JP5215806B2 - Protective bank construction method - Google Patents

Protective bank construction method Download PDF

Info

Publication number
JP5215806B2
JP5215806B2 JP2008262047A JP2008262047A JP5215806B2 JP 5215806 B2 JP5215806 B2 JP 5215806B2 JP 2008262047 A JP2008262047 A JP 2008262047A JP 2008262047 A JP2008262047 A JP 2008262047A JP 5215806 B2 JP5215806 B2 JP 5215806B2
Authority
JP
Japan
Prior art keywords
reinforcing material
reinforcing
triaxial
protective
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008262047A
Other languages
Japanese (ja)
Other versions
JP2010090623A (en
Inventor
間  昭徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008262047A priority Critical patent/JP5215806B2/en
Publication of JP2010090623A publication Critical patent/JP2010090623A/en
Application granted granted Critical
Publication of JP5215806B2 publication Critical patent/JP5215806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、落石、土石流、雪崩などの大きな運動エネルギーを持つ落下物による被害を防止するための防護堤の施工方法に関し、さらに詳しくは、従来の防護堤より耐衝撃性に優れた防護堤を施工できる方法に関する。   The present invention relates to a method of constructing a protective dam for preventing damage caused by falling objects having large kinetic energy such as falling rocks, debris flows, and avalanches. More specifically, the present invention relates to a protective levee having a higher impact resistance than a conventional protective levee. It relates to a method that can be constructed.

山間部の斜面などには、落石、土石流、雪崩などの大きな運動エネルギーを持つ落下物による被害を防止するために、防護堤が備えられている。このような防護堤としては、コンクリート製の大型擁壁が用いられていたが、現在は施工性などの観点から、盛土中に補強材(例えば、ジオテキスタイル)を埋設してなる補強土壁と呼ばれるものが用いられている。   In order to prevent damage caused by falling objects with large kinetic energy such as falling rocks, debris flows, and avalanches, slopes in mountainous areas are provided. As such a protective levee, a concrete large retaining wall was used, but from the viewpoint of workability, it is now called a reinforced earth wall in which a reinforcing material (for example, geotextile) is embedded in the embankment. Things are used.

上記した補強土壁の具体例としては、例えば、特許文献1に開示されている衝撃吸収用堤体が挙げられる。特許文献1には、斜面の山側に受撃面を有し、内部に補強材をほぼ水平方向に複数枚間隙をおいて配置してなる抵抗体を備えた衝撃吸収用堤体において、落石の衝撃力の作用力を求め、抵抗体の構造を仮定し、抵抗体の滑り面を決定し、滑り面上の抵抗体を滑り面に沿って滑らせる作用力に起因する滑り力を求め、滑り面上の抵抗体の荷重と補強材に起因する抵抗力を求め、抵抗力と滑り力の比から安全率を求め、安全率が所定値の範囲に入るように抵抗体の構造を決定して得られたことを特徴とする、衝撃吸収用堤体が開示されている。
特開2004−11224号公報
As a specific example of the above-mentioned reinforced earth wall, for example, a shock absorbing dam body disclosed in Patent Document 1 can be cited. In Patent Document 1, in a shock absorbing dam body having a receiving surface on the mountain side of a slope and having a plurality of reinforcing members arranged in a horizontal direction with a plurality of gaps therebetween, Determine the acting force of the impact force, assume the structure of the resistor, determine the sliding surface of the resistor, determine the sliding force due to the acting force that slides the resistor on the sliding surface along the sliding surface, Determine the resistance due to the load of the resistor on the surface and the reinforcing material, determine the safety factor from the ratio of the resistance and sliding force, and determine the structure of the resistor so that the safety factor falls within the specified range. An impact-absorbing dam body characterized by being obtained is disclosed.
JP 2004-11224 A

盛土中に補強材を埋設した従来の防護堤(例えば、特許文献1の抵抗体など)では、補強材で盛土材を拘束することによって防護堤の強度を上げるために、補強材を埋設させていた。また、防護堤は縦断方向(水平面及び法面に対して平行な方向)に長く施工されるため、盛土材を拘束するには、横断方向(縦断方向及び鉛直方向に直交する方向)の拘束力のみ考慮すれば良い。したがって、従来の防護堤では、敷設時に横断方向に特に強い引っ張り強度を有する補強材が採用されていた。   In a conventional protective bank (for example, a resistor of Patent Document 1) in which a reinforcing material is embedded in the embankment, the reinforcing material is embedded in order to increase the strength of the protective bank by restraining the embankment material with the reinforcing material. It was. In addition, since the protective bank is constructed long in the longitudinal direction (direction parallel to the horizontal and slope), the restraining force in the transverse direction (direction perpendicular to the longitudinal direction and the vertical direction) is required to constrain the embankment material. Only need to be considered. Therefore, in the conventional protective levee, a reinforcing material having a particularly strong tensile strength in the transverse direction at the time of laying was employed.

このような従来の防護堤の場合、例えば、落石などによる衝撃を受けると、補強材はその衝撃に対して主に横断方向に抵抗する。より詳細に説明すると、図5(従来の防護堤が衝撃を受けた際に、水平方向断面において働く力を概略的に示す図。)に示すように、従来の防護堤20では、落石21によって衝撃22を受けると、防護堤20内に埋設された補強材1b(図4参照。)によって横断方向に抵抗力23が働くことで、衝撃22を受け止めていた。   In the case of such a conventional protective bank, for example, when an impact is caused by falling rocks, the reinforcing material resists the impact mainly in the transverse direction. More specifically, as shown in FIG. 5 (a diagram schematically showing the force acting in the horizontal section when the conventional protective bank is impacted), the conventional protective bank 20 has a falling rock 21. When the impact 22 was received, the impact 22 was received by the resistance 23 acting in the transverse direction by the reinforcing material 1b (see FIG. 4) embedded in the protective bank 20.

すなわち、従来の防護堤20では、落石21などによる衝撃22を受けた箇所を中心とした狭い範囲(図5に示した斜線部分。)のみで、その衝撃を受け止めていた。したがって、従来の防護堤20では、落石21などによって衝撃22を加えられた場合、局所的に破壊される虞があった。   That is, in the conventional protective bank 20, the impact was received only in a narrow range (shaded portion shown in FIG. 5) centered on the location where the impact 22 was received by the falling rock 21 or the like. Therefore, when the impact 22 is applied by the falling rock 21 or the like, the conventional protective bank 20 may be locally destroyed.

そこで、本発明は、落石などによる衝撃を分散して広範囲で受け止めることができる、耐衝撃性に優れた防護堤の施工方法を提供することを課題とする。   Then, this invention makes it a subject to provide the construction method of the protection bank excellent in impact resistance which can disperse | distribute the impact by rockfall etc. and can catch in a wide range.

以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図面の形態に限定されるものではない。   The present invention will be described below. In addition, in order to make an understanding of this invention easy, the reference sign of an accompanying drawing is attached in brackets, However, This invention is not limited to the form of drawing.

本発明は、ジオテキスタイルからなる補強材(1)を略水平に敷設する、補強材敷設工程(S1)と、敷設した補強材の上に盛土材(2)を乗せて締め固める、締め固め工程(S2)と、を備え、所定の高さまで補強材敷設工程及び締め固め工程を繰り返すことで、鉛直方向に一定の間隔を空けて複数の補強材が埋設された防護堤(10)を施工する方法であって、該複数の補強材に、3軸方向に特に強い強度を有するジオテキスタイルからなる3軸方向補強材(1a)が含まれることを特徴とする、防護堤施工方法である。   The present invention includes a reinforcing material laying step (S1) in which the reinforcing material (1) made of geotextile is laid substantially horizontally, and a compacting step in which the embedding material (2) is placed on the laid reinforcing material and compacted. S2), and a method of constructing a protective levee (10) in which a plurality of reinforcing materials are embedded at predetermined intervals in the vertical direction by repeating the reinforcing material laying step and the compacting step to a predetermined height In this method, the plurality of reinforcing materials include a triaxial reinforcing material (1a) made of a geotextile having particularly strong strength in the three axial directions.

本発明に用いることができる「盛土材」とは、特に限定されるものではなく、砂や粘土などの現地発生土などを用いることができる。また、「3軸方向に特に強い強度を有するジオテキスタイルからなる3軸方向補強材」とは、略水平に設置した際に、水平面において3軸方向に特に強い引っ張り強度を有している結果、全方向(360度)に強度を擬似的に有するトラス構造を備える補強材を意味し、具体例としては、特開2004−44374号公報に開示されているジオグリットを挙げることができる。   The “banking material” that can be used in the present invention is not particularly limited, and locally generated soil such as sand and clay can be used. In addition, “a triaxial reinforcing material made of geotextile having particularly strong strength in the triaxial direction” means that when installed in a substantially horizontal direction, it has a particularly strong tensile strength in the triaxial direction in the horizontal plane. This means a reinforcing material having a truss structure that has a pseudo strength in the direction (360 degrees), and a specific example thereof is Geogrid disclosed in JP-A-2004-44374.

上記本発明の防護堤の施工方法において、複数の補強材(1)が、敷設時に横断方向に特に強い強度を有するジオテキスタイルからなる横断方向補強材(1b)と、3軸方向補強材(1a)とであり、鉛直方向において、横断方向補強材同士の間に、1枚以上の3軸補方向強材が埋設させることが好ましい。かかる形態とすることによって、横断方向に盛土材を拘束する力を備えつつ、落石などによる衝撃を広範囲に分散させる効果を有する防護壁施工方法を提供することができる。   In the construction method of the above-mentioned protection dam of the present invention, the plurality of reinforcing members (1) are a transverse reinforcing member (1b) made of a geotextile having a particularly strong strength in the transverse direction when laid, and a triaxial reinforcing member (1a). In the vertical direction, it is preferable to embed one or more triaxial strong reinforcing materials between the transverse reinforcing members. By setting it as this form, the protective wall construction method which has the effect which disperse | distributes the impact by falling rock etc. over a wide range can be provided, providing the force which restrains a banking material in a cross direction.

本発明によれば、落石などによる衝撃を分散して広範囲で受け止めることができる、耐衝撃性に優れた防護堤の施工方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the construction method of the protection bank excellent in impact resistance which can disperse | distribute the impact by falling rocks etc. and can catch in a wide range can be provided.

以下、図面を参照しつつ、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の防護堤施工方法に備えられる工程を概略的に示したフローチャートである。図2は、本発明の防護堤施工方法によって施工された防護堤の鉛直方向断面を概略的に示す図である。   FIG. 1 is a flowchart schematically showing steps provided in the method of constructing a protective bank according to the present invention. FIG. 2 is a view schematically showing a vertical cross section of a protective bank constructed by the method of constructing a protective bank according to the present invention.

図1に示すように、本発明の防護堤施工方法は、補強材敷設工程S1及び締め固め工程S2を備え、所定の高さまで補強材敷設工程S1及び締め固め工程S2を繰り返すことで、鉛直方向に一定の間隔を空けて複数の補強材1、1、…が埋設された防護堤10を施工する方法である。そして、その複数の補強材1、1、…には、3軸方向に特に強い強度を有するジオテキスタイルからなる3軸方向補強材1a(以下、単に「3軸方向補強材1a」という。)が含まれている。さらに、この補強材1、1、…は、敷設時に横断方向に特に強い強度を有するジオテキスタイルからなる横断方向補強材1b(以下、単に「横断方向補強材1b」という。)と、3軸方向補強材1aとであり、鉛直方向において、横断方向補強材1bと他の横断方向補強材1bと間に、1枚以上の3軸方向補強材1aが挟まれる位置関係となるように埋設させることが好ましい。かかる形態とすることによって、横断方向に盛土材2を拘束する力を備えつつ、落石などによる衝撃を広範囲に分散させる効果を有する防護壁10を施工する方法を提供することができる。   As shown in FIG. 1, the protective bank construction method of the present invention includes a reinforcing material laying step S1 and a compacting step S2, and by repeating the reinforcing material laying step S1 and the compacting step S2 to a predetermined height, Is a method of constructing a protective bank 10 in which a plurality of reinforcing members 1, 1,. The plurality of reinforcing materials 1, 1,... Includes a triaxial reinforcing material 1a made of a geotextile having particularly strong strength in the three axial directions (hereinafter simply referred to as “triaxial reinforcing material 1a”). It is. Further, the reinforcing members 1, 1,... Have a transverse reinforcing member 1 b (hereinafter simply referred to as “crossing reinforcing member 1 b”) made of a geotextile having a particularly strong strength in the transverse direction when laid, and a triaxial reinforcing member. The material 1a is embedded in the vertical direction so that one or more triaxial reinforcing materials 1a are sandwiched between the transverse reinforcing material 1b and the other transverse reinforcing material 1b. preferable. By setting it as this form, the method of constructing the protective wall 10 which has the effect which disperse | distributes the impact by falling rock etc. over a wide range can be provided, providing the force which restrains the embankment material 2 in a cross direction.

本発明の防護堤施工方法に備えられる各工程について、以下に詳細に説明する。   Each process with which the protection bank construction method of this invention is equipped is demonstrated in detail below.

1.補強材敷設工程S1
工程S1は、図2に示すように、地盤100上、又は締め固め工程S2の後に盛土材2の上に、ジオテキスタイルからなる補強材1を敷設する工程である。地盤100又は盛土材2の上に補強材1を固定する方法は特に限定されず、従来の公知の方法を用いることができる。
1. Reinforcement laying process S1
Step S1 is a step of laying the reinforcing material 1 made of geotextile on the ground 100 or on the embankment material 2 after the compacting step S2, as shown in FIG. The method of fixing the reinforcing material 1 on the ground 100 or the embankment material 2 is not particularly limited, and a conventionally known method can be used.

2.締め固め工程S2
工程S2は、補強材1の上に、盛土材2を乗せて締め固める工程である。補強材1は、通常、鉛直方向において30cm、60cm、又は1.2mの間隔で埋設される。したがって、工程S2では、締め固め後の盛土材2の高さ(地盤100又は該盛土材2の下側に敷設された補強材1からの高さ)が30cm、60cm、又は1.2m程度になるように盛土材2を乗せて締め固める。ただし、本発明において補強材1が埋設される間隔は上記間隔に限定されない。
2. Compaction process S2
Step S2 is a step of placing the embankment material 2 on the reinforcing material 1 and compacting it. The reinforcing material 1 is normally embedded at intervals of 30 cm, 60 cm, or 1.2 m in the vertical direction. Therefore, in step S2, the height of the embankment material 2 after compaction (the height from the ground 100 or the reinforcing material 1 laid on the lower side of the embankment material 2) is about 30 cm, 60 cm, or 1.2 m. The embankment material 2 is placed and compacted as shown. However, the interval at which the reinforcing material 1 is embedded in the present invention is not limited to the above interval.

上記工程S1及びS2を所定高さまで繰り返し行うことで、鉛直方向に一定の間隔を空けて複数の補強材1、1、…が埋設された防護堤10が施工される。本発明では、その複数の補強材1、1、…に、3軸方向補強材1aが含まれるため、繰り返し行われる工程S1のうち、少なくとも1回は、3軸方向補強材1aを用いて行う。また、補強材1、1、…は、横断方向補強材1bと、3軸方向補強材1aとであり、鉛直方向において、横断方向補強材1bと他の横断方向補強材1bと間に、1枚以上の3軸方向補強材1aが挟まれる位置関係となるように埋設させることが好ましい。すなわち、横断方向補強材1bを用いて工程S1を1回行った後は、少なくとも1回は3軸方向補強材1aを用いて工程S1を行い、その後、さらに横断方向補強材1bを用いて工程S1を行うことが好ましい。   By repeatedly performing the above steps S1 and S2 to a predetermined height, the protective bank 10 in which a plurality of reinforcing members 1, 1,... Are embedded at a certain interval in the vertical direction is constructed. In the present invention, since the plurality of reinforcing materials 1, 1,... Include the triaxial reinforcing material 1a, at least one of the repeated steps S1 is performed using the triaxial reinforcing material 1a. . Further, the reinforcing members 1, 1,... Are a transverse reinforcing member 1b and a triaxial reinforcing member 1a, and in the vertical direction, between the transverse reinforcing member 1b and another transverse reinforcing member 1b, It is preferable to embed such that three or more triaxial reinforcing members 1a are sandwiched. That is, after performing step S1 once using the transverse direction reinforcing material 1b, the process S1 is performed at least once using the triaxial direction reinforcing material 1a, and then further using the transverse direction reinforcing material 1b. It is preferable to perform S1.

好ましい形態をより具体的に説明すると、横断方向補強材1bを用いて工程S1を行った後、締め固め後の盛土材2の高さが約30cmになるように工程S2を行い、その後、3軸方向補強材1aを用いて工程S1を行い、さらに締め固め後の盛土材2の高さが約30cmになるように工程S2を行うという工程を、所定高さまで繰り返し行うことが好ましい。   More specifically, the preferred embodiment will be described. After performing the step S1 using the transverse reinforcing material 1b, the step S2 is performed so that the height of the embankment material 2 after compaction is about 30 cm. It is preferable to repeat the step of performing the step S1 using the axial reinforcing material 1a and further performing the step S2 so that the height of the embankment material 2 after compaction is about 30 cm to a predetermined height.

本発明の防護堤施工方法において、法面の構成及び天面の構成は特に限定されず、従来の公知の方法によって施工することができる。   In the protective bank construction method of the present invention, the configuration of the slope and the configuration of the top surface are not particularly limited, and construction can be performed by a conventionally known method.

このようにして行われる、本発明の防護堤施工方法によって施工された防護堤が、従来の防護堤と比べて、落石などによる衝撃を分散して受け止めることができる原理について、図2〜図7を用いて説明する。   The principle that the protective levee constructed by the method of constructing the protective levee according to the present invention can disperse and receive impacts caused by falling rocks as compared with the conventional protective levee is shown in FIGS. Will be described.

図3は、本発明の防護堤施工方法によって施工された防護堤10が衝撃を受けた際に、水平方向断面において働く力を概略的に示す図である。図4は、従来の防護堤の鉛直方向断面を概略的に示す図である。図5は、従来の防護堤が衝撃を受けた際に、水平方向断面において働く力を概略的に示す図である。図6(a)は、1軸方向に特に強い引っ張り強度を有するテンサー(横断方向補強材1b)の例を概略的に示す図である。図6(b)は、3軸方向に特に強い引っ張り強度を有するテンサー(3軸方向補強材1a)の例を概略的に示す図である。図7は、3軸方向補強材1aの引っ張り強度を示す図である。図7において、同心円は強度を示しており、最外円の外側に記した数字は強度を有する方向(角度)を意味する。破線71が3軸方向補強材1aの引っ張り強度であり、破線71で囲われた領域の内側に実線描かれた円72は、3軸方向補強材1aの引っ張り強度が最も弱い方向の強度を通る円である。   FIG. 3 is a diagram schematically showing the force acting on the horizontal cross section when the protective bank 10 constructed by the method of constructing the protective bank of the present invention receives an impact. FIG. 4 is a diagram schematically showing a vertical section of a conventional protective bank. FIG. 5 is a diagram schematically showing a force acting in a horizontal section when a conventional protective bank is impacted. FIG. 6A is a diagram schematically showing an example of a tensor (transverse reinforcing material 1b) having a particularly strong tensile strength in one axial direction. FIG. 6B is a diagram schematically showing an example of a tensor (triaxial reinforcing material 1a) having a particularly strong tensile strength in the triaxial direction. FIG. 7 is a diagram showing the tensile strength of the triaxial reinforcing member 1a. In FIG. 7, concentric circles indicate the strength, and the numbers on the outer side of the outermost circle mean the direction (angle) having the strength. A broken line 71 indicates the tensile strength of the triaxial reinforcing member 1a, and a circle 72 drawn by a solid line inside the region surrounded by the broken line 71 passes through the strength in the direction in which the tensile strength of the triaxial reinforcing member 1a is the weakest. It is a circle.

図4に示すように、従来の防護堤20では、補強材として、図6(a)に示すような横断方向補強材1bのみが埋設されていた。そのため、図5に示すように、落石21による衝撃22を受けると、防護堤20内に埋設された横断方向補強材1b、1b、…によって横断方向に抵抗力23が働き、狭い範囲(図5に示した斜線部分。)のみで、その衝撃22を受け止めていた。したがって、従来の防護堤20では、落石21などによって衝撃22を加えられた場合、局所的に破壊される虞があった。   As shown in FIG. 4, in the conventional protective bank 20, only the transverse direction reinforcing material 1b as shown in FIG. 6 (a) is embedded as the reinforcing material. Therefore, as shown in FIG. 5, when an impact 22 caused by the falling rock 21 is received, the resistance 23 acts in the transverse direction by the transverse reinforcing members 1b, 1b,. Only the shaded portion shown in FIG. 5) received the impact 22. Therefore, when the impact 22 is applied by the falling rock 21 or the like, the conventional protective bank 20 may be locally destroyed.

一方、本発明の防護堤施工方法によって施工された防護堤10は、図2に示すように、横断方向補強材1bに加えて、図6(b)に示すような3軸方向補強材1aが埋設されている。3軸方向補強材1aは、図7に示すように、3軸方向(0°−180°と60°−240°と120°−300°)に特に強い強度を有し、円72の大きさが大きい。すなわち、3軸方向補強材1aは多くの方向に強い強度を有する。したがって、水平方向から加えられた荷重を広く分散させることができる。そのため、図3に示すように、落石11による衝撃12を受けると、防護堤10内に埋設された3軸方向補強材1a、1a、…によって広い範囲から抵抗力13、13、13が働き、広い範囲(図3に示した斜線部分。)で、その衝撃12を受け止められる。   On the other hand, as shown in FIG. 2, the dike 10 constructed by the dike construction method of the present invention has a triaxial reinforcement 1a as shown in FIG. 6 (b) in addition to the transverse reinforcement 1b. Buried. As shown in FIG. 7, the triaxial reinforcing member 1 a has particularly strong strength in the triaxial directions (0 ° -180 °, 60 ° -240 °, and 120 ° -300 °), and the size of the circle 72 Is big. That is, the triaxial reinforcing member 1a has strong strength in many directions. Therefore, the load applied from the horizontal direction can be widely dispersed. Therefore, as shown in FIG. 3, when receiving an impact 12 due to the falling rock 11, the resistance forces 13, 13, 13 work from a wide range by the triaxial reinforcing members 1 a, 1 a,. The impact 12 is received in a wide range (shaded area shown in FIG. 3).

このように、防護堤10は、従来の防護堤20に比べて、落石などによる衝撃を分散して広範囲で受け止めることができるため、耐衝撃性に優れ、局所的に破壊されることが抑制される。   As described above, the protective bank 10 is superior in impact resistance and can be prevented from being locally destroyed because it can disperse the impact caused by falling rocks and the like in a wide range as compared with the conventional protective bank 20. The

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う防護堤の施工方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. Rather, modifications can be made as appropriate without departing from the spirit or concept of the invention that can be read from the claims and the entire specification, and a method of constructing a protective bank with such changes is also included in the technical scope of the present invention. Must be understood.

本発明の防護堤施工方法に備えられる工程を概略的に示したフローチャートである。It is the flowchart which showed roughly the process with which the protection bank construction method of this invention is equipped. 本発明の防護堤施工方法によって施工された防護堤の鉛直方向断面を概略的に示す図である。It is a figure which shows roughly the vertical direction cross section of the protective bank constructed by the protective bank construction method of this invention. 本発明の防護堤施工方法によって施工された防護堤が衝撃を受けた際に、水平方向断面において働く力を概略的に示す図である。It is a figure which shows roughly the force which acts on a horizontal direction cross section, when the protective bank constructed by the protective bank construction method of this invention receives an impact. 従来の防護堤の鉛直方向断面を概略的に示す図である。It is a figure which shows roughly the vertical direction cross section of the conventional protective bank. 従来の防護堤が衝撃を受けた際に、水平方向断面において働く力を概略的に示す図である。It is a figure which shows roughly the force which acts on a horizontal direction cross section, when the conventional protective bank receives an impact. (a)は、横断方向補強材1bの例を概略的に示す図である。(b)は、3軸方向補強材1aの例を概略的に示す図である。(A) is a figure which shows roughly the example of the transverse direction reinforcing material 1b. (B) is a figure which shows roughly the example of the triaxial direction reinforcing material 1a. 3軸方向補強材1aの引っ張り強度を示す図である。It is a figure which shows the tensile strength of the triaxial reinforcement 1a.

符号の説明Explanation of symbols

1…補強材
1a…3軸方向補強材
1b…横断方向補強材
2…盛土材
10…防護堤
11…落石
12…衝撃
13…抵抗力
20…従来の防護堤
21…落石
22…衝撃
23…抵抗力
100…地盤
DESCRIPTION OF SYMBOLS 1 ... Reinforcement material 1a ... Triaxial reinforcement material 1b ... Transverse reinforcement material 2 ... Embankment material 10 ... Guard bank 11 ... Falling rock 12 ... Impact 13 ... Resistance 20 ... Conventional protection bank 21 ... Falling stone 22 ... Impact 23 ... Resistance Power 100 ... Ground

Claims (1)

ジオテキスタイルからなる補強材を略水平に敷設する、補強材敷設工程と、敷設した前記補強材の上に盛土材を乗せて締め固める、締め固め工程と、を備え、所定の高さまで前記補強材敷設工程及び前記締め固め工程を繰り返すことで、鉛直方向に一定の間隔を空けて複数の前記補強材が埋設された防護堤を施工する方法であって、
前記複数の補強材が、敷設時に横断方向に特に強い強度を有するジオテキスタイルからなる横断方向補強材と、3軸方向に特に強い引っ張り強度を有するジオテキスタイルからなる3軸方向補強材とであり、
鉛直方向において、前記横断方向補強材同士の間に、1枚以上の前記3軸方向補強材を埋設させることを特徴とする、防護堤施工方法。
Laying the reinforcing material up to a predetermined height, comprising a reinforcing material laying step of laying a reinforcing material made of geotextile substantially horizontally, and a compacting step of placing a filling material on the laid reinforcing material and compacting By repeating the steps and the compaction step, a method of constructing a protective levee in which a plurality of the reinforcing materials are embedded with a certain interval in the vertical direction,
The plurality of reinforcing materials are a transverse reinforcing material made of a geotextile having a particularly strong strength in the transverse direction at the time of laying, and a triaxial reinforcing material made of a geotextile having a particularly strong tensile strength in the triaxial direction ,
One or more said 3 axial direction reinforcement materials are embed | buried between the said transverse direction reinforcement materials in a perpendicular direction , The protective bank construction method characterized by the above-mentioned .
JP2008262047A 2008-10-08 2008-10-08 Protective bank construction method Active JP5215806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262047A JP5215806B2 (en) 2008-10-08 2008-10-08 Protective bank construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262047A JP5215806B2 (en) 2008-10-08 2008-10-08 Protective bank construction method

Publications (2)

Publication Number Publication Date
JP2010090623A JP2010090623A (en) 2010-04-22
JP5215806B2 true JP5215806B2 (en) 2013-06-19

Family

ID=42253597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262047A Active JP5215806B2 (en) 2008-10-08 2008-10-08 Protective bank construction method

Country Status (1)

Country Link
JP (1) JP5215806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114108569B (en) * 2021-12-28 2023-01-24 中国科学院、水利部成都山地灾害与环境研究所 Debris flow blocking dam with automatic dredging function and construction and use method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665896B2 (en) * 2001-10-19 2005-06-29 株式会社プロテックエンジニアリング Reinforced embankment body and its construction method
GB2390565A (en) * 2002-06-27 2004-01-14 Tensar Internat Ltd Geogrid

Also Published As

Publication number Publication date
JP2010090623A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN109356046B (en) Grille steel structure stone blocking wall and construction method
CN107250460B (en) Precast block retaining wall method for preventing landslide
JP5779734B1 (en) Shock absorber
KR101496954B1 (en) A debris barrier
KR101017295B1 (en) Hybrid type safety structure for preventing falling rocks
CN105862659B (en) High-frequency debris flow shore protection and diversion method
CN104727324A (en) Support construction method of irregular basement
JP5312263B2 (en) Protective embankment and its construction method
JP4199634B2 (en) Retaining wall with rockfall protection function and road formation method
CN210946536U (en) Protective structure of small dangerous rock falling stone
JP5215806B2 (en) Protective bank construction method
JP5743610B2 (en) Protective levee, protective levee construction method, and protective dam design method
CN212772010U (en) Block stone wall structure
JP6240625B2 (en) Retaining wall, creation site and creation method of creation site
JP7235940B2 (en) Earth and sand fall protection work and its construction method
JP6292028B2 (en) Embankment reinforcement structure
JP5427463B2 (en) Protective levee body and construction method of protective dam body
JP2015055076A (en) Support structure, and method for constructing support pillar
KR101020217B1 (en) rock construction structure of using anchor and method thereof
JP4554999B2 (en) Shock absorbing dam body and impact energy absorbing method
JP2014224444A (en) Method for suppressing level difference in roadbed material laid so as to straddle concrete structure and soil structure
CN109098205A (en) People's air defense underpass and its construction method
CN215593753U (en) Dangerous rock falling stone blocking structure
Adilov et al. On numerical investigation of stability of roadbeds reinforced by gabion structures
JP2011032689A (en) Post structure of guard body

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Ref document number: 5215806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350