度部品。 Automotive intensity component according to claim 7 or 8, wherein a cutting portion.
JP2007127755A 2006-05-17 2007-05-14 Ultra-high strength steel plate and automotive strength parts using the same Expired - Fee Related JP5220343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127755A JP5220343B2 (en) 2006-05-17 2007-05-14 Ultra-high strength steel plate and automotive strength parts using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006137225 2006-05-17
JP2006137225 2006-05-17
JP2007127755A JP5220343B2 (en) 2006-05-17 2007-05-14 Ultra-high strength steel plate and automotive strength parts using the same

Publications (2)

Publication Number Publication Date
JP2007332457A JP2007332457A (en) 2007-12-27
JP5220343B2 true JP5220343B2 (en) 2013-06-26

Family

ID=38932206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127755A Expired - Fee Related JP5220343B2 (en) 2006-05-17 2007-05-14 Ultra-high strength steel plate and automotive strength parts using the same

Country Status (1)

Country Link
JP (1) JP5220343B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460613A4 (en) 2009-07-31 2015-11-04 Neturen Co Ltd Welded structural member and welding method
JP5868099B2 (en) * 2011-09-27 2016-02-24 山陽特殊製鋼株式会社 Steel with excellent toughness and wear resistance
WO2014208747A1 (en) 2013-06-27 2014-12-31 高周波熱錬株式会社 Welded structural member and welding method
JP2016055337A (en) 2014-09-11 2016-04-21 高周波熱錬株式会社 Welding method and welded structure
CN107690483A (en) * 2015-06-03 2018-02-13 德国沙士基达板材有限公司 The method that the strain hardening part made of galvanized steel, its production method and production are applied to the steel band of part distortion hardening
EP3147065B1 (en) 2015-09-23 2019-07-24 Neturen Co., Ltd. Welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924159B2 (en) * 2001-11-28 2007-06-06 新日本製鐵株式会社 High-strength thin steel sheet with excellent delayed fracture resistance after forming, its manufacturing method, and automotive strength parts made from high-strength thin steel sheet
JP4288201B2 (en) * 2003-09-05 2009-07-01 新日本製鐵株式会社 Manufacturing method of automotive member having excellent hydrogen embrittlement resistance
JP4412727B2 (en) * 2004-01-09 2010-02-10 株式会社神戸製鋼所 Super high strength steel sheet with excellent hydrogen embrittlement resistance and method for producing the same

Also Published As

Publication number Publication date
JP2007332457A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
KR101540507B1 (en) Ultra high strength cold rolled steel sheet having excellent ductility and delayed fracture resistance and method for manufacturing the same
JP5206244B2 (en) Cold rolled steel sheet
WO2018221307A1 (en) High-strength steel sheet and method for producing same
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
JP5359168B2 (en) Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
TW201708566A (en) Heat-treated steel sheet member, and production method therefor
KR20130121965A (en) Steel sheets for hot stamping, method for manufacturing same, and method for manufacturing high-strength parts
JP2006200035A (en) Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion
JP6402460B2 (en) High strength steel sheet, high strength hot dip galvanized steel sheet, and high strength alloyed hot dip galvanized steel sheet with excellent impact properties having a maximum tensile strength of 780 MPa or more
JP5220343B2 (en) Ultra-high strength steel plate and automotive strength parts using the same
JP2007308744A (en) Warm press formed high-strength member, and its manufacturing method
JP5652321B2 (en) Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method
JP2017214648A (en) High strength steel sheet and manufacturing method therefor
WO2017208759A1 (en) High-strength steel sheet and method for producing same
JP2015175050A (en) High strength steel sheet excellent in collision characteristic and manufacturing method therefor
KR102319579B1 (en) Steel member, hot rolled steel sheet for said steel member, and manufacturing method thereof
JP2009173959A (en) High-strength steel sheet and producing method therefor
JP2008248341A (en) Ultrahigh strength steel sheet, and automobile strength component using the same
WO2008007477A1 (en) High-strength steel sheet excellent in stretch flangeability and fatigue property
JP2021155790A (en) Hot-stamping component and method for manufacturing the same
JP5374059B2 (en) Super high strength thin steel sheet with excellent workability and corrosion resistance
JP5220341B2 (en) Ultra-high strength steel plate and automotive strength parts using the same
WO2007132600A1 (en) Ultrahigh strength steel sheet and strength part for automobile utilizing the same
CN112840046B (en) Hot-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5220343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees