JP5214681B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP5214681B2
JP5214681B2 JP2010192567A JP2010192567A JP5214681B2 JP 5214681 B2 JP5214681 B2 JP 5214681B2 JP 2010192567 A JP2010192567 A JP 2010192567A JP 2010192567 A JP2010192567 A JP 2010192567A JP 5214681 B2 JP5214681 B2 JP 5214681B2
Authority
JP
Japan
Prior art keywords
working electrode
counter electrode
dye
substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010192567A
Other languages
Japanese (ja)
Other versions
JP2011014546A (en
Inventor
顕一 岡田
信夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010192567A priority Critical patent/JP5214681B2/en
Publication of JP2011014546A publication Critical patent/JP2011014546A/en
Application granted granted Critical
Publication of JP5214681B2 publication Critical patent/JP5214681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、色素増感太陽電池などの光電変換素子に関する。  The present invention relates to a photoelectric conversion element such as a dye-sensitized solar cell.

光電変換素子としては、例えば、安価で、かつ、高い光電変換効率が得られる色素増感型太陽電池が挙げられる。  Examples of the photoelectric conversion element include a dye-sensitized solar cell that is inexpensive and can provide high photoelectric conversion efficiency.

色素増感型太陽電池は、例えば、ガラス基板などの光透過性の素材からなる透明基板、その一方の面に順に形成された透明導電膜および多孔質酸化物半導体層からなる作用極と、ガラス基板などの絶縁性の素材からなる基板およびその一方の面に形成された導電膜からなる対極と、これらの間に封入されたゲル状電解質などからなる電解質層とから概略構成されている。  A dye-sensitized solar cell includes, for example, a transparent substrate made of a light-transmitting material such as a glass substrate, a working electrode made of a transparent conductive film and a porous oxide semiconductor layer sequentially formed on one surface thereof, and glass The substrate is generally composed of a substrate made of an insulating material such as a substrate, a counter electrode made of a conductive film formed on one surface thereof, and an electrolyte layer made of a gel electrolyte enclosed between them.

従来、このような色素増感型太陽電池は、以下に示すような製造方法で製造されている。
図7は、従来の色素増感型太陽電池の製造方法を示す概略断面図である。
まず、透明基板101、その一方の面に順に形成された透明導電膜102および多孔質酸化物半導体層103からなる作用極104を形成し、多孔質酸化物半導体層103に増感色素を担持させる。
Conventionally, such a dye-sensitized solar cell has been manufactured by the following manufacturing method.
FIG. 7 is a schematic cross-sectional view showing a conventional method for producing a dye-sensitized solar cell.
First, a working electrode 104 comprising a transparent substrate 101, a transparent conductive film 102 and a porous oxide semiconductor layer 103 formed in order on one surface of the transparent substrate 101 is formed, and a sensitizing dye is supported on the porous oxide semiconductor layer 103. .

次いで、ホットメルト接着剤110を用いて、作用極104と、基板106およびその一方の面に形成された導電膜107からなる対極108を、所定の間隔をおいて貼り合わせる。
次いで、予め対極108に設けられた貫通孔109から作用極104と対極108との間に、加圧しながら有機電解液115を充填して、この有機電解液115からなる電解質層を形成し、色素増感型太陽電池を得る。
Next, the working electrode 104 and the counter electrode 108 made of the conductive film 107 formed on one surface of the substrate 106 are bonded to each other using a hot melt adhesive 110 at a predetermined interval.
Next, the organic electrolyte 115 is filled between the working electrode 104 and the counter electrode 108 through a through-hole 109 provided in the counter electrode 108 in advance to form an electrolyte layer made of the organic electrolyte 115, and dye A sensitized solar cell is obtained.

近年、透明基板101と基板106としてガラス基板ではなく、合成樹脂などの可撓性の材料からなる基板が用いられている可撓性の色素増感型太陽電池の開発が進められている(例えば、特許文献1、特許文献2、特許文献3参照。)。  In recent years, development of a flexible dye-sensitized solar cell in which a substrate made of a flexible material such as synthetic resin is used as the transparent substrate 101 and the substrate 106 instead of a glass substrate (for example, , Patent Document 1, Patent Document 2, and Patent Document 3.)

しかしながら、このように可撓性の材料からなる基板を用いた色素増感型太陽電池を、上述の従来の製造方法によって製造すると、以下のような問題がある。
図8に示すように、貫通孔109から作用極104と対極108との間に、加圧しながら有機電解液115を充填すると、作用極104と対極108に対して、図中に示した矢印の方向に圧力が加わって、色素増感型太陽電池が膨らんでしまい、作用極104と対極108との距離が一定に保たれないという問題がある。作用極と対極との距離(以下、「二極間距離」と言うこともある。)が一定に保たれないと、色素増感型太陽電池の光電子変換効率が劣化する。
However, when a dye-sensitized solar cell using a substrate made of such a flexible material is manufactured by the above-described conventional manufacturing method, there are the following problems.
As shown in FIG. 8, when the organic electrolyte 115 is filled with pressure between the working electrode 104 and the counter electrode 108 through the through-hole 109, the arrow shown in the figure is applied to the working electrode 104 and the counter electrode 108. A pressure is applied in the direction, and the dye-sensitized solar cell swells, and there is a problem that the distance between the working electrode 104 and the counter electrode 108 cannot be kept constant. If the distance between the working electrode and the counter electrode (hereinafter sometimes referred to as “dipole distance”) is not kept constant, the photoelectron conversion efficiency of the dye-sensitized solar cell deteriorates.

特に、有機電解液としてイオン性液体電解質のような高粘度の電解液を使用する場合、高い圧力を加えないと、作用極と対極との間に電解液を充填することができないので、上述のような問題が顕著に現れる。
また、色素増感型太陽電池の寸法が大きくなると、従来のように、作用極および対極をなす基板としてガラス基板を用いた場合でも、僅かながらも同様の問題が生じることがある。
In particular, when using a high-viscosity electrolyte solution such as an ionic liquid electrolyte as the organic electrolyte solution, the electrolyte solution cannot be filled between the working electrode and the counter electrode unless a high pressure is applied. Such a problem appears remarkably.
In addition, when the size of the dye-sensitized solar cell is increased, the same problem may occur even if a glass substrate is used as a substrate serving as a working electrode and a counter electrode as in the prior art.

特開平11−288745号公報JP-A-11-288745 特開2001−357896号公報JP 2001-357896 A 特開平11−329519号公報JP 11-329519 A

本発明は、前記事情に鑑みてなされたもので、作用極と対極との距離が一定に保に保たれた光電子変換素子を提供することを目的とする。  The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric conversion element in which the distance between the working electrode and the counter electrode is kept constant.

本発明の光電変換素子は、作用極と、対極と、これらの間に形成された電解質層を備えた光電変換素子であって、前記電解質層を構成する電解液は、封入後に維持される圧力が大気圧よりも低い圧力で封入されていることを特徴とする。 The photoelectric conversion element of the present invention is a photoelectric conversion element provided with a working electrode, a counter electrode, and an electrolyte layer formed therebetween, and the electrolyte constituting the electrolyte layer is maintained at a pressure maintained after encapsulation. Is sealed at a pressure lower than atmospheric pressure.

前記作用極をなす基板または前記対極をなす基板の少なくとも一方が可撓性の基板であり、前記作用極をなす多孔質酸化物半導体層の周囲に接着剤が設けられ、前記作用極と前記対極の間の距離が、前記多孔質酸化物半導体層に対応する部分の少なくとも一部において、前記接着剤に対応する部分よりも短くなっていることが好ましい。
本発明の光電変換素子の製造方法は、作用極と、対極と、これらの間に形成された電解質層を備えた光電変換素子の製造方法であって、前記電解質層を形成する電解液を、封入後に維持される圧力が大気圧よりも低い圧力となるように封入することを特徴とする。
前記作用極をなす基板または前記対極をなす基板の少なくとも一方が可撓性の基板であり、前記作用極をなす多孔質酸化物半導体層の周囲に接着剤を設け、前記作用極と前記対極の間の距離を、前記多孔質酸化物半導体層に対応する部分の少なくとも一部において、前記接着剤に対応する部分よりも短くすることが好ましい。
At least one of the substrate forming the working electrode or the substrate forming the counter electrode is a flexible substrate, and an adhesive is provided around the porous oxide semiconductor layer forming the working electrode, and the working electrode and the counter electrode It is preferable that at least a part of the portion corresponding to the porous oxide semiconductor layer is shorter than the portion corresponding to the adhesive.
The method for producing a photoelectric conversion element of the present invention is a method for producing a photoelectric conversion element comprising a working electrode, a counter electrode, and an electrolyte layer formed therebetween, and an electrolytic solution for forming the electrolyte layer, The sealing is performed so that the pressure maintained after the sealing is lower than the atmospheric pressure.
At least one of the substrate forming the working electrode or the substrate forming the counter electrode is a flexible substrate, an adhesive is provided around the porous oxide semiconductor layer forming the working electrode, and the working electrode and the counter electrode It is preferable that the distance between them be shorter than at least a part corresponding to the adhesive in at least a part corresponding to the porous oxide semiconductor layer.

本発明の光電変換素子は、前記電解質層を構成する電解液が大気圧よりも低い圧力で封入されているから、作用極または対極のいずれか一方、または、これらの両方をなす材料が可撓性のものからなる場合でも、作用極と対極との距離が一定に保たれたものとなる。したがって、本発明の光電変換素子は、光電子変換効率に優れたものとなる。  In the photoelectric conversion element of the present invention, since the electrolytic solution constituting the electrolyte layer is sealed at a pressure lower than atmospheric pressure, either the working electrode or the counter electrode, or the material forming both of them is flexible. Even when the electrode is made of a material, the distance between the working electrode and the counter electrode is kept constant. Therefore, the photoelectric conversion element of the present invention has excellent photoelectron conversion efficiency.

本発明に係る第一の実施形態として、色素増感型太陽電池の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of a dye-sensitized solar cell as 1st embodiment which concerns on this invention. 本発明に係る第一の実施形態として、色素増感型太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows a dye-sensitized solar cell as 1st embodiment which concerns on this invention. 本発明に係る第二の実施形態として、色素増感型太陽電池の製造方法を示す概略斜視図である。It is a schematic perspective view which shows the manufacturing method of a dye-sensitized solar cell as 2nd embodiment which concerns on this invention. 本発明に係る第三の実施形態として、色素増感型太陽電池の製造方法を示す概略斜視図である。It is a schematic perspective view which shows the manufacturing method of a dye-sensitized solar cell as 3rd embodiment which concerns on this invention. 本発明に係る第三の実施形態を示す概略図であり、(a)は斜視図、(b)は(a)のA−A線に沿う断面図である。It is the schematic which shows 3rd embodiment which concerns on this invention, (a) is a perspective view, (b) is sectional drawing which follows the AA line of (a). 本発明の実施例および比較例における色素増感型太陽電池について、電圧と電流密度との関係を測定した結果を示すグラフである。It is a graph which shows the result of having measured the relationship between a voltage and a current density about the dye-sensitized solar cell in the Example and comparative example of this invention. 従来の色素増感型太陽電池の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the conventional dye-sensitized solar cell. 従来の色素増感型太陽電池の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the conventional dye-sensitized solar cell.

本発明の光電変換素子の実施の形態について説明する。
なお、この実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Embodiments of the photoelectric conversion element of the present invention will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

図1および図2を参照して、本発明に係る第一の実施形態を説明する。
図1は、本発明に係る第一の実施形態として、色素増感型太陽電池の製造方法を示す概略断面図である。図2は、本発明に係る第一の実施形態として、色素増感型太陽電池を示す概略断面図である。
図1および図2中、符号11は透明基板、12は透明導電膜、13は多孔質酸化物半導体層、14は作用極、15は基板、16は導電膜、17は対極、18は接着剤、19は積層体、20は貫通孔、21は電解液、22は封止部材、23は電解質層をそれぞれ示している。
A first embodiment according to the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a schematic cross-sectional view showing a method for producing a dye-sensitized solar cell as a first embodiment according to the present invention. FIG. 2 is a schematic sectional view showing a dye-sensitized solar cell as a first embodiment according to the present invention.
1 and 2, reference numeral 11 is a transparent substrate, 12 is a transparent conductive film, 13 is a porous oxide semiconductor layer, 14 is a working electrode, 15 is a substrate, 16 is a conductive film, 17 is a counter electrode, and 18 is an adhesive. , 19 is a laminate, 20 is a through-hole, 21 is an electrolytic solution, 22 is a sealing member, and 23 is an electrolyte layer.

この実施形態において、色素増感型太陽電池を製造するには、まず、透明基板11、その一方の面に順に形成された透明導電膜12および多孔質酸化物半導体層13からなる作用極14を形成し、多孔質酸化物半導体層13の表面に増感色素を担持させる。  In this embodiment, in order to manufacture a dye-sensitized solar cell, first, the transparent substrate 11, the transparent conductive film 12 and the working electrode 14 formed of the porous oxide semiconductor layer 13 sequentially formed on one surface thereof are provided. And a sensitizing dye is supported on the surface of the porous oxide semiconductor layer 13.

また、基板15、および、その一方の面に形成された導電膜16からなる対極17を形成する。  Moreover, the counter electrode 17 which consists of the board | substrate 15 and the electrically conductive film 16 formed in the one surface is formed.

次いで、接着剤18を介して、作用極14と対極17を接着して、積層体19を形成する。この積層体19を形成することにより、作用極14と対極17の間には、所定の大きさの空間(後段の工程において、電解液が充填される空間)ができる。  Next, the working electrode 14 and the counter electrode 17 are bonded via the adhesive 18 to form the laminate 19. By forming this laminate 19, a space of a predetermined size (a space filled with an electrolytic solution in a subsequent process) is formed between the working electrode 14 and the counter electrode 17.

次いで、予め対極17に設けた2つの貫通孔20、20の一方から、作用極14と対極17との間に電解液21を充填し、電解液21の大部分を多孔質半導体層13の空隙部分に含浸させる。  Next, the electrolytic solution 21 is filled between the working electrode 14 and the counter electrode 17 from one of the two through holes 20, 20 provided in the counter electrode 17 in advance, and most of the electrolytic solution 21 is formed in the gap of the porous semiconductor layer 13. Impregnate the part.

次いで、2つの貫通孔20、20のうち一方を封止部材22で封止する。  Next, one of the two through holes 20 and 20 is sealed with a sealing member 22.

次いで、真空ポンプなどを用いて、封止部材22で封止されていない貫通孔20から作用極14と対極17との間の空間に充填した電解液21の一部を吸い出すことによって、この空間内を減圧する。すると、大気圧によって、作用極14と対極17は、両者が対向する面の方向(図1中に示した矢印の方向)に押され、結果として、積層体19がこの方向に収縮して、作用極14と対極17との間の距離が狭くなる。この際、封止部材22で封止されていない貫通孔20には逆止弁などを設けておく。逆止弁などを設けることにより、真空ポンプによる前記空間内の電解液21の吸引を終了しても、前記空間内の減圧状態は保たれる。
この工程において、余分な電解液21の一部は貫通孔20から吸い出されるが、多孔質半導体層13の空隙部分が電解液21で完全に満たされた状態を保ちながら、電解液21は吸い出される。また、作用極14と対極17が接触するまで減圧することが好ましい。
Next, a part of the electrolytic solution 21 filled in the space between the working electrode 14 and the counter electrode 17 is sucked out from the through-hole 20 not sealed with the sealing member 22 by using a vacuum pump or the like, so that this space. The inside is depressurized. Then, due to the atmospheric pressure, the working electrode 14 and the counter electrode 17 are pushed in the direction of the surfaces facing each other (the direction of the arrow shown in FIG. 1), and as a result, the laminate 19 contracts in this direction, The distance between the working electrode 14 and the counter electrode 17 is reduced. At this time, a check valve or the like is provided in the through hole 20 that is not sealed with the sealing member 22. By providing a check valve or the like, the decompressed state in the space is maintained even when the suction of the electrolytic solution 21 in the space by the vacuum pump is finished.
In this process, a part of the excess electrolyte solution 21 is sucked out from the through-hole 20, but the electrolyte solution 21 is sucked while the void portion of the porous semiconductor layer 13 is completely filled with the electrolyte solution 21. Is issued. In addition, the pressure is preferably reduced until the working electrode 14 and the counter electrode 17 come into contact with each other.

次いで、真空ポンプによる前記空間内の電解液21の吸引を終了し、作用極14と対極17との間の空間内を減圧した状態を保ったまま、電解液21の吸い出しに用いた貫通孔20を、封止部材22で封止して、作用極14と対極17との間に電解質層23を形成し、色素増感型太陽電池を得る。  Next, the suction of the electrolytic solution 21 in the space by the vacuum pump is finished, and the through hole 20 used for sucking out the electrolytic solution 21 is maintained while the space between the working electrode 14 and the counter electrode 17 is decompressed. Is sealed with a sealing member 22 to form an electrolyte layer 23 between the working electrode 14 and the counter electrode 17 to obtain a dye-sensitized solar cell.

なお、この実施形態では、貫通孔20を対極17に2つ設けた例を示したが、本発明はこれに限定されない。本発明にあっては、作用極または対極に、貫通孔を少なくとも1つ設け、この1つの貫通孔介して電解液を充填した後、この1つの貫通孔から電解液の一部を吸い出した後に、この貫通孔を封止してもよい。あるいは、作用極または対極に、貫通孔を3つ設け、貫通孔のうち1つを除く全てを封止して、封止されていない1つの貫通孔から電解液の一部を吸い出した後に、この封止していない貫通孔を封止してもよい。  In addition, in this embodiment, although the example which provided the through-hole 20 in the counter electrode 17 was shown, this invention is not limited to this. In the present invention, at least one through hole is provided in the working electrode or the counter electrode, and after the electrolyte is filled through the one through hole, a part of the electrolyte is sucked out from the one through hole. The through hole may be sealed. Alternatively, after providing three through holes on the working electrode or the counter electrode, sealing all but one of the through holes, and sucking out a part of the electrolyte from one unsealed through hole, You may seal this through-hole which is not sealed.

透明基板11としては、光透過性の材料からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホンなどからなる、通常、太陽電池の基板として用いられる基板であればいかなるものでも用いることができる。なお、可撓性の色素増感型太陽電池を実現するためには、透明基板11としては、可撓性の材料からなる基板を用いることが好ましい。可撓性の材料からなる基板としては通常、合成樹脂からなる基板が用いられるが、例えば、上記のポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホンなどからなる基板が挙げられる。  As the transparent substrate 11, a substrate made of a light-transmitting material is used, and any substrate made of glass, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, etc., which is usually used as a substrate for solar cells. Even things can be used. In order to realize a flexible dye-sensitized solar cell, it is preferable to use a substrate made of a flexible material as the transparent substrate 11. As the substrate made of a flexible material, a substrate made of a synthetic resin is usually used. For example, a substrate made of the above-described polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, or the like can be given.

透明導電膜12は、透明基板11に導電性を付与するために、その一方の面に形成された金属、炭素、導電性金属酸化物などからなる薄膜である。
透明導電膜12として金属薄膜や炭素薄膜を形成する場合、透明基板11の透明性を著しく損なわない構造とする。透明導電膜12を形成する導電性金属酸化物としては、例えば、インジウム−スズ酸化物(Indium−Tin Oxide、ITO)、酸化スズ(SnO)、フッ素ドープの酸化スズなどが用いられる。
The transparent conductive film 12 is a thin film made of metal, carbon, conductive metal oxide, or the like formed on one surface of the transparent substrate 11 in order to impart conductivity.
When a metal thin film or a carbon thin film is formed as the transparent conductive film 12, the transparent substrate 11 has a structure that does not significantly impair the transparency. Examples of the conductive metal oxide that forms the transparent conductive film 12 include indium-tin oxide (ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide.

多孔質酸化物半導体層13は、透明導電膜12の上に設けられている。多孔質酸化物半導体層13を形成する半導体としては特に限定されず、通常、太陽電池用の多孔質半導体を形成するのに用いられるものであればいかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。
多孔質酸化物半導体層13を形成する方法としては、例えば、上記半導体のナノ粒子を含むペーストを透明導電膜12上に塗布した後、焼成することにより形成する方法が挙げられるが、これに限定されるものではない。
The porous oxide semiconductor layer 13 is provided on the transparent conductive film 12. The semiconductor that forms the porous oxide semiconductor layer 13 is not particularly limited, and any semiconductor that can be used to form a porous semiconductor for solar cells can be used. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .
Examples of the method of forming the porous oxide semiconductor layer 13 include a method of forming the porous oxide semiconductor layer 13 by applying a paste containing the semiconductor nanoparticles on the transparent conductive film 12 and then baking it. Is not to be done.

増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などを適用することができる。これらの中から、用途、使用半導体に適した励起挙動を示す増感色素を特に限定無く選ぶことができる。  As the sensitizing dye, a ruthenium complex containing a bipyridine structure, a terpyridine structure or the like as a ligand, a metal-containing complex such as porphyrin or phthalocyanine, an organic dye such as eosin, rhodamine or merocyanine can be applied. From these, a sensitizing dye exhibiting an excitation behavior suitable for the application and the semiconductor used can be selected without particular limitation.

基板15としては、透明基板11と同様のものや、特に光透過性を有する必要がないことから金属板、合成樹脂板などが用いられる。なお、可撓性の色素増感型太陽電池を実現するためには、基板15としては、可撓性の材料からなる基板を用いることが好ましい。可撓性の材料からなる基板としては通常、合成樹脂板が用いられる。このような合成樹脂
板としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホンなどからなる基板が挙げられる。
As the substrate 15, a metal plate, a synthetic resin plate, or the like is used because it is not necessary to have the same properties as those of the transparent substrate 11 or light transmittance. In order to realize a flexible dye-sensitized solar cell, it is preferable to use a substrate made of a flexible material as the substrate 15. As a substrate made of a flexible material, a synthetic resin plate is usually used. Examples of such synthetic resin plates include substrates made of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, and the like.

導電膜16は、基板15に導電性を付与するために、その一方の面に形成された金属、炭素などからなる薄膜である。導電膜16としては、例えば、炭素や白金などの層を、蒸着、スパッタ、塩化白金酸塗布後に熱処理を行ったものが好適に用いられるが、電極として機能するものであれば特に限定されるものではない。  The conductive film 16 is a thin film made of metal, carbon or the like formed on one surface of the substrate 15 in order to impart conductivity. As the conductive film 16, for example, a layer of carbon, platinum, or the like, which has been heat-treated after vapor deposition, sputtering, and application of chloroplatinic acid, is preferably used. is not.

接着剤18としては、透明導電膜12および導電膜16に対する接着性に優れるものであれば特に限定されないが、特に透明導電膜12および導電膜16が金属からなる場合には、金属に対する接着性に優れるものが望ましい。金属に対する接着性に優れる接着剤としては、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンポリケミカル社製)、バイネル(三井デュポンポリケミカル社製)などが挙げられる。  The adhesive 18 is not particularly limited as long as it has excellent adhesion to the transparent conductive film 12 and the conductive film 16, but in particular, when the transparent conductive film 12 and the conductive film 16 are made of metal, the adhesive 18 has excellent adhesion to metal. An excellent one is desirable. As an adhesive having excellent adhesion to metal, an adhesive made of a thermoplastic resin having a carboxylic acid group in its molecular chain is desirable. Polychemical Co., Ltd.).

電解液21としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものや、イオン性液体などが用いられる。  As the electrolytic solution 21, an electrolytic component such as iodine, iodide ion, and tertiary butyl pyridine dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile, an ionic liquid, or the like is used.

封止部材22としては、対極17をなす基板15に対する接着性に優れるものであれば特に限定されないが、例えば、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンポリケミカル社製)、バイネル(三井デュポンポリケミカル社製)、アロンアルファ(東亞合成社製)などが挙げられる。  The sealing member 22 is not particularly limited as long as it has excellent adhesion to the substrate 15 forming the counter electrode 17. For example, an adhesive made of a thermoplastic resin having a carboxylic acid group in the molecular chain is desirable. Specifically, high Milan (made by Mitsui DuPont Polychemical Co., Ltd.), binel (made by Mitsui DuPont Polychemical Co., Ltd.), Aron Alpha (made by Toagosei Co., Ltd.) and the like can be mentioned.

以上説明したように、この実施形態では、作用極14と対極17との間に、対極14設けた貫通孔20、20を介して電解液を充填した後、一方の貫通孔20を封止して、他方の貫通孔20から電解液21の一部を吸い出した後、他方の貫通孔20も封止して、作用極14と対極17との間に電解液21を封入するから、電解液21が大気圧よりも低い圧力で色素増感型太陽電池内に封入される。したがって、作用極14と対極17は、両者が対向する面の方向に大気圧が加えられた状態のまま固定されるので、作用極14または対極17のいずれか一方、または、これらの両方が可撓性の材料からなる場合でも、作用極14と対極17との距離が一定に保たれた色素増感型太陽電池を実現することができる。したがって、この実施形態で得られた色素増感型太陽電池は、光電子変換効率に優れたものとなる。  As described above, in this embodiment, the electrolytic solution is filled between the working electrode 14 and the counter electrode 17 through the through holes 20 and 20 provided in the counter electrode 14, and then the one through hole 20 is sealed. Then, after part of the electrolytic solution 21 is sucked out from the other through-hole 20, the other through-hole 20 is also sealed and the electrolytic solution 21 is sealed between the working electrode 14 and the counter electrode 17. 21 is enclosed in the dye-sensitized solar cell at a pressure lower than atmospheric pressure. Therefore, since the working electrode 14 and the counter electrode 17 are fixed in a state where atmospheric pressure is applied in the direction of the surface where they face each other, either the working electrode 14 or the counter electrode 17 or both of them can be used. Even when made of a flexible material, a dye-sensitized solar cell in which the distance between the working electrode 14 and the counter electrode 17 is kept constant can be realized. Therefore, the dye-sensitized solar cell obtained in this embodiment has excellent photoelectron conversion efficiency.

次に、図3を参照して、本発明に係る第二の実施形態を説明する。
図3は、本発明に係る第二の実施形態として、色素増感型太陽電池の製造方法を示す概略斜視図である。
この実施形態では、上記第一の実施形態とは、積層体19において、作用極14と対極17との距離を一定に保つ方法が異なっている。図3において、図1および図2に示した第一の実施形態の構成要素と同じ構成要素には同一符号を付して、その説明を省略する。
Next, a second embodiment according to the present invention will be described with reference to FIG.
FIG. 3: is a schematic perspective view which shows the manufacturing method of a dye-sensitized solar cell as 2nd embodiment which concerns on this invention.
This embodiment is different from the first embodiment in a method of keeping the distance between the working electrode 14 and the counter electrode 17 constant in the laminate 19. In FIG. 3, the same components as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

この実施形態では、上記第一の実施形態と同様にして、積層体19を形成した後、この積層体19を、作用極14および対極17の外側の面から、一対の平板31、31で構成される加圧部材30で挟み込む。この加圧部材30によって、作用極14と対極17を、両者が対向する面の方向(図3中に示した矢印の方向)に均一に加圧して、二極間の距離を狭くする。この際、作用極14と対極17が接触するまで加圧してもよい。  In this embodiment, in the same manner as in the first embodiment, after the laminate 19 is formed, the laminate 19 is composed of a pair of flat plates 31 and 31 from the outer surfaces of the working electrode 14 and the counter electrode 17. The pressure member 30 is sandwiched. By this pressurizing member 30, the working electrode 14 and the counter electrode 17 are uniformly pressed in the direction of the surface where they face each other (the direction of the arrow shown in FIG. 3), thereby narrowing the distance between the two electrodes. At this time, pressure may be applied until the working electrode 14 and the counter electrode 17 come into contact with each other.

次いで、この状態で、予め対極17に設けた、少なくとも1つの貫通孔20から作用極14と対極17との間に、電解液を充填し、電解液の大部分を多孔質酸化物半導体層の空隙部分に含浸させる。  Next, in this state, the electrolytic solution is filled between the working electrode 14 and the counter electrode 17 through the at least one through hole 20 provided in advance in the counter electrode 17, and most of the electrolytic solution is formed in the porous oxide semiconductor layer. Impregnate the voids.

次いで、加圧部材30で、作用極14と対極17を加圧した状態を保ったまま、貫通孔20を封止部材で封止して、作用極14と対極17との間に電解液からなる電解質層を形成する。  Next, while the working electrode 14 and the counter electrode 17 are kept pressurized with the pressurizing member 30, the through hole 20 is sealed with a sealing member, and the electrolyte solution is placed between the working electrode 14 and the counter electrode 17. An electrolyte layer is formed.

次いで、加圧部材30によって、作用極14と対極17に加えた圧力を徐々に開放し、最後に加圧部材30を取り外して、色素増感型太陽電池を得る。  Next, the pressure applied to the working electrode 14 and the counter electrode 17 is gradually released by the pressure member 30, and finally the pressure member 30 is removed to obtain a dye-sensitized solar cell.

加圧部材30としては、例えば、一対のシリコンゴムからなる平板31、31が用いられるが、本発明はこれに限定されない。加圧部材30としては、作用極14または対極17と接する面が平らで、かつ、両極に所定の圧力を均一に加えることができるもので構成されていれば特に限定されない。  As the pressing member 30, for example, flat plates 31 and 31 made of a pair of silicon rubber are used, but the present invention is not limited to this. The pressurizing member 30 is not particularly limited as long as the surface in contact with the working electrode 14 or the counter electrode 17 is flat and can be configured to apply a predetermined pressure uniformly to both electrodes.

また、貫通孔20を封止する封止部材としては、上記封止部材22と同様のものが用いられる。  Further, as the sealing member for sealing the through hole 20, the same member as the sealing member 22 is used.

以上説明したように、この実施形態では、加圧部材30によって、作用極14と対極17が、両者が対向する面の方向に均一に加圧された状態を保ったまま、作用極14と対極17との間に電解液を封入するから、電解液が大気圧よりも低い圧力で色素増感型太陽電池内に封入される。したがって、作用極14と対極17は、両者が対向する面の方向に大気圧が加えられた状態のまま固定されるので、作用極14または対極17のいずれか一方、または、これらの両方が可撓性の材料からなる場合でも、作用極14と対極17との距離が一定に保たれた色素増感型太陽電池を実現することができる。したがって、この実施形態で得られた色素増感型太陽電池は、光電子変換効率に優れたものとなる。  As described above, in this embodiment, the working electrode 14 and the counter electrode are maintained in a state in which the working electrode 14 and the counter electrode 17 are uniformly pressed in the direction of the surfaces facing each other by the pressing member 30. 17, the electrolytic solution is sealed between them and the electrolytic solution is sealed in the dye-sensitized solar cell at a pressure lower than atmospheric pressure. Therefore, since the working electrode 14 and the counter electrode 17 are fixed in a state where atmospheric pressure is applied in the direction of the surface where they face each other, either the working electrode 14 or the counter electrode 17 or both of them can be used. Even when made of a flexible material, a dye-sensitized solar cell in which the distance between the working electrode 14 and the counter electrode 17 is kept constant can be realized. Therefore, the dye-sensitized solar cell obtained in this embodiment has excellent photoelectron conversion efficiency.

次に、図4および図5を参照して、本発明に係る第三の実施形態を説明する。
図4は、本発明に係る第三の実施形態として、色素増感型太陽電池の製造方法を示す概略斜視図である。図5は、本発明に係る第三の実施形態を示す概略図であり、(a)は斜視図、(b)は(a)のA−A線に沿う断面図である。
Next, a third embodiment according to the present invention will be described with reference to FIGS. 4 and 5.
FIG. 4: is a schematic perspective view which shows the manufacturing method of a dye-sensitized solar cell as 3rd embodiment which concerns on this invention. 5A and 5B are schematic views showing a third embodiment according to the present invention, in which FIG. 5A is a perspective view, and FIG. 5B is a cross-sectional view taken along line AA in FIG.

図4および図5中、符号41は透明基板、42は透明導電膜、43は多孔質酸化物半導体層、44は作用極、45基板、46は導電膜、47は対極、49は積層体、52電解質層、55、56は導電体、60は袋体をそれぞれ示している。  4 and 5, reference numeral 41 is a transparent substrate, 42 is a transparent conductive film, 43 is a porous oxide semiconductor layer, 44 is a working electrode, 45 substrates, 46 is a conductive film, 47 is a counter electrode, 49 is a laminate, 52 electrolyte layers, 55 and 56 are conductors, and 60 is a bag.

この実施形態において、色素増感型太陽電池を製造するには、まず、透明基板41、その一方の面に順に形成された透明導電膜42および多孔質酸化物半導体層43からなる作用極44を形成する。また、この作用極44をなす透明導電膜42の多孔質酸化物半導体層43と接する側の面に、色素増感型太陽電池内で発生した電力を外部に導き出すための導電体55を設ける。さらに、多孔質酸化物半導体層43の表面に増感色素を担持させる。  In this embodiment, in order to manufacture a dye-sensitized solar cell, first, the working electrode 44 including the transparent substrate 41, the transparent conductive film 42 and the porous oxide semiconductor layer 43 formed in order on one surface thereof is provided. Form. In addition, a conductor 55 is provided on the surface of the transparent conductive film 42 forming the working electrode 44 on the side in contact with the porous oxide semiconductor layer 43 for leading the power generated in the dye-sensitized solar cell to the outside. Further, a sensitizing dye is supported on the surface of the porous oxide semiconductor layer 43.

次いで、多孔質酸化物半導体層43に、電解液を滴下して含浸させ、こ多孔質酸化物半導体層43と一体をなす電解質層52を形成する。  Next, an electrolyte solution is dropped and impregnated into the porous oxide semiconductor layer 43 to form an electrolyte layer 52 that is integral with the porous oxide semiconductor layer 43.

また、基板45、および、その一方の面に形成された導電膜46からなる対極47を形成する。さらに、この対極47をなす導電膜46の電解質層52(多孔質酸化物半導体層43)と接する側の面に、色素増感型太陽電池内で発生した電力を外部に導き出すための導電体56を設ける。  In addition, a counter electrode 47 made of the substrate 45 and the conductive film 46 formed on one surface thereof is formed. Furthermore, a conductor 56 for deriving the power generated in the dye-sensitized solar cell to the outside on the surface of the conductive film 46 forming the counter electrode 47 in contact with the electrolyte layer 52 (porous oxide semiconductor layer 43). Is provided.

次いで、導電膜46が電解質層52に重なるように、対極47を作用極44に重ねて、電解質層52を作用極44と対極47で挟んでなる積層体49を形成する。  Next, the counter electrode 47 is overlapped with the working electrode 44 so that the conductive film 46 overlaps the electrolyte layer 52, and a laminate 49 is formed in which the electrolyte layer 52 is sandwiched between the working electrode 44 and the counter electrode 47.

次いで、図4(a)、(b)に示すように、ラミネートフィルムを袋状に成形してなる袋体60内に、その開口部から積層体49を収容する。この際、導電体55、56が袋体60の外部に導き出された状態で、積層体49を袋体60内に収容する。  Next, as shown in FIGS. 4A and 4B, the laminated body 49 is accommodated in the bag body 60 formed by forming the laminate film into a bag shape from the opening. At this time, the laminated body 49 is accommodated in the bag body 60 in a state where the conductors 55 and 56 are led out of the bag body 60.

次いで、図5(a)に示すように、真空包装により、袋体60を積層体49における外側の面の全域に均一に密着させる。この真空包装では、真空ポンプを用いて、袋体60内部から空気を吸い出すことによって、袋体60を収縮させると共に、袋体60を積層体49における外側の面の全域に均一に密着させる。すると、この袋体60によって、作用極44と対極47が、両者が対向する面の方向に均一に加圧される。  Next, as shown in FIG. 5A, the bag body 60 is uniformly adhered to the entire outer surface of the laminated body 49 by vacuum packaging. In this vacuum packaging, the bag body 60 is contracted by sucking out air from the inside of the bag body 60 using a vacuum pump, and the bag body 60 is uniformly adhered to the entire outer surface of the laminated body 49. Then, the working electrode 44 and the counter electrode 47 are uniformly pressed by the bag body 60 in the direction of the surface where they face each other.

次いで、この状態のまま、袋体60の開口部を融着するなどして、袋体60を密封し、色素増感型太陽電池を得る。  Next, in this state, the bag body 60 is sealed by, for example, fusing the opening of the bag body 60 to obtain a dye-sensitized solar cell.

透明基板41としては、上記透明基板11と同様のものが用いられる。
透明導電膜42としては、上記透明導電膜12と同様のものが設けられる。
多孔質酸化物半導体層43としては、上記多孔質酸化物半導体層13を形成する半導体と同様のものが用いられる。
As the transparent substrate 41, the same one as the transparent substrate 11 is used.
The transparent conductive film 42 is the same as the transparent conductive film 12 described above.
As the porous oxide semiconductor layer 43, the same semiconductor as that forming the porous oxide semiconductor layer 13 is used.

増感色素としては、上述の第一の実施形態と同様のものが用いられる。
電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものや、イオン性液体、イオンゲルなどが用いられる。
As the sensitizing dye, those similar to those in the first embodiment described above are used.
As the electrolytic solution, an electrolyte component such as iodine, iodide ion or tertiary butyl pyridine dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile, an ionic liquid, an ionic gel, or the like is used.

電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキシド誘導体、アミノ酸誘導体、ナノコンポジットゲルなどが挙げられる。  Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, polyethylene oxide derivatives, amino acid derivatives, and nanocomposite gels.

基板45としては、上記基板15と同様のものが用いられる。
導電膜46としては、上記導電膜16と同様のものが用いられる。
As the substrate 45, the same one as the substrate 15 is used.
As the conductive film 46, the same one as the conductive film 16 is used.

導電体55、56を形成する材料としては、電気配線として色素増感型太陽電池に悪影響を及ぼさないものであれば、いかなるものでも用いることができる。このような導電性材料としては、例えば、ニッケル(Ni)、クロム(Cr)、チタン(Ti)、コバルト(Co)などが挙げられる。  As a material for forming the conductors 55 and 56, any material can be used as long as it does not adversely affect the dye-sensitized solar cell as an electrical wiring. Examples of such a conductive material include nickel (Ni), chromium (Cr), titanium (Ti), cobalt (Co), and the like.

袋体60を形成するラミネートフィルムとしては、光透過性の材料で、真空包装に適用可能であれば特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリ塩化ビニルなどからなるフィルムなどが用いられる。  The laminate film forming the bag body 60 is not particularly limited as long as it is a light transmissive material and can be applied to vacuum packaging. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyvinyl chloride, etc. The film etc. which consist of are used.

なお、この実施形態では、電解質層52としては、多孔質酸化物半導体層43内に電解液を含浸させた後、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層43と一体をなすものを例示したが、本発明はこれに限定されない。本発明にあっては、電解質層は、多孔質酸化物半導体層内に電解液を含浸させてなるものであってもよい。  In this embodiment, as the electrolyte layer 52, the porous oxide semiconductor layer 43 is impregnated with an electrolytic solution, and then the electrolytic solution is gelled (pseudo-solidified) using an appropriate gelling agent. In this example, the porous oxide semiconductor layer 43 and the porous oxide semiconductor layer 43 are exemplified, but the present invention is not limited to this. In the present invention, the electrolyte layer may be formed by impregnating a porous oxide semiconductor layer with an electrolytic solution.

以上説明したように、この実施形態では、袋体60を収縮させると共に、袋体60を積層体49における外側の面の全域に均一に密着させ、この袋体60を密封することによって、作用極44と対極47が、両者が対向する面の方向に均一に加圧された状態を保ったまま、作用極44と対極47との間に電解質層52を封入するから、電解質層52をなす電解液が大気圧よりも低い圧力で色素増感型太陽電池内に封入される。したがって、作用極44と対極47は、両者が対向する面の方向に大気圧が加えられた状態のまま固定されるので、作用極44または対極47のいずれか一方、または、これらの両方が可撓性の材料からなる場合でも、作用極44と対極47との距離が一定に保たれた色素増感型太陽電池を実現することができる。したがって、この実施形態で得られた色素増感型太陽電池は、光電子変換効率に優れたものとなる。  As described above, in this embodiment, the bag body 60 is contracted, and the bag body 60 is uniformly brought into close contact with the entire area of the outer surface of the laminated body 49, and the bag body 60 is hermetically sealed. Since the electrolyte layer 52 is sealed between the working electrode 44 and the counter electrode 47 while keeping the state where the pressure electrode 44 and the counter electrode 47 are uniformly pressed in the direction of the surface where the two electrodes face each other, the electrolysis forming the electrolyte layer 52 is performed. The liquid is enclosed in the dye-sensitized solar cell at a pressure lower than atmospheric pressure. Therefore, since the working electrode 44 and the counter electrode 47 are fixed in a state where atmospheric pressure is applied in the direction of the surface where they face each other, either the working electrode 44 or the counter electrode 47 or both of them can be used. Even when made of a flexible material, a dye-sensitized solar cell in which the distance between the working electrode 44 and the counter electrode 47 is kept constant can be realized. Therefore, the dye-sensitized solar cell obtained in this embodiment has excellent photoelectron conversion efficiency.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

(実施例1)
上記第二の実施例で示した光電変換素子の製造方法を用いて、色素増感型太陽電池を作製した。
透明基板としては、PETフィルムの一方の面に透明導電膜が設けられた、10cm×10cmの導電性PETフィルム(商品名;OTEC、王子トービ社製、導電性10Ω/□)を用いた。
この導電性PETフィルムをなす透明導電膜の上に、スパッタリング法により、厚み25nmの酸化チタンからなる薄膜を成膜して、可撓性の導電性基板を作製した。
次いで、ドクターブレード法により、この酸化チタン膜を覆うように、酸化チタンナノ粒子のペーストを、その厚みが10μmとなるように塗布した後、150℃で3時間焼成して、多孔質酸化物半導体層を形成した。
次いで、多孔質酸化物半導体層にN3色素を担持させて、作用極を得た。
また、作用極の作製に用いたものと同様の導電性PETフィルムを用い、この導電性PETフィルムをなす透明導電膜の上に、スパッタリング法により、白金からなる薄膜を成膜して、対極を得た。
次いで、この対極に、貫通孔を2箇所形成した。
次いで、接着剤として、作用極または対極の周縁部に幅2mm、厚み50μmの熱可塑性樹脂からなるシート(商品名;ハイミラン、三井デュポンポリケミカル社製)を配し、作用極と対極を、これらの間に所定の大きさの空間ができるように、この熱可塑性樹脂からなるシートを介して重ねた。
次いで、熱可塑性樹脂からなるシートを加熱、溶融して、作用極と対極を接着し、積層体を形成した。
次いで、この積層体を、作用極および対極の外側の面から、一対のシリコンゴム板からなる加圧部材を、15kg/100cmの圧力で挟み込み、この状態のまま、対極に設けた貫通孔から作用極と対極との間に、電解液を充填し、電解液の大部分を多孔質酸化物半導体層の空隙部分に含浸させた。
電解液の充填が終了した後、加圧部材によって積層体に圧力を加えたまま、貫通孔を封止部材で封止した。
次いで、加圧部材によって、作用極と対極に加えた圧力を徐々に開放し、最後に加圧部材を取り外して、色素増感型太陽電池を得た。
Example 1
A dye-sensitized solar cell was produced using the method for producing a photoelectric conversion element shown in the second example.
As the transparent substrate, a 10 cm × 10 cm conductive PET film (trade name; OTEC, manufactured by Oji Tobi Co., Ltd., conductive 10Ω / □) in which a transparent conductive film was provided on one surface of the PET film was used.
A thin conductive film made of titanium oxide having a thickness of 25 nm was formed on the transparent conductive film forming the conductive PET film by a sputtering method, thereby preparing a flexible conductive substrate.
Next, a paste of titanium oxide nanoparticles is applied by a doctor blade method so as to cover the titanium oxide film so as to have a thickness of 10 μm, and then fired at 150 ° C. for 3 hours to form a porous oxide semiconductor layer. Formed.
Next, an N3 dye was supported on the porous oxide semiconductor layer to obtain a working electrode.
In addition, a conductive PET film similar to that used for the production of the working electrode was used, and a thin film made of platinum was formed on the transparent conductive film forming the conductive PET film by a sputtering method. Obtained.
Next, two through holes were formed in this counter electrode.
Next, a sheet made of a thermoplastic resin having a width of 2 mm and a thickness of 50 μm (trade name: High Milan, manufactured by Mitsui Dupont Polychemical Co., Ltd.) is disposed on the peripheral edge of the working electrode or the counter electrode as an adhesive. The sheets were stacked via a sheet made of this thermoplastic resin so that a space of a predetermined size was formed between them.
Subsequently, the sheet | seat which consists of thermoplastic resins was heated and fuse | melted, the working electrode and the counter electrode were adhere | attached, and the laminated body was formed.
Next, the laminate is sandwiched from the outer surface of the working electrode and the counter electrode with a pressure member made of a pair of silicon rubber plates at a pressure of 15 kg / 100 cm 2 , and in this state, from the through hole provided in the counter electrode An electrolytic solution was filled between the working electrode and the counter electrode, and most of the electrolytic solution was impregnated in the void portion of the porous oxide semiconductor layer.
After the filling of the electrolytic solution was completed, the through hole was sealed with a sealing member while applying pressure to the laminate by the pressure member.
Next, the pressure applied to the working electrode and the counter electrode was gradually released by the pressure member, and finally the pressure member was removed to obtain a dye-sensitized solar cell.

(実施例2)
上記第二の実施例で示した光電変換素子の製造方法を用いて、色素増感型太陽電池を作製した。
透明基板としては、ガラス基板の一方の面に透明導電膜が設けられた、10cm×10cmの導電性ガラス(導電性10Ω/□)を用いた。
この導電性ガラスをなす透明導電膜の上に、スパッタリング法により、厚み25nmの酸化チタンからなる薄膜を成膜して、導電性基板を作製した。
次いで、ドクターブレード法により、この酸化チタン膜を覆うように、酸化チタンナノ粒子のペーストを、その厚みが10μmとなるように塗布した後、150℃で3時間焼成して、多孔質酸化物半導体層を形成した。
次いで、多孔質酸化物半導体層にN3色素を担持させて、作用極を得た。
また、作用極の作製に用いたものと同様の導電性ガラスを用い、この導電性ガラスをなす透明導電膜の上に、スパッタリング法により、白金からなる薄膜を成膜して、対極を得た。
次いで、この対極に、貫通孔を2箇所形成した。
次いで、接着剤として、作用極または対極の周縁部に幅2mm、厚み50μmの熱可塑性樹脂からなるシート(商品名;ハイミラン、三井デュポンポリケミカル社製)を配し、作用極と対極を、これらの間に所定の大きさの空間ができるように、この熱可塑性樹脂からなるシートを介して重ねた。
次いで、熱可塑性樹脂からなるシートを加熱、溶融して、作用極と対極を接着し、積層体を形成した。
次いで、この積層体を、作用極および対極の外側の面から、一対のシリコンゴム板からなる加圧部材を、15kg/100cmの圧力で挟み込み、この状態のまま、対極に設けた貫通孔から作用極と対極との間に、電解液を充填し、電解液の大部分を多孔質酸化物半導体層の空隙部分に含浸させた。
電解液の充填が終了した後、加圧部材によって積層体に圧力を加えたまま、貫通孔を封止部材で封止した。
次いで、加圧部材によって、作用極と対極に加えた圧力を徐々に開放し、最後に加圧部材を取り外して、色素増感型太陽電池を得た。
(Example 2)
A dye-sensitized solar cell was produced using the method for producing a photoelectric conversion element shown in the second example.
As the transparent substrate, 10 cm × 10 cm conductive glass (conductive 10 Ω / □) in which a transparent conductive film was provided on one surface of the glass substrate was used.
A thin film made of titanium oxide having a thickness of 25 nm was formed on the transparent conductive film forming the conductive glass by sputtering to produce a conductive substrate.
Next, a paste of titanium oxide nanoparticles is applied by a doctor blade method so as to cover the titanium oxide film so as to have a thickness of 10 μm, and then fired at 150 ° C. for 3 hours to form a porous oxide semiconductor layer. Formed.
Next, an N3 dye was supported on the porous oxide semiconductor layer to obtain a working electrode.
In addition, a conductive glass similar to that used for the production of the working electrode was used, and a thin film made of platinum was formed on the transparent conductive film forming the conductive glass by a sputtering method to obtain a counter electrode. .
Next, two through holes were formed in this counter electrode.
Next, a sheet made of a thermoplastic resin having a width of 2 mm and a thickness of 50 μm (trade name: High Milan, manufactured by Mitsui Dupont Polychemical Co., Ltd.) is disposed on the peripheral edge of the working electrode or the counter electrode as an adhesive. The sheets were stacked via a sheet made of this thermoplastic resin so that a space of a predetermined size was formed between them.
Subsequently, the sheet | seat which consists of thermoplastic resins was heated and fuse | melted, the working electrode and the counter electrode were adhere | attached, and the laminated body was formed.
Next, the laminate is sandwiched from the outer surface of the working electrode and the counter electrode with a pressure member made of a pair of silicon rubber plates at a pressure of 15 kg / 100 cm 2 , and in this state, from the through hole provided in the counter electrode An electrolytic solution was filled between the working electrode and the counter electrode, and most of the electrolytic solution was impregnated in the void portion of the porous oxide semiconductor layer.
After the filling of the electrolytic solution was completed, the through hole was sealed with a sealing member while applying pressure to the laminate by the pressure member.
Next, the pressure applied to the working electrode and the counter electrode was gradually released by the pressure member, and finally the pressure member was removed to obtain a dye-sensitized solar cell.

(実施例3)
上記第三の実施例で示した光電変換素子の製造方法を用いて、色素増感型太陽電池を作製した。
透明基板としては、PETフィルムの一方の面に透明導電膜が設けられた、10cm×10cmの導電性PETフィルム(商品名;OTEC、王子トービ社製、導電性10Ω/□)を用いた。
この導電性PETフィルムをなす透明導電膜の上に、スパッタリング法により、厚み25nmの酸化チタンからなる薄膜を成膜して、可撓性の導電性基板を作製した。
次いで、ドクターブレード法により、この酸化チタン膜を覆うように、酸化チタンナノ粒子のペーストを、その厚みが10μmとなるように塗布した後、150℃で3時間焼成して、多孔質酸化物半導体層を形成した。
次いで、多孔質酸化物半導体層にN3色素を担持させて、作用極を得た。
また、作用極の作製に用いたものと同様の導電性PETフィルムを用い、この導電性PETフィルムをなす透明導電膜の上に、スパッタリング法により、白金からなる薄膜を成膜して、対極を得た。
次いで、作用極をなす多孔質酸化物半導体層に、電解液を滴下して含浸させた後、多孔質酸化物半導体層と一体をなす電解質層を形成した。
次いで、作用極と対極を重ねて、電解質層を作用極と対極で挟んでなる積層体を形成した。
次いで、PETフィルムを袋状に成形した、11cm×12cmの袋体内に、その開口部から積層体を収容する。
次いで、真空ポンプを用いて、袋体内部から空気を吸い出すことによって、袋体を収縮させると共に、袋体を積層体における外側の面の全域に均一に密着させた。
次いで、この状態のまま、袋体の開口部を融着して、袋体を密封し、色素増感型太陽電池を得た。
(Example 3)
A dye-sensitized solar cell was produced using the method for producing a photoelectric conversion element shown in the third example.
As the transparent substrate, a 10 cm × 10 cm conductive PET film (trade name; OTEC, manufactured by Oji Tobi Co., Ltd., conductive 10Ω / □) in which a transparent conductive film was provided on one surface of the PET film was used.
A thin conductive film made of titanium oxide having a thickness of 25 nm was formed on the transparent conductive film forming the conductive PET film by a sputtering method, thereby preparing a flexible conductive substrate.
Next, a paste of titanium oxide nanoparticles is applied by a doctor blade method so as to cover the titanium oxide film so as to have a thickness of 10 μm, and then fired at 150 ° C. for 3 hours to form a porous oxide semiconductor layer. Formed.
Next, an N3 dye was supported on the porous oxide semiconductor layer to obtain a working electrode.
In addition, a conductive PET film similar to that used for the production of the working electrode was used, and a thin film made of platinum was formed on the transparent conductive film forming the conductive PET film by a sputtering method. Obtained.
Next, an electrolyte solution was dropped and impregnated into the porous oxide semiconductor layer forming the working electrode, and then an electrolyte layer integrated with the porous oxide semiconductor layer was formed.
Next, the working electrode and the counter electrode were overlapped to form a laminate in which the electrolyte layer was sandwiched between the working electrode and the counter electrode.
Next, the laminate is accommodated from the opening in an 11 cm × 12 cm bag formed by forming a PET film into a bag shape.
Next, the bag body was contracted by sucking air from the inside of the bag body using a vacuum pump, and the bag body was uniformly adhered to the entire area of the outer surface of the laminate.
Next, in this state, the opening of the bag was fused, the bag was sealed, and a dye-sensitized solar cell was obtained.

(比較例)
実施例1と同様にして、作用極と対極を作製した。
次いで、対極に、貫通孔を2箇所形成した。
次いで、接着剤として、作用極または対極の周縁部に幅2mm、厚み50μmの熱可塑性樹脂からなるシート(商品名;ハイミラン、三井デュポンポリケミカル社製)を配し、作用極と対極を、これらの間に所定の大きさの空間ができるように、この熱可塑性樹脂からなるシートを介して重ねた。
次いで、熱可塑性樹脂からなるシートを加熱、溶融して、作用極と対極を接着し、積層体を形成した。
次いで、対極に設けた貫通孔から作用極と対極との間に電解液を充填し、電解液の大部分を多孔質酸化物半導体層の空隙部分に含浸させた。
電解液の充填が終了した後、貫通孔を封止部材で封止し、色素増感型太陽電池を得た。
(Comparative example)
A working electrode and a counter electrode were produced in the same manner as in Example 1.
Next, two through holes were formed in the counter electrode.
Next, a sheet made of a thermoplastic resin having a width of 2 mm and a thickness of 50 μm (trade name: High Milan, manufactured by Mitsui Dupont Polychemical Co., Ltd.) is disposed on the peripheral edge of the working electrode or the counter electrode as an adhesive. The sheets were stacked via a sheet made of this thermoplastic resin so that a space of a predetermined size was formed between them.
Subsequently, the sheet | seat which consists of thermoplastic resins was heated and fuse | melted, the working electrode and the counter electrode were adhere | attached, and the laminated body was formed.
Next, the electrolytic solution was filled between the working electrode and the counter electrode from the through hole provided in the counter electrode, and the void portion of the porous oxide semiconductor layer was impregnated with most of the electrolytic solution.
After the filling of the electrolytic solution was completed, the through hole was sealed with a sealing member to obtain a dye-sensitized solar cell.

上記実施例1、2および比較例で得られた色素増感型太陽電池に関して、JIS規格のC8913で定める測定方法を用いて、電圧と電流密度との関係を調べた。結果を図6に示す。  Regarding the dye-sensitized solar cells obtained in Examples 1 and 2 and the comparative example, the relationship between voltage and current density was examined using the measurement method defined in C8913 of JIS standard. The results are shown in FIG.

図6の結果から、作用極と対極に圧力を加えて、二極間の距離が一定となるように作製された、実施例1および実施例2の色素増感型太陽電池は、二極間の抵抗が低く、発電効率に優れたものとなることを確認できた。一方、作用極と対極に圧力を加えずに作製された、比較例の色素増感型太陽電池は、二極間の抵抗が高く、発電効率に劣るものとなることを確認できた。  From the results shown in FIG. 6, the dye-sensitized solar cells of Example 1 and Example 2, which were manufactured so that the distance between the two electrodes was constant by applying pressure to the working electrode and the counter electrode, It was confirmed that the resistance was low and the power generation efficiency was excellent. On the other hand, it was confirmed that the dye-sensitized solar cell of the comparative example produced without applying pressure to the working electrode and the counter electrode had high resistance between the two electrodes and was inferior in power generation efficiency.

11,141・・・透明基板、12,42・・・透明基板、13・・・多孔質酸化物半導体層、14,44・・・作用極、15,45・・・基板、16,46・・・導電膜、17,47・・・対極、18・・・接着剤、19,49・・・積層体、20・・・貫通孔、21・・・電解液、22・・・封止部材、23,52・・・電解質層、30・・・加圧部材、31・・・平板、55,56・・・導電体、60・・・袋体。 DESCRIPTION OF SYMBOLS 11,141 ... Transparent substrate, 12, 42 ... Transparent substrate, 13 ... Porous oxide semiconductor layer, 14, 44 ... Working electrode, 15, 45 ... Substrate, 16, 46. .... Conductive film, 17, 47 ... Counter electrode, 18 ... Adhesive, 19, 49 ... Laminate, 20 ... Through-hole, 21 ... Electrolyte, 22 ... Sealing member , 23, 52 ... electrolyte layer, 30 ... pressure member, 31 ... flat plate, 55, 56 ... conductor, 60 ... bag.

Claims (4)

作用極と、対極と、これらの間に形成された電解質層を備えた光電変換素子であって、
前記電解質層を構成する電解液は、封入後に維持される圧力が大気圧よりも低い圧力で封入されていることを特徴とする光電変換素子。
A photoelectric conversion element comprising a working electrode, a counter electrode, and an electrolyte layer formed therebetween,
The electrolytic solution constituting the electrolyte layer is sealed with a pressure maintained after sealing at a pressure lower than atmospheric pressure.
前記作用極をなす基板または前記対極をなす基板の少なくとも一方が可撓性の基板であり、前記作用極をなす多孔質酸化物半導体層の周囲に接着剤が設けられ、
前記作用極と前記対極の間の距離が、前記多孔質酸化物半導体層に対応する部分の少なくとも一部において、前記接着剤に対応する部分よりも短くなっていることを特徴とする請求項1に記載の光電変換素子。
At least one of the substrate forming the working electrode or the substrate forming the counter electrode is a flexible substrate, and an adhesive is provided around the porous oxide semiconductor layer forming the working electrode,
The distance between the working electrode and the counter electrode is shorter in at least a part of a portion corresponding to the porous oxide semiconductor layer than in a portion corresponding to the adhesive. The photoelectric conversion element as described in 2.
作用極と、対極と、これらの間に形成された電解質層を備えた光電変換素子の製造方法であって、A method for producing a photoelectric conversion element comprising a working electrode, a counter electrode, and an electrolyte layer formed therebetween,
前記電解質層を形成する電解液を、封入後に維持される圧力が大気圧よりも低い圧力となるように封入することを特徴とする光電変換素子の製造方法。A method for producing a photoelectric conversion element, wherein an electrolytic solution forming the electrolyte layer is sealed so that a pressure maintained after the sealing is lower than an atmospheric pressure.
前記作用極をなす基板または前記対極をなす基板の少なくとも一方が可撓性の基板であり、前記作用極をなす多孔質酸化物半導体層の周囲に接着剤を設け、At least one of the substrate forming the working electrode or the substrate forming the counter electrode is a flexible substrate, and an adhesive is provided around the porous oxide semiconductor layer forming the working electrode,
前記作用極と前記対極の間の距離を、前記多孔質酸化物半導体層に対応する部分の少なくとも一部において、前記接着剤に対応する部分よりも短くすることを特徴とする請求項3に記載の光電変換素子の製造方法。The distance between the working electrode and the counter electrode is shorter than at least a portion corresponding to the porous oxide semiconductor layer than at a portion corresponding to the adhesive. Manufacturing method of the photoelectric conversion element.
JP2010192567A 2010-08-30 2010-08-30 Photoelectric conversion element Active JP5214681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192567A JP5214681B2 (en) 2010-08-30 2010-08-30 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192567A JP5214681B2 (en) 2010-08-30 2010-08-30 Photoelectric conversion element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004169629A Division JP4606780B2 (en) 2004-06-08 2004-06-08 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2011014546A JP2011014546A (en) 2011-01-20
JP5214681B2 true JP5214681B2 (en) 2013-06-19

Family

ID=43593201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192567A Active JP5214681B2 (en) 2010-08-30 2010-08-30 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5214681B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500420B2 (en) * 2000-09-20 2010-07-14 富士フイルム株式会社 Photoelectric conversion element and photovoltaic cell
JP4172239B2 (en) * 2002-09-25 2008-10-29 松下電工株式会社 Photoelectric conversion element

Also Published As

Publication number Publication date
JP2011014546A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5815509B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5185550B2 (en) Photoelectric conversion element and manufacturing method thereof
CN109478470B (en) Solar cell module
JP4606780B2 (en) Method for manufacturing photoelectric conversion element
JP6958559B2 (en) Solar cell module
CN109478468B (en) Solar cell module and method for manufacturing solar cell module
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP2005100875A (en) Photoelectric conversion element module
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
JP5465446B2 (en) Photoelectric conversion element
JP5214680B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5214681B2 (en) Photoelectric conversion element
JP5551910B2 (en) Photoelectric conversion element
JP5211153B2 (en) Method for manufacturing photoelectric conversion element
JP5510771B2 (en) Dye-sensitized solar cell
JP2013077578A (en) Photoelectric conversion element
JP5688344B2 (en) Electric module and method of manufacturing electric module
KR101600786B1 (en) Manufacturing method for the dye-sensitized solar cell sub-module
TWI639261B (en) Dye-sensitized photovoltaic cell, module, and manufacturing method thereof
JP2020155551A (en) Dye-sensitized solar cell with protective layer
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
JP2020150223A (en) Electric module and manufacturing method of electric module
JP2013073856A (en) Manufacturing method of electric module and electric module
JP2020047827A (en) Dye-sensitized solar cell with protective layer
JP2016134595A (en) Dye-sensitized solar cell and dye-sensitized solar cell system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R151 Written notification of patent or utility model registration

Ref document number: 5214681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250