JP5218923B2 - Magnesium alloy plate - Google Patents

Magnesium alloy plate Download PDF

Info

Publication number
JP5218923B2
JP5218923B2 JP2011045547A JP2011045547A JP5218923B2 JP 5218923 B2 JP5218923 B2 JP 5218923B2 JP 2011045547 A JP2011045547 A JP 2011045547A JP 2011045547 A JP2011045547 A JP 2011045547A JP 5218923 B2 JP5218923 B2 JP 5218923B2
Authority
JP
Japan
Prior art keywords
rolling
plate
magnesium alloy
temperature
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011045547A
Other languages
Japanese (ja)
Other versions
JP2011157626A (en
Inventor
信之 森
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011045547A priority Critical patent/JP5218923B2/en
Publication of JP2011157626A publication Critical patent/JP2011157626A/en
Application granted granted Critical
Publication of JP5218923B2 publication Critical patent/JP5218923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、マグネシウム合金板に関するものである。特に、プレス加工性に優れたマグネシウム合金板に関するものである。   The present invention relates to a magnesium alloy plate. In particular, it relates to a magnesium alloy plate excellent in press workability.

マグネシウム合金は、低密度金属であり比強度・比剛性が高いことから、軽量構造材料として注目されている。その中で、特に展伸材は強度・靭性などの機械的特性に優れることから、今後の普及が期待されている。マグネシウム合金は、添加する金属元素の種類や添加量を変化させることにより特性が変化し、特に、アルミニウム含有量の高い合金(例えばASTM規格におけるAZ91)は、耐食性や強度が高く展伸材における需要も大きい。しかし、マグネシウム合金は、最密六方晶という結晶構造により常温での塑性加工性が悪く、例えばその板材のプレス加工は板材温度を200〜300℃に昇温して行われている。このため、できるだけ低温で安定した加工が可能なマグネシウム合金板の開発が望まれている。   Magnesium alloys are attracting attention as lightweight structural materials because they are low density metals and have high specific strength and specific rigidity. Among them, the wrought material is expected to spread in the future because it is excellent in mechanical properties such as strength and toughness. Magnesium alloys change their properties by changing the type and amount of metal element added. In particular, alloys with a high aluminum content (for example, AZ91 in the ASTM standard) have high corrosion resistance and strength, and demand for wrought materials. Is also big. However, the magnesium alloy has poor plastic workability at room temperature due to the crystal structure of the close-packed hexagonal crystal. For example, the plate material is pressed by raising the plate material temperature to 200 to 300 ° C. For this reason, development of a magnesium alloy sheet capable of stable processing at as low a temperature as possible is desired.

ところで、マグネシウム合金板の製造には、種々の方法が用いられ得るが、例えば、ダイキャストやチクソモールディングでは、薄い合金板を製造することが困難であり、ビレットの押出材を圧延してマグネシウム合金板を得た場合、その内部に晶出物が多く発生したり、結晶粒径が大きくなったり、表面が粗くなるなどの問題がある。特に、Al含有量の多いマグネシウム合金は、鋳造時に晶出物や偏析が発生しやすく、鋳造後に熱処理工程や圧延工程を経ても、最終的に得られる合金板の内部に晶出物や偏析物が残存してプレス加工時の破断の起点になるという問題を有している。   By the way, various methods can be used for manufacturing the magnesium alloy plate. For example, in die casting or thixo molding, it is difficult to manufacture a thin alloy plate. When a plate is obtained, there are problems such that a large amount of crystallized matter is generated in the plate, the crystal grain size becomes large, and the surface becomes rough. In particular, a magnesium alloy with a high Al content is likely to cause crystallization and segregation during casting. Even after heat treatment and rolling after casting, the crystallization and segregation within the finally obtained alloy plate. Remains and becomes the starting point of fracture during press working.

また、従来のマグネシウム合金板の代表的な製造方法として、マグネシウム合金素材板を300℃以上に予熱して常温の圧延ロールで圧延を行い、この予熱と圧延とを繰り返すことが知られている。   Further, as a typical method for producing a conventional magnesium alloy sheet, it is known that a magnesium alloy material sheet is preheated to 300 ° C. or higher and rolled with a rolling roll at room temperature, and this preheating and rolling are repeated.

さらに、塑性加工性を向上させる目的で微細な結晶粒のマグネシウム合金板を得る技術として、特許文献1に記載の方法が知られている。この方法は、圧延ロールの表面温度を80〜230℃とし、マグネシウム合金素板の表面温度を250〜350℃として圧延を行っている。   Furthermore, as a technique for obtaining a magnesium alloy plate having fine crystal grains for the purpose of improving plastic workability, a method described in Patent Document 1 is known. In this method, rolling is performed by setting the surface temperature of the rolling roll to 80 to 230 ° C and the surface temperature of the magnesium alloy base plate to 250 to 350 ° C.

その他、マグネシウム合金板の塑性加工性を向上させる技術として、特許文献2〜5に記載の方法が知られている。   In addition, methods described in Patent Documents 2 to 5 are known as techniques for improving the plastic workability of a magnesium alloy plate.

特開2005−2378号公報Japanese Patent Laying-Open No. 2005-2378 特開2003−27173号公報JP 2003-27173 A 特開2005−29871号公報JP 2005-29871 A 特開2001−294966号公報JP 2001-294966 A 特開2004−346351号公報JP 2004-346351 A

しかし、300℃以上の素材板の予熱と常温の圧延ロールによる圧延とを繰り返す方法では、予熱時にマグネシウム合金の結晶粒が粗大化し、得られたマグネシウム合金板の塑性加工性に劣る。   However, in the method of repeating preheating of a material plate at 300 ° C. or higher and rolling with a rolling roll at room temperature, the crystal grains of the magnesium alloy are coarsened during preheating, and the plastic workability of the obtained magnesium alloy plate is inferior.

一方、特許文献1に記載の方法では、マグネシウム合金板の表面温度を250〜350℃として圧延を行っており、この条件で複数パスの圧延を行った場合、1パス前の圧延でできた合金板の加工歪が解消されてしまう。そのため、最終板厚時に加工歪が蓄積されず、マグネシウム合金板の結晶粒が十分に微細化されないことがある。その結果、得られたマグネシウム合金板の塑性加工性を十分に向上できないことがある。   On the other hand, in the method described in Patent Document 1, rolling is performed with the surface temperature of the magnesium alloy plate being 250 to 350 ° C., and when rolling is performed for a plurality of passes under these conditions, an alloy made by rolling one pass before The processing distortion of the plate is eliminated. Therefore, processing strain is not accumulated at the final plate thickness, and the crystal grains of the magnesium alloy plate may not be sufficiently refined. As a result, the plastic workability of the obtained magnesium alloy sheet may not be sufficiently improved.

特許文献2では、AZ91を含むマグネシウム合金薄板の製造方法が開示されている。しかし、マグネシウム合金薄板の具体的な機械的強度の特性値やプレス成形性については明記されていない。   In patent document 2, the manufacturing method of the magnesium alloy thin plate containing AZ91 is disclosed. However, the specific mechanical strength characteristic value and press formability of the magnesium alloy sheet are not specified.

特許文献3では、AZ91合金板材が開示されている。この特許文献3には、引張試験の実施例において300℃、歪み速度0.01(s−1)以下という条件で超塑性が発現し、200%の伸びを記録したとある。しかし、実際に板材をプレス成形する時の温度(250℃以下)における塑性加工性及び引張特性は明記されておらず、プレス成形を行った実施例も記載されていない。 In Patent Document 3, an AZ91 alloy plate material is disclosed. According to Patent Document 3, superplasticity was exhibited under the conditions of 300 ° C. and a strain rate of 0.01 (s −1 ) or less in an example of a tensile test, and 200% elongation was recorded. However, the plastic workability and the tensile properties at the temperature (250 ° C. or lower) when the plate material is actually press-molded are not specified, and the examples of press forming are not described.

また、特許文献4や特許文献5についても引張特性について具体的な数値は示されていない。   Also, Patent Document 4 and Patent Document 5 do not show specific numerical values for tensile properties.

さらに、上記の引用文献1〜5には、鋳造時に発生するマグネシウム合金中の晶出物や偏析の量を低くして、塑性加工性、特に、プレス加工性を向上させることに関して記載されていない。   Further, the above cited references 1 to 5 do not describe the improvement of plastic workability, particularly press workability, by reducing the amount of crystallized matter and segregation in the magnesium alloy generated during casting. .

そこで、本発明の目的の一つは、プレス加工などの塑性加工性に優れたマグネシウム合金板を提供することにある。   Therefore, one of the objects of the present invention is to provide a magnesium alloy plate excellent in plastic workability such as press working.

さらに、本発明の別の目的は、双ロール鋳造素材を用いて、強度と伸び特性の良いプレス加工性に優れるマグネシウム合金板を提供することにある。   Furthermore, another object of the present invention is to provide a magnesium alloy plate excellent in press workability having good strength and elongation characteristics using a twin roll casting material.

本発明マグネシウム合金板は、アルミニウム(Al)を8.5〜10.0質量%、亜鉛を0.5〜1.5質量%含有するマグネシウム合金素材板を圧延ロールにて圧延することで得られたマグネシウム合金板であって、マグネシウム合金板の厚み方向の中心線に存在する偏析の厚み方向の長さが20μm以下であることを特徴とする。   The magnesium alloy sheet of the present invention is obtained by rolling a magnesium alloy material sheet containing 8.5 to 10.0% by mass of aluminum (Al) and 0.5 to 1.5% by mass of zinc with a rolling roll. The magnesium alloy plate is characterized in that the length in the thickness direction of segregation existing in the center line in the thickness direction of the magnesium alloy plate is 20 μm or less.

本発明マグネシウム合金板は、高い塑性加工性を有し、加工時の亀裂の発生を効果的に低減することができる。   The magnesium alloy sheet of the present invention has high plastic workability and can effectively reduce the occurrence of cracks during processing.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明マグネシウム合金板は、代表的には双ロール鋳造を経たマグネシウム合金素材板を用意し、その素材板を粗圧延した後、仕上圧延することで得られる。その際、少なくとも仕上圧延を、下記条件の制御圧延とする。鋳造後に行なわれる圧延工程の全範囲で制御圧延を行っても良い。   The magnesium alloy plate of the present invention is typically obtained by preparing a magnesium alloy material plate that has undergone twin-roll casting, roughly rolling the material plate, and then finish rolling. At that time, at least finish rolling is controlled rolling under the following conditions. Control rolling may be performed in the entire range of the rolling process performed after casting.

(制御圧延時の圧延ロールの表面温度Tr)
圧延ロールの表面温度Trは150〜180℃とする。150℃未満の場合、圧下率/パスを高くすると、素材板が圧延される際、素材板の進行方向と直交する方向にワニ革状の細かい割れが発生する場合がある。また、180℃を超えると、圧延加工中に、それまでの圧延で蓄積した素材板の歪が、合金結晶粒の再結晶により解消されてしまって加工歪量が少なくなり、結晶粒を微細化することが難しい。
(Surface temperature Tr of rolling roll during controlled rolling)
The surface temperature Tr of the rolling roll is 150 to 180 ° C. If it is less than 150 ° C., if the rolling reduction / pass is increased, fine cracks of crocodile leather may occur in the direction perpendicular to the traveling direction of the material plate when the material plate is rolled. If the temperature exceeds 180 ° C, the distortion of the material plate accumulated during the rolling process will be eliminated by recrystallization of the alloy crystal grains during the rolling process. Difficult to do.

圧延ロールの表面温度を制御するには、圧延ロールの内部にヒータなどの発熱体を配置する方法や、圧延ロールの表面に温風を吹き付ける方法などが利用できる。   In order to control the surface temperature of the rolling roll, a method of arranging a heating element such as a heater inside the rolling roll, a method of blowing warm air on the surface of the rolling roll, or the like can be used.

(制御圧延時の素材板の表面温度Tb)
圧延ロールへ挿入する直前におけるマグネシウム合金素材板の表面温度Tb(℃)は、下記の式を満たすようにする。
8.33×M+135≦Tb≦8.33×M+165
ただし、1.0≦M≦10.0
(Surface temperature Tb of material plate during controlled rolling)
The surface temperature Tb (° C.) of the magnesium alloy material plate immediately before insertion into the rolling roll satisfies the following formula.
8.33 × M + 135 ≦ Tb ≦ 8.33 × M + 165
However, 1.0 ≦ M ≦ 10.0

つまり、この表面温度Tbの下限は約140℃、上限は約248℃とする。この温度Tbはマグネシウム合金中のAl含有量M(質量%)に依存する。具体的には、ASTM規格によるAZ31の場合、約160〜190℃に、AZ91の場合、約210〜247℃に温度Tbを設定すればよい。各組成の下限温度を下回ると、圧延ロールの表面温度が低い場合と同様に、素材板の進行方向と直交する方向にワニ革状の細かい割れが発生する場合がある。また、各組成の上限温度を上回ると、圧延加工中に、それまでの圧延で蓄積した素材板の歪が、合金結晶粒の再結晶により解消されてしまって加工歪量が少なくなり、結晶粒を微細化することが難しい。   That is, the lower limit of the surface temperature Tb is about 140 ° C., and the upper limit is about 248 ° C. This temperature Tb depends on the Al content M (mass%) in the magnesium alloy. Specifically, the temperature Tb may be set to about 160 to 190 ° C. in the case of AZ31 according to the ASTM standard and to about 210 to 247 ° C. in the case of AZ91. Below the lower limit temperature of each composition, as in the case where the surface temperature of the rolling roll is low, fine crocodile leather-like cracks may occur in the direction orthogonal to the direction of travel of the blank. Also, if the upper limit temperature of each composition is exceeded, during the rolling process, the strain of the material plate accumulated by the previous rolling will be eliminated by recrystallization of the alloy crystal grains, and the amount of processing strain will be reduced. It is difficult to miniaturize.

素材板の表面温度Tbを上記の規定範囲内としても、例えば圧延ロールの表面温度が常温であれば、素材板がロールに接触した時点で温度が低下し、素材板表面に割れが発生する。圧延ロール表面の温度のみならず、素材板の表面温度をも規定することで、この割れを効果的に抑制できる。   Even if the surface temperature Tb of the material plate is within the above specified range, for example, if the surface temperature of the rolling roll is room temperature, the temperature decreases when the material plate contacts the roll, and cracks occur on the surface of the material plate. By defining not only the temperature of the surface of the rolling roll but also the surface temperature of the material plate, this crack can be effectively suppressed.

(制御圧延の圧下率)
制御圧延の総圧下率は10〜75%であることが好ましい。総圧下率とは、(制御圧延を行う前の板厚−制御圧延後の板厚)/制御圧延を行う前の板厚×100で表される。総圧下率が10%未満の場合、加工対象の加工歪が少なく、結晶粒の微細化効果が少ない。逆に75%を超えると、加工対象の表面付近の加工歪が多くなり、ひび割れが発生する場合がある。例えば、最終板厚が0.5mmの場合、0.56〜2.0mmの板材に対して制御圧延を行えばよい。より好ましい制御圧延の総圧下率の範囲は20%以上50%以下である。
(Controlled rolling reduction)
The total rolling reduction of the controlled rolling is preferably 10 to 75%. The total rolling reduction is expressed by (sheet thickness before performing controlled rolling−sheet thickness after controlled rolling) / sheet thickness before performing controlled rolling × 100. When the total rolling reduction is less than 10%, the processing strain to be processed is small and the effect of refining crystal grains is small. On the other hand, if it exceeds 75%, the processing strain near the surface to be processed increases and cracks may occur. For example, when the final plate thickness is 0.5 mm, controlled rolling may be performed on a plate material of 0.56 to 2.0 mm. A more preferable range of the total rolling reduction of the controlled rolling is 20% or more and 50% or less.

また、制御圧延の圧下率/パス(1パス当たりの平均圧下率)は5〜20%程度とすることが好ましい。圧下率/パスが低すぎると効率的な圧延を行うことが難しく、逆に高すぎると圧延対象に割れなどの欠陥が生じやすくなる。   Further, the rolling reduction / pass (average rolling reduction per pass) of controlled rolling is preferably about 5 to 20%. If the rolling reduction / pass is too low, it is difficult to perform efficient rolling. Conversely, if the rolling reduction / pass is too high, defects such as cracks are likely to occur in the rolling target.

(他の圧延条件)
上述した制御圧延を複数パスで行い、これら複数パスのうち、少なくとも1パスは他のパスと圧延方向を逆転させて行うことが好ましい。圧延方向を逆転させることで、同一方向のみで圧延した場合に比べて、圧延対象に加工歪が均等に入りやすくなり、通常、制御圧延後に行なわれる最終熱処理後の結晶粒径のばらつきを小さくできる。
(Other rolling conditions)
It is preferable that the above-described controlled rolling is performed in a plurality of passes, and at least one of the plurality of passes is performed with the rolling direction reversed with respect to the other passes. By reversing the rolling direction, compared to the case of rolling only in the same direction, it becomes easier for processing distortion to easily enter the rolling target, and the variation in crystal grain size after the final heat treatment usually performed after controlled rolling can be reduced. .

上述したように、通常、素材板の圧延には粗圧延と仕上圧延とが含まれる。その場合、少なくとも仕上圧延を上記制御圧延とする。塑性加工性の更なる向上を考慮すると、圧延工程の全範囲にわたって制御圧延を行うことが好ましいが、最終的に得られるマグネシウム合金板の結晶粒径の粗大化抑制には、仕上圧延が最も関与するため、この仕上圧延を制御圧延とする。   As described above, the rolling of the material sheet usually includes rough rolling and finish rolling. In that case, at least finish rolling is the controlled rolling. Considering further improvement in plastic workability, it is preferable to perform controlled rolling over the entire range of the rolling process, but finish rolling is most involved in suppressing the coarsening of the crystal grain size of the finally obtained magnesium alloy sheet. Therefore, this finish rolling is controlled rolling.

換言すれば、仕上圧延以外の粗圧延は制御圧延の圧延条件に制約されない。特に、粗圧延される素材板の表面温度には格別の制限はない。粗圧延される素材板の表面温度と圧下率を調整することで、合金板の結晶粒径が極力小さくできる条件を選択すればよい。例えば、圧延前の素材板厚が4.0mm、最終板厚が0.5mmの場合、素材板から板厚0.56〜2.0mmまでを粗圧延とし、それ以降の圧延を仕上圧延とすれば良い。   In other words, rough rolling other than finish rolling is not restricted by the rolling conditions of controlled rolling. In particular, there is no particular limitation on the surface temperature of the raw material sheet that is roughly rolled. What is necessary is just to select the conditions which can make the crystal grain diameter of an alloy plate small as much as possible by adjusting the surface temperature and rolling reduction of the raw material board rough-rolled. For example, if the material plate thickness before rolling is 4.0 mm and the final plate thickness is 0.5 mm, rough rolling is performed from the material plate to a plate thickness of 0.56 to 2.0 mm, and the subsequent rolling is regarded as finish rolling. It ’s fine.

特に、この粗圧延における圧延ロールの表面温度を180℃以上の温度にし、圧下率/パスを上げて粗圧延を行うことで、粗圧延における加工効率を高めることが期待できる。その場合、例えば、圧下率/パスは、20%以上40%以下とすることが好ましい。ただし、この温度が180℃以上の場合でも、合金結晶粒の再結晶を抑制するため、ロールの表面温度は250℃以下程度とすることが好ましい。   In particular, the surface temperature of the rolling roll in this rough rolling is set to a temperature of 180 ° C. or higher, and rough rolling is performed by increasing the rolling reduction / pass, so that it can be expected to increase the processing efficiency in the rough rolling. In that case, for example, the rolling reduction / pass is preferably 20% or more and 40% or less. However, even when this temperature is 180 ° C. or higher, the roll surface temperature is preferably about 250 ° C. or lower in order to suppress recrystallization of alloy crystal grains.

その他、粗圧延工程において、圧延ロールへ挿入する直前における素材板の表面温度Tbを300℃以上、圧延ロールの表面温度を180℃以上とすると、粗圧延後の板表面状態を良くすることができ、縁割れが生じることがなく、好ましい。板表面温度を300℃以下、ロール表面温度を180℃未満とすると、圧下率を高くすることができないので、粗圧延工程における加工効率が悪くなる。ここで、板表面温度の上限は特に限定しないが、高温にすると、粗圧延後の板材の表面状態が悪くなる場合があるので、400℃以下にすることが好ましい。また、粗圧延時におけるロールの表面温度の上限も特に限定しないが、高温ではロール自体が熱疲労により損傷する恐れがあるので、300℃以下にすることが好ましい。   In addition, in the rough rolling process, if the surface temperature Tb of the blank sheet immediately before being inserted into the rolling roll is 300 ° C. or higher and the surface temperature of the rolling roll is 180 ° C. or higher, the surface state of the plate after rough rolling can be improved. It is preferable that no edge cracking occurs. If the plate surface temperature is 300 ° C. or less and the roll surface temperature is less than 180 ° C., the rolling reduction cannot be increased, so that the processing efficiency in the rough rolling process is deteriorated. Here, the upper limit of the plate surface temperature is not particularly limited, but if it is set to a high temperature, the surface state of the plate material after rough rolling may be deteriorated. Further, the upper limit of the surface temperature of the roll during rough rolling is not particularly limited, but the roll itself is liable to be damaged by thermal fatigue at a high temperature.

上記のような温度範囲で行なう粗圧延の1パス当たりの圧下率を20%以上40%以下にすると、粗圧延後に仕上圧延を行なったマグネシウム合金板における結晶粒のばらつきを小さくすることができるので好ましい。粗圧延時の1パスあたりの圧下率が20%未満だと、圧延後の結晶粒のばらつきを小さくする効果が乏しく、40%超だと、圧延時にマグネシウム合金板の端部に縁割れが発生する。また、この範囲の圧下率で行う圧延の回数(パス数)は1パスでは効果が小さいので、少なくとも2パス以上行うことが好ましい。   If the rolling reduction per pass of rough rolling performed in the temperature range as described above is 20% or more and 40% or less, variation in crystal grains in the magnesium alloy sheet subjected to finish rolling after rough rolling can be reduced. preferable. If the rolling reduction per pass during rough rolling is less than 20%, the effect of reducing variation in crystal grains after rolling is poor, and if it exceeds 40%, edge cracking occurs at the end of the magnesium alloy sheet during rolling. To do. In addition, the number of rolling operations (the number of passes) performed at a rolling reduction in this range is less effective in one pass, so it is preferable to perform at least two passes.

また、鋳造素材板の圧延(初期の粗圧延)では、素材板の温度を高くするとともに、上記の圧下率範囲内で圧下率を高くし、仕上圧延の直前の粗圧延では、素材板の温度を300℃程度、圧下率を20%程度にすることが好ましい。   In the rolling of the casting material plate (initial rough rolling), the temperature of the material plate is increased, and the reduction rate is increased within the above rolling reduction range. In the rough rolling immediately before finish rolling, the temperature of the material plate is increased. Is preferably about 300 ° C. and the rolling reduction is about 20%.

以上のような条件で粗圧延することにより、この粗圧延に続いて仕上圧延を施して得られたマグネシウム合金板の塑性加工性をより向上させることができる。具体的には、合金板の表面状態を良くしたり、縁割れの発生を抑制したり、合金板中の結晶粒径のばらつきを小さくしたりすることができる。また、マグネシウム合金板中の偏析量を小さくすることができる。   By rough rolling under the above conditions, it is possible to further improve the plastic workability of the magnesium alloy sheet obtained by finish rolling following this rough rolling. Specifically, the surface state of the alloy plate can be improved, the occurrence of edge cracking can be suppressed, and the variation in crystal grain size in the alloy plate can be reduced. Moreover, the amount of segregation in the magnesium alloy sheet can be reduced.

(素材板)
圧延する素材板は、Alを含有するマグネシウム合金であればよく、それ以外の組成元素は特に限定されない。例えば、ASTM規格におけるAZ系、AM系、AS系などの幅広い種類の材料が好適に利用できる。
(Material board)
The material plate to be rolled may be a magnesium alloy containing Al, and other composition elements are not particularly limited. For example, a wide variety of materials such as AZ, AM, and AS in the ASTM standard can be suitably used.

また、マグネシウム合金素材板自体を得る方法は、特に限定されない。例えば、インゴット鋳造法、押出法、双ロール鋳造法などにより得られた素材板を利用することができる。   Moreover, the method of obtaining magnesium alloy raw material board itself is not specifically limited. For example, a raw material plate obtained by an ingot casting method, an extrusion method, a twin roll casting method, or the like can be used.

インゴット鋳造法による素材板は、例えば厚みが150〜300mm程度のインゴットを鋳造し、このインゴットの表面を切削して、得られた切削材を熱間圧延することで得る。インゴット鋳造法は、大量生産に向き、低コストで素材板を得ることができる。   The material plate by the ingot casting method is obtained, for example, by casting an ingot having a thickness of about 150 to 300 mm, cutting the surface of the ingot, and hot rolling the obtained cutting material. The ingot casting method is suitable for mass production and can obtain a material plate at low cost.

押出法による素材板は、例えばφ300mm程度のビレットを鋳造し、得られたビレットを再加熱して、押出することにより得られる。押出法は、押出時にビレットを強く圧縮するため、その後の素材板の圧延時や圧延材の塑性加工時における割れなどの起点になりやすいビレット内の晶析出物をある程度粉砕することができる。   The material plate by the extrusion method is obtained by casting a billet having a diameter of about 300 mm, for example, reheating the obtained billet, and extruding the billet. In the extrusion method, the billet is strongly compressed at the time of extrusion, so that crystal precipitates in the billet that are likely to become starting points such as cracks during subsequent rolling of the material plate or plastic processing of the rolled material can be pulverized to some extent.

双ロール鋳造法による素材板は、外周面を対向させた一対のロール間の入り側から溶湯を供給し、出側から薄板として凝固した素材板を送り出すことにより得られる。   The material plate by the twin roll casting method is obtained by supplying molten metal from the entrance side between a pair of rolls with the outer peripheral surfaces facing each other, and sending out the solidified material plate as a thin plate from the exit side.

これら3つの方法から得られた素材板の中では、双ロール鋳造法による素材板を用いることが好ましい。双ロール鋳造法は、双ロールを用いた急冷凝固が可能なため、得られる素材板に酸化物や偏析などの内部欠陥が少ない。特に、最終厚を1.2mm以下の圧延板にした後では、その後のプレス加工などの塑性加工に悪影響を及ぼすような欠陥を消滅させることができる。より具体的には、粒径10μm以上の晶析出物が圧延板内に残存していない。また、AZ31やAZ91などの合金組成にかかわらず晶析出物が少ない素材板を得ることができる。また、難加工材でも薄板を得ることができるため、その後の素材板の圧延工程数を減少して低コスト化できる。   Among the material plates obtained from these three methods, it is preferable to use a material plate by a twin roll casting method. In the twin roll casting method, rapid solidification using twin rolls is possible, and the resulting material plate has few internal defects such as oxides and segregation. In particular, after the final thickness of the rolled sheet is 1.2 mm or less, it is possible to eliminate defects that adversely affect the subsequent plastic working such as press working. More specifically, crystal precipitates having a particle size of 10 μm or more do not remain in the rolled sheet. Moreover, a raw material plate with few crystal precipitates can be obtained irrespective of alloy compositions, such as AZ31 and AZ91. Moreover, since a thin plate can be obtained even with a difficult-to-process material, the number of subsequent rolling steps of the material plate can be reduced and the cost can be reduced.

(その他の加工条件)
その他の加工条件として、必要に応じて、圧延する前の素材板に溶体化処理を施してもよい。溶体化処理の条件は、例えば、380〜420℃×60分〜600分程度、好ましくは390〜410℃×360〜600分程度である。このように溶体化処理を施すことによって、偏析を小さくすることができる。特に、Al含有量の高いAZ91相当のマグネシウム合金の場合、溶体化処理を長時間行なうことが好ましい。
(Other processing conditions)
As other processing conditions, a solution treatment may be performed on the material plate before rolling as necessary. The conditions for the solution treatment are, for example, about 380 to 420 ° C. × 60 minutes to 600 minutes, preferably about 390 to 410 ° C. × 360 to 600 minutes. By performing the solution treatment in this way, segregation can be reduced. In particular, in the case of a magnesium alloy corresponding to AZ91 having a high Al content, it is preferable to perform the solution treatment for a long time.

また、必要に応じて、圧延工程(制御圧延かどうかは問わない)の間に歪取り焼鈍を行ってもよい。歪取り焼鈍は、圧延工程の一部のパス間で行なうことが好ましい。この歪取り焼鈍を圧延工程のどの段階で何回行なうかは、マグネシウム合金板に蓄積される歪の量を考慮して、適宜選択すると良い。この歪取り焼鈍を行うことで、その後のパスの圧延をより円滑に行わしめる。この歪取り焼鈍条件は、例えば、250〜350℃×20分〜60分程度である。   Moreover, you may perform strain relief annealing during a rolling process (regardless of whether it is controlled rolling) as needed. The strain relief annealing is preferably performed between some passes in the rolling process. It is preferable to select how many times this strain relief annealing is performed at which stage of the rolling process in consideration of the amount of strain accumulated in the magnesium alloy sheet. By performing this strain relief annealing, rolling of subsequent passes is performed more smoothly. The strain relief annealing conditions are, for example, about 250 to 350 ° C. × 20 minutes to 60 minutes.

さらに、全ての圧延加工を終えた圧延材に最終焼鈍を施すことも望ましい。仕上圧延後のマグネシウム合金板の結晶組織は、加工歪を十分蓄積しているため、最終焼鈍を行なった場合、微細な状態で再結晶化する。即ち、最終焼鈍を行なって歪を解消した合金板であっても、微細な再結晶組織を有するために、強度が高い状態に維持される。また、このように予め合金板の組織を再結晶化させることにより、250℃程度の温度条件で塑性加工を行なったときに、合金板の組織の結晶粒が粗大化するなど、塑性加工の前後で結晶組織が大きく変化することがない。従って、最終焼鈍を施したマグネシウム合金板では、塑性加工時に塑性変形した部分は加工硬化により強度が向上し、塑性変形していない部分の強度は加工前の強度を維持することができる。この最終焼鈍条件は、200〜350℃×10分〜60分程度である。具体的には、マグネシウム合金中のAl含有量が2.5〜3.5%で、亜鉛の含有量が0.5〜1.5%のときは、220〜260℃で10〜30分、マグネシウム合金中のAl含有量が8.5〜10.0%で、亜鉛の含有量が0.5〜1.5%のときは、300〜340℃で10〜30分の最終焼鈍を行なうと良い。 Furthermore, it is also desirable to subject the rolled material after all the rolling processes to final annealing. Since the crystallographic structure of the magnesium alloy sheet after finish rolling sufficiently accumulates processing strain, it is recrystallized in a fine state when final annealing is performed. That is, even if the alloy plate is subjected to final annealing to eliminate strain, it has a fine recrystallized structure and is therefore maintained in a high strength state. In addition, by recrystallizing the structure of the alloy plate in advance, when the plastic working is performed under a temperature condition of about 250 ° C., the crystal grains of the structure of the alloy plate are coarsened before and after the plastic working. The crystal structure does not change greatly. Therefore, in the magnesium alloy plate subjected to the final annealing, the strength of the portion plastically deformed during the plastic working is improved by work hardening, and the strength of the portion not plastically deformed can maintain the strength before the processing. This final annealing condition is about 200 to 350 ° C. × 10 to 60 minutes. Specifically, when the Al content in the magnesium alloy is 2.5 to 3.5% and the zinc content is 0.5 to 1.5%, it is 10 to 30 minutes at 220 to 260 ° C. When the Al content in the magnesium alloy is 8.5 to 10.0% and the zinc content is 0.5 to 1.5%, the final annealing is performed at 300 to 340 ° C. for 10 to 30 minutes. good.

(中心線偏析について)
双ロール鋳造材で作製した板は、鋳造時に板厚の中心部に偏析が発生する。Alを含有するマグネシウム合金の場合、偏析する物質は、主としてMg17Al12の組成からなる金属間化合物であり、マグネシウム合金中における不純物の含有量が多い合金ほど発生しやすい。ASTM規格のAZ系合金を例にとると、Alの含有量が約9質量%のAZ91の方が約3質量%のAZ31よりも鋳造後の偏析量が多くなる。偏析量の多いAZ91であっても、すでに述べたように粗圧延工程や仕上圧延前の溶体化処理を適切な条件で行うことによって、マグネシウム合金板における厚さ方向の偏析の長さを20μm以下に分散させることができる。ここで「偏析を分散させる」とは、線状の偏析を厚さ方向に分断したり、長さ方向に分断したりすることをいい、プレス加工に支障のない偏析の厚さ方向の長さの目安は、20μm以下である。偏析の厚さ方向の長さは、20μmよりもさらに小さくすることが好ましく、偏析の最大長さが母材の結晶粒径より小さく分散するとさらに強度特性が向上することが推察される。
(About centerline segregation)
A plate produced from a twin roll cast material is segregated at the center of the plate thickness during casting. In the case of a magnesium alloy containing Al, the segregating substance is an intermetallic compound mainly composed of Mg 17 Al 12 , and an alloy having a higher impurity content in the magnesium alloy is more likely to be generated. Taking an ASTM standard AZ-based alloy as an example, the amount of segregation after casting is larger in AZ91 having an Al content of about 9% by mass than in AZ31 having about 3% by mass. Even in the case of AZ91 having a large amount of segregation, the length of segregation in the thickness direction in the magnesium alloy sheet is 20 μm or less by performing the roughing process and solution treatment before finish rolling as described above under appropriate conditions. Can be dispersed. Here, “dispersing the segregation” means dividing the linear segregation in the thickness direction or in the length direction, and the length in the thickness direction of the segregation that does not hinder the press working. Is approximately 20 μm or less. The length in the thickness direction of the segregation is preferably further smaller than 20 μm, and it is assumed that the strength characteristics are further improved when the maximum segregation length is smaller than the crystal grain size of the base material.

(マグネシウム合金板の機械的特性について)
マグネシウム合金板を製造する際に、圧延工程で歪を蓄積し、この歪を熱処理により除去しない場合、引張強度を360MPaにすることは容易にできる。しかし、その場合、合金板の伸びを10%以上にすることは困難である。具体的には、室温での破断伸びが15%未満では塑性加工性が悪く、250℃以下の低い温度ではプレス成形時に割れやひびなどの損傷が生じる。一方、マグネシウム合金板の室温での破断伸びが15%以上であれば、この合金板の250℃における破断伸びは100%以上になり、プレス成形時にマグネシウム合金板の表面に割れやひびなどの損傷が生じることがほとんどない。上記のような機械的特性を有するマグネシウム合金板を製造することにも、上記例示したマグネシウム合金板の製造方法は有効である。特に、Al含有量Mが8.5〜10.0質量%と多いマグネシウム合金(さらに、亜鉛を0.5〜1.5質量%含有)であっても、室温において、引張強度360MPa以上、降伏強度270MPa以上、破断伸び15%以上のマグネシウム合金板を製造することができる。また、上記例示したマグネシウム合金板の製造方法によれば、降伏比が75%以上であるマグネシウム合金板とすることもできる。
(Mechanical properties of magnesium alloy sheet)
When manufacturing a magnesium alloy sheet, if the strain is accumulated in the rolling process and this strain is not removed by heat treatment, the tensile strength can be easily set to 360 MPa. However, in that case, it is difficult to increase the elongation of the alloy plate to 10% or more. Specifically, when the elongation at break at room temperature is less than 15%, the plastic workability is poor, and at temperatures as low as 250 ° C. or lower, damage such as cracks and cracks occurs during press molding. On the other hand, if the breaking elongation at room temperature of the magnesium alloy plate is 15% or more, the breaking elongation at 250 ° C. of this alloy plate is 100% or more, and the surface of the magnesium alloy plate is damaged such as cracks and cracks during press forming. Almost never occurs. The above-described method for producing a magnesium alloy plate is also effective in producing a magnesium alloy plate having the above mechanical characteristics. In particular, a magnesium alloy having a high Al content M of 8.5 to 10.0% by mass (further, containing 0.5 to 1.5% by mass of zinc) has a tensile strength of 360 MPa or more at room temperature. A magnesium alloy plate having a strength of 270 MPa or more and a breaking elongation of 15% or more can be produced. Moreover, according to the manufacturing method of the magnesium alloy plate illustrated above, it can also be set as the magnesium alloy plate whose yield ratio is 75% or more.

マグネシウム合金板の塑性加工は、この塑性加工の際に合金板の組織が再結晶化して合金板の機械特性が大きく変化しないような温度範囲で行なうことが好ましい。例えば、Alを1.0〜10.0重量%含有するマグネシウム合金板の場合、約250℃以下の温度で塑性加工を行なうことが好ましい。ここで、上記例示したマグネシウム合金板の製造方法によれば、Al含有量Mが8.5〜10.0質量%で、亜鉛含有量が0.5〜1.5質量%であるマグネシウム合金板の200℃における引張強度を120MPa以上、破断伸びを80%以上、250℃における引張強度を90MPa以上、破断伸びを100%以上とすることができるので、塑性加工、特にプレス成形などの強加工に適している。また、上記例示したマグネシウム合金板の製造方法によれば、AZ31相当のマグネシウム合金板の250℃における引張強度を60MPa以上、破断伸びを120%以上にすることができる。   The plastic processing of the magnesium alloy plate is preferably performed in a temperature range in which the structure of the alloy plate is recrystallized during the plastic processing and the mechanical properties of the alloy plate are not significantly changed. For example, in the case of a magnesium alloy plate containing 1.0 to 10.0% by weight of Al, it is preferable to perform plastic working at a temperature of about 250 ° C. or lower. Here, according to the magnesium alloy sheet manufacturing method exemplified above, the magnesium alloy sheet having an Al content M of 8.5 to 10.0% by mass and a zinc content of 0.5 to 1.5% by mass. The tensile strength at 200 ° C. can be 120 MPa or more, the breaking elongation can be 80% or more, the tensile strength at 250 ° C. can be 90 MPa or more, and the breaking elongation can be 100% or more. Is suitable. Moreover, according to the magnesium alloy plate manufacturing method exemplified above, the tensile strength at 250 ° C. of the magnesium alloy plate corresponding to AZ31 can be 60 MPa or more and the elongation at break can be 120% or more.

上記例示した方法によれば次の効果を奏することができる。
上記例示した方法によれば、圧延時における素材板の温度と圧延ロールの温度を特定することで、マグネシウム合金の結晶粒が再結晶化しない範囲での圧延を可能にする。それにより、合金の結晶粒の粗大化を抑制し、かつ素材板の表面に亀裂が発生しにくい圧延が可能になる。また、素材板の中心部分に偏析が生じる量を少なくすることができ、また、結晶粒径のばらつきを小さくすることができる。
According to the method exemplified above, the following effects can be obtained.
According to the method exemplified above, by specifying the temperature of the blank sheet and the temperature of the rolling roll at the time of rolling, it is possible to perform rolling in a range in which the crystal grains of the magnesium alloy are not recrystallized. Thereby, it is possible to perform rolling that suppresses the coarsening of the crystal grains of the alloy and hardly causes cracks on the surface of the material plate. Further, it is possible to reduce the amount of segregation in the central portion of the material plate, and to reduce the variation in crystal grain size.

特に、双ロール鋳造法により得られた素材板を圧延した場合は、割れなどの起点となる晶析出物が少なく、亀裂が生じないか、ほとんど亀裂の生じない塑性加工を行なうことができる。   In particular, when a material plate obtained by a twin roll casting method is rolled, there are few crystal precipitates that are the starting points of cracks and the like, and plastic working can be performed with little or no cracks.

また、本発明マグネシウム合金板は、以下に示す特性を有する。
本発明マグネシウム合金板は、微細な結晶粒で構成されるので非常に優れた塑性加工性を有する。
The magnesium alloy sheet of the present invention has the following characteristics.
Since the magnesium alloy sheet of the present invention is composed of fine crystal grains, it has very good plastic workability.

本発明マグネシウム合金板は、引張強度360MPa以上、降伏強度270MPa以上、破断伸び15%以上を同時に満たすので、プレス成形を行なっても不具合の生じないマグネシウム合金とすることができる。   The magnesium alloy sheet of the present invention satisfies the tensile strength of 360 MPa or more, the yield strength of 270 MPa or more, and the elongation at break of 15% or more at the same time.

以下、本発明の実施の形態を説明する。
(試験例1)
Mg−3.0%Al−1.0%Zn(全て質量%)を含有するAZ31相当の組成を持ち、双ロール連続鋳造法により得られた厚さ4mmのマグネシウム合金素材板を用意する。この素材板を1mmの厚さまで粗圧延し、平均結晶粒径6.5μmの粗圧延板を得る。粗圧延は、素材板を250〜350℃に予熱し、その素材板を常温の圧延ロールで圧延することにより行った。平均結晶粒径は、JIS G 0551に記載される算出式を用いて求めた。次に、この粗圧延板を、種々の異なる条件で厚さ0.5mmまで仕上圧延する。そして、仕上圧延材に250℃×30分の最終熱処理を行い、その熱処理材から直径92mmの円板を切り出して、評価用サンプルとした。
Embodiments of the present invention will be described below.
(Test Example 1)
A magnesium alloy material plate having a composition equivalent to AZ31 containing Mg-3.0% Al-1.0% Zn (all by mass%) and having a thickness of 4 mm obtained by a twin roll continuous casting method is prepared. This material plate is roughly rolled to a thickness of 1 mm to obtain a roughly rolled plate having an average crystal grain size of 6.5 μm. Rough rolling was performed by preheating the material plate to 250 to 350 ° C. and rolling the material plate with a rolling roll at room temperature. The average crystal grain size was determined using a calculation formula described in JIS G 0551. Next, this rough rolled sheet is finish-rolled to a thickness of 0.5 mm under various different conditions. Then, a final heat treatment was performed on the finished rolled material at 250 ° C. for 30 minutes, and a disk having a diameter of 92 mm was cut out from the heat treated material to obtain a sample for evaluation.

次に、各サンプルの観察面をバフ研磨(ダイヤモンド砥粒♯200)し、その後エッチング処理を施して、光学顕微鏡の400倍視野にて組織観察および平均結晶粒径の測定を行った。   Next, the observation surface of each sample was buffed (diamond abrasive grains # 200), and then subjected to an etching treatment, and the structure was observed and the average crystal grain size was measured in a 400 × field of view of an optical microscope.

さらに、これらのサンプルを、円柱状のパンチと、このパンチが嵌合する円筒穴を有するダイスを用いて、以下の条件で絞り成形加工した。
金型設定温度:200℃
パンチ直径:40.0mm(先端R:Rp=4mm)
ダイス穴径:42.5mm(肩R:Rd=4mm)
クリアランス:1.25mm
成形速度:2.0mm/分
絞り比:2.3
Furthermore, these samples were drawn and formed under the following conditions using a cylindrical punch and a die having a cylindrical hole into which the punch fits.
Mold setting temperature: 200 ℃
Punch diameter: 40.0 mm (tip R: Rp = 4 mm)
Die hole diameter: 42.5 mm (shoulder R: Rd = 4 mm)
Clearance: 1.25mm
Molding speed: 2.0 mm / min Drawing ratio: 2.3

ここでのRpとはパンチ先端の縦断面においてパンチ外周縁部を構成する曲線の半径のことであり、Rdとはダイスの縦断面においてダイス穴開口部を構成する曲線の半径のことである。また、絞り比はサンプルの直径/パンチの直径である。   Here, Rp is a radius of a curve constituting the outer peripheral edge of the punch in the longitudinal section of the punch tip, and Rd is a radius of a curve constituting the die hole opening in the longitudinal section of the die. The drawing ratio is the diameter of the sample / the diameter of the punch.

仕上圧延条件と上記試験結果を表1にまとめて示す。この表における各表記は次の意義を示す。
板温度:仕上圧延直前における素材板の表面温度
ロール温度:仕上圧延の圧延ロールの表面温度
圧延方向:「一定」は全てのパスを同一方向に圧延したことを示し、「R」は各パスごとに圧延方向を逆転して圧延したことを示す。
1パス平均圧下率:板厚1mm→0.5mmまでの圧延における総圧下率(50%)/パス数
板表面状態:圧延材に割れやしわのないものを○、わずかにワニ革状の割れが生じたものを△、割れが生じたものを×とする。
縁割れ:圧延材の側縁部に割れがないものを○、ごく微小な割れだけのものを△、割れがあるものを×とする。
絞り性:加工品の角部に割れがないものを○、割れはないがしわが発生しているものを△、割れがあるもの又は破断に至ったものを×とする。
Table 1 summarizes the finish rolling conditions and the test results. Each notation in this table has the following significance.
Sheet temperature: Surface temperature of the raw material plate immediately before finish rolling Roll temperature: Surface temperature of rolling roll for finish rolling Rolling direction: “Constant” indicates that all passes were rolled in the same direction, “R” for each pass Shows that the rolling direction is reversed.
1-pass average rolling reduction: Total rolling reduction (50%) / number of passes in rolling from 1 mm to 0.5 mm in thickness Thickness of the surface of the rolled material: No cracks or wrinkles in the rolled material, slightly crocodile leather-like cracking △ indicates that a crack occurred and x indicates a crack occurred.
Edge cracking: “O” indicates that there is no crack at the side edge of the rolled material, “Δ” indicates that there is only a very small crack, and “X” indicates that there is a crack.
Drawing property: “O” indicates that there are no cracks at the corners of the processed product, “Δ” indicates that there are no cracks but wrinkles are generated, and “X” indicates that there is a crack or a fracture.

Figure 0005218923
Figure 0005218923

この表から明らかなように、仕上圧延を上述した制御圧延としたサンプルは、いずれも平均粒径が小さく、縁割れや表面に細かい割れがない上、絞り性に優れていることがわかる。なお、本発明に係るサンプルの晶析出物のサイズは5μm以下であった。   As is apparent from this table, it can be seen that all the samples in which the finish rolling is controlled rolling described above have a small average particle diameter, no edge cracks or fine cracks on the surface, and excellent drawability. In addition, the size of the crystal precipitate of the sample according to the present invention was 5 μm or less.

(試験例2)
次に、試験例1で用いた素材板と同じ厚さ4mmの素材板を用意し、この素材板を所定の厚さまで粗圧延して、厚さの異なる粗圧延板を得る。この粗圧延も、素材板を250〜350℃に予熱し、その素材板を常温の圧延ロールで圧延することにより行った。その粗圧延板を最終板厚0.5mmにまで異なる総圧下率で仕上圧延して、仕上圧延材を得た。仕上圧延は、仕上圧延直前における粗圧延板の表面温度を160〜190℃とし、その際の仕上圧延ロールの表面温度を150〜180℃の範囲に制御して行った。次に、この仕上圧延材にも試験例1と同様に、250℃×30分の熱処理を行い、評価用サンプルとした。
(Test Example 2)
Next, a material plate having the same thickness of 4 mm as the material plate used in Test Example 1 is prepared, and this material plate is roughly rolled to a predetermined thickness to obtain rough rolled plates having different thicknesses. This rough rolling was also performed by preheating the material plate to 250 to 350 ° C. and rolling the material plate with a rolling roll at room temperature. The rough rolled plate was finish-rolled at different total reduction ratios to a final thickness of 0.5 mm to obtain a finished rolled material. In the finish rolling, the surface temperature of the rough rolled plate immediately before the finish rolling was set to 160 to 190 ° C, and the surface temperature of the finish rolling roll at that time was controlled in the range of 150 to 180 ° C. Next, similarly to Test Example 1, this finished rolled material was heat-treated at 250 ° C. for 30 minutes to obtain a sample for evaluation.

これらのサンプルについても試験例1と同様の方法で、平均結晶粒径の測定、板表面状態の評価、縁割れの評価を行い、さらにこれら各評価結果の総合評価を行った。仕上圧延における圧下率/パスおよび総圧下率と評価結果を表2に示す。この表における「板表面状態」、「縁割れ」の意義は試験例1における同一の用語と同様である。また、「総圧下率」は、粗圧延材の板厚から最終板厚までの仕上圧延における総圧下率、つまり板の表面温度を160〜190℃とした圧延における総圧下率である。但し、No.2−1における括弧内に記載した数値は粗圧延板の表面温度を220℃として仕上圧延を行ったことを示している。   For these samples, the average crystal grain size was measured, the plate surface condition was evaluated, and the edge cracks were evaluated in the same manner as in Test Example 1, and the overall evaluation of these evaluation results was further performed. Table 2 shows the reduction ratio / pass and the total reduction ratio and the evaluation results in finish rolling. The meanings of “plate surface state” and “edge crack” in this table are the same as the same terms in Test Example 1. The “total rolling reduction” is the total rolling reduction in finish rolling from the plate thickness of the rough rolled material to the final plate thickness, that is, the total rolling reduction in rolling with the surface temperature of the plate set to 160 to 190 ° C. However, no. The numerical values described in parentheses in 2-1 indicate that the finish rolling was performed with the surface temperature of the rough rolled sheet set at 220 ° C.

Figure 0005218923
Figure 0005218923

この表から明らかなように、総圧下率が10〜75%のサンプルは総合評価において優れた結果が得られていることがわかる。   As is apparent from this table, it can be seen that samples having a total rolling reduction of 10 to 75% have excellent results in comprehensive evaluation.

(試験例3−1)
Mg−9.0%Al−1.0%Zn(全て質量%)を含有するAZ91相当の組成を持ち、双ロール連続鋳造法により得られた厚さ4mmのマグネシウム合金素材板を用意する。この素材板を所定の1mmの厚さまで粗圧延し、平均結晶粒径6.8μmの粗圧延板を得る。粗圧延は、素材板を300〜380℃に予熱し、その素材板を常温の圧延ロールで圧延することにより行った。平均結晶粒径は、JIS G 0551に記載される算出式を用いて求めた。次に、この粗圧延板を、種々の異なる条件で厚さ0.5mmまで仕上圧延する。そして、仕上圧延材に320℃×30分の最終熱処理を行い、その熱処理材から直径92mmの円板を切り出して、評価用サンプルとした。
(Test Example 3-1)
A 4 mm-thick magnesium alloy material plate having a composition equivalent to AZ91 containing Mg-9.0% Al-1.0% Zn (all by mass) is prepared. This material plate is roughly rolled to a predetermined thickness of 1 mm to obtain a roughly rolled plate having an average crystal grain size of 6.8 μm. Rough rolling was performed by preheating the material plate to 300 to 380 ° C. and rolling the material plate with a rolling roll at room temperature. The average crystal grain size was determined using a calculation formula described in JIS G 0551. Next, this rough rolled sheet is finish-rolled to a thickness of 0.5 mm under various different conditions. Then, a final heat treatment was performed on the finished rolled material at 320 ° C. for 30 minutes, and a disk having a diameter of 92 mm was cut out from the heat treated material to obtain a sample for evaluation.

次に、各サンプルの観察面をバフ研磨(ダイヤモンド砥粒♯200)し、その後エッチング処理を施して、光学顕微鏡の400倍視野にて組織観察および平均結晶粒径の測定を行った。   Next, the observation surface of each sample was buffed (diamond abrasive grains # 200), and then subjected to an etching treatment, and the structure was observed and the average crystal grain size was measured in a 400 × field of view of an optical microscope.

さらに、これらのサンプルを、円柱状のパンチと、このパンチが嵌合する円筒穴を有するダイスを用いて、金型設定温度を250℃とした以外は試験例1と同様の条件で絞り成形加工した。仕上圧延条件と上記試験結果を表3にまとめて示す。この表における各表記の意義も試験例1と同様である。   Further, these samples were drawn and formed under the same conditions as in Test Example 1 except that the die set temperature was set to 250 ° C. using a cylindrical punch and a die having a cylindrical hole into which the punch was fitted. did. Table 3 summarizes the finish rolling conditions and the test results. The meaning of each notation in this table is the same as in Test Example 1.

Figure 0005218923
Figure 0005218923

(試験例3−2)
また、試験例3−1とはAlの含有量が異なるマグネシウム合金素材板を用いて、試験例3−1と同様に仕上圧延時の素材板の温度やロール温度などの影響を試験した。仕上圧延以外の製造条件や、マグネシウム合金板の評価方法は、試験例3−1と同様である。なお、マグネシウム合金素材板のAl含有量は、9.8質量%、Zn含有量は、1.0質量%であった。仕上圧延条件と上記試験結果を表4にまとめて示す。
(Test Example 3-2)
Moreover, the influence of the temperature of a raw material board at the time of finish rolling, roll temperature, etc. was tested like the test example 3-1, using the magnesium alloy raw material board from which Al content differs from the test example 3-1. Manufacturing conditions other than finish rolling and a method for evaluating a magnesium alloy plate are the same as in Test Example 3-1. The magnesium alloy material plate had an Al content of 9.8% by mass and a Zn content of 1.0% by mass. Table 4 summarizes the finish rolling conditions and the test results.

Figure 0005218923
Figure 0005218923

表3および表4から明らかなように、仕上圧延を上述した制御圧延としたサンプルは、いずれも平均粒径が小さく、縁割れや表面に細かい割れがない上、絞り性に優れていることがわかる。   As is apparent from Tables 3 and 4, all the samples in which the finish rolling is controlled rolling described above have a small average particle size, no edge cracks or fine cracks on the surface, and excellent drawability. Recognize.

(試験例4−1)
次に、試験例3−1で用いた素材板と同じ厚さ4mmの素材板を用意し、この素材板を所定の厚さまで粗圧延して、厚さの異なる粗圧延板を得る。この粗圧延も、素材板を300〜380℃に予熱し、その素材板を常温の圧延ロールで圧延することにより行った。その粗圧延板を最終板厚0.5mmにまで異なる総圧下率で仕上圧延して、仕上圧延材を得た。仕上圧延は、仕上圧延直前における粗圧延板の表面温度を210〜240℃とし、その際の仕上圧延ロールの表面温度を150〜180℃の範囲に制御して行った。次に、この仕上圧延材にも試験例3−1と同様に、320℃×30分の熱処理を行い、評価用サンプルとした。
(Test Example 4-1)
Next, a material plate having the same thickness of 4 mm as the material plate used in Test Example 3-1 is prepared, and this material plate is roughly rolled to a predetermined thickness to obtain rough rolled plates having different thicknesses. This rough rolling was also performed by preheating the material plate to 300 to 380 ° C. and rolling the material plate with a rolling roll at room temperature. The rough rolled plate was finish-rolled at different total reduction ratios to a final thickness of 0.5 mm to obtain a finished rolled material. In the finish rolling, the surface temperature of the rough rolled plate immediately before the finish rolling was set to 210 to 240 ° C, and the surface temperature of the finish rolling roll at that time was controlled in the range of 150 to 180 ° C. Next, similarly to Test Example 3-1, this finished rolled material was heat-treated at 320 ° C. for 30 minutes to obtain an evaluation sample.

これらのサンプルについても試験例3−1と同様の方法で、平均結晶粒径の測定、板表面状態の評価、縁割れの評価を行い、さらにこれら各評価結果の総合評価を行った。仕上圧延における圧下率/パスおよび総圧下率と評価結果を表5に示す。この表における「板表面状態」、「縁割れ」の意義は試験例1における同一の用語と同様である。また、「総圧下率」は、粗圧延材の板厚から最終板厚までの仕上圧延における総圧下率、つまり板の表面温度を210〜240℃とした圧延における総圧下率である。但し、No.4−1における括弧内に記載した数値は粗圧延板の表面温度を270℃として仕上圧延を行ったことを示している。   For these samples, the average crystal grain size was measured, the plate surface condition was evaluated, and the edge cracks were evaluated in the same manner as in Test Example 3-1, and the overall evaluation of these evaluation results was further performed. Table 5 shows the reduction ratio / pass and the total reduction ratio and the evaluation results in finish rolling. The meanings of “plate surface state” and “edge crack” in this table are the same as the same terms in Test Example 1. The “total rolling reduction” is the total rolling reduction in finish rolling from the plate thickness to the final plate thickness of the rough rolled material, that is, the total rolling reduction in rolling with the surface temperature of the plate being 210 to 240 ° C. However, no. The numerical values described in parentheses in 4-1 indicate that the finish rolling was performed with the surface temperature of the rough rolled sheet set at 270 ° C.

Figure 0005218923
Figure 0005218923

(試験例4−2)
また、試験例4−1とはAlの含有量が異なるマグネシウム合金素材板を用いて、試験例4−1と同様に仕上圧延時の1パスあたりの平均圧下率と総圧下率の影響を試験した。仕上圧延以外の製造条件や、マグネシウム合金板の評価方法は、試験例4−1と同様である。なお、マグネシウム合金素材板のAl含有量は、9.8質量%、Zn含有量は、1.0質量%であった。仕上圧延条件と上記試験結果を表6にまとめて示す。
(Test Example 4-2)
Moreover, the influence of the average rolling reduction per one pass at the time of finish rolling and a total rolling reduction was tested similarly to Test Example 4-1, using the magnesium alloy raw material board from which Al content differs from Test Example 4-1. did. Manufacturing conditions other than finish rolling and a method for evaluating a magnesium alloy sheet are the same as in Test Example 4-1. The magnesium alloy material plate had an Al content of 9.8% by mass and a Zn content of 1.0% by mass. Table 6 summarizes the finish rolling conditions and the test results.

Figure 0005218923
Figure 0005218923

表5および表6から明らかなように、総圧下率が10〜75%のサンプルは総合評価において優れた結果が得られていることがわかる。   As is clear from Tables 5 and 6, it can be seen that samples having a total rolling reduction of 10 to 75% have excellent results in comprehensive evaluation.

(試験例1〜試験例4のまとめ)
以上の試験例1〜試験例4の結果から、素材板を構成するマグネシウム合金中のAl含有量をM(質量%)としたとき、圧延ロールへ挿入する直前における素材板の表面温度Tb(℃)とMとの関係をグラフ化して整理した。その結果、素材板の表面温度Tbを下記の式を満たす温度とし、圧延ロールの表面温度Trを150〜180℃とする制御圧延を行えば、結晶粒径が微細化されて塑性加工性に優れたマグネシウム合金板を得られることが判明した。
8.33×M+135≦Tb≦8.33×M+165
ただし、1.0≦M≦10.0
(Summary of Test Example 1 to Test Example 4)
From the results of Test Example 1 to Test Example 4 above, when the Al content in the magnesium alloy constituting the material plate is M (mass%), the surface temperature Tb (° C.) of the material plate immediately before insertion into the rolling roll. ) And M are organized in a graph. As a result, if the controlled rolling is performed so that the surface temperature Tb of the material plate satisfies the following formula and the surface temperature Tr of the rolling roll is 150 to 180 ° C., the crystal grain size is refined and the plastic workability is excellent. It was found that a magnesium alloy plate could be obtained.
8.33 × M + 135 ≦ Tb ≦ 8.33 × M + 165
However, 1.0 ≦ M ≦ 10.0

(試験例5)
さらに、素材板の製造方法と圧延条件とを変えてマグネシウム合金板(AZ31相当材)の製造を行った。素材板の製造方法と圧延条件の各々は次の通りである。
(Test Example 5)
Furthermore, a magnesium alloy plate (AZ31 equivalent material) was manufactured by changing the manufacturing method and rolling conditions of the material plate. Each of the manufacturing method of a raw material board and rolling conditions is as follows.

<素材板の製造方法>
A1:双ロール連続鋳造で厚さ4mmの素材板を得る。
A2:厚みが200mm程度のインゴットを鋳造し、このインゴットの表面を切削して、得られた切削材を熱間圧延することで厚さ4mmの素材板を得る。
<Production method of material plate>
A1: A material plate having a thickness of 4 mm is obtained by twin-roll continuous casting.
A2: An ingot having a thickness of about 200 mm is cast, the surface of the ingot is cut, and the obtained cutting material is hot-rolled to obtain a material plate having a thickness of 4 mm.

<圧延方法>
B1:粗圧延(板厚4mm→1mm)では素材板を250〜350℃に予熱して常温の圧延ロールで圧延し、仕上圧延(板厚1mm→0.5mm)では圧延ロールの表面温度を150〜180℃、この圧延ロールへ挿入する直前における粗圧延板の表面温度を160〜190℃とした制御圧延を行う。
B2:全てのパスの圧延(板厚4mm→0.5mm)で素材板を300〜400℃に予熱し、常温の圧延ロールで圧延する。
<Rolling method>
B1: In rough rolling (sheet thickness 4 mm → 1 mm), the raw material plate is preheated to 250 to 350 ° C. and rolled with a normal temperature rolling roll, and in finish rolling (sheet thickness 1 mm → 0.5 mm), the surface temperature of the rolling roll is 150. Control rolling is performed with the surface temperature of the rough rolled plate immediately before insertion into the rolling roll at 160 to 190 ° C.
B2: The raw material plate is preheated to 300 to 400 ° C. by rolling in all passes (plate thickness 4 mm → 0.5 mm) and rolled with a rolling roll at room temperature.

以上の条件を表7に示す組合せでマグネシウム合金板の圧延を行ない、さらにその圧延板に250℃×30分の最終熱処理を行い、得られたマグネシウム合金板について、平均結晶粒径の測定、板表面状態の評価、縁割れの評価を行って、各評価の総合評価をした。その結果も表7に示す。この表における総合評価は、良好な方から順に◎、○、△で示している。   The magnesium alloy sheet was rolled in the combination shown in Table 7 under the above conditions, and the final heat treatment was performed on the rolled sheet at 250 ° C. for 30 minutes. The surface condition and edge crack were evaluated, and a comprehensive evaluation of each evaluation was made. The results are also shown in Table 7. The overall evaluation in this table is indicated by ◎, ○, △ in order from the best.

Figure 0005218923
Figure 0005218923

この結果から明らかなように、双ロール鋳造により得られた素材板を用いて所定の制御圧延を施せば、特に塑性加工性に優れたマグネシウム合金板が得られることがわかる。   As is apparent from this result, it is understood that a magnesium alloy sheet having particularly excellent plastic workability can be obtained by performing a predetermined controlled rolling using a material sheet obtained by twin roll casting.

(試験例6)
Mg−3.0%Al−1.0%Zn(全て質量%)を含有するAZ31相当の組成を持ち、双ロール連続鋳造法により得られた厚さ4mmのマグネシウム合金素材板を用意する。この素材板を異なる条件で厚さ1mmまで粗圧延して、複数の粗圧延板を得る。次いで、この複数の粗圧延板を最終板厚0.5mmになるまで同一の条件で仕上圧延して、マグネシウム合金板を得た。仕上圧延は、仕上圧延直前における粗圧延板の表面温度を160〜190℃、仕上圧延ロールの表面温度を150〜180℃の範囲に制御して実施した。またその際の1パス当たりの圧下率が15%となるようにした。そして、仕上圧延して得られたマグネシウム合金板を、250℃×30分熱処理し、評価用サンプルとした。これらのサンプルについて、試験例1と同様の方法で、平均結晶粒径の測定、板表面状態の評価、縁割れの評価を行った。
(Test Example 6)
A magnesium alloy material plate having a composition equivalent to AZ31 containing Mg-3.0% Al-1.0% Zn (all by mass%) and having a thickness of 4 mm obtained by a twin roll continuous casting method is prepared. This material plate is roughly rolled to a thickness of 1 mm under different conditions to obtain a plurality of coarsely rolled plates. Next, the plurality of rough rolled plates were finish-rolled under the same conditions until a final plate thickness of 0.5 mm was obtained to obtain a magnesium alloy plate. The finish rolling was carried out by controlling the surface temperature of the rough rolled plate immediately before the finish rolling in the range of 160 to 190 ° C and the surface temperature of the finish rolling roll in the range of 150 to 180 ° C. Also, the rolling reduction per pass at that time was set to 15%. Then, the magnesium alloy plate obtained by finish rolling was heat-treated at 250 ° C. for 30 minutes to obtain a sample for evaluation. For these samples, the average crystal grain size was measured, the plate surface condition was evaluated, and the edge crack was evaluated in the same manner as in Test Example 1.

粗圧延条件と上記試験結果を表8にまとめて示す。この表における各表記は、次の意義を示す。
板温度:粗圧延直前における素材板の表面温度
ロール温度:粗圧延の圧延ロールの表面温度
圧下率/パス:板厚4mm→1.0mmまでの圧延における圧下率/パス
板表面状態;圧延材に割れやしわのないものを○、わずかにワニ革状の割れが生じたものを△、割れが生じたものを×とする。
また、平均結晶粒径は、JIS G 0551に記載される算出式を用いて求めた。
Table 8 summarizes the rough rolling conditions and the test results. Each notation in this table has the following significance.
Sheet temperature: Surface temperature of raw material plate just before rough rolling Roll temperature: Surface temperature of rolling roll for rough rolling Rolling ratio / pass: Rolling ratio in rolling from 4 mm to 1.0 mm in thickness / pass plate surface state; The one without cracks and wrinkles is marked with ◯, the one with a slight crocodile leather-like crack is marked with △, and the one with crack is marked with x.
Further, the average crystal grain size was determined using a calculation formula described in JIS G 0551.

Figure 0005218923
Figure 0005218923

(試験例7−1)
Mg−9.0%Al−1.0%Zn(全て質量%)を含有するAZ91相当の組成を持ち、双ロール連続鋳造法により得られた厚さ4mmのマグネシウム合金素材板を用意する。この素材板を異なる条件で厚さ1mmまで粗圧延して、複数の粗圧延板を得る。次いで、この複数の粗圧延板を最終板厚0.5mmになるまで同一の条件で仕上圧延して、マグネシウム合金板を得た。仕上圧延は、仕上圧延直前における粗圧延板の表面温度を210〜240℃、仕上圧延ロールの表面温度を150〜180℃の範囲に制御して実施した。また、その際の1パス当たりの圧下率が15%となるようにした。そして、仕上圧延して得られたマグネシウム合金板を、320℃×30分熱処理し、評価用サンプルとした。これらのサンプルについて、試験例6と同様の方法で、平均結晶粒径の測定、板表面状態の評価、縁割れの評価を行い、さらに、これら各評価結果を基にして総合評価を行った。
(Test Example 7-1)
A 4 mm-thick magnesium alloy material plate having a composition equivalent to AZ91 containing Mg-9.0% Al-1.0% Zn (all by mass) is prepared. This material plate is roughly rolled to a thickness of 1 mm under different conditions to obtain a plurality of coarsely rolled plates. Next, the plurality of rough rolled plates were finish-rolled under the same conditions until a final plate thickness of 0.5 mm was obtained to obtain a magnesium alloy plate. Finish rolling was performed by controlling the surface temperature of the rough rolled sheet immediately before the finish rolling to 210 to 240 ° C. and the surface temperature of the finish rolling roll to 150 to 180 ° C. In addition, the rolling reduction per pass at that time was set to 15%. And the magnesium alloy plate obtained by finish rolling was heat-treated at 320 ° C. for 30 minutes to obtain a sample for evaluation. For these samples, the average crystal grain size was measured, the plate surface condition was evaluated, and the edge cracks were evaluated in the same manner as in Test Example 6. Further, comprehensive evaluation was performed based on these evaluation results.

粗圧延条件と上記試験結果を表9にまとめて示す。この表における各表記の意義は試験例6と同様とする。   Table 9 summarizes the rough rolling conditions and the test results. The significance of each notation in this table is the same as in Test Example 6.

Figure 0005218923
Figure 0005218923

(試験例7−2)
また、試験例7−1とはAlの含有量が異なるマグネシウム合金素材板を用いて、試験例3−1と同様に粗圧延時の素材板の温度やロール温度などの影響を試験した。粗圧延以外の製造条件や、マグネシウム合金板の評価方法は、試験例7−1と同様である。なお、マグネシウム合金素材板のAl含有量は、9.8質量%、Zn含有量は、1.0質量%であった。仕上圧延条件と上記試験結果を表10にまとめて示す。
(Test Example 7-2)
Moreover, the influence of the temperature of a raw material board at the time of rough rolling, roll temperature, etc. was tested like the test example 3-1, using the magnesium alloy raw material board from which Al content differs from the test example 7-1. Manufacturing conditions other than rough rolling and a method for evaluating a magnesium alloy plate are the same as in Test Example 7-1. The magnesium alloy material plate had an Al content of 9.8% by mass and a Zn content of 1.0% by mass. Table 10 summarizes the finish rolling conditions and the test results.

Figure 0005218923
Figure 0005218923

(試験例8)
試験例6で用いた素材板と同じAZ31素材板(厚さ4mm)を用意した。この素材板を異なる条件で厚さ1mmまで粗圧延し、複数の粗圧延板を得た。そして、その複数の粗圧延板を最終板厚0.5mmになるまで同一の条件で仕上圧延して、マグネシウム合金板を得た。
(Test Example 8)
The same AZ31 material plate (thickness 4 mm) as the material plate used in Test Example 6 was prepared. This material plate was roughly rolled to a thickness of 1 mm under different conditions to obtain a plurality of coarsely rolled plates. Then, the plurality of rough rolled plates were finish-rolled under the same conditions until a final plate thickness of 0.5 mm was obtained to obtain a magnesium alloy plate.

ここで、粗圧延は、粗圧延直前における粗圧延板の表面温度を350℃、粗圧延ロールの表面温度を200〜230℃の範囲に制御して実施した。そして、この粗圧延の際に、1パス当たりの圧下率を変化させた。一方、仕上圧延は、仕上圧延直前における粗圧延板の表面温度を160〜190℃、仕上圧延ロールの表面温度を150〜180℃の範囲に制御し、この仕上圧延の際の1パス当たりの圧下率が15%となるようにした。   Here, the rough rolling was performed by controlling the surface temperature of the rough rolled plate immediately before the rough rolling to 350 ° C. and the surface temperature of the rough rolling roll to 200 to 230 ° C. And the rolling reduction per pass was changed in the case of this rough rolling. On the other hand, in the finish rolling, the surface temperature of the rough rolled plate immediately before the finish rolling is controlled in the range of 160 to 190 ° C., and the surface temperature of the finish rolling roll is controlled in the range of 150 to 180 ° C., and the reduction per pass in the finish rolling is performed. The rate was set to 15%.

次に、この仕上圧延材にも試験例1と同様に、250℃×30分の熱処理を行い、評価用サンプルとした。これらのサンプルについても試験例6と同様の方法で、平均結晶粒径の測定、板表面状態の評価、縁割れの評価を行い、粒径ばらつきの評価を行い、さらにこれら各評価結果の総合評価を行った。粗圧延における1パス当たり圧下率20%以上40%以下の圧延回数と評価結果を表11に示す。この表における「板表面状態」、「縁割れ」の意義は試験例6と同様である。また、「20〜40%圧下率の粗圧延回数」は、1回の粗圧延時の圧下率が20〜40%であった粗圧延の回数を示し、「最高圧下率/パス」は、複数パスの粗圧延のうちの最高圧下率を示す。また、粒径ばらつきの意義については、以下に示す。
大…最大粒径/最小粒径≧2、中…2≧最大粒径/最小粒径≧1.5
小…最大粒径/最小粒径≦1.5
Next, similarly to Test Example 1, this finished rolled material was heat-treated at 250 ° C. for 30 minutes to obtain a sample for evaluation. For these samples, in the same manner as in Test Example 6, measurement of the average crystal grain size, evaluation of the plate surface condition, evaluation of edge cracks, evaluation of particle size variation, and further comprehensive evaluation of each of these evaluation results Went. Table 11 shows the number of rolling and the evaluation results of rolling reduction of 20% to 40% per pass in rough rolling. The meanings of “plate surface state” and “edge crack” in this table are the same as in Test Example 6. “Rough rolling number of 20-40% rolling reduction” indicates the number of times of rough rolling in which the rolling reduction rate in one rough rolling was 20-40%, and “maximum rolling reduction / pass” is plural. The maximum rolling reduction ratio of the rough rolling of the pass is shown. The significance of the particle size variation is shown below.
Large ... maximum particle size / minimum particle size ≧ 2, medium ... 2 ≧ maximum particle size / minimum particle size ≧ 1.5
Small ... maximum particle size / minimum particle size ≦ 1.5

Figure 0005218923
Figure 0005218923

(試験例9−1)
試験例7−1で用いた素材板と同じAZ91素材板(厚さ4mm)を用意した。この素材板を異なる条件で厚さ1mmまで粗圧延し、粗圧延板を得た。その粗圧延板を最終板厚0.5mmになるまで同一の条件で仕上圧延して、マグネシウム合金板を得た。
(Test Example 9-1)
The same AZ91 material plate (thickness 4 mm) as the material plate used in Test Example 7-1 was prepared. This material plate was roughly rolled to a thickness of 1 mm under different conditions to obtain a rough rolled plate. The rough rolled plate was finish-rolled under the same conditions until a final plate thickness of 0.5 mm was obtained to obtain a magnesium alloy plate.

ここで、粗圧延は、粗圧延直前における板の表面温度を350℃とし、その際の仕上圧延ロールの表面温度を200〜230℃の範囲に制御し、1パス当たりの圧下率を変えて行った。一方、仕上圧延は、仕上圧延直前における粗圧延板の表面温度を210〜240℃、仕上圧延ロールの表面温度を150〜180℃の範囲に制御して実施した。また、その際の1パス当たりの圧下率が15%となるようにした。   Here, the rough rolling is performed by setting the surface temperature of the plate immediately before the rough rolling to 350 ° C., and controlling the surface temperature of the finish rolling roll in the range of 200 to 230 ° C. to change the rolling reduction per pass. It was. On the other hand, the finish rolling was performed by controlling the surface temperature of the rough rolled plate immediately before the finish rolling to 210 to 240 ° C. and the surface temperature of the finish rolling roll to 150 to 180 ° C. In addition, the rolling reduction per pass at that time was set to 15%.

次に、この仕上圧延材も試験例7−1と同様に、320℃×30分の熱処理を行い、評価用サンプルとした。そして、これらのサンプルについても試験例6と同様の方法で、平均結晶粒径の測定、板表面状態の評価、縁割れ、ばらつきの評価を行い、さらにこれら各評価結果の総合評価を行った。   Next, this finished rolled material was also heat-treated at 320 ° C. for 30 minutes in the same manner as in Test Example 7-1 to obtain an evaluation sample. For these samples, the average crystal grain size was measured, the plate surface condition was evaluated, the edge cracks were evaluated, and the dispersion was evaluated in the same manner as in Test Example 6, and the overall evaluation of these evaluation results was performed.

粗圧延における1パス当たり圧下率20%以上40%以下の圧延回数と評価結果を表12に示す。この表における「板表面状態」、「縁割れ」、「粒径ばらつき」の意義は試験例8における同一の用語と同様である。   Table 12 shows the number of rolling and the evaluation results of rolling reduction of 20% to 40% per pass in rough rolling. The meanings of “plate surface state”, “edge crack”, and “particle size variation” in this table are the same as the same terms in Test Example 8.

Figure 0005218923
Figure 0005218923

(試験例9−2)
また、試験例9−1とはAlの含有量が異なるマグネシウム合金素材板を用いて、試験例9−1と同様に粗圧延時の素材板の温度やロール温度などの影響を試験した。粗圧延以外の製造条件や、マグネシウム合金板の評価方法は、試験例9−1と同様である。なお、マグネシウム合金素材板のAl含有量は、9.8質量%、Zn含有量は、1.0質量%であった。仕上圧延条件と上記試験結果を表13にまとめて示す。
(Test Example 9-2)
Moreover, the influence of the temperature of a raw material board at the time of rough rolling, roll temperature, etc. was tested similarly to Test Example 9-1 using the magnesium alloy raw material board from which content of Al differs from Test Example 9-1. Manufacturing conditions other than rough rolling and a method for evaluating a magnesium alloy plate are the same as in Test Example 9-1. The magnesium alloy material plate had an Al content of 9.8% by mass and a Zn content of 1.0% by mass. Table 13 summarizes the finish rolling conditions and the test results.

Figure 0005218923
Figure 0005218923

(試験例6〜試験例9のまとめ)
以上の試験例6〜試験例9の結果から、適切な条件で粗圧延を実施することにより、最終的に得られるマグネシウム合金板の結晶粒径のばらつきが小さく、板表面の欠陥や縁割れなどの不具合のない塑性加工性に優れたマグネシウム合金板が得られることがわかった。
(Summary of Test Example 6 to Test Example 9)
From the results of Test Example 6 to Test Example 9 described above, by carrying out rough rolling under appropriate conditions, the variation in the crystal grain size of the finally obtained magnesium alloy plate is small, such as defects on the plate surface and edge cracks. It was found that a magnesium alloy sheet excellent in plastic workability without the above-mentioned defects can be obtained.

(試験例10)
Mg−9.0%Al−1.0%Zn組成(全て質量%)、および、Mg−9.8%Al−1.0%Zn組成(全て質量%)を有するマグネシウム合金素材板(厚み4.0mm)を双ロール連続鋳造により得た。このとき得られたマグネシウム合金素材板に生じた中心線偏析は、板材の厚み方向に50μmの最大幅であった。このようなマグネシウム合金素材板を以下に示す3種類の条件により処理した後、圧延に供した。
Mg−9.0%Al−1.0%Zn組成(全て質量%)について
10−1…溶体化処理を行なわない
10−2…405℃×1時間(溶体化処理)
10−3…405℃×10時間(溶体化処理)
Mg−9.8%Al−1.0%Zn組成(全て質量%)について
10−4…溶体化処理を行なわない
10−5…405℃×1時間(溶体化処理)
10−6…405℃×10時間(溶体化処理)
(Test Example 10)
Magnesium alloy material plate (thickness 4) having a Mg-9.0% Al-1.0% Zn composition (all mass%) and a Mg-9.8% Al-1.0% Zn composition (all mass%) 0.0 mm) was obtained by twin roll continuous casting. The center line segregation generated in the magnesium alloy material plate obtained at this time had a maximum width of 50 μm in the thickness direction of the plate material. Such a magnesium alloy material plate was processed under the following three conditions and then subjected to rolling.
About Mg-9.0% Al-1.0% Zn composition (all mass%) 10-1 ... No solution treatment 10-2 ... 405 ° C. × 1 hour (solution treatment)
10-3 ... 405 ° C. × 10 hours (solution treatment)
About Mg-9.8% Al-1.0% Zn composition (all mass%) 10-4 ... No solution treatment 10-5 ... 405 ° C. × 1 hour (solution treatment)
10-6 ... 405 ° C. × 10 hours (solution treatment)

上記の処理を施して得られたマグネシウム合金板を以下の条件にて0.6mmの厚さまで圧延し、適切な条件で熱処理を施すことにより、5.0μmの平均結晶粒径を有する板材にした。
<粗圧延 4.0mm〜1.0mm>
ロール表面温度:200℃
板加熱温度:330〜360℃
1パス当たりの圧下率:20〜25%
<仕上圧延 1.0mm〜0.6mm>
ロール表面温度:180℃
板加熱温度:230℃
1パス当たりの圧下率:10〜15%
<熱処理>
320℃、30分間アニーリング
The magnesium alloy plate obtained by performing the above treatment was rolled to a thickness of 0.6 mm under the following conditions, and heat treated under appropriate conditions to obtain a plate material having an average crystal grain size of 5.0 μm. .
<Rough rolling 4.0 mm to 1.0 mm>
Roll surface temperature: 200 ° C
Plate heating temperature: 330-360 ° C
Rolling rate per pass: 20-25%
<Finish rolling 1.0 mm to 0.6 mm>
Roll surface temperature: 180 ° C
Plate heating temperature: 230 ° C
Rolling rate per pass: 10-15%
<Heat treatment>
Annealing at 320 ° C for 30 minutes

次に、この板材からJIS 13Bの引張試験用サンプルを作製し、室温環境において、歪み速度1.4×10−3(s−1)で引張試験を行った。また、0.6mmの板材断面の合金組織を観察し、中心線偏析の量(厚み方向の最大幅)を測定した。各試験の方法および意義は、以下の通りである。
引張強度=破断した時の荷重/(試験片の板厚×板幅)
降伏強度=0.2%耐力で測定
降伏比=降伏強度/引張強度
破断伸び=(破断端を突き合わせたときの標点間距離−50mm)/50mm ※1
※1 試験前に予め設定した2つの標点の間の距離(50mm)と、試験後に破断したサンプルの破断端を突き合わせたときの標点間の距離とから求める、いわゆる突き合わせ方法により測定した。
上記の結果を表14に示す。
Next, a sample for tensile test of JIS 13B was produced from this plate material, and a tensile test was performed at a strain rate of 1.4 × 10 −3 (s −1 ) in a room temperature environment. Further, the alloy structure of the cross section of the 0.6 mm plate material was observed, and the amount of centerline segregation (maximum width in the thickness direction) was measured. The method and significance of each test are as follows.
Tensile strength = Load at break / (Thickness of test piece x width)
Yield strength = Measured at 0.2% yield strength Yield ratio = Yield strength / Tensile strength Elongation at break = (Distance between gauge points-50 mm when the fracture ends are butted together) / 50 mm * 1
* 1 Measured by a so-called butt method, which is obtained from a distance (50 mm) between two gauge points set in advance before the test and a distance between the gauge points when the fractured ends of the samples fractured after the test are butted.
The results are shown in Table 14.

Figure 0005218923
Figure 0005218923

表14に示すように、双ロール連続鋳造方法により作製したマグネシウム合金素材板を溶体化処理することにより中心線偏析の厚さ方向の幅が小さくなり、優れた機械的特性を有するマグネシウム合金板が得られることが確認出来た。特に、AZ91相当のマグネシウム合金を含むAl含有量の高いマグネシウム合金では、溶体化処理を長時間行なうことで、より機械的特性の優れたマグネシウム合金板を得ることができた。   As shown in Table 14, the width of the center line segregation in the thickness direction is reduced by solution treatment of the magnesium alloy material plate produced by the twin roll continuous casting method, and a magnesium alloy plate having excellent mechanical properties is obtained. It was confirmed that it was obtained. In particular, in a magnesium alloy having a high Al content including a magnesium alloy equivalent to AZ91, a magnesium alloy sheet having more excellent mechanical characteristics can be obtained by performing solution treatment for a long time.

(試験例11)
AZ91相当のMg−9.0%Al−1.0%Zn組成(全て質量%)、および、Mg−9.8%Al−1.0%Zn組成(全て質量%)を有するマグネシウム合金素材板(厚み4.0mm)を双ロール連続鋳造により得た。これらの素材板に405℃×10時間の溶体化処理を施して得られたマグネシウム合金素材板を以下に示す条件にて0.6mmの厚さまで圧延してマグネシウム合金板を得た。このとき得られたマグネシウム合金板に生じた中心線偏析は、板材の厚み方向に最大で20μmであった。
<粗圧延 4.0mm〜1.0mm>
ロール表面温度:200℃
板加熱温度:330〜360℃
1パス当たりの圧下率:20〜25%
<仕上圧延 1.0mm〜0.6mm>
ロール表面温度:180℃
板加熱温度:230℃
1パス当たりの圧下率:10〜15%
(Test Example 11)
Magnesium alloy material plate having Mg-9.0% Al-1.0% Zn composition (all mass%) equivalent to AZ91 and Mg-9.8% Al-1.0% Zn composition (all mass%) (Thickness 4.0 mm) was obtained by twin roll continuous casting. The magnesium alloy material plates obtained by subjecting these material plates to a solution treatment at 405 ° C. for 10 hours were rolled to a thickness of 0.6 mm under the following conditions to obtain magnesium alloy plates. The center line segregation generated in the magnesium alloy plate obtained at this time was 20 μm at the maximum in the thickness direction of the plate material.
<Rough rolling 4.0 mm to 1.0 mm>
Roll surface temperature: 200 ° C
Plate heating temperature: 330-360 ° C
Rolling rate per pass: 20-25%
<Finish rolling 1.0 mm to 0.6 mm>
Roll surface temperature: 180 ° C
Plate heating temperature: 230 ° C
Rolling rate per pass: 10-15%

上記の条件で圧延して得られたマグネシウム合金板を以下に示す3種類の条件で処理し、評価用板材を得た。
<熱処理>
(1)圧延後に熱処理を施さない
(2)230℃1分間アニーリング
(3)320℃30分間アニーリング
The magnesium alloy plate obtained by rolling under the above conditions was treated under the following three conditions to obtain a plate for evaluation.
<Heat treatment>
(1) No heat treatment after rolling (2) Annealing at 230 ° C for 1 minute (3) Annealing at 320 ° C for 30 minutes

次に、この板材からJIS 13Bの引張試験用サンプルを作製し、4種類の温度環境(室温、150℃、200℃、250℃)において、歪み速度1.4×10−3(s−1)で引張試験を行った。また、0.6mmの板材断面の引張試験前後における合金組織を観察した。各試験の方法および用語の意義は、試験例10と同様であるため説明を省略する。
この試験の結果を表15,16に示す。表15は、Mg−9.0%Al−1.0%Zn組成を有するマグネシウム合金板での試験結果を、表16は、Mg−9.8%Al−1.0%Zn組成を有するマグネシウム合金板での試験結果を示す。
Next, a sample for tensile test of JIS 13B was prepared from this plate material, and strain rate was 1.4 × 10 −3 (s −1 ) in four temperature environments (room temperature, 150 ° C., 200 ° C., 250 ° C.). A tensile test was performed. Moreover, the alloy structure before and after the tensile test of the cross-section of a 0.6 mm plate material was observed. The meaning of each test method and term is the same as that in Test Example 10, and thus the description thereof is omitted.
The results of this test are shown in Tables 15 and 16. Table 15 shows the test results with a magnesium alloy plate having a Mg-9.0% Al-1.0% Zn composition, and Table 16 shows magnesium having a Mg-9.8% Al-1.0% Zn composition. The test result in an alloy plate is shown.

Figure 0005218923
Figure 0005218923

Figure 0005218923
Figure 0005218923

<プレス前のマグネシウム合金板の組織>
表15,16に示すように、320℃、30分間アニーリングした板材(11−9〜11−12もしくは、11−21〜11−24)は、圧延加工によるマグネシウム合金板に蓄積された歪みが消えており、完全に再結晶化している。一方、230℃、1分間アニーリングした板材(11−5〜11−8もしくは11−17〜11−20)は、圧延加工による結晶粒の歪みが一部残っている。また、熱処理を施さなかった板材(11−1〜11−4もしくは11−13〜11−16)は圧延加工による結晶粒の歪みが残っている。
<Structure of magnesium alloy plate before pressing>
As shown in Tables 15 and 16, in the plate material (11-9 to 11-12 or 11-21 to 11-24) annealed at 320 ° C. for 30 minutes, the strain accumulated in the magnesium alloy plate by rolling disappears. And completely recrystallized. On the other hand, in the plate material (11-5 to 11-8 or 11-17 to 11-20) annealed at 230 ° C. for 1 minute, some distortion of crystal grains due to rolling remains. Moreover, the distortion | strain of the crystal grain by rolling processing remains in the board | plate material (11-1 to 11-4 or 11-13 to 11-16) which did not heat-process.

<塑性変形後のマグネシウム合金板の組織>
320℃、30分間アニーリングを施し、完全に再結晶化した板材では、引張加工時の昇温(250℃以下)によって板材の組織中の結晶粒が粗大化せず、加工の前後で平均結晶粒径にほとんど差が生じなかった。従って、板材のうち、引張加工時に変形した部分では加工歪が蓄積されて硬度および強度が向上し、変形していない部分では硬度および強度に変化が生じないと推察される。一方、圧延による加工歪みが残っている板材(アニーリングなし、または、230℃で1分間のアニーリング)では、引張加工時の昇温によって金属組織が再結晶化し、強度や硬度が低下した。そして、加工の前後で、変形していない部分では強度が低下し、変形した部分では加工時の昇温の度合いによって強度が低下したり向上したりした。このように、加工の前後でマグネシウム合金板の強度および硬度が低下する部分があると、所望の機械的特性を有するマグネシウム合金製の製品を安定して製造することができない。
<Structure of magnesium alloy sheet after plastic deformation>
In a plate material that has been annealed at 320 ° C. for 30 minutes and is completely recrystallized, the crystal grains in the structure of the plate material are not coarsened by the temperature rise (250 ° C. or less) during tensile processing, and the average crystal grains before and after processing There was almost no difference in diameter. Accordingly, it is presumed that, in the portion of the plate material that is deformed during the tensile processing, the processing strain is accumulated and the hardness and strength are improved, and in the portion that is not deformed, the hardness and strength are not changed. On the other hand, in the plate material in which the processing strain due to rolling remained (no annealing or annealing at 230 ° C. for 1 minute), the metal structure was recrystallized due to the temperature rise during the tensile processing, and the strength and hardness decreased. And before and after processing, the strength decreased in the undeformed portion, and the strength decreased or improved in the deformed portion depending on the degree of temperature rise during processing. As described above, if there is a portion where the strength and hardness of the magnesium alloy plate are lowered before and after processing, a magnesium alloy product having desired mechanical properties cannot be stably produced.

<高温引張特性>
320℃、30分間アニーリングを施した板材では、室温における引張強度、降伏強度および破断伸びが高く、また、200℃、250℃において安定して高い破断伸びを示した。一方、加工歪みを残した板材は、200℃、250℃において異常に高い破断伸びを示す(超塑性現象)ものがあるが、このような超塑性現象を示す板材は極わずかであり、その他の板材は破断伸びが低く、塑性加工の際に割れやひびなどの損傷が生じた。このように板材の破断伸びに大きなばらつきがあると、マグネシウム合金板に塑性加工を施して製品を製造したときに、製品の品質が安定しない。
<High temperature tensile properties>
The plate material annealed at 320 ° C. for 30 minutes had high tensile strength, yield strength, and elongation at break at room temperature, and stably exhibited high elongation at break at 200 ° C. and 250 ° C. On the other hand, some of the plate materials that have left the processing strain exhibit an abnormally high elongation at break at 200 ° C. and 250 ° C. (superplastic phenomenon), but there are very few plate materials that exhibit such a superplastic phenomenon. The plate material had low elongation at break, and damage such as cracks and cracks occurred during plastic working. Thus, if there is a large variation in the breaking elongation of the plate material, the quality of the product will not be stable when the magnesium alloy plate is subjected to plastic working to produce the product.

以上の結果から、加工歪みを残した板材は、高温における塑性加工時の昇温や変形によって金属組織が変化し、且つ、この変化の度合いが不安定であるため、安定した加工成形性が期待できない。一方、金属組織が完全に再結晶化した板材は、加工の前後で金属組織に変化が生じ難いため、塑性加工性が安定するとともに、加工により変形した部分の機械的特性は向上し、変形しなかった部分でも加工前の機械的特性を維持すると推察される。従って、圧延加工時に蓄積した加工歪を解消した板材は、プレス成形などの強加工を行なった場合でも安定した機械的特性を有するので、プレス成形などにより製造される筐体製品の製造に適している。   Based on the above results, it is expected that the plate material with processing strain will have stable work formability because the metal structure changes due to temperature rise and deformation during plastic processing at high temperatures, and the degree of this change is unstable. Can not. On the other hand, a plate material with a completely recrystallized metal structure is unlikely to change in the metal structure before and after processing, so that the plastic workability is stabilized and the mechanical properties of the deformed part are improved and deformed. It is presumed that the mechanical properties before processing are maintained even in the absence. Therefore, the plate material that has eliminated the processing strain accumulated during rolling has stable mechanical properties even when subjected to strong processing such as press forming, and is therefore suitable for the manufacture of casing products manufactured by press forming or the like. Yes.

(試験例12)
次に、試験例11に記載の条件で鋳造、粗圧延、仕上圧延をし、厚さ0.6mmのマグネシウム合金板(Mg−9.0%Al−1.0%Zn、および、Mg−9.8%Al−1.0%Zn)を作製した。そして、仕上圧延後のマグネシウム合金板に320℃、30分のアニーリングを施して評価用サンプルを作製し、このサンプルを用いて曲げ試験を実施した。曲げ試験は、各サンプルを2点で支持して、これら支持点とは反対の方向から曲げ成形用工具(パンチ)によりサンプルに曲げ圧力を加える、いわゆる3点曲げ試験とした。曲げ試験の条件を以下に示す。
<試験条件>
サンプルの寸法…幅20mm、長さ120mm、厚さ0.6mm
試験温度…25℃(室温)、200℃、250℃
パンチの先端角度…30°
パンチの半径(=サンプルの曲げ半径)…0.5mm、1.0mm、2.0mm
支点間距離…30mm
パンチの押し込み深さ…40mm
パンチの押し込み速度…1.0m/min、5.0m/min
(Test Example 12)
Next, casting, rough rolling, and finish rolling were performed under the conditions described in Test Example 11, and a magnesium alloy sheet having a thickness of 0.6 mm (Mg-9.0% Al-1.0% Zn, and Mg-9). .8% Al-1.0% Zn). Then, the magnesium alloy plate after finish rolling was annealed at 320 ° C. for 30 minutes to prepare a sample for evaluation, and a bending test was performed using this sample. The bending test was a so-called three-point bending test in which each sample was supported at two points and bending pressure was applied to the sample with a bending tool (punch) from the direction opposite to the supporting points. The conditions for the bending test are shown below.
<Test conditions>
Sample dimensions: 20mm wide, 120mm long, 0.6mm thick
Test temperature: 25 ° C (room temperature), 200 ° C, 250 ° C
Punch tip angle ... 30 °
Punch radius (= bending radius of sample) ... 0.5mm, 1.0mm, 2.0mm
Distance between fulcrums ... 30mm
Punch indentation depth ... 40mm
Punch pushing speed: 1.0 m / min, 5.0 m / min

上記の条件のもと試験を行い、サンプルの曲げ半径部分の表面状態およびスプリングバック量を調べた。また、表面状態およびスプリングバック量を基にサンプルの総合評価をした。スプリングバックとは、パンチにより加えられた荷重により板状のサンプルに生じた変形が、パンチによる荷重が抜けた後に戻る現象をいう。即ち、サンプルのスプリングバックの量が大きい場合、変形性が悪く、小さい場合、変形性が良いと判断できる。従って、スプリングバック量を調べることで、サンプルの加工容易性を判断することができる。表面状態およびスプリングバック量の評価基準は以下に示す通りである。
<表面状態の評価基準>
亀裂が生じなかった場合…○
微少な亀裂が生じたが破断しなかった場合…△
破断した場合…×
<スプリングバックの評価基準>
スプリングバックの評価基準は、(パンチにより荷重を加えているときのサンプルの曲げ半径部分を挟んだ平面の成す角)−(荷重を取り除いたときの曲げ半径部分を挟んだ平面の成す角)により評価した。
45°以上の差がある場合…スプリングバック 大
10°以上45°未満の差がある場合…スプリングバック 中
10°未満の差がある場合…スプリングバック 小
<総合評価>
表面状態×の場合…総合評価×
表面状態○で且つ、スプリングバック小の場合…総合評価○
上記以外…総合評価△
A test was conducted under the above conditions, and the surface state and the amount of springback of the bending radius portion of the sample were examined. In addition, the samples were comprehensively evaluated based on the surface condition and the amount of springback. Spring back refers to a phenomenon in which deformation generated in a plate-like sample due to a load applied by a punch returns after the load by the punch is released. That is, when the amount of springback of the sample is large, it can be determined that the deformability is bad, and when it is small, the deformability is good. Therefore, the ease of processing of the sample can be determined by examining the springback amount. The evaluation criteria for the surface condition and the springback amount are as follows.
<Surface condition evaluation criteria>
When there is no crack ... ○
When a minute crack occurs but it does not break ... △
When it breaks… ×
<Evaluation criteria for springback>
The evaluation criteria for springback is (the angle formed by the plane sandwiching the bending radius portion of the sample when a load is applied by a punch) − (the angle formed by the plane sandwiching the bending radius portion when the load is removed) − evaluated.
When there is a difference of 45 ° or more… Springback Large When there is a difference of 10 ° or more and less than 45 °… Springback Medium When there is a difference of less than 10 °… Springback Small <Comprehensive evaluation>
In the case of surface condition x ... comprehensive evaluation x
When the surface condition is ○ and the spring back is small… Overall evaluation ○
Other than above ... Comprehensive evaluation

また、加工の度合いを示す指標として曲げ特性値を規定した。曲げ特性値は、サンプルの曲げ半径(mm)/サンプルの厚さ(mm)で表される。ここで、サンプルの曲げ半径が小さいほどこの曲げ半径部分に局所的な圧力が作用するので、サンプルに亀裂などの損傷が生じやすく、サンプルの厚さが厚いほどサンプルの成形性が悪く、亀裂などの損傷が生じ易い。従って、上記の式で表される曲げ特性値は、小さいほど加工条件の厳しい強加工を示すことになる。
以上、説明した表面状態、スプリングバック、曲げ特性値および総合評価の結果を表17,18に示す。表17は、Mg−9.0%Al−1.0%Zn組成を有するマグネシウム合金板での試験結果を、表18は、Mg−9.8%Al−1.0%Zn組成を有するマグネシウム合金板での試験結果を示す。
Also, a bending characteristic value was defined as an index indicating the degree of processing. The bending characteristic value is expressed by the bending radius (mm) of the sample / the thickness (mm) of the sample. Here, as the bending radius of the sample is smaller, local pressure acts on the bending radius portion, so that the sample is more likely to be damaged such as cracks. The thicker the sample is, the worse the moldability of the sample is. Damage is likely to occur. Accordingly, the smaller the bending characteristic value represented by the above formula, the stronger the severer the machining conditions.
Tables 17 and 18 show the surface state, springback, bending characteristic values, and comprehensive evaluation results described above. Table 17 shows the test results with a magnesium alloy plate having an Mg-9.0% Al-1.0% Zn composition, and Table 18 shows magnesium having an Mg-9.8% Al-1.0% Zn composition. The test result in an alloy plate is shown.

Figure 0005218923
Figure 0005218923

Figure 0005218923
Figure 0005218923

Mg−9.0%Al−1.0%Znのサンプルは、表17に示すように、室温(25℃)における曲げ試験で、曲げ半径が2.0mm、即ち、加工条件の緩い(曲げ特性値3.33)場合にのみ、サンプルの表面状態が評価○であった(試料No.12−5,12−6参照)。また、室温では、曲げ半径や加工速度にかかわらず、スプリングバックが大きく、成形性が悪かった(試料No.12−1〜12−6を参照)。一方、200℃以上の状態で曲げ試験を行なった場合、曲げ半径および加工速度にかかわらずスプリングバックが小さく、表面状態が良かった(試料No.12−7〜12−18を参照)。   As shown in Table 17, a sample of Mg-9.0% Al-1.0% Zn was subjected to a bending test at room temperature (25 ° C.) with a bending radius of 2.0 mm, that is, a loose processing condition (bending characteristics). Only in the case of value 3.33), the surface condition of the sample was evaluated as ○ (see Sample Nos. 12-5 and 12-6). At room temperature, the springback was large and the moldability was poor regardless of the bending radius and processing speed (see Sample Nos. 12-1 to 12-6). On the other hand, when the bending test was performed at a temperature of 200 ° C. or higher, the spring back was small regardless of the bending radius and the processing speed, and the surface state was good (see Sample Nos. 12-7 to 12-18).

一方、Mg−9.8%Al−1.0%Znのサンプルは、表18に示すように、Mg−9.0%Al−1.0%Znのサンプルと全く同じ結果を示した。具体的には、室温における曲げ試験では、成形性が悪く(試料No.12−19〜12−24を参照)、200℃以上では成形性が良かった(12−25〜12−36を参照)。   On the other hand, as shown in Table 18, the Mg-9.8% Al-1.0% Zn sample showed exactly the same result as the Mg-9.0% Al-1.0% Zn sample. Specifically, in the bending test at room temperature, the moldability was poor (see Sample Nos. 12-19 to 12-24), and the moldability was good at 200 ° C. or higher (see 12-25 to 12-36). .

(試験例13)
試験例11および12に記載の条件で鋳造、粗圧延、仕上圧延をし、厚さ0.6mmのマグネシウム合金板(Mg−9.0%Al−1.0%Zn、および、Mg−9.8%Al−1.0%Zn)を作製した。次いで、このマグネシウム合金板に以下に示す2種類の条件で処理を施し、評価用サンプルを作製した。この評価用サンプルを用いてプレス試験を実施し、プレス後のサンプルの表面状態を調べた。
<熱処理>
(1)圧延後に熱処理を施さない
(2)320℃、30分間アニーリング
<プレス試験の条件>
サーボプレス機によりサンプルをプレスした。プレスは、直方体状の凹部を有する下型に、この凹部を覆うようにサンプルを載置して、直方体状の上型を押し付けることにより行なった。上型は、60mm×90mmの直方体状で、サンプルに当接する四つの角が丸められており、各角は一定の曲げ半径を有する。また、上型と下型にはヒーターと熱電対を埋め込み、プレス時の温度条件を所望の温度に調節することができるようにした。
<試験条件>
上型の曲げ半径…0.5mm、2.0mm
試験温度…200℃、250℃
加工速度…0.8m/min、1.7m/min、3.4m/min、5.0m/min
(Test Example 13)
Casting, rough rolling, and finish rolling were performed under the conditions described in Test Examples 11 and 12, and a magnesium alloy plate having a thickness of 0.6 mm (Mg-9.0% Al-1.0% Zn and Mg-9. 8% Al-1.0% Zn) was produced. Next, this magnesium alloy plate was treated under the following two conditions to produce a sample for evaluation. A press test was carried out using the sample for evaluation, and the surface state of the sample after pressing was examined.
<Heat treatment>
(1) No heat treatment after rolling (2) Annealing at 320 ° C. for 30 minutes <Conditions for press test>
The sample was pressed with a servo press. The pressing was performed by placing a sample on a lower mold having a rectangular parallelepiped concave portion so as to cover the concave portion and pressing the rectangular parallelepiped upper die. The upper mold has a rectangular parallelepiped shape of 60 mm × 90 mm, and four corners contacting the sample are rounded, and each corner has a constant bending radius. In addition, a heater and a thermocouple were embedded in the upper die and the lower die so that the temperature conditions during pressing could be adjusted to a desired temperature.
<Test conditions>
Bending radius of upper mold: 0.5mm, 2.0mm
Test temperature: 200 ° C, 250 ° C
Processing speed: 0.8 m / min, 1.7 m / min, 3.4 m / min, 5.0 m / min

上記の条件のもとプレス加工を行い、プレス後のサンプルの曲げ半径部分の表面状態を調べた。この結果を表19,20に示す。表19は、Mg−9.0%Al−1.0%Zn組成を有するマグネシウム合金板での試験結果を、表20は、Mg−9.8%Al−1.0%Zn組成を有するマグネシウム合金板での試験結果を示す。ここで、表面状態の意義は、試験例12と同一であり、曲げ特性値は、上型の曲げ半径/サンプルの板厚により求められる。   Press working was performed under the above conditions, and the surface state of the bending radius portion of the sample after pressing was examined. The results are shown in Tables 19 and 20. Table 19 shows the test results with a magnesium alloy plate having a Mg-9.0% Al-1.0% Zn composition, and Table 20 shows magnesium having a Mg-9.8% Al-1.0% Zn composition. The test result in an alloy plate is shown. Here, the significance of the surface state is the same as in Test Example 12, and the bending characteristic value is obtained from the bending radius of the upper die / the thickness of the sample.

Figure 0005218923
Figure 0005218923

Figure 0005218923
Figure 0005218923

表19に示すように、Mg−9.0%Al−1.0%Znの組成を有するサンプルのうち、仕上圧延後の熱処理を施さなかったサンプルは、プレス時のサンプルの温度が200℃の場合、表面に割れや亀裂が生じた。特に、曲げ特性値0.83の強加工を行なった場合、表面に割れが生じた。また、同サンプルは、250℃のプレス試験においても、強加工(曲げ特性値0.83)を行なった場合、サンプル表面に割れや亀裂が生じた。一方、仕上圧延後に320℃、30分間のアニーリングを行なったサンプルは、プレス時のサンプルの温度が200℃の場合、加工速度が遅いときや(試料No.13−9、13−10を参照)、曲げ特性値が3.33のとき(試料No.13−10,13−12,13−14,13−16を参照)、表面状態が良かった。また、これらのアニーリングを行なったサンプルは、250℃では、曲げ特性値や加工速度に関係なく表面状態が良かった。   As shown in Table 19, among the samples having the composition of Mg-9.0% Al-1.0% Zn, the sample not subjected to the heat treatment after finish rolling had a temperature of the sample at the time of pressing of 200 ° C. In the case, cracks or cracks occurred on the surface. In particular, when a strong working with a bending characteristic value of 0.83 was performed, cracks occurred on the surface. Further, the sample was cracked or cracked on the surface of the sample when subjected to strong processing (bending characteristic value 0.83) even in a 250 ° C. press test. On the other hand, the sample that has been annealed at 320 ° C. for 30 minutes after finish rolling has a low processing speed when the temperature of the sample at the time of pressing is 200 ° C. (see Sample Nos. 13-9 and 13-10) When the bending characteristic value was 3.33 (see Sample Nos. 13-10, 13-12, 13-14, 13-16), the surface condition was good. Further, the samples subjected to the annealing had a good surface condition at 250 ° C. regardless of the bending characteristic value and the processing speed.

また、表20に示すように、Mg−9.8%Al−1.0%Znのサンプルの試験結果は、Mg−9.0%Al−1.0%Znの試験結果とほぼ同じであった。即ち、320℃、30分間のアニーリングを行なったサンプルの方が、アニーリングを行なわなかったサンプルよりもプレス後の表面状態が良かった。さらに、プレス加工時の温度が高いほど、プレス後のサンプルの表面状態が良かった。特に、アニーリングを行なったマグネシウム合金板を250℃の条件でプレス加工する場合、5.0m/minの加工速度で強加工(曲げ特性値0.83)を行なってもプレス成形性が良いことが明らかとなった。   Further, as shown in Table 20, the test result of the Mg-9.8% Al-1.0% Zn sample was almost the same as the test result of Mg-9.0% Al-1.0% Zn. It was. That is, the surface condition after pressing was better in the sample that was annealed at 320 ° C. for 30 minutes than in the sample that was not annealed. Furthermore, the higher the temperature during pressing, the better the surface condition of the sample after pressing. In particular, when an annealed magnesium alloy sheet is pressed under the condition of 250 ° C., the press formability is good even when strong processing (bending characteristic value 0.83) is performed at a processing speed of 5.0 m / min. It became clear.

(試験例11〜試験例13のまとめ)
以上、試験例11〜13の結果から、圧延後のマグネシウム合金板を適切な温度で熱処理して合金板の組織を再結晶化させることにより、成形性が安定することが明らかとなった。成形性が安定する原因は、塑性加工を行なう前に金属組織を再結晶化させているため、塑性加工(プレス加工を含む)時の昇温によって金属組織が大きく変化しないためと推察される。
(Summary of Test Examples 11 to 13)
As described above, from the results of Test Examples 11 to 13, it was revealed that the formability is stabilized by heat-treating the rolled magnesium alloy sheet at an appropriate temperature to recrystallize the structure of the alloy sheet. The reason why the formability is stabilized is presumed that the metal structure is recrystallized before the plastic working, and therefore the metal structure does not change greatly due to the temperature rise during the plastic working (including press working).

本発明マグネシウム合金板は、軽量かつ高い機械的特性を要求される合金材料として好適に利用できる。   The magnesium alloy sheet of the present invention can be suitably used as an alloy material that is lightweight and requires high mechanical properties.

Claims (6)

アルミニウム(Al)を8.5〜10.0質量%、亜鉛を0.5〜1.5質量%含有するマグネシウム合金素材板を圧延ロールにて圧延することで得られたマグネシウム合金板であって、
マグネシウム合金板の厚み方向の中心線に存在する偏析の厚み方向の長さが20μm以下であることを特徴とするマグネシウム合金板。
A magnesium alloy plate obtained by rolling a magnesium alloy material plate containing 8.5 to 10.0% by mass of aluminum (Al) and 0.5 to 1.5% by mass of zinc with a rolling roll. ,
A magnesium alloy plate characterized in that the length in the thickness direction of segregation existing at the center line in the thickness direction of the magnesium alloy plate is 20 μm or less.
室温における引張強度が360MPa以上、降伏強度が270MPa以上、破断伸びが15%以上であることを特徴とする請求項1に記載のマグネシウム合金板。   The magnesium alloy sheet according to claim 1, wherein the tensile strength at room temperature is 360 MPa or more, the yield strength is 270 MPa or more, and the elongation at break is 15% or more. 降伏比が75%以上であることを特徴とする請求項1または2に記載のマグネシウム合金板。   The magnesium alloy sheet according to claim 1 or 2, wherein a yield ratio is 75% or more. 200℃における引張強度が120MPa以上、破断伸びが80%以上、250℃における引張強度が90MPa以上、破断伸びが100%以上であることを特徴とする請求項1〜3のいずれかに記載のマグネシウム合金板。   Magnesium according to any one of claims 1 to 3, wherein the tensile strength at 200 ° C is 120 MPa or more, the elongation at break is 80% or more, the tensile strength at 250 ° C is 90 MPa or more, and the elongation at break is 100% or more. Alloy plate. 200℃以上において、曲げ特性値(曲げ半径R/板厚t)が1.0以下の条件で曲げ加工を行なったときに、表面に割れやひびなどの損傷が生じないことを特徴とする請求項1〜4のいずれかに記載のマグネシウム合金板。   When the bending property value (bending radius R / sheet thickness t) is 200 ° C. or higher and bending is performed at a temperature of 1.0 or lower, the surface is not damaged such as cracks or cracks. Item 5. The magnesium alloy sheet according to any one of Items 1 to 4. 200℃以上において、曲げ特性値(曲げ半径R/板厚t)が1.0以下の条件でプレス加工を行なったときに、表面に割れやひびなどの損傷が生じないことを特徴とする請求項1〜5のいずれかに記載のマグネシウム合金板。   When the press working is performed at a temperature of 200 ° C. or more under a condition that the bending characteristic value (bending radius R / sheet thickness t) is 1.0 or less, the surface is not damaged such as cracks or cracks. Item 6. The magnesium alloy sheet according to any one of Items 1 to 5.
JP2011045547A 2005-03-28 2011-03-02 Magnesium alloy plate Expired - Fee Related JP5218923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045547A JP5218923B2 (en) 2005-03-28 2011-03-02 Magnesium alloy plate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005092247 2005-03-28
JP2005092247 2005-03-28
JP2005263093 2005-09-09
JP2005263093 2005-09-09
JP2011045547A JP5218923B2 (en) 2005-03-28 2011-03-02 Magnesium alloy plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006040013A Division JP4730601B2 (en) 2005-03-28 2006-02-16 Magnesium alloy plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2011157626A JP2011157626A (en) 2011-08-18
JP5218923B2 true JP5218923B2 (en) 2013-06-26

Family

ID=44589818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045547A Expired - Fee Related JP5218923B2 (en) 2005-03-28 2011-03-02 Magnesium alloy plate

Country Status (1)

Country Link
JP (1) JP5218923B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150099025A (en) * 2014-02-21 2015-08-31 서울대학교산학협력단 Magnesium alloy sheet and method for the same
CN106862272B (en) * 2015-12-14 2020-01-31 宝山钢铁股份有限公司 Preparation method of high-strength high-ductility magnesium alloy plates
KR101889019B1 (en) 2016-12-23 2018-08-20 주식회사 포스코 Magnesium alloy sheet, and method for manufacturing the same
CN117448713B (en) * 2023-12-26 2024-03-15 华北理工大学 Low-temperature superplastic forming method of rare earth magnesium alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681089A (en) * 1992-09-02 1994-03-22 Sumitomo Metal Ind Ltd Method for hot-working magnesium alloy
JP3558628B2 (en) * 2002-06-05 2004-08-25 住友電工スチールワイヤー株式会社 Magnesium alloy plate and method for producing the same
JP4127126B2 (en) * 2003-06-10 2008-07-30 住友金属工業株式会社 Magnesium alloy plate manufacturing method
JP4429877B2 (en) * 2004-11-18 2010-03-10 三菱アルミニウム株式会社 Method for producing magnesium alloy sheet having fine crystal grains

Also Published As

Publication number Publication date
JP2011157626A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP4730601B2 (en) Magnesium alloy plate manufacturing method
JP3558628B2 (en) Magnesium alloy plate and method for producing the same
KR102224687B1 (en) Rolling and preparation method of magnesium alloy sheet
CN104114726A (en) Aluminum alloy sheet with excellent baking-paint curability
EP2453031B1 (en) Magnesium alloy plate
JP4734578B2 (en) Magnesium alloy sheet processing method and magnesium alloy sheet
EP2505275B1 (en) Magnesium alloy coil stock
KR20110070884A (en) Formed product of magnesium alloy and magnesium alloy sheet
JP5218923B2 (en) Magnesium alloy plate
JP6356084B2 (en) Method for producing cold rolled rolled plate and method for producing pure titanium plate
JP4782987B2 (en) Magnesium-based alloy screw manufacturing method
JP4590719B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and formability and method for producing the same
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
JP2010202897A (en) Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
CN113474479B (en) Method for producing sheet or strip from aluminium alloy and sheet, strip or shaped part produced therefrom
JP5685055B2 (en) Aluminum alloy plate
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JP2012201928A (en) Magnesium alloy sheet material excellent in cold workability, and method for producing the same
JP2004315913A (en) Aluminum alloy sheet for high temperature forming, and method of producing aluminum alloy panel
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming
RU2641214C1 (en) Method for manufacturing sheets from ot4 titanium alloy
JP5605691B2 (en) Magnesium alloy sheet, method for producing the same, and mold
JP2011089144A (en) Forming-use aluminum alloy sheet excellent in bendability and ductility, and manufacturing method therefor
Sakai et al. Single Pass Large Draught Rolling of Some Magnesium Alloys below 473K by High Speed Rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5218923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees