JP5217561B2 - Photocatalyst regeneration method - Google Patents

Photocatalyst regeneration method Download PDF

Info

Publication number
JP5217561B2
JP5217561B2 JP2008086477A JP2008086477A JP5217561B2 JP 5217561 B2 JP5217561 B2 JP 5217561B2 JP 2008086477 A JP2008086477 A JP 2008086477A JP 2008086477 A JP2008086477 A JP 2008086477A JP 5217561 B2 JP5217561 B2 JP 5217561B2
Authority
JP
Japan
Prior art keywords
photocatalyst
aqueous solution
phase
regenerating
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008086477A
Other languages
Japanese (ja)
Other versions
JP2009233634A (en
Inventor
裕幸 山岡
義勝 原田
輝昭 藤井
慎一郎 大谷
格 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008086477A priority Critical patent/JP5217561B2/en
Publication of JP2009233634A publication Critical patent/JP2009233634A/en
Application granted granted Critical
Publication of JP5217561B2 publication Critical patent/JP5217561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、上水、温浴水、プール水、飲料用水、海水、産業用水中の有機物の酸化分解、細菌の分解、真菌の分解、ウイルスの分解、藻類の分解等の光化学反応処理を行う際、液体中に含まれる成分により汚染され活性が低下する光触媒の再生方法に関するものである。   When carrying out photochemical reaction treatments such as oxidative decomposition of organic matter in water, warm bath water, pool water, drinking water, seawater, industrial water, decomposition of bacteria, decomposition of fungi, decomposition of viruses, decomposition of algae, etc. The present invention relates to a method for regenerating a photocatalyst that is contaminated by components contained in a liquid and whose activity decreases.

近年、光触媒の持つ強い酸化力に注目が集まっており、水の浄化分野に於いても例外ではない。光触媒の酸化分解機構は励起光により生成された正孔がOH基を酸化したOHラジカルによるものであり、水中の有機物や細菌、真菌、ウイルス、藻類などの有機性不純物を、従来使われてきた殺菌灯、オゾン、塩素などと違い残留性なく、酸化分解する。また、活性種の中でもOHラジカルは最も強い酸化力を有しているため、今まで対処できなかった難分解性物質まで分解可能であることが明らかになっている。   In recent years, attention has been focused on the strong oxidizing power of photocatalysts, and it is no exception in the field of water purification. The oxidative degradation mechanism of photocatalyst is due to OH radicals in which holes generated by excitation light oxidize OH groups, and organic impurities in water and organic impurities such as bacteria, fungi, viruses and algae have been used in the past Unlike germicidal lamps, ozone, chlorine, etc., it does not persist and oxidatively decomposes. In addition, among active species, OH radicals have the strongest oxidizing power, and it has been clarified that even refractory substances that could not be dealt with until now can be decomposed.

しかし、長期間、有機物の酸化分解、細菌の分解、真菌の分解、ウイルスの分解、藻類を分解する光化学反応処理を行っていると、光触媒が処理水成分により汚染され、急激に光触媒活性が低下し、光化学反応処理結果が突然に悪化することが明らかになっている。   However, if photochemical reaction treatment that oxidizes organic matter, decomposes bacteria, decomposes fungi, decomposes viruses, or decomposes algae is performed for a long period of time, the photocatalyst is contaminated with the treated water component, and the photocatalytic activity rapidly decreases. However, it has been clarified that the result of the photochemical reaction treatment suddenly deteriorates.

従来に於いては、光触媒活性が低下する前に光化学反応処理を中断し、活性が残存する光触媒を早めに廃棄することによって、処理液の液質の悪化等を防止することもあるが、しかし、活性再生が可能な光触媒を廃棄して新たな光触媒と交換すること、特に活性が残存する光触媒を早めに廃棄することは、光触媒が高価な素材であるために、有機物の光化学反応処理コストが高くなり、また資源の有効活用、産業廃棄物の発生の点で問題があった。   In the past, the photochemical reaction treatment was interrupted before the photocatalytic activity decreased, and the photocatalyst with the remaining activity was discarded early to prevent deterioration of the liquid quality of the processing solution. Disposing a photocatalyst that can be regenerated and replacing it with a new one, especially disposing of a photocatalyst that remains active, is an expensive material, so the cost of organic photochemical reaction treatment is high. In addition, there were problems in terms of effective use of resources and generation of industrial waste.

また、従来活性の低下した光触媒を再生する方法があり、例えば、被処理水中の有機物分解乃至殺菌処理に用いられ、光酸化処理法に使用した触媒微粒子表面の錯体等を純粋或いは水道水等の洗浄水中で超音波振動させるとともに、オゾン乃至エアーで曝気処理しながら洗浄を行い再生する方法が特許文献1に開示されている。また、液体中の有機物の酸化分解、細菌の殺菌等の光化学反応処理を行う過程で、経時に液体中の硬度成分であるカルシウム、マグネシウムが光触媒表面上に付着し、それを除去するために、弱酸性溶液で洗浄除去する光触媒の再生方法が特許文献2に報告されている。
特開平7−185340号公報 特開平10−151354号公報
In addition, there is a method of regenerating a photocatalyst having a reduced activity, for example, a complex on the surface of catalyst fine particles used for the decomposition or sterilization treatment of organic matter in water to be treated, such as pure or tap water. Patent Document 1 discloses a method of cleaning and regenerating while performing ultrasonic vibration in cleaning water and aeration with ozone or air. In addition, in the process of performing photochemical reaction treatment such as oxidative decomposition of organic matter in liquid and sterilization of bacteria, in order to remove calcium and magnesium, which are hardness components in liquid, adhere to the surface of the photocatalyst over time, Patent Document 2 reports a method for regenerating a photocatalyst that is washed and removed with a weakly acidic solution.
Japanese Patent Laid-Open No. 7-185340 JP-A-10-151354

超純水、イオン交換水を除く、上水、温浴水、プール水、飲料用水、海水、産業用水中の有機物の酸化分解、細菌の分解、真菌の分解、ウイルスの分解、藻類の分解等、即ち、有機性不純物の分解を行う場合、その処理は連続的に行われるため、光触媒の汚染状況を明確に判断するのは非常に困難であり、殆どの場合、汚染による活性低下は金属化合物と未分解有機物の両者によって引き起こされていることが確認された。上述の特許文献1と特許文献2では、光触媒の従来活性を低下させる汚染物質として、金属化合物と有機性不純物が同時に存在していることを想定しておらず、またこれら汚染物質が同時に存在する場合、前述の光触媒の再生方法では、従来活性を再生することは困難であり、付着汚染物の残留により、再び容易に従来活性を損なうと考えられる。従って、光触媒が金属化合物、未分解有機物両者の汚染から再生される方法があれば、その方が望ましい。   Ultrapure water, excluding ion exchange water, clean water, warm bath water, pool water, drinking water, seawater, oxidative decomposition of organic matter in industrial water, decomposition of bacteria, decomposition of fungi, decomposition of viruses, decomposition of algae, etc. That is, in the case of decomposing organic impurities, since the treatment is performed continuously, it is very difficult to clearly determine the photocatalyst contamination status. It was confirmed that it was caused by both undecomposed organic matter. In the above-mentioned Patent Document 1 and Patent Document 2, it is not assumed that a metal compound and an organic impurity exist simultaneously as contaminants that reduce the conventional activity of the photocatalyst, and these contaminants exist simultaneously. In this case, it is difficult to regenerate the conventional activity by the above-described photocatalyst regeneration method, and it is considered that the conventional activity is easily lost again due to the residual adhered contaminants. Therefore, if there is a method in which the photocatalyst is regenerated from contamination of both the metal compound and the undecomposed organic matter, that is preferable.

そこで、本発明の目的は、上水、温浴水、プール水、飲料用水、海水、産業用水中の有機物の酸化分解、細菌の分解、真菌の分解、ウイルスの分解、藻類の分解等の、有機性不純物の光化学反応処理を行っている間に、汚染により活性低下を起こす光触媒を効率よく再生する方法を提供することである。   Therefore, the object of the present invention is to provide organic, such as oxidative decomposition of organic matter in drinking water, warm bath water, pool water, drinking water, seawater, industrial water, bacterial decomposition, fungal decomposition, virus decomposition, and algal decomposition. It is intended to provide a method for efficiently regenerating a photocatalyst that causes a decrease in activity due to contamination during photochemical reaction treatment of a volatile impurity.

これによって、高価な光触媒を廃棄することなく、継続して使用し、低コストな光化学反応処理を提供することができる。   Thus, it is possible to provide a low-cost photochemical reaction process by continuously using an expensive photocatalyst without discarding it.

本発明者等は、上水、温浴水、プール水、飲料用水、海水、産業用水中の有機物の酸化分解、細菌の分解、真菌の分解、ウイルスの分解、藻類の分解等を長期間行うと、汚染され従来活性を損なう光触媒の再生方法を検討してきた。その結果、光触媒活性を損なう汚染物質として、どちらか一方ではなく、金属化合物と未分解有機性不純物が存在することが確認され、酸性溶液で洗浄を行った後にアルカリ性溶液で洗浄を行うことにより、上記課題が解決されることを発見した。   When the inventors perform oxidative decomposition of organic matter in water, warm bath water, pool water, drinking water, seawater, industrial water, bacterial decomposition, fungal decomposition, virus decomposition, algae decomposition, etc. for a long time Thus, a method for regenerating a photocatalyst that is contaminated and impairs conventional activity has been studied. As a result, as a pollutant that impairs the photocatalytic activity, it is confirmed that there is a metal compound and an undecomposed organic impurity, not one of them, and after washing with an acidic solution, washing with an alkaline solution, It has been found that the above problems can be solved.

即ち、本発明は、有機性不純物を含有する水の浄化処理に用いられ、前記水浄化処理中の金属化合物と未分解有機物による汚染により劣化した、光触媒の再生方法であり、前記光触媒は、シリカ成分を主体とする酸化物相(第1相)とチタンを含む金属酸化物相(第2相)との複合酸化物相からなる繊維であって、第2相を構成する金属酸化物のチタンの存在割合が繊維の表層に向かって傾斜的に増大しており、光触媒機能を有するシリカ基複合酸化物繊維であり、前記光触媒を酸性水溶液で洗浄し再生した後、アルカリ性水溶液で洗浄し再生することを特徴とする光触媒の再生方法に関する。また、前記の酸性水溶液が強酸性水溶液であることが好ましい。また、前記のアルカリ性水溶液が強アルカリ性水溶液であることが好ましい。また、本発明の一実施形態は、前記洗浄は、光触媒を酸性水溶液またはアルカリ性水溶液に浸漬することにより行う。また、前記酸性水溶液またはアルカリ性水溶液に強制対流を起こして光触媒を洗浄することが好ましい。 That is, the present invention is a method for regenerating a photocatalyst used for purification of water containing organic impurities and deteriorated due to contamination by the metal compound and undecomposed organic matter during the water purification treatment. A fiber composed of a composite oxide phase of an oxide phase (first phase) mainly composed of a component and a metal oxide phase (second phase) containing titanium, and titanium of a metal oxide constituting the second phase Is a silica-based composite oxide fiber having a photocatalytic function, which gradually increases toward the surface layer of the fiber, and the photocatalyst is washed and regenerated with an acidic aqueous solution, and then washed and regenerated with an alkaline aqueous solution. The present invention relates to a method for regenerating a photocatalyst. The acidic aqueous solution is preferably a strong acidic aqueous solution. The alkaline aqueous solution is preferably a strong alkaline aqueous solution. In one embodiment of the present invention, the washing is performed by immersing the photocatalyst in an acidic aqueous solution or an alkaline aqueous solution. Further, it is preferable to wash the photocatalyst by causing forced convection in the acidic aqueous solution or alkaline aqueous solution.

本発明における光触媒の再生方法は、金属化合物と未分解有機物に汚染された、本来有していた活性を損なった光触媒を再生するために、酸性水溶液による洗浄後、アルカリ性水溶液による洗浄を行うことで、本来有していた活性近くにまで再生することが出来る。   The method for regenerating a photocatalyst in the present invention is to perform cleaning with an alkaline aqueous solution after cleaning with an acidic aqueous solution in order to regenerate a photocatalyst that has been contaminated with a metal compound and an undecomposed organic substance and has originally lost activity. It is possible to regenerate up to near the original activity.

本発明における光触媒の再生方法は、汚染により従来活性を損なった光触媒を廃棄することなく、再生して光化学反応処理に使用できるので、高価な光触媒による光化学反応処理を低コスト化することが出来る。   Since the photocatalyst regeneration method in the present invention can be regenerated and used for photochemical reaction treatment without discarding the photocatalyst whose activity has been impaired due to contamination, the cost of photochemical reaction treatment with an expensive photocatalyst can be reduced.

有機性不純物としては、細菌、真菌、ウイルスおよび藻類その他の有機物などが挙げられ、紫外線を照射して光触媒により分解される有機化合物も含むものである。本発明の対象となる光触媒は、水中に含まれる有機物、細菌、真菌、ウイルスおよび藻類を分解する触媒であり、酸化チタン(TiO2)、チタン酸ストロンチウム(SrTiO2)、硫化カドミウム(CdS)、硫化モリブデン(MoS2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化銅(CuO2)、酸化鉄(Fe23)、シリコン(Si)等の半導体単体、またはこれらの半導体単体に金(Au)、白金(Pt)、銅(Cu)、錫(Sn)、パラジウム(Pd)、ロジウム(Rh)、酸化ニッケル(NiO)、酸化ロジウム(RhO2)等の金属もしくは金属酸化物を担持したものなどが挙げられる。光触媒の形状については、前記光触媒の粒子単体、丸状及び板状基材への担持、繊維状、ハニカム状基材への担持等形態は問わないが、処理流体への接触効率、光触媒への紫外線の照射効率が最も優れている、表面に光触媒機能を持った繊維状物を用いることが好ましい。特に、特許第3465699号などで開示されている、光触媒機能を有するシリカ基複合酸化物繊維は、光触媒機能を有す第2相の存在割合が繊維の表層に向かって傾斜的に増大することで第1相であるシリカ(SiO)成分を主体とする酸化物相に強固に保持されており、従来、水浄化を行う上での課題であった光触媒の脱落が殆ど無いため、形状を不織布とし、水浄化の触媒として多用されている。 Examples of the organic impurities include bacteria, fungi, viruses, algae and other organic substances, and also include organic compounds which are decomposed by a photocatalyst upon irradiation with ultraviolet rays. The photocatalyst that is the subject of the present invention is a catalyst that decomposes organic substances, bacteria, fungi, viruses, and algae contained in water. Titanium oxide (TiO 2 ), strontium titanate (SrTiO 2 ), cadmium sulfide (CdS), Single semiconductors such as molybdenum sulfide (MoS 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), copper oxide (CuO 2 ), iron oxide (Fe 2 O 3 ), silicon (Si), or single semiconductors thereof Metal or metal oxide such as gold (Au), platinum (Pt), copper (Cu), tin (Sn), palladium (Pd), rhodium (Rh), nickel oxide (NiO), rhodium oxide (RhO 2 ) And the like on which is supported. As for the shape of the photocatalyst, the form of the photocatalyst particles alone, supported on a round or plate-shaped substrate, fibrous, supported on a honeycomb-shaped substrate is not limited, but the contact efficiency to the processing fluid, the photocatalyst It is preferable to use a fibrous material having the best ultraviolet irradiation efficiency and having a photocatalytic function on the surface. In particular, the silica-based composite oxide fiber having a photocatalytic function disclosed in Japanese Patent No. 3465699 and the like has an increase in the proportion of the second phase having a photocatalytic function in an inclined manner toward the surface layer of the fiber. It is firmly held in the oxide phase mainly composed of the silica (SiO 2 ) component as the first phase, and there is almost no dropout of the photocatalyst that has been a problem in water purification, so the shape is non-woven fabric. It is often used as a catalyst for water purification.

本発明の対象として好適に用いられるシリカ基複合酸化物繊維において、シリカ成分を主体とする酸化物相(第1相)とは、非晶質であっても結晶質であっても良く、またシリカと固溶体あるいは共融点化合物を形成し得る金属元素あるいは金属酸化物を含有しても良い。シリカと固溶体を形成し得る金属元素(A)あるいはその酸化物がシリカと特定組成の化合物を形成し得る金属元素(B)としては特に限定されるものではないが、例えば(A)としてチタン、また(B)としてアルミニウム、ジルコニウム、イットリウム、リチウム、ナトリウム、バリウム、カルシウム、ホウ素、亜鉛、ニッケル、マンガン、マグネシウム、鉄等があげられる。   In the silica-based composite oxide fiber suitably used as the object of the present invention, the oxide phase (first phase) mainly composed of the silica component may be amorphous or crystalline. You may contain the metal element or metal oxide which can form a solid solution or a eutectic compound with a silica. The metal element (A) that can form a solid solution with silica or its oxide is not particularly limited as the metal element (B) that can form a compound with a specific composition with silica. For example, (A) is titanium, Examples of (B) include aluminum, zirconium, yttrium, lithium, sodium, barium, calcium, boron, zinc, nickel, manganese, magnesium, iron and the like.

この第1相は、本発明で得られる繊維の内部相を形成しており、力学的特性を負担する重要な役割を演じている。繊維全体に対する第1相の存在割合は98〜40重量%であることが好ましく、目的とする第2相の機能を十分に発現させ、なお且つ高い力学的特性をも発現させるためには、第1相の存在割合を50〜95重量%の範囲内に制御することが好ましい。   This first phase forms the internal phase of the fiber obtained in the present invention and plays an important role in bearing the mechanical properties. The ratio of the first phase to the entire fiber is preferably 98 to 40% by weight, and in order to sufficiently develop the target second phase function and also to exhibit high mechanical properties, It is preferable to control the existence ratio of one phase within the range of 50 to 95% by weight.

一方、第2相を構成する金属酸化物は、光触媒機能を発現させる上で重要な役割を演じるものである。金属酸化物を構成する金属としては、Tiがあげられる。この金属酸化物は、単体でもよいし、その共融点化合物やある特定元素により置換型の固溶体を形成したもの等でもよい。この繊維の表層部を構成する第2相の存在割合は、酸化物の種類により異なるが、2〜60重量%が好ましく、その機能を十分に発現させ、また高強度をも同時に発現させるには5〜50重量%の範囲内に制御することが好ましい。また、第2相のTiを含む金属酸化物の結晶粒径は15nm以下、特に10nm以下が好ましい。   On the other hand, the metal oxide constituting the second phase plays an important role in developing the photocatalytic function. An example of the metal constituting the metal oxide is Ti. The metal oxide may be a simple substance, or may be a compound in which a substitutional solid solution is formed with the eutectic compound or a specific element. The abundance ratio of the second phase constituting the surface layer portion of the fiber is preferably 2 to 60% by weight, although it varies depending on the type of the oxide, in order to fully exhibit its function and simultaneously exhibit high strength. It is preferable to control within the range of 5 to 50% by weight. The crystal grain size of the metal oxide containing Ti of the second phase is preferably 15 nm or less, particularly preferably 10 nm or less.

この第2相を構成する金属酸化物のTiの存在割合は、繊維の表面に向かって傾斜的に増大しており、その組成の傾斜が明らかに認められる領域の厚さは5〜500nmの範囲に制御することが好ましいが、繊維直径の約1/3に及んでも良い。尚、本発明において、第1相及び第2相の「存在割合」とは、第1相を構成する金属酸化物と第2相を構成する金属酸化物全体、即ち繊維全体に対する第1相の金属酸化物及び第2相の金属酸化物の重量%を示している。   The proportion of Ti in the metal oxide constituting the second phase increases in a gradient toward the fiber surface, and the thickness of the region where the composition gradient is clearly recognized is in the range of 5 to 500 nm. However, it may be about 1/3 of the fiber diameter. In the present invention, the “existence ratio” of the first phase and the second phase means the metal oxide constituting the first phase and the whole metal oxide constituting the second phase, that is, the first phase relative to the whole fiber. The weight percent of metal oxide and second phase metal oxide is shown.

本発明の光触媒が用いられる有機物、細菌、真菌、ウイルス及び藻類などの有機性不純物を含有する水としては、上水、温浴水、プール水、飲料用水、海水、産業用水等が挙げられる。   Examples of water containing organic impurities such as organic substances, bacteria, fungi, viruses and algae in which the photocatalyst of the present invention is used include clean water, warm bath water, pool water, drinking water, sea water, industrial water and the like.

このような水浄化では、光触媒は、長期の使用により、処理水中に含まれる金属化合物、未分解有機物により汚染され、初期活性が著しく低下する。   In such water purification, the photocatalyst is contaminated by metal compounds and undecomposed organic substances contained in the treated water due to long-term use, and the initial activity is significantly reduced.

汚染された光触媒は、その表面に部分的に金属化合物、未分解有機物が付着しており、本来、励起光により生成した正孔がOH基を酸化したOHラジカルにより表面のみで起こる酸化分解が、励起光を汚染物質が吸収してしまうことで、部分的に減少してしまう。このことが結果的に、光触媒活性の低下につながる。つまり、汚染により励起光を遮断されることによって光触媒はその活性を失っている。よって、付着した汚染物質を取り除き、汚染前の励起光を受ける面積を回復することによって、光触媒は再生される。   The contaminated photocatalyst has a metal compound and an undecomposed organic substance partially attached to the surface. Originally, oxidative decomposition that occurs only on the surface by OH radicals in which holes generated by excitation light oxidize OH groups, The excitation light is partially absorbed by contaminants that are absorbed. This results in a decrease in photocatalytic activity. That is, the photocatalyst loses its activity by blocking the excitation light due to contamination. Thus, the photocatalyst is regenerated by removing the adhering contaminants and restoring the area that receives the excitation light before contamination.

本発明では、前記汚染された繊維を、酸性水溶液で洗浄し、続けてアルカリ性溶液で洗浄することを特徴とする。この順序を変えると十分な活性が得られない。   In the present invention, the contaminated fiber is washed with an acidic aqueous solution, and then washed with an alkaline solution. If this order is changed, sufficient activity cannot be obtained.

洗浄に用いられる酸性水溶液としては、硫酸、塩酸、クエン酸、リン酸などの水溶液が挙げられるが、より早く、より大きな再生度を得るためには、特に強酸性水溶液が好ましい。強酸性水溶液としては、硫酸、塩酸などが挙げられるが、強酸性溶液の中でも特に、溶解などの光触媒への影響が少ない塩酸が好ましく、その濃度は、溶解を避け、洗浄時間を短時間化するためにも0.5〜1Mで用いることがより好ましい。   Examples of the acidic aqueous solution used for washing include aqueous solutions of sulfuric acid, hydrochloric acid, citric acid, phosphoric acid and the like, but a strong acidic aqueous solution is particularly preferable in order to obtain a greater degree of regeneration faster. Examples of the strongly acidic aqueous solution include sulfuric acid and hydrochloric acid. Among strong acidic solutions, hydrochloric acid that has little influence on the photocatalyst such as dissolution is preferable, and its concentration avoids dissolution and shortens the washing time. Therefore, it is more preferable to use 0.5 to 1M.

洗浄に用いられるアルカリ性水溶液としては、炭酸ナトリウム、炭酸カリウム、過炭酸ナトリウム、次亜塩素酸ソーダなどが挙げられるが、より早く、より大きな再生度を得るためには、特に強アルカリ性水溶液が好ましい。強アルカリ性水溶液としては過炭酸ナトリウム、次亜塩素酸ソーダが挙げられるが、強アルカリ性水溶液の中でも特に、各種細菌やウイルスなどの不活化にも効果があり、増殖機能を停止させることで、洗浄後残存しても、容易に酸化分解できる、次亜塩素酸ソーダが好ましく、その濃度は、人体への影響、洗浄時間の短時間化を行うためにも、有効塩素濃度2〜6%で用いることがより好ましい。   Examples of the alkaline aqueous solution used for washing include sodium carbonate, potassium carbonate, sodium percarbonate, sodium hypochlorite, and the like, but a strong alkaline aqueous solution is particularly preferable in order to obtain a greater degree of regeneration faster. Examples of strong alkaline aqueous solutions include sodium percarbonate and sodium hypochlorite, but among the strong alkaline aqueous solutions, it is also effective in inactivating various bacteria and viruses. Sodium hypochlorite, which can be easily oxidatively decomposed even if it remains, is preferable, and its concentration should be 2 to 6% effective chlorine concentration in order to affect the human body and shorten the cleaning time. Is more preferable.

洗浄として、汚染された光触媒を使用する酸性、アルカリ性水溶液に侵されない容器に静置し、任意の濃度に調整した酸性、アルカリ性水溶液を所定量入れ、再生度を高めるためには、所定時間浸け置き、浸漬洗浄とすることが好ましい。また、浸漬洗浄より、早く大きな再生度を得るためには、浸漬洗浄と同様に、酸性、アルカリ性水溶液を所定量入れた時点で、これら水溶液に、ポンプなどで流速を与えることにより、強制対流を起こし、循環させることで、循環洗浄とすることがより好ましい。尚、本発明において、「浸漬洗浄」とは、汚染された光触媒を定量の酸性またはアルカリ性水溶液の中に所定時間浸漬させておくことを意味しており、「循環洗浄」とは、汚染された光触媒を定量の酸性またはアルカリ性水溶液の中に浸し、その定量の水溶液をポンプなどで、例えば水溶液上部から吸引し、水溶液下部に吐出することにより、強制対流を起こし、所定時間循環させることを意味する。   As a cleaning, leave in a container not affected by acidic or alkaline aqueous solution using a contaminated photocatalyst, put a predetermined amount of acidic or alkaline aqueous solution adjusted to any concentration, and soak for a predetermined time to increase the degree of regeneration It is preferable to use immersion cleaning. Also, in order to obtain a large regeneration rate faster than immersion cleaning, as with immersion cleaning, forced convection is applied by applying a flow rate to these aqueous solutions with a pump or the like when a predetermined amount of acidic or alkaline aqueous solution is added. It is more preferable to circulate and circulate by raising and circulating. In the present invention, “immersion cleaning” means that the contaminated photocatalyst is immersed in a fixed amount of an acidic or alkaline aqueous solution for a predetermined time. It means that the photocatalyst is immersed in a fixed amount of acidic or alkaline aqueous solution, and the fixed amount of aqueous solution is sucked from the upper part of the aqueous solution, for example, with a pump, and discharged to the lower part of the aqueous solution, thereby causing forced convection and circulating for a predetermined time. .

以下、本発明を実施例により説明する。   Hereinafter, the present invention will be described with reference to examples.

(参考例1)
5リットルの三口フラスコに無水トルエン2.5リットルと金属ナトリウム400gとを入れ窒素ガス気流かでトルエンの沸点まで加熱し、ジメチルジクロロシラン1リットルを1時間かけて滴下した。滴下終了後、10時間加熱還流し沈殿物を生成させた。この沈殿をろ過し、まずメタノールで洗浄した後、水で洗浄して、白色粉末のポリジメチルシラン420gを得た。ポリジメチルシラン250gを、水冷還流器を備えた三口フラスコ中に仕込み、窒素気流下、420度で30時間加熱反応させて数平均分子量が1200のポリカルボシランを得た。
(Reference Example 1)
A 5-liter three-necked flask was charged with 2.5 liters of anhydrous toluene and 400 g of metallic sodium, heated to the boiling point of toluene with a nitrogen gas stream, and 1 liter of dimethyldichlorosilane was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was heated to reflux for 10 hours to form a precipitate. The precipitate was filtered, washed with methanol and then with water to obtain 420 g of white powder of polydimethylsilane. Polydimethylsilane (250 g) was charged into a three-necked flask equipped with a water-cooled reflux condenser, and heated and reacted at 420 ° C. for 30 hours in a nitrogen stream to obtain polycarbosilane having a number average molecular weight of 1200.

合成されたポリカルボシラン16gにトルエン100gとテトラブトキシチタン64gを加え、100℃で1時間予備加熱させた後、150度までゆっくり昇温して5時間反応して変性ポリカルボシランを合成した。この変性ポリカルボシランに意図的に低分子量の有機金属化合物を共存させる目的で5gのテトラブトキシチタンを加えて、変性ポリカルボシランと低分子量有機金属化合物の混合物を得た。   To 16 g of the synthesized polycarbosilane, 100 g of toluene and 64 g of tetrabutoxytitanium were added, preheated at 100 ° C. for 1 hour, then slowly heated to 150 ° C. and reacted for 5 hours to synthesize modified polycarbosilane. In order to intentionally allow the low molecular weight organometallic compound to coexist with the modified polycarbosilane, 5 g of tetrabutoxytitanium was added to obtain a mixture of the modified polycarbosilane and the low molecular weight organometallic compound.

この変性ポリカルボシランと低分子量有機金属化合物の混合物をトルエンに溶解させた後、メルトブロー紡糸装置に仕込み、内部を十分に窒素置換してから昇温してトルエンを留去させて、180℃で紡糸を行った。紡糸した不織布を、空気中、段階的に150℃まで加熱し不融化させた後、1200℃の空気中で1時間焼成を行い、チタニア/シリカ繊維不織布を得た。   After the mixture of the modified polycarbosilane and the low molecular weight organometallic compound was dissolved in toluene, the mixture was charged into a melt blow spinning apparatus, the interior was sufficiently purged with nitrogen, and the temperature was raised to distill off the toluene. Spinning was performed. The spun nonwoven fabric was heated to 150 ° C. stepwise in air and infusible, and then fired in air at 1200 ° C. for 1 hour to obtain a titania / silica fiber nonwoven fabric.

得られた繊維(平均直径:5μm)は、X線回折の結果、非晶質シリカとアナターゼのチタニアからなっており、繊維全体のTi/Si(モル比)は0.17であった。また、EPMAによる構成原子の分布状態を調べたところ、最外周部から0.5μmの領域でTi/Si(モル比)=0.90、最外周から1〜2μmの領域でTi/Si(モル比)=0.12、中心部でTi/Si(モル比)=0.04と、表面に向かってチタンが増大する傾斜構造になっていることを確認した。同繊維の引張強度は1.8GPaで、従来知られているゾルゲル法により得られたアナターゼ型チタニア/シリカ繊維に比べて極めて高強度を示すものだった。得られた不織布の目付けは100g/m、厚みは1mmであった。 As a result of X-ray diffraction, the obtained fiber (average diameter: 5 μm) was composed of amorphous silica and anatase titania, and the Ti / Si (molar ratio) of the entire fiber was 0.17. Further, when the distribution state of the constituent atoms by EPMA was examined, Ti / Si (molar ratio) = 0.90 in the region of 0.5 μm from the outermost periphery, and Ti / Si (molar) in the region of 1 to 2 μm from the outermost periphery. Ratio) = 0.12 and Ti / Si (molar ratio) = 0.04 at the center, confirming that the structure has an inclined structure in which titanium increases toward the surface. The tensile strength of the fiber was 1.8 GPa, which was extremely high compared to the anatase-type titania / silica fiber obtained by the conventionally known sol-gel method. The resulting nonwoven fabric had a basis weight of 100 g / m 2 and a thickness of 1 mm.

(実施例1〜18)
図1に示すように、内容積1Lのガラス製容器1に上部バルブ2、下部バルブ3を取り付けたものの内部に、上水、温浴水、プール水、飲料用水、海水、産業用水中の有機物の酸化分解、細菌の分解、真菌の分解、ウイルスの分解、藻類の分解の光化学反応処理に用い、金属化合物及び未分解有機物が付着した、参考例1で得られたチタニア/シリカ繊維不織布を2枚積層し、約2mmの厚みとし、これをステンレス製の金網(線径1mm、3メッシュ)を支持部材として直径約85mm、高さ130mmで中央部に直径20mmの穴を開けた中空円錐台状成型物、光触媒カートリッジ4を静置した。
(Examples 1-18)
As shown in FIG. 1, in a glass container 1 having an internal volume of 1 L, an upper valve 2 and a lower valve 3 are attached, water, warm bath water, pool water, drinking water, seawater, and organic water in industrial water. Two sheets of the titania / silica fiber nonwoven fabric obtained in Reference Example 1 used for photochemical reaction treatment of oxidative degradation, bacterial degradation, fungal degradation, virus degradation, and algal degradation, with metal compounds and undegraded organic substances attached Stacked to a thickness of about 2 mm, hollow conical shape molding with a stainless steel wire mesh (wire diameter 1 mm, 3 mesh) as a supporting member, a diameter of about 85 mm, a height of 130 mm, and a hole with a diameter of 20 mm in the center The product and the photocatalyst cartridge 4 were allowed to stand.

ガラス製容器1に静置した光触媒カートリッジ4が完全に浸り、水位が上部バルブ2より上に来るよう、洗浄を行う酸性溶液として塩酸を濃度0.5Mで1L調整した。ガラス製容器1の上部から調整した酸性溶液を注ぎ入れ、光触媒カートリッジ4を浸漬し、1,2,3時間静置することで酸性溶液による浸漬洗浄とした(実施例1〜9)。また、ポンプ5を用い、光触媒カートリッジを浸漬した状態で、酸性溶液を20L/minで1,2,3時間循環することで酸性溶液による循環洗浄とした(実施例10〜18)。   As an acidic solution for washing, 1 L of hydrochloric acid was adjusted at a concentration of 0.5 M so that the photocatalyst cartridge 4 placed in the glass container 1 was completely immersed and the water level was above the upper valve 2. The acidic solution prepared from the upper part of the glass container 1 was poured, the photocatalyst cartridge 4 was immersed, and left to stand for 1, 2 or 3 hours, thereby performing immersion cleaning with the acidic solution (Examples 1 to 9). Moreover, it was set as the circulation washing | cleaning by an acidic solution by circulating the acidic solution for 1, 2, and 3 hours at 20 L / min in the state which immersed the photocatalyst cartridge using the pump 5 (Examples 10-18).

酸性水溶液での洗浄終了後、酸性水溶液を下部バルブ3から排出し、排出後、下部バルブ3から水道水を流入させ上部バルブ2から排出することによって、残留酸性水溶液を除去した。水道水を下部バルブ3より排出後、酸性溶液と同容量になるよう、洗浄液とするアルカリ性溶液として、次亜塩素酸ソーダを有効塩素濃度2%になるよう調整した。ガラス製容器1の上部から調整したアルカリ性溶液を注ぎいれ、光触媒カートリッジ4を浸漬し、1,2,3時間静置することでアルカリ性溶液による浸漬洗浄とした(実施例1〜9)。また、ポンプ5を用い、光触媒カートリッジを浸漬した状態で、アルカリ性溶液を20L/minで1,2,3時間循環することでアルカリ性溶液による循環洗浄とした(実施例10〜18)。   After washing with the acidic aqueous solution, the acidic aqueous solution was discharged from the lower valve 3, and after discharging, the tap water was introduced from the lower valve 3 and discharged from the upper valve 2 to remove the residual acidic aqueous solution. After discharging tap water from the lower valve 3, sodium hypochlorite was adjusted so as to have an effective chlorine concentration of 2% as an alkaline solution serving as a cleaning solution so as to have the same volume as the acidic solution. The alkaline solution prepared from the upper part of the glass container 1 was poured, the photocatalyst cartridge 4 was immersed, and allowed to stand for 1, 2 or 3 hours, thereby performing immersion cleaning with the alkaline solution (Examples 1 to 9). Moreover, with the photocatalyst cartridge immersed in the pump 5, the alkaline solution was circulated at a rate of 20 L / min for 1, 2, and 3 hours for circulation cleaning with the alkaline solution (Examples 10 to 18).

洗浄終了後、アルカリ性溶液を下部バルブ3から排出し、排出後、下部バルブ3から水道水を流入させ上部バルブ2から排出することによって、残留アルカリ性廃液を除去した。全ての洗浄操作が終了した光触媒カートリッジに保持されている光触媒を取り出し、100℃で12時間乾燥させ、Φ40mm、重さ0.05gにサイジングした。   After the washing, the alkaline solution was discharged from the lower valve 3, and after discharging, the tap water was introduced from the lower valve 3 and discharged from the upper valve 2 to remove the residual alkaline waste liquid. The photocatalyst retained in the photocatalyst cartridge after all washing operations were taken out, dried at 100 ° C. for 12 hours, and sized to Φ40 mm and a weight of 0.05 g.

光触媒の活性を測る手段としては、光触媒の主たる活性種であるOHラジカルと反応し生成物を作るDMSO(ジメチルスルホキシド)を用い、OHラジカルとの生成物であるMSA(メタンスルホン酸)の生成量を定量する方法を用いた。   As a means of measuring the activity of the photocatalyst, DMSO (dimethyl sulfoxide) that reacts with OH radical, which is the main active species of the photocatalyst, produces a product, and the amount of MSA (methanesulfonic acid) produced as a product with the OH radical The method of quantifying was used.

Φ40mmのシャーレにサイジングしたサンプルを仕込み、濃度を100ppmに調整したDMSO溶液を10mlシャーレに注ぎいれ、ブラックライト下、紫外線強度2.5mW/cmで60min照射を行い、DMSO水溶液中に生成したMSAの生成量をIC(イオンクロマトグラフ)で測定することで光触媒の活性(MSAm)とし、再生度合いを光化学反応処理前の同様に測定した光触媒活性(MSAref)を分母にとり100分率で表した。結果を表1に示す。表1から分かるように、実施例7〜18では再生度100%を達成しており、また循環洗浄では、浸漬洗浄と比較し、短時間で大きな再生度を得ていることが明らかになった。 A sample sized in a petri dish of Φ40 mm was charged, a DMSO solution adjusted to a concentration of 100 ppm was poured into a 10 ml petri dish, and irradiated with UV light at a UV intensity of 2.5 mW / cm 2 for 60 min under black light, and the MSA produced in the DMSO aqueous solution The photocatalytic activity (MSAm) was measured by IC (ion chromatograph), and the degree of regeneration was expressed in 100 fractions using the photocatalytic activity (MSAref) measured in the same manner before the photochemical reaction treatment as a denominator. The results are shown in Table 1. As can be seen from Table 1, in Examples 7-18, 100% regeneration was achieved, and in circulation cleaning, it was revealed that large regeneration was obtained in a short time compared to immersion cleaning. .

(比較例1〜3)
実施例と同条件の光化学反応処理に用いた光触媒カートリッジ4を特許文献1に記述されているよう、ガラス製容器1に静置、水道水を1L注入後、下部バルブ3から1L/minで空気を曝気させ、攪拌しながら、超音波振動を加え1,2,3時間洗浄を行った。洗浄後、実施例と同様にしてMSAの生成量を測定し、洗浄後の光触媒活性とした。結果を表1に示す。表1から、実施例と比較し、再生度はかなり低く、殆ど洗浄効果が認められないことが明らかになった。
(Comparative Examples 1-3)
As described in Patent Document 1, the photocatalyst cartridge 4 used for the photochemical reaction treatment under the same conditions as in the examples was placed in a glass container 1 and injected with 1 L of tap water, and then air was supplied from the lower valve 3 at 1 L / min. The mixture was aerated and subjected to washing for 1, 2, and 3 hours by applying ultrasonic vibration while stirring. After washing, the amount of MSA produced was measured in the same manner as in Example, and the photocatalytic activity after washing was determined. The results are shown in Table 1. From Table 1, it became clear that the degree of regeneration was considerably low compared with the Examples, and almost no cleaning effect was observed.

(比較例4)
実施例と同条件の光化学反応処理に用いた光触媒カートリッジ4を特許文献2に記述されているよう、ガラス製容器1に静置、1Nのクエン酸1L注入後、ポンプで1L/hrの流速を与え12時間洗浄を行った。洗浄後、実施例と同様にしてMSAの生成量を測定し、洗浄後の光触媒活性とした。結果を表1に示す。表1から分かるように、長時間洗浄したのにもかかわらず、実施例と比較し、大きな再生度は得られなかった。
(Comparative Example 4)
As described in Patent Document 2, the photocatalyst cartridge 4 used for the photochemical reaction treatment under the same conditions as in the examples was placed in a glass container 1 and injected with 1 L of 1N citric acid, and then the flow rate of 1 L / hr was set with a pump. Washed for 12 hours. After washing, the amount of MSA produced was measured in the same manner as in Example, and the photocatalytic activity after washing was determined. The results are shown in Table 1. As can be seen from Table 1, despite the fact that it was washed for a long time, a large regeneration rate was not obtained as compared with the Examples.

(比較例5〜19)
実施例1〜9の操作を酸性溶液洗浄のみにした場合(比較例5〜7)、アルカリ性溶液のみにした場合(比較例8〜10)、酸性溶液とアルカリ性溶液の洗浄順序を逆にした場合(比較例11〜19)を表1に示す。表1から分かるように、それぞれ単独での洗浄では、再生度が上がらず、値も収束傾向であり、時間を延ばせば100%になるということもない。また、順序を逆にした場合では、実施例と比較し、洗浄時間に対する再生度が低いということが分かった。
(Comparative Examples 5-19)
When the operations of Examples 1 to 9 are only acidic solution cleaning (Comparative Examples 5 to 7), only the alkaline solution (Comparative Examples 8 to 10), and the cleaning order of the acidic solution and the alkaline solution are reversed. (Comparative Examples 11 to 19) are shown in Table 1. As can be seen from Table 1, when the cleaning is performed individually, the degree of regeneration does not increase, the value tends to converge, and it does not become 100% if the time is extended. Further, it was found that when the order was reversed, the degree of regeneration with respect to the cleaning time was low as compared with the example.

Figure 0005217561
Figure 0005217561

本発明の光触媒の再生方法の一実施形態に用いられる洗浄槽の概略図である。It is the schematic of the washing tank used for one Embodiment of the regeneration method of the photocatalyst of this invention.

符号の説明Explanation of symbols

1 洗浄槽
2 上部バルブ
3 下部バルブ
4 光触媒カートリッジ
5 ポンプ
1 Washing tank 2 Upper valve 3 Lower valve 4 Photocatalyst cartridge 5 Pump

Claims (6)

有機性不純物を含有する水の浄化処理に用いられ、前記水浄化処理中の金属化合物と未分解有機物による汚染により劣化した、光触媒の再生方法であり、前記光触媒は、シリカ成分を主体とする酸化物相(第1相)とチタンを含む金属酸化物相(第2相)との複合酸化物相からなる繊維であって、第2相を構成する金属酸化物のチタンの存在割合が繊維の表層に向かって傾斜的に増大しており、光触媒機能を有するシリカ基複合酸化物繊維であり、前記光触媒を酸性水溶液で洗浄し再生した後、アルカリ性水溶液で洗浄し再生することを特徴とする光触媒の再生方法。 A method for regenerating a photocatalyst used for purifying water containing organic impurities and deteriorated due to contamination by a metal compound and undecomposed organic matter during the water purification treatment, wherein the photocatalyst is an oxidation mainly composed of a silica component. It is a fiber composed of a composite oxide phase of a physical phase (first phase) and a metal oxide phase (second phase) containing titanium, and the presence ratio of titanium in the metal oxide constituting the second phase is A photocatalyst, which is a silica-based composite oxide fiber having a photocatalytic function, increasing in a slanting manner toward the surface layer, wherein the photocatalyst is washed and regenerated with an acidic aqueous solution and then washed with an alkaline aqueous solution How to play. 前記の酸性水溶液が強酸性水溶液であることを特徴とする請求項1記載の光触媒の再生方法。   The method for regenerating a photocatalyst according to claim 1, wherein the acidic aqueous solution is a strong acidic aqueous solution. 前記のアルカリ性水溶液が強アルカリ性水溶液であることを特徴とする請求項1記載の光触媒の再生方法。   The method for regenerating a photocatalyst according to claim 1, wherein the alkaline aqueous solution is a strong alkaline aqueous solution. 前記酸性水溶液が塩酸水溶液であり、前記アルカリ性水溶液が次亜塩素酸ソーダ水溶液であることを特徴とする請求項1記載の光触媒の再生方法。   The method for regenerating a photocatalyst according to claim 1, wherein the acidic aqueous solution is an aqueous hydrochloric acid solution, and the alkaline aqueous solution is an aqueous sodium hypochlorite solution. 前記洗浄は、光触媒を酸性水溶液またはアルカリ性水溶液に浸漬することにより行うことを特徴とする請求項1記載の光触媒の再生方法。   The method for regenerating a photocatalyst according to claim 1, wherein the washing is performed by immersing the photocatalyst in an acidic aqueous solution or an alkaline aqueous solution. 前記酸性水溶液またはアルカリ性水溶液に強制対流を起こして光触媒を洗浄することを
特徴とする請求項5記載の光触媒の再生方法。
6. The method for regenerating a photocatalyst according to claim 5, wherein forced convection is caused in the acidic aqueous solution or the alkaline aqueous solution to wash the photocatalyst.
JP2008086477A 2008-03-28 2008-03-28 Photocatalyst regeneration method Expired - Fee Related JP5217561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086477A JP5217561B2 (en) 2008-03-28 2008-03-28 Photocatalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086477A JP5217561B2 (en) 2008-03-28 2008-03-28 Photocatalyst regeneration method

Publications (2)

Publication Number Publication Date
JP2009233634A JP2009233634A (en) 2009-10-15
JP5217561B2 true JP5217561B2 (en) 2013-06-19

Family

ID=41248278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086477A Expired - Fee Related JP5217561B2 (en) 2008-03-28 2008-03-28 Photocatalyst regeneration method

Country Status (1)

Country Link
JP (1) JP5217561B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308913B1 (en) 2011-04-06 2013-09-23 한국과학기술원 Method for cleaning of waste water using polydopamine
JP6161508B2 (en) * 2013-10-23 2017-07-12 三菱重工業株式会社 Catalyst regeneration method for COS conversion catalyst
JP6853640B2 (en) * 2016-09-20 2021-03-31 アンデス電気株式会社 Photocatalyst deodorant material regeneration method, photocatalyst deodorant material regeneration system, and regenerated photocatalyst deodorant material manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169040A (en) * 1988-12-22 1990-06-29 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst
JP2516567B2 (en) * 1993-12-27 1996-07-24 ライザー工業株式会社 Cleaning and regeneration method of catalyst fine particles used in photooxidation method
JPH10151354A (en) * 1996-11-21 1998-06-09 Akira Fujishima Method for regenerating photocatalyst
JP2003285069A (en) * 2002-03-28 2003-10-07 Hitachi Metals Ltd Fluid cleaning device
JP2004321864A (en) * 2003-04-22 2004-11-18 Noritake Co Ltd Method for washing photocatalyst filter and washing kit therefor
JP2005138009A (en) * 2003-11-05 2005-06-02 Himeka Engineering Kk Liquid purifying system
JP2007326043A (en) * 2006-06-08 2007-12-20 Ube Ind Ltd Purification device and photocatalytic cartridge

Also Published As

Publication number Publication date
JP2009233634A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5217561B2 (en) Photocatalyst regeneration method
CN102716740A (en) Method for preparing photocatalytic material with multi-component porous classification structure
JP7090376B2 (en) Washing water treatment equipment and washing water treatment method
KR100945311B1 (en) Visible ray reaction type hybrid photocatalyst filter and air cleaner
JP2010022936A (en) Apparatus and method for producing ultrapure water
WO2011125427A1 (en) Wastewater treatment apparatus and wastewater treatment method
JP5376670B2 (en) Waste water treatment apparatus and waste water treatment method
EP2035113A2 (en) Siloxane resistant ultra violet photocatalysts
JP2010227841A (en) Endotoxin decomposition device, purified water production system equipped with the same, system of producing purified water for artificial dialysis, and method of decomposing endotoxin
JP2567273Y2 (en) UV irradiation device for photochemical reaction treatment
JP5277688B2 (en) Water purification device and water purification method
JP2012200672A (en) Water cleaning apparatus
JP2012000301A (en) Air cleaner using photocatalyst
JPWO2009063737A1 (en) Water purification device and water purification method
JP3751147B2 (en) Purification agent and water purification apparatus using the same
JP4946224B2 (en) How to reuse plating wash water
JP2013202215A (en) Air cleaner
KR102284856B1 (en) Water treating apparatus using bubble and oxidation
US20130109559A1 (en) Photocatalyst fiber and production method thereof
JP2013202232A (en) Small-sized deodorizing device
JP2012213760A (en) Method and apparatus for clarifying tap water
JP2014121659A (en) Water treatment apparatus, and method for treating water by using the same
JP2010017504A (en) Method for cleaning air with photocatalytic ceramic filter using purified water and air cleaning apparatus
JPH0751236B2 (en) How to purify drinking water
JPH10151354A (en) Method for regenerating photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees