JP5219619B2 - Magnetic flat braided wire and coil - Google Patents

Magnetic flat braided wire and coil Download PDF

Info

Publication number
JP5219619B2
JP5219619B2 JP2008131780A JP2008131780A JP5219619B2 JP 5219619 B2 JP5219619 B2 JP 5219619B2 JP 2008131780 A JP2008131780 A JP 2008131780A JP 2008131780 A JP2008131780 A JP 2008131780A JP 5219619 B2 JP5219619 B2 JP 5219619B2
Authority
JP
Japan
Prior art keywords
magnetic
wire
copper wire
insulation
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008131780A
Other languages
Japanese (ja)
Other versions
JP2009283176A (en
Inventor
千里 池田
義雄 高
潤一 藤岡
和正 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2008131780A priority Critical patent/JP5219619B2/en
Publication of JP2009283176A publication Critical patent/JP2009283176A/en
Application granted granted Critical
Publication of JP5219619B2 publication Critical patent/JP5219619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、磁性扁平編組線およびコイルに関し、さらに詳しくは、渦電流損および高周波における近接効果による銅損を低減することが出来る磁性扁平編組線およびコイルに関する。   The present invention relates to a magnetic flat braided wire and a coil, and more particularly to a magnetic flat braided wire and a coil that can reduce eddy current loss and copper loss due to proximity effects at high frequencies.

従来、平角線の長辺を半径方向に向けて渦巻き状に巻回(平巻)した渦巻きコイルが知られている(例えば、特許文献2参照。)。
また、複数本の丸線または箔を軸方向とは垂直な方向に配列して板状の形状の線材群とし、その線材群をエッジワイズ巻きしたエッジワイズコイルが知られている(例えば、特許文献1参照。)。
他方、複数本の絶縁被覆銅線を断面平角形状に編んだ編組線をボビンに巻回した電子部品が知られている(例えば、特許文献3参照。)。
特開平4−75303号公報 特開平6−236796号公報(図1) 特開2002−141232号公報
2. Description of the Related Art Conventionally, a spiral coil is known in which a long side of a flat wire is wound in a spiral shape (flat winding) with a long side facing in a radial direction (see, for example, Patent Document 2).
Also, an edgewise coil is known in which a plurality of round wires or foils are arranged in a direction perpendicular to the axial direction to form a plate-like wire rod group, and the wire rod group is edgewise wound (for example, patents) Reference 1).
On the other hand, an electronic component is known in which a braided wire obtained by knitting a plurality of insulation-coated copper wires into a rectangular cross section is wound around a bobbin (for example, see Patent Document 3).
JP-A-4-75303 JP-A-6-236996 (FIG. 1) JP 2002-141232 A

上記従来の渦巻きコイルでは、平角線を用いているため、渦電流損が大きい問題点があった。
他方、上記従来のエッジワイズコイルや電子部品では、複数本の丸線や箔を集合させた集合線または複数本の絶縁被覆銅線を断面平角形状に編んだ編組線を用いるため、渦電流損を小さくできる。
しかし、一つの丸線、箔または絶縁被覆銅線に流れる電流が作り出す磁界が、他の丸線、箔または絶縁被覆銅線に入るため、高周波において近接効果による銅損が増加する問題点があった。
そこで、本発明の目的は、渦電流損および高周波における近接効果による銅損を低減することが出来る磁性扁平編組線およびコイルを提供することにある。
The conventional spiral coil described above has a problem that eddy current loss is large because a rectangular wire is used.
On the other hand, in the conventional edgewise coil and electronic component described above, an eddy current loss is caused by using an assembly wire in which a plurality of round wires or foils are assembled or a braided wire in which a plurality of insulation-coated copper wires are knitted into a rectangular cross section. Can be reduced.
However, since the magnetic field generated by the current flowing in one round wire, foil, or insulation-coated copper wire enters another round wire, foil, or insulation-coated copper wire, there is a problem that copper loss due to proximity effects increases at high frequencies. It was.
Therefore, an object of the present invention is to provide a magnetic flat braided wire and a coil that can reduce eddy current loss and copper loss due to proximity effects at high frequencies.

第1の観点では、本発明は、銅線表面に磁性メッキ層を形成しその磁性メッキ層の表面に絶縁被覆を形成した絶縁被覆磁性材メッキ銅線を、複数本編組し扁平形状にしたことを特徴とする磁性扁平編組線を提供する。
上記第1の観点による磁性扁平編組線電線では、複数本の絶縁被覆磁性材メッキ銅線を編んだ編組線を用いるため、渦電流損を小さく出来る。また、一つの絶縁被覆磁性材メッキ銅線に流れる電流が作り出す磁界は磁性材メッキ層で遮断され、他の絶縁被覆磁性材メッキ銅線の銅線部分まで入り難くなるため(入っても小さくなるため)、高周波における近接効果による銅損の増加を抑制することも出来る。さらに、扁平形状にしたため、コイル形状の低背化(小型化)や薄型化の要請に対応できる。
なお、絶縁被覆の外周に接着層を形成して自己融着線としてもよい。また、電線密度を上げるために、外径の異なる絶縁被覆磁性材メッキ銅線を混在させて用いてもよい。また、1本毎に編んでもよいし、平行な複数本の束毎に編んでもよい。
In the first aspect, the present invention is that a plurality of insulation coated magnetic material plated copper wires each having a magnetic plating layer formed on the surface of the copper wire and having an insulation coating formed on the surface of the magnetic plating layer are formed into a flat shape. A magnetic flat braided wire is provided.
In the magnetic flat braided wire electric wire according to the first aspect, since a braided wire obtained by braiding a plurality of insulation-coated magnetic material plated copper wires is used, eddy current loss can be reduced. In addition, the magnetic field generated by the current flowing in one insulation-coated magnetic material-plated copper wire is blocked by the magnetic-material plating layer, and it is difficult to enter the copper wire portion of the other insulation-coated magnetic material-plated copper wire (it is small even if it enters) Therefore, it is possible to suppress an increase in copper loss due to the proximity effect at high frequencies. Furthermore, since it was made into a flat shape, it can respond to a request for a low profile (miniaturization) and a thin shape of the coil shape.
Note that an adhesive layer may be formed on the outer periphery of the insulating coating to form a self-bonding line. Further, in order to increase the electric wire density, insulating coating magnetic material plated copper wires having different outer diameters may be mixed and used. Further, it may be knitted one by one, or may be knitted for a plurality of parallel bundles.

第2の観点では、本発明は、銅線表面に磁性メッキ層を形成しその磁性メッキ層の表面に絶縁被覆を形成した絶縁被覆磁性材メッキ銅線と、銅線表面に絶縁被覆を形成した絶縁被覆銅線とを、編組し扁平形状にしたことを特徴とする磁性扁平編組線を提供する。
上記第2の観点による磁性扁平編組線電線では、絶縁被覆磁性材メッキ銅線と絶縁被覆銅線とを編んだ編組線を用いるため、渦電流損を小さく出来る。また、一つの絶縁被覆磁性材メッキ銅線に流れる電流が作り出す磁界は磁性材メッキ層で遮断され、他の絶縁被覆磁性材メッキ銅線や絶縁被覆銅線の銅線部分まで入り難くなるため(入っても小さくなるため)、また、一つの絶縁被覆銅線に流れる電流が作り出す磁界は他の絶縁被覆磁性材メッキ銅線の磁性材メッキ層で遮断され、その銅線部分まで入り難くなるため(入っても小さくなるため)、高周波における近接効果による銅損の増加を抑制することも出来る。また、扁平形状にしたため、コイル形状の低背化(小型化)や薄型化の要請に対応できる。さらに、絶縁被覆銅線を混ぜるため、コストを低減できる。
なお、絶縁被覆の外周に接着層を形成して自己融着線としてもよい。また、電線密度を上げるために、外径の異なる絶縁被覆磁性材メッキ銅線と絶縁被覆銅線を混在させて用いてもよい。
In a second aspect, the present invention provides an insulating coating magnetic material plated copper wire in which a magnetic plating layer is formed on the surface of the copper wire and an insulating coating is formed on the surface of the magnetic plating layer, and an insulating coating is formed on the surface of the copper wire. Provided is a magnetic flat braided wire characterized by braiding an insulation-coated copper wire into a flat shape.
In the magnetic flat braided wire electric wire according to the second aspect, since the braided wire obtained by braiding the insulation coated magnetic material plated copper wire and the insulation coated copper wire is used, the eddy current loss can be reduced. In addition, the magnetic field generated by the current flowing in one insulation-coated magnetic material-plated copper wire is interrupted by the magnetic-material plating layer, making it difficult to enter other insulation-coated magnetic material-plated copper wires or copper wire portions of insulation-coated copper wires ( In addition, the magnetic field generated by the current that flows in one insulation-coated copper wire is blocked by the magnetic material plating layer of the other insulation-coated magnetic material-plated copper wire, making it difficult to enter the copper wire portion. (Because it is small even if it enters), it is possible to suppress an increase in copper loss due to the proximity effect at high frequencies. Moreover, since it was made into a flat shape, it can respond to the request | requirement of the low profile (miniaturization) and thickness reduction of a coil shape. Furthermore, since the insulation-coated copper wire is mixed, the cost can be reduced.
Note that an adhesive layer may be formed on the outer periphery of the insulating coating to form a self-bonding line. Further, in order to increase the electric wire density, an insulating coated magnetic material plated copper wire and an insulating coated copper wire having different outer diameters may be mixed and used.

また、絶縁被覆磁性材メッキ銅線と絶縁被覆銅線とを混在させて撚った場合は、絶縁被覆磁性材メッキ銅線を分散配置することが出来るので、電流の偏りを小さく出来る。一般的に、損失は2乗関数なので、総電流が同じでも、電流の偏りが小さい方が損失を小さく出来る。   Further, when the insulation-coated magnetic material-plated copper wire and the insulation-coated copper wire are mixed and twisted, the insulation-coated magnetic material-plated copper wire can be dispersedly arranged, so that the current bias can be reduced. In general, the loss is a square function, so even if the total current is the same, the loss can be reduced if the current bias is small.

第3の観点では、本発明は、前記第1または第2の観点による磁性扁平編組線において、前記扁平形状が、扁平管状であることを特徴とする磁性扁平編組線を提供する。
上記第3の観点による磁性扁平編組線電線は、管状の編組線に編組した後、扁平形状に加工することにより製造でき、はじめから断面平角形状に編組するよりも、製造が容易になる。
In a third aspect, the present invention provides the magnetic flat braided wire according to the first or second aspect, wherein the flat shape is a flat tubular shape.
The magnetic flat braided wire according to the third aspect can be manufactured by braiding it into a tubular braided wire and then processing it into a flat shape, which is easier to manufacture than when it is braided into a rectangular cross section from the beginning.

第4の観点では、本発明は、前記第1から第3のいずれかの観点によるコイル用磁性扁平編組線をソレノイド状に巻回してなることを特徴とするコイルを提供する。
コア使用のコイルでは、コアギャップからの漏れ磁界が大きいので、コイル線に影響して渦電流損を急増させることが知られている。
上記第4の観点によるソレノイドコイルでは、編組の特徴で線密度が小さいことに加え、磁性材メッキ層で銅線がシールドされるから、磁界が銅線に入り難く、また、磁性材メッキ層の電気抵抗が大きいので損失が軽減されて、漏れ磁界が大きくても損失を抑制できる。
In a fourth aspect, the present invention provides a coil comprising a coiled magnetic flat braided wire according to any one of the first to third aspects wound in a solenoid shape.
It is known that a coil using a core has a large leakage magnetic field from the core gap, so that the eddy current loss is rapidly increased by affecting the coil wire.
In the solenoid coil according to the fourth aspect, in addition to the low linear density due to the characteristics of the braid, the magnetic wire does not easily enter the copper wire because the copper wire is shielded by the magnetic material plating layer. Since the electrical resistance is large, the loss is reduced and the loss can be suppressed even if the leakage magnetic field is large.

第5の観点では、本発明は、前記第1から第3のいずれかの観点によるコイル用磁性扁平編組線を、渦巻き状に巻回してなることを特徴とするコイルを提供する。
上記第5の観点による渦巻きコイルは、例えば高周波で駆動するIH用ヒータとして利用できる。
In a fifth aspect, the present invention provides a coil comprising the coiled magnetic flat braided wire according to any one of the first to third aspects spirally wound.
The spiral coil according to the fifth aspect can be used as an IH heater driven at a high frequency, for example.

本発明の磁性扁平編組線およびコイルによれば、高周波における損失を低減することが出来る。   According to the magnetic flat braided wire and coil of the present invention, loss at high frequencies can be reduced.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る磁性扁平編組線101を示す断面図である。
この磁性扁平編組線101は、168本の絶縁被覆磁性材メッキ銅線10を1周編みピッチ40mmで直径4.5mmの管状に編組した後、扁平形状に加工したものである。
なお、図は模式図である(例えば絶縁被覆磁性材メッキ銅線10の本数は実数を図示したものではない)。
FIG. 1 is a cross-sectional view illustrating a magnetic flat braided wire 101 according to the first embodiment.
The magnetic flat braided wire 101 is obtained by braiding 168 insulation-coated magnetic material plated copper wires 10 into a tubular shape having a diameter of 4.5 mm at a single knitting pitch of 40 mm and then processing into a flat shape.
In addition, a figure is a schematic diagram (For example, the number of the insulation coating magnetic material plating copper wires 10 does not show a real number).

図2は、絶縁被覆磁性材メッキ銅線10の断面図である。
絶縁被覆磁性材メッキ銅線10は、直径0.1mmの銅線1の表面に厚さ1.0μmの鉄下層と厚さ0.5μmのニッケル上層の2層構造の磁性材メッキ層2を形成し、その磁性材メッキ層2の表面に絶縁膜2種相当のエナメル絶縁被覆3を形成したものである。
FIG. 2 is a cross-sectional view of the insulating coating magnetic material plated copper wire 10.
The insulation coating magnetic material plated copper wire 10 forms a magnetic material plating layer 2 having a two-layer structure of a 1.0 μm thick iron lower layer and a 0.5 μm thick nickel upper layer on the surface of a copper wire 1 having a diameter of 0.1 mm. The enamel insulating coating 3 corresponding to two types of insulating films is formed on the surface of the magnetic material plating layer 2.

図3は、絶縁被覆磁性材メッキ銅線10の銅線1の中心から半径方向の距離に対する、絶縁被覆磁性材メッキ銅線10を流れる電流が作る磁界の強さの変化を示すグラフである。
磁界が、磁性材メッキ層2で減衰することが判る。
FIG. 3 is a graph showing the change in the strength of the magnetic field generated by the current flowing through the insulating coating magnetic material plated copper wire 10 with respect to the radial distance from the center of the copper wire 1 of the insulating coating magnetic material plated copper wire 10.
It can be seen that the magnetic field is attenuated by the magnetic material plating layer 2.

実施例1の磁性扁平編組線101によれば、複数本の絶縁被覆磁性材メッキ銅線10を編んだ編組線を用いるため、渦電流損を小さく出来る。また、一つの絶縁被覆磁性材メッキ銅線10に流れる電流が作り出す磁界は磁性材メッキ層2で遮断され、他の絶縁被覆磁性材メッキ銅線10の銅線1の部分まで入り難くなるため(入っても小さくなるため)、高周波における近接効果による銅損の増加を抑制することが出来る。さらに、扁平形状であるため、コイル形状の低背化(小型化)や薄型化に対応できる。   According to the magnetic flat braided wire 101 of the first embodiment, the eddy current loss can be reduced because a braided wire obtained by braiding a plurality of insulating coating magnetic material plated copper wires 10 is used. In addition, the magnetic field generated by the current flowing in one insulating coated magnetic material plated copper wire 10 is blocked by the magnetic material plated layer 2 and it is difficult to enter the copper wire 1 portion of the other insulating coated magnetic material plated copper wire 10 ( Therefore, an increase in copper loss due to the proximity effect at high frequencies can be suppressed. Furthermore, since it is a flat shape, it can respond to the low profile (miniaturization) and thickness reduction of a coil shape.

なお、絶縁被覆3の外周に接着層を形成して自己融着線としてもよい。また、電線密度を上げるために、外径の異なる絶縁被覆磁性材メッキ銅線10を混在させて用いてもよい。   Note that an adhesive layer may be formed on the outer periphery of the insulating coating 3 to form a self-bonding wire. In addition, in order to increase the electric wire density, insulating coating magnetic material plated copper wires 10 having different outer diameters may be mixed and used.

図4は、実施例2に係る複合電線102を示す断面図である。
この磁性扁平編組線102は、絶縁被覆磁性材メッキ銅線10と絶縁被覆銅線20とを混在させて管状に編組した後、扁平形状に加工したものである。
絶縁被覆磁性材メッキ銅線10と絶縁被覆銅線20とは、絶縁被覆銅線20同士がなるべく隣接しないように並べて配されている。
FIG. 4 is a cross-sectional view illustrating the composite wire 102 according to the second embodiment.
The magnetic flat braided wire 102 is formed by mixing the insulation-coated magnetic material-plated copper wire 10 and the insulation-coated copper wire 20 into a tubular shape and then processing it into a flat shape.
The insulating coating magnetic material plated copper wire 10 and the insulating coating copper wire 20 are arranged side by side so that the insulating coating copper wires 20 are not adjacent to each other as much as possible.

図5は、絶縁被覆銅線20の断面図である。
絶縁被覆銅線20は、銅線1の表面に絶縁被覆3を形成したものである。
FIG. 5 is a cross-sectional view of the insulation-coated copper wire 20.
The insulating coating copper wire 20 is obtained by forming the insulating coating 3 on the surface of the copper wire 1.

実施例2の磁性扁平編組線102によれば、絶縁被覆磁性材メッキ銅線10と絶縁被覆銅線20とを編んだ編組線を用いるため、渦電流損を小さく出来る。また、そして、一つの絶縁被覆磁性材メッキ銅線10または絶縁被覆電線20に流れる電流が作り出す磁界は絶縁被覆磁性材メッキ銅線10の磁性材メッキ層2で遮断され、他の絶縁被覆磁性材メッキ銅線10または絶縁被覆銅線20の銅線1の部分まで入り難くなるため(入っても小さくなるため)、高周波における近接効果による銅損の増加を抑制することが出来る。さらに、扁平形状であるため、コイル形状の低背化(小型化)や薄型化に対応できる。   According to the magnetic flat braided wire 102 of Example 2, since the braided wire obtained by braiding the insulation-coated magnetic material plated copper wire 10 and the insulation-coated copper wire 20 is used, eddy current loss can be reduced. Further, the magnetic field generated by the current flowing in one insulation coated magnetic material plated copper wire 10 or the insulation coated electric wire 20 is blocked by the magnetic material plating layer 2 of the insulation coated magnetic material plated copper wire 10, and another insulation coated magnetic material Since it becomes difficult to enter the copper wire 1 portion of the plated copper wire 10 or the insulation-coated copper wire 20 (because it becomes small even if it enters), an increase in copper loss due to the proximity effect at high frequencies can be suppressed. Furthermore, since it is a flat shape, it can respond to the low profile (miniaturization) and thickness reduction of a coil shape.

また、絶縁被覆銅線20同士がなるべく隣接しないように絶縁被覆磁性材メッキ銅線10と絶縁被覆銅線20を配置し、渦電流に対する抵抗を平均化し、電流の偏りを小さくしているため、損失を小さく出来る。   In addition, since the insulating coating magnetic material plated copper wire 10 and the insulating coating copper wire 20 are arranged so that the insulating coating copper wires 20 are not adjacent to each other as much as possible, the resistance against eddy currents is averaged, and the current bias is reduced. Loss can be reduced.

なお、絶縁被覆3の外周に接着層を形成して自己融着線としてもよい。また、電線密度を上げるために、外径の異なる絶縁被覆磁性材メッキ銅線10および絶縁被覆銅線20を混在させて用いてもよい。   Note that an adhesive layer may be formed on the outer periphery of the insulating coating 3 to form a self-bonding wire. Further, in order to increase the electric wire density, the insulating coated magnetic material plated copper wire 10 and the insulating coated copper wire 20 having different outer diameters may be mixed and used.

図6は、実施例3に係るソレノイドコイル201を示す平面図である。図7は、図6のA−A’断面図である。
このソレノイドコイル201は、実施例1の磁性扁平編組線101をエッジワイズ巻きしたものである。内径15mm,外径22mm,コイル長10.5mm,巻数12.5である。
FIG. 6 is a plan view illustrating the solenoid coil 201 according to the third embodiment. 7 is a cross-sectional view taken along line AA ′ of FIG.
The solenoid coil 201 is obtained by edgewise winding the magnetic flat braided wire 101 of the first embodiment. The inner diameter is 15 mm, the outer diameter is 22 mm, the coil length is 10.5 mm, and the number of turns is 12.5.

図8は、ソレノイドコイル201および比較例の交流損失増加係数Rs/R0を示す周波数特性図である(Rs:交流直列等価抵抗、R0:直流抵抗)。
比較例は、直径0.1mmの銅線1の表面にエナメル絶縁被覆を形成した絶縁被覆銅線を用いる以外は実施例3と同様にして製作したソレノイドコイルである。
図9は、ソレノイドコイル201の交流損失増加係数Rs/R0を比較例の交流損失増加係数Rs/R0で割った係数比を示す周波数特性図である。
600kHz以上の高周波では、実施例の方が比較例よりも損失を半減できることが判る。
FIG. 8 is a frequency characteristic diagram showing the AC loss increase coefficient Rs / R0 of the solenoid coil 201 and the comparative example (Rs: AC series equivalent resistance, R0: DC resistance).
The comparative example is a solenoid coil manufactured in the same manner as in Example 3 except that an insulation-coated copper wire having an enamel insulation coating formed on the surface of a copper wire 1 having a diameter of 0.1 mm is used.
FIG. 9 is a frequency characteristic diagram showing a coefficient ratio obtained by dividing the AC loss increase coefficient Rs / R0 of the solenoid coil 201 by the AC loss increase coefficient Rs / R0 of the comparative example.
It can be seen that at a high frequency of 600 kHz or higher, the embodiment can reduce the loss by half compared to the comparative example.

なお、比較例の扁平編組線では、扁平の表裏2面が接近するため、近接効果により損失が増加するが、本発明の磁性偏平編組線では、磁性材メッキ層2があるため、損失の増加は小さい。
さらに、比較例の扁平編組線では、編組にするときの線組の右回り線群と左回り線群の交差角度(又は編組ピッチ)により近接効果が変化し高周波損失の変化が認められるが、本発明の磁性扁平編組線では、近接効果の影響が小さいため、高周波損失の変化が小さい。
すなわち、本発明の磁性扁平編組線では、巻線テンションの変化などで編組線が伸縮して右回り線群と左回り線群の交差角度(又は編組ピッチ)が変化しても高周波損失の変化が少ない、という安定性を向上できる。
In the flat braided wire of the comparative example, the flat front and back two surfaces approach each other, so the loss increases due to the proximity effect. However, in the magnetic flat braided wire of the present invention, the loss increases due to the magnetic material plating layer 2. Is small.
Furthermore, in the flat braided wire of the comparative example, the proximity effect changes depending on the crossing angle (or the braid pitch) of the clockwise line group and the counterclockwise line group of the line set when making the braid, and a change in high-frequency loss is recognized, In the magnetic flat braided wire of the present invention, since the influence of the proximity effect is small, the change in high-frequency loss is small.
That is, in the magnetic flat braided wire of the present invention, even if the braided wire expands and contracts due to changes in winding tension, etc., the high-frequency loss changes even if the crossing angle (or braided pitch) between the clockwise line group and the counterclockwise line group changes. The stability that there is little is improved.

実施例1の磁性扁平編組線101を、短辺を半径方向に向けてソレノイド状に巻回してもよい。   The magnetic flat braided wire 101 of Example 1 may be wound in a solenoid shape with the short side in the radial direction.

図10は、実施例5に係る渦巻きコイル202を示す平面図である。図11は、図10のA−A’断面図である。
この渦巻きコイル202は、実施例1の磁性扁平編組線101を、長辺を半径方向に向けて渦巻き状に巻回したものである。
FIG. 10 is a plan view illustrating the spiral coil 202 according to the fifth embodiment. 11 is a cross-sectional view taken along line AA ′ of FIG.
The spiral coil 202 is obtained by winding the magnetic flat braided wire 101 of Example 1 in a spiral shape with the long side in the radial direction.

図12は、実施例6に係る渦巻きコイル203を示す平面図である。図13は、図12のA−A’断面図である。
この渦巻きコイル203は、実施例1の磁性扁平編組線101を、短辺を半径方向に向けて渦巻き状に巻回したものである。
FIG. 12 is a plan view illustrating the spiral coil 203 according to the sixth embodiment. 13 is a cross-sectional view taken along line AA ′ of FIG.
The spiral coil 203 is obtained by winding the magnetic flat braided wire 101 of Example 1 in a spiral shape with the short side in the radial direction.

実施例3〜6において、各ターン間に、空隙,テープ,スペーサー等を介設してもよい。   In Examples 3 to 6, a gap, a tape, a spacer, or the like may be interposed between the turns.

実施例3〜7において、実施例2の磁性扁平編組線102を用いてもよい。   In Examples 3 to 7, the magnetic flat braided wire 102 of Example 2 may be used.

本発明の磁性扁平編組線およびコイルは、高周波回路において好適に使用できる。具体例としては、電力伝送電気回路や電源回路における空芯または有磁心のコイルやトランス、インダクター,TV用偏向ヨーク、IHヒーターコイルやモーターなどに利用することが出来る。   The magnetic flat braided wire and coil of the present invention can be suitably used in a high frequency circuit. As a specific example, it can be used for an air core or magnetic core coil or transformer, an inductor, a TV deflection yoke, an IH heater coil, a motor or the like in an electric power transmission electric circuit or a power supply circuit.

実施例1に係る磁性扁平編組線を示す断面図である。2 is a cross-sectional view showing a magnetic flat braided wire according to Example 1. FIG. 実施例1に係る絶縁被覆磁性材メッキ銅線を示す断面図である。1 is a cross-sectional view showing an insulation coating magnetic material plated copper wire according to Example 1. FIG. 絶縁被覆磁性材メッキ銅線の作る磁界の強さの変化を示すグラフである。It is a graph which shows the change of the strength of the magnetic field which insulation coating magnetic material plating copper wire makes. 実施例2に係る磁性扁平編組線を示す断面図である。It is sectional drawing which shows the magnetic flat braided wire which concerns on Example 2. FIG. 実施例2に係る絶縁被覆銅線を示す断面図である。6 is a cross-sectional view showing an insulation-coated copper wire according to Example 2. FIG. 実施例3に係るソレノイドコイルを示す断面図である。6 is a cross-sectional view showing a solenoid coil according to Embodiment 3. FIG. 図6のA−A’断面図である。It is A-A 'sectional drawing of FIG. 実施例3および比較例の交流損失増加係数を示す周波数特性図である。It is a frequency characteristic figure which shows the alternating current loss increase coefficient of Example 3 and a comparative example. 実施例3の交流損失増加係数を比較例の交流損失増加係数で割った係数比を示す周波数特性図である。It is a frequency characteristic figure which shows the coefficient ratio which divided the alternating current loss increase coefficient of Example 3 by the alternating current loss increase coefficient of the comparative example. 実施例5に係る渦巻きコイルを示す断面図である。6 is a cross-sectional view showing a spiral coil according to Embodiment 5. FIG. 図8のA−A’断面図である。It is A-A 'sectional drawing of FIG. 実施例6に係る渦巻きコイルを示す断面図である。6 is a cross-sectional view showing a spiral coil according to Example 6. FIG. 図12のA−A’断面図である。It is A-A 'sectional drawing of FIG.

符号の説明Explanation of symbols

1 銅線
2 磁性材メッキ層
3 絶縁被覆
10 絶縁被覆磁性材メッキ銅線
20 絶縁被覆銅線
30 磁性材メッキ銅線
101,102 磁性扁平編組線
201 ソレノイドコイル
202,203 渦巻きコイル
DESCRIPTION OF SYMBOLS 1 Copper wire 2 Magnetic material plating layer 3 Insulation coating 10 Insulation coating magnetic material plating copper wire 20 Insulation coating copper wire 30 Magnetic material plating copper wire 101, 102 Magnetic flat braided wire 201 Solenoid coil 202, 203 Spiral coil

Claims (5)

銅線表面に磁性メッキ層を形成しその磁性メッキ層の表面に絶縁被覆を形成した絶縁被覆磁性材メッキ銅線を、複数本編組し扁平形状にしたことを特徴とする磁性扁平編組線。 A magnetic flat braided wire comprising a plurality of insulation coated magnetic material plated copper wires formed by forming a magnetic plating layer on a surface of a copper wire and having an insulating coating formed on the surface of the magnetic plating layer to form a flat shape. 銅線表面に磁性メッキ層を形成しその磁性メッキ層の表面に絶縁被覆を形成した絶縁被覆磁性材メッキ銅線と、銅線表面に絶縁被覆を形成した絶縁被覆銅線とを、編組し扁平形状にしたことを特徴とする磁性扁平編組線。 An insulating coated magnetic material plated copper wire having a magnetic plated layer formed on the surface of the copper wire and an insulating coating formed on the surface of the magnetic plated layer, and an insulating coated copper wire having an insulating coating formed on the surface of the copper wire are braided and flattened. Magnetic flat braided wire characterized by its shape. 請求項1または請求項2に記載の磁性扁平編組線において、前記扁平形状が、扁平管状であることを特徴とする磁性扁平編組線。
3. The magnetic flat braided wire according to claim 1 or 2, wherein the flat shape is a flat tubular shape.
請求項1から請求項3のいずれかに記載の磁性扁平編組線をソレノイド状に巻回してなることを特徴とするコイル。 A coil obtained by winding the magnetic flat braided wire according to claim 1 in a solenoid shape. 請求項1から請求項3のいずれかに記載の磁性扁平編組線を、渦巻き状に巻回してなることを特徴とするコイル。 A coil formed by winding the magnetic flat braided wire according to any one of claims 1 to 3 in a spiral shape.
JP2008131780A 2008-05-20 2008-05-20 Magnetic flat braided wire and coil Active JP5219619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131780A JP5219619B2 (en) 2008-05-20 2008-05-20 Magnetic flat braided wire and coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131780A JP5219619B2 (en) 2008-05-20 2008-05-20 Magnetic flat braided wire and coil

Publications (2)

Publication Number Publication Date
JP2009283176A JP2009283176A (en) 2009-12-03
JP5219619B2 true JP5219619B2 (en) 2013-06-26

Family

ID=41453441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131780A Active JP5219619B2 (en) 2008-05-20 2008-05-20 Magnetic flat braided wire and coil

Country Status (1)

Country Link
JP (1) JP5219619B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080970A1 (en) * 2010-02-22 2012-04-05 General Electric Company High voltage and high temperature winding insulation for esp motor
US8703344B2 (en) 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
EP2760031B1 (en) * 2011-09-22 2016-09-07 Fujikura Ltd. Electric wire and coil
CN104575949A (en) * 2014-12-29 2015-04-29 陕西烽火电子股份有限公司 High-frequency inductance coil for shortwave and ultra-short wave radio station
CN105529136A (en) * 2016-01-05 2016-04-27 南京航空航天大学 Common mode choke with current noise dissipation function
CN107895640A (en) * 2017-10-23 2018-04-10 华北电力大学 A kind of method for reducing high frequency transformer winding loss
CN113161038A (en) * 2021-04-19 2021-07-23 武汉金恒源电气有限公司 Adjusting conductor for reducing eddy current in uniform sine variable magnetic field

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945470A (en) * 1995-08-01 1997-02-14 Hitachi Cable Ltd Coil for induction heating
JP2002064025A (en) * 2000-08-21 2002-02-28 Tsubakimoto Chain Co Feeder for non-contact feeding and carrier system
JP4729168B2 (en) * 2000-12-13 2011-07-20 株式会社井上製作所 Flexible connection terminal
JP2002208314A (en) * 2001-01-12 2002-07-26 Showa Electric Wire & Cable Co Ltd High temperature flexible cable, structure of molten carbonate fuel cell and power take-out part of molten carbonate fuel cell
JP2003163490A (en) * 2001-11-27 2003-06-06 Nissei Electric Co Ltd Composite member for shielding electromagnetic wave
JP2005174689A (en) * 2003-12-10 2005-06-30 Auto Network Gijutsu Kenkyusho:Kk Braided wire and its cable routing method

Also Published As

Publication number Publication date
JP2009283176A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5219619B2 (en) Magnetic flat braided wire and coil
JP5393097B2 (en) Alpha winding coil
JP6569653B2 (en) Wire-wound coil parts
JP5294907B2 (en) Insulated wires and coils
JP5294695B2 (en) Electric wire and coil
US10096421B2 (en) Coil device and method for manufacturing the same
CN109074946B (en) Winding, coil and transformer
JP5668097B2 (en) Electric wire and coil
JP2009129550A (en) Clad cable, litz wire, collective wire, and coil
JP5726034B2 (en) Leakage transformer
JP5945729B2 (en) Induction heating coil manufacturing method
JP2013074144A5 (en)
JP2011114085A (en) Magnetic wire material and inductor
JP2010050241A (en) Coil for electric equipment and electric wire for coil
JP5159269B2 (en) Composite wires and coils
JP7306789B2 (en) coil and transformer
WO2017006585A1 (en) Winding-type inductor
JP2016039322A (en) Coil and coil component
JP2012156281A (en) Air-core coil
WO2012131934A1 (en) Insulated wire and coil
CN112216481A (en) Magnetic induction coil
JP7050566B2 (en) High frequency high output transformer
JP2024128628A (en) Stranded wire, insulated wire, coils and transformers
CN210325464U (en) Magnetic induction coil
JP2013051261A (en) Coil component and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250