JP5213899B2 - Method for producing nitride crystal - Google Patents

Method for producing nitride crystal Download PDF

Info

Publication number
JP5213899B2
JP5213899B2 JP2010074531A JP2010074531A JP5213899B2 JP 5213899 B2 JP5213899 B2 JP 5213899B2 JP 2010074531 A JP2010074531 A JP 2010074531A JP 2010074531 A JP2010074531 A JP 2010074531A JP 5213899 B2 JP5213899 B2 JP 5213899B2
Authority
JP
Japan
Prior art keywords
reaction vessel
pressure
vessel
solvent
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010074531A
Other languages
Japanese (ja)
Other versions
JP2010189266A (en
Inventor
江利子 大嶋
秀人 辻
紳一郎 川端
千昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Tohoku Techno Arch Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Tohoku Techno Arch Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010074531A priority Critical patent/JP5213899B2/en
Publication of JP2010189266A publication Critical patent/JP2010189266A/en
Application granted granted Critical
Publication of JP5213899B2 publication Critical patent/JP5213899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

本発明は窒化物結晶の製造方法に関し、特に窒化ガリウムに代表される周期表第13族元素(以下「第13族元素」という)窒化物の高品質の塊状結晶の製造方法に関する。また、本発明は該窒化物結晶の製造方法を実施するために用いる製造装置にも関する。   The present invention relates to a method for producing a nitride crystal, and more particularly to a method for producing a high-quality bulk crystal of a Group 13 element (hereinafter referred to as “Group 13 element”) nitride represented by gallium nitride. The present invention also relates to a production apparatus used for carrying out the method for producing the nitride crystal.

窒化ガリウム(GaN)は、発光ダイオード及びレーザーダイオード等の電子素子に適用される物質として有用である。この窒化ガリウム結晶の製造方法としては、現在サファイア又は炭化ケイ素等のような基板上にMOCVD(Metal-Organic Chemical Vapor Deposition)法による気相エピタキシャル成長を行う方法が最も一般的である。しかし、この方法ではGaNの格子定数と熱膨張係数が異なる基板上にGaN結晶をヘテロエピタキシャル成長させるため、得られるGaN結晶に転位や格子欠陥が発生しやすく、青色レーザー等で応用可能な品質を得ることが困難であるという問題があった。   Gallium nitride (GaN) is useful as a material applied to electronic devices such as light emitting diodes and laser diodes. The most common method for producing this gallium nitride crystal is a method of performing vapor phase epitaxial growth by MOCVD (Metal-Organic Chemical Vapor Deposition) on a substrate such as sapphire or silicon carbide. However, in this method, GaN crystals are heteroepitaxially grown on substrates having different lattice constants and thermal expansion coefficients of GaN, so that dislocations and lattice defects are likely to occur in the obtained GaN crystals, and a quality applicable to a blue laser or the like is obtained. There was a problem that it was difficult.

そこで、近年、上記方法に代わる、ホモエピタキシャル基板用の高品質の窒化ガリウムの塊状単結晶の新しい製造技術の確立が強く望まれている。かかる新しい窒化ガリウム結晶の製造方法の一つとして、アンモニアを溶媒とした窒化物の溶液成長方法が提案されている。R. Dwilinskiらは、100〜500MPaの高圧下、超臨界状態のアンモニアを溶媒とし、結晶化のための鉱化剤としてKNH2を用い、窒化ガリウム結晶を得ている(非特許文献1参照)。また、Kolisらは、240MPaの高圧下、超臨界状態のアンモニアを溶媒とし結晶化のための鉱化剤としてKNH2およびKIを用い、窒化ガリウム結晶を得ている(非特許文献2参照)。また、Chenらは、Ptでライニングした反応容器を用いて、約200MPaの高圧下、超臨界状態のアンモニアを溶媒とし、結晶化のための鉱化剤としてNH4Clを用い、窒化ガリウム結晶を得ている(非特許文献3参照)。 Therefore, in recent years, there has been a strong demand for establishment of a new manufacturing technique for high-quality gallium nitride massive single crystals for homoepitaxial substrates, which can replace the above method. As one of such new methods for producing gallium nitride crystals, a nitride solution growth method using ammonia as a solvent has been proposed. R. Dwilinski et al. Have obtained a gallium nitride crystal using ammonia in a supercritical state as a solvent under high pressure of 100 to 500 MPa and using KNH 2 as a mineralizer for crystallization (see Non-Patent Document 1). . Kolis et al. Have obtained gallium nitride crystals using KNH 2 and KI as mineralizers for crystallization using ammonia in a supercritical state as a solvent under a high pressure of 240 MPa (see Non-Patent Document 2). Chen et al. Also used a reaction vessel lined with Pt, using ammonia in a supercritical state as a solvent under a high pressure of about 200 MPa, NH 4 Cl as a mineralizer for crystallization, and gallium nitride crystals. (See Non-Patent Document 3).

R. Dwilinski etal., ACTA PHYSICA POLONICA A Vol.88(1995) 833頁R. Dwilinski etal., ACTA PHYSICA POLONICA A Vol.88 (1995) 833 Kolis etal., J. Crystal Growth 222 (2001) 431頁Kolis etal., J. Crystal Growth 222 (2001) 431 Chen etal., J. Crystal Growth 209 (2000) 208頁Chen etal., J. Crystal Growth 209 (2000) 208

しかし、上記のアンモニア溶媒中における窒化ガリウムの溶解と析出の原理に基づく溶液成長法による窒化ガリウム結晶の製造方法は、一般的には、水を溶媒とした水熱合成(育成)法による酸化物結晶の製造における操作と装置に制約される範囲内での初歩的な条件検討に留まったものであった。このため、依然としてアンモニアを溶媒とする窒化物の結晶成長のメカニズムの詳細は不明であり、結晶性が高く、かつサイズの大きい塊状の高品質の単結晶を得る方法は未だ確立されるに至っていなかった。また、上記製造方法では、結晶の収率も不十分であり、高い生産効率を得るのは困難であった。さらに、上記製造方法では、不純物等の結晶の品質に関する指標も十分に開示されていない。特に、半導体基板としての用途においては、格子欠陥、転位密度の増大およびバンドギャップ内の不純物準位の形成要因となり得る遷移金属成分や酸素の混入は避けなければならない。また、工業的な窒化物の結晶成長の実施のためには、水に比べて毒性、危険性や腐食性の高いアンモニアを溶媒とする上で、安全上の問題も十分に考慮しなければならない。   However, the gallium nitride crystal production method based on the solution growth method based on the principle of dissolution and precipitation of gallium nitride in the above ammonia solvent is generally an oxide produced by hydrothermal synthesis (growing) method using water as a solvent. It was limited to elementary conditions within a range restricted by operations and equipment in crystal production. For this reason, the details of the crystal growth mechanism of nitride using ammonia as a solvent are still unclear, and a method for obtaining a high-quality single crystal with high crystallinity and large size has yet to be established. There wasn't. Moreover, in the said manufacturing method, the yield of the crystal | crystallization was also inadequate and it was difficult to obtain high production efficiency. Furthermore, the manufacturing method does not sufficiently disclose an index related to the quality of crystals such as impurities. In particular, in applications as a semiconductor substrate, it is necessary to avoid the inclusion of transition metal components and oxygen that can cause the formation of lattice defects, dislocation density, and impurity levels in the band gap. In addition, in order to carry out industrial nitride crystal growth, safety issues must be fully considered when using ammonia, which is more toxic, dangerous and corrosive than water as a solvent. .

すなわち、本発明の課題は、以下の窒化物結晶の製造方法により達成される。
(1)反応容器に原料とアンモニア溶媒を充填して前記反応容器を密閉した後、さらに前記反応容器を耐圧性容器内に挿入し、前記反応容器と前記耐圧性容器との間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、昇温することにより窒化物結晶を得ることを特徴とする窒化物結晶の製造方法。
(2)少なくとも内側の表面が耐食性の反応容器に原料とアンモニア溶媒を充填して前記反応容器を密閉した後、さらに前記反応容器を耐圧性容器内に挿入し、前記反応容器と前記耐圧性容器との間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、昇温することにより窒化物結晶を得ることを特徴とする窒化物結晶の製造方法。
(3)前記反応容器が少なくともひとつのバルブを付属していることを特徴とする(1)または(2)のいずれか一項に記載の製造方法。
(4)前記第二溶媒がアンモニア溶媒、水、アルコール、または二酸化炭素であることを特徴とする(1)〜(3)のいずれか一項に記載の製造方法。
(5)前記第二溶媒がアンモニア溶媒であることを特徴とする(1)〜(3)のいずれか一項に記載の製造方法。
(6)前記反応容器内のアンモニア溶媒を亜臨界状態または超臨界状態で保持することを特徴とする(1)〜(5)のいずれか一項に記載の製造方法。
(7)少なくとも前記耐圧性容器内を20〜500MPaに保持することを特徴とする(1)〜(6)のいずれかの窒化物結晶の製造方法。
(8)少なくとも前記耐圧性容器内を20〜400MPaに保持することを特徴とする(1)〜(6)のいずれかの窒化物結晶の製造方法。
(9)少なくとも前記耐圧性容器内を200〜700℃に昇温することを特徴とする(1)〜(8)のいずれか一項に記載の製造方法。
(10)前記反応容器内に少なくとも1種類の添加物を添加することを特徴とする(1)〜(9)のいずれか一項に記載の製造方法。
(11)前記添加物が少なくとも1種類のハロゲン原子を含むことを特徴とする(10)に記載の製造方法。
(12)前記原料中の酸素含有量が5質量%以下であることを特徴とする(1)〜(11)のいずれか一項に記載の製造方法。
(13)前記原料中に窒化ガリウムを含有することを特徴とする(1)〜(12)のいずれか一項に記載の製造方法。
(14)前記反応容器内に少なくとも1種類の種結晶を設置し、アンモニア溶媒に溶解した原料が前記種結晶上に析出することを特徴とする(1)〜(13)のいずれか一項に記載の窒化物結晶の製造方法。
That is, the object of the present invention is achieved by the following method for producing a nitride crystal.
(1) After sealing the reaction vessel was filled with the raw material and ammonia solvent in a counter-reaction container unit, further inserting the reaction vessel pressure resistance container, the gap between the reaction vessel and the pressure vessel A method for producing a nitride crystal, comprising filling a second solvent and sealing the pressure-resistant container, and then obtaining a nitride crystal by heating.
(2) At least the inner surface is filled with a raw material and an ammonia solvent in a corrosion-resistant reaction vessel and the reaction vessel is sealed, and then the reaction vessel is inserted into the pressure-resistant vessel, and the reaction vessel and the pressure-resistant vessel A nitride crystal is obtained by filling a space between the second solvent and sealing the pressure-resistant container and then raising the temperature.
(3) The production method according to any one of (1) and (2) , wherein the reaction vessel is provided with at least one valve.
(4) Said 2nd solvent is ammonia solvent, water, alcohol, or a carbon dioxide, The manufacturing method as described in any one of (1)-(3) characterized by the above-mentioned.
(5) The method according to any one of (1) to (3) , wherein the second solvent is an ammonia solvent.
(6) The production method according to any one of (1) to (5) , wherein the ammonia solvent in the reaction vessel is maintained in a subcritical state or a supercritical state.
(7) The method for producing a nitride crystal according to any one of (1) to (6) , wherein at least the pressure-resistant container is maintained at 20 to 500 MPa.
(8) The method for producing a nitride crystal according to any one of (1) to (6), wherein at least the pressure-resistant container is maintained at 20 to 400 MPa.
(9) The method according to any one of (1) to (8) , wherein the temperature of at least the pressure-resistant container is increased to 200 to 700 ° C.
(10) The production method according to any one of (1) to (9) , wherein at least one kind of additive is added to the reaction vessel.
(11) The production method according to (10) , wherein the additive contains at least one kind of halogen atom.
(12) The production method according to any one of (1) to (11) , wherein an oxygen content in the raw material is 5% by mass or less.
(13) The manufacturing method according to any one of (1) to (12) , wherein the raw material contains gallium nitride.
(14) At least one kind of seed crystal is placed in the reaction vessel, and a raw material dissolved in an ammonia solvent is deposited on the seed crystal. (1) to (13) The manufacturing method of the nitride crystal of description.

すなわち、本発明の課題は、以下の窒化物結晶の製造方法により達成される。
(1)少なくとも内側の表面が貴金属製の反応容器に原料とアンモニア溶媒を充填して前記反応容器を密閉した後、さらに前記反応容器を耐圧性容器内に挿入し、前記反応容器と前記耐圧性容器との間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、昇温することにより窒化物結晶を得ることを特徴とする窒化物結晶の製造方法。
(2)前記貴金属がRh、Pd、Ag、Ir、PtおよびAuからなる群から選ばれる少なくとも1種類の貴金属を主成分とすることを特徴とする(1)に記載の製造方法。
(3)前記反応容器がPtまたはPtを含む合金を主成分とする容器であることを特徴とする(2)に記載の製造方法。
(4)前記反応容器が少なくともひとつのバルブを付属していることを特徴とする(1)〜(3)のいずれか一項に記載の製造方法。
(5)前記第二溶媒がアンモニア溶媒であることを特徴とする(1)〜(4)のいずれか一項に記載の製造方法。
(6)前記反応容器内のアンモニア溶媒を亜臨界状態または超臨界状態で保持することを特徴とする(1)〜(5)のいずれか一項に記載の製造方法。
(7)少なくとも前記耐圧性容器内を20〜500MPaに保持することを特徴とする(1)〜(6)のいずれかの窒化物結晶の製造方法。
(8)少なくとも前記耐圧性容器内を200〜700℃に昇温することを特徴とする(1)〜(7)のいずれか一項に記載の製造方法。
(9)前記反応容器内に少なくとも1種類の添加物を添加することを特徴とする(1)〜(8)のいずれか一項に記載の製造方法。
(10)前記添加物が少なくとも1種類のハロゲン原子を含むことを特徴とする(9)に記載の製造方法。
(11)前記原料中の酸素含有量が5質量%以下であることを特徴とする(1)〜(10)のいずれか一項に記載の製造方法。
(12)前記原料中に窒化ガリウムを含有することを特徴とする(1)〜(11)のいずれか一項に記載の製造方法。
(13)前記反応容器内に少なくとも1種類の種結晶を設置し、アンモニア溶媒に溶解した原料が前記種結晶上に析出することを特徴とする(1)〜(12)のいずれか一項に記載の窒化物結晶の製造方法。
(14)密閉可能な窒化物結晶成長用の反応容器が、密閉可能な耐圧性容器内に挿入された構造を有する窒化物結晶の製造装置であって、
前記反応容器は少なくとも内側の表面が貴金属製であり、かつ、前記反応容器と前記耐圧性容器との間に溶媒を充填しうる空隙を有する前記窒化物結晶の製造装置。
(15)前記反応容器が少なくともひとつのバルブを付属していることを特徴とする(14)に記載の窒化物結晶の製造装置。
That is, the object of the present invention is achieved by the following method for producing a nitride crystal.
(1) At least the inner surface is filled with a raw material and an ammonia solvent in a reaction vessel made of a noble metal, and the reaction vessel is sealed. Then, the reaction vessel is further inserted into a pressure resistant vessel, and the reaction vessel and the pressure resistant property are sealed. A method for producing a nitride crystal, comprising filling a space between the container and a second solvent, sealing the pressure-resistant container, and then obtaining a nitride crystal by raising the temperature.
(2) The method according to (1), wherein the noble metal contains at least one kind of noble metal selected from the group consisting of Rh, Pd, Ag, Ir, Pt and Au as a main component.
(3) The production method according to (2), wherein the reaction vessel is a vessel mainly composed of Pt or an alloy containing Pt.
(4) The production method according to any one of (1) to (3), wherein the reaction vessel is provided with at least one valve.
(5) The production method according to any one of (1) to (4), wherein the second solvent is an ammonia solvent.
(6) The production method according to any one of (1) to (5), wherein the ammonia solvent in the reaction vessel is maintained in a subcritical state or a supercritical state.
(7) The method for producing a nitride crystal according to any one of (1) to (6), wherein at least the pressure-resistant container is maintained at 20 to 500 MPa.
(8) The production method according to any one of (1) to (7), wherein the temperature in at least the pressure-resistant container is increased to 200 to 700 ° C.
(9) The production method according to any one of (1) to (8), wherein at least one kind of additive is added to the reaction vessel.
(10) The production method according to (9), wherein the additive contains at least one kind of halogen atom.
(11) The production method according to any one of (1) to (10), wherein an oxygen content in the raw material is 5% by mass or less.
(12) The manufacturing method according to any one of (1) to (11), wherein the raw material contains gallium nitride.
(13) In any one of (1) to (12), at least one kind of seed crystal is placed in the reaction vessel, and a raw material dissolved in an ammonia solvent is deposited on the seed crystal. The manufacturing method of the nitride crystal of description.
(14) A nitride crystal manufacturing apparatus having a structure in which a sealable nitride crystal growth reaction vessel is inserted into a sealable pressure-resistant vessel,
The apparatus for producing a nitride crystal, wherein at least the inner surface of the reaction vessel is made of a noble metal and has a gap that can be filled with a solvent between the reaction vessel and the pressure-resistant vessel.
(15) The nitride crystal production apparatus according to (14), wherein the reaction vessel is provided with at least one valve.

本発明の製造方法では、少なくとも内側の表面がPtに代表される貴金属製の反応容器に原料とアンモニア溶媒を充填して密閉した後、前記反応容器を前記反応容器とは別の耐圧性容器内に挿入し、前記反応容器と前記耐圧性容器との間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、昇温する。この構成により本発明によれば、従来の製造方法より簡易かつ安全に、良好な結晶性を有し、かつ不純物が少ない高品質な塊状の窒化物結晶を効率よく製造することができる。   In the production method of the present invention, at least the inner surface is filled with a raw material and an ammonia solvent in a noble metal reaction vessel represented by Pt and sealed, and then the reaction vessel is placed in a pressure-resistant vessel different from the reaction vessel. Then, the space between the reaction vessel and the pressure vessel is filled with a second solvent to seal the pressure vessel, and then the temperature is raised. With this configuration, according to the present invention, it is possible to efficiently produce a high-quality massive nitride crystal having good crystallinity and few impurities, more easily and safely than the conventional production method.

また、本発明によれば、少なくとも内側の表面がPtに代表される貴金属製である反応容器を内側に含む耐圧性容器を利用して、いわば2重の容器を用い、反応容器の内部でアンモニアを溶媒として窒化物結晶の溶液成長反応を行うことにより、反応容器に由来する遷移金属成分の窒化物結晶への混入を回避でき、窒化物原料のアンモニア溶媒への溶解性、溶媒対流中のイオン可搬性、種結晶への再結晶要因の制御を容易ならしめ、さらに生成する塊状窒化物結晶への遷移金属不純物成分の蓄積および結晶性低下を回避できる。   Further, according to the present invention, using a pressure-resistant container having a reaction container having an inner surface made of a noble metal typified by Pt on the inside, a so-called double container is used, and ammonia is contained inside the reaction container. By performing a solution growth reaction of nitride crystals using as a solvent, it is possible to avoid mixing of transition metal components derived from the reaction vessel into the nitride crystals, solubility of the nitride raw material in the ammonia solvent, ions in the solvent convection The portability and the control of the recrystallization factor to the seed crystal can be easily controlled, and further, the accumulation of transition metal impurity components in the generated massive nitride crystal and the deterioration of the crystallinity can be avoided.

また、本発明の製造装置は、少なくとも内側の表面が貴金属製である密閉可能な窒化物結晶成長用の反応容器が、密閉可能な耐圧性容器内に挿入された構造を有していて、前記反応容器と前記耐圧性容器との間には第二溶媒を充填しうる空隙が存在する。この製造装置を用いれば、上記の窒化物結晶の製造方法を容易に実施することができる。特に、少なくともひとつのバルブを付属した反応容器を用いることにより、バルブを介して、外気と接触することなくアンモニアを充填した後、密閉することができるため、外気に由来する酸素等の不純物の窒化物結晶への混入も回避することができる。   The manufacturing apparatus of the present invention has a structure in which a sealable nitride crystal growth reaction vessel having at least an inner surface made of a noble metal is inserted into a sealable pressure-resistant vessel, There is a gap that can be filled with the second solvent between the reaction vessel and the pressure-resistant vessel. If this manufacturing apparatus is used, the above-described method for manufacturing a nitride crystal can be easily carried out. In particular, by using a reaction vessel equipped with at least one valve, it can be sealed after filling with ammonia without contacting with the outside air through the valve, so that nitridation of impurities such as oxygen derived from the outside air Incorporation into physical crystals can also be avoided.

本発明の製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus of this invention. 本発明の製造装置を構成する反応容器のバルブ形状を示す概略断面図である。It is a schematic sectional drawing which shows the valve shape of the reaction container which comprises the manufacturing apparatus of this invention. 本発明の製造装置を構成する反応容器の別のバルブ形状を示す概略断面図である。It is a schematic sectional drawing which shows another valve shape of the reaction container which comprises the manufacturing apparatus of this invention. 本発明の製造装置を構成する反応容器の別のバルブ形状を示す概略断面図である。It is a schematic sectional drawing which shows another valve shape of the reaction container which comprises the manufacturing apparatus of this invention. 本発明の製造装置を構成する反応容器の別のバルブ形状を示す概略断面図である。It is a schematic sectional drawing which shows another valve shape of the reaction container which comprises the manufacturing apparatus of this invention.

以下において、本発明の窒化物結晶の製造方法と製造装置について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。   Below, the manufacturing method and manufacturing apparatus of the nitride crystal of this invention are demonstrated in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本発明は、少なくとも内側の表面がPtに代表される貴金属製である反応容器を用い、該反応容器内に原料(必要に応じて鉱化剤等の添加物)とアンモニア溶媒とを充填してから前記反応容器を密閉した後、前記反応容器の外側に設置する耐圧性容器内に挿入し、反応容器と耐圧性容器と間の空隙に所定の第二溶媒を入れて密閉した後、昇温して反応容器の内側と外側の圧力とをほぼ同一にし、反応容器内で超臨界状態のアンモニア溶媒の存在下で原料の溶解析出を促し、窒化物結晶を得ることを特徴とする。   The present invention uses a reaction vessel having at least an inner surface made of a noble metal typified by Pt, and fills the reaction vessel with raw materials (additives such as a mineralizer as necessary) and an ammonia solvent. After sealing the reaction vessel from above, it is inserted into a pressure-resistant vessel installed outside the reaction vessel, sealed with a predetermined second solvent in the gap between the reaction vessel and the pressure-resistant vessel, and then heated. Then, the pressure inside and outside the reaction vessel is made substantially the same, and the dissolution and precipitation of the raw material is promoted in the presence of the supercritical ammonia solvent in the reaction vessel to obtain a nitride crystal.

まず、本発明で用いられる原料、溶媒、容器および本発明で得られる窒化物結晶について適宜図面を参照しながら説明する。
図1は、本発明の製造方法で用いられる製造装置の概略断面図である。図2〜図5は本発明の製造装置を構成する反応容器のバルブ形状の具体例を示す概略断面図である。符号1はバルブ、符号2は圧力計、符号3は耐圧性容器、符号4はバルブ、符号5は結晶育成部、符号6は反応容器、符号7は原料充填部、符号8は電気炉、符号9は熱電対、符号10は種結晶、符合11は配管接続口をそれぞれ表わす。
First, the raw material, solvent, container used in the present invention and the nitride crystal obtained in the present invention will be described with reference to the drawings as appropriate.
FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus used in the manufacturing method of the present invention. 2-5 is a schematic sectional drawing which shows the specific example of the valve | bulb shape of the reaction container which comprises the manufacturing apparatus of this invention. Reference numeral 1 is a valve, reference numeral 2 is a pressure gauge, reference numeral 3 is a pressure-resistant container, reference numeral 4 is a valve, reference numeral 5 is a crystal growing section, reference numeral 6 is a reaction vessel, reference numeral 7 is a raw material filling section, reference numeral 8 is an electric furnace, reference numeral 9 represents a thermocouple, 10 represents a seed crystal, and 11 represents a pipe connection port.

本発明において、製造対象となる窒化物結晶は、使用する原料に依存するが、主としてB、Al、Ga、In等の第13族元素の単独金属の窒化物(例えば、GaN、AlN)の結晶または合金の窒化物(例えば、GaInN、GaAlN)の結晶であることが好ましく、窒化ガリウム結晶であることがさらに好ましい。   In the present invention, a nitride crystal to be manufactured depends on a raw material to be used, but is mainly a crystal of a single metal nitride of a group 13 element such as B, Al, Ga, In (for example, GaN, AlN). Alternatively, a crystal of an alloy nitride (eg, GaInN, GaAlN) is preferable, and a gallium nitride crystal is more preferable.

本発明において、反応容器6を形成する貴金属としては、周期表の第5および6周期の第9〜11族元素、すなわちRh、Pd、Ag、Ir、PtおよびAuからなる群から選ばれる少なくとも1種類の貴金属、ならびに該貴金属を主成分とする合金が挙げられ、中でも優れた耐腐食性を有するPtを用いることが好ましい。   In the present invention, the noble metal that forms the reaction vessel 6 is at least one selected from the group consisting of Group 9 to 11 elements in the fifth and sixth periods of the periodic table, that is, Rh, Pd, Ag, Ir, Pt, and Au. Examples include various types of noble metals and alloys containing the noble metals as a main component. Among them, it is preferable to use Pt having excellent corrosion resistance.

従来、Ptの優れた耐腐食性を利用して、Ptを反応容器の内側にライニングまたはコーティングすることが知られている(前記非特許文献3参照)。しかし、反応容器をライニングまたはコーティングする場合、反応容器のアンモニア溶媒と触れる全ての部分を貴金属でライニングまたはコーティングすることは事実上困難であった。特に、アンモニア溶媒を用いる窒化物結晶の製造方法では、アンモニア溶媒を充填するために反応容器に付属して配管やバルブが設けられるため、それらの部分を含めて溶解した原料やアンモニアが触れる部分の全てを貴金属でライニングまたはコーティングすることは困難であった。   Conventionally, it is known to line or coat Pt on the inside of a reaction vessel by utilizing the excellent corrosion resistance of Pt (see Non-Patent Document 3). However, when the reaction vessel is lined or coated, it is practically difficult to line or coat all portions of the reaction vessel that come into contact with the ammonia solvent with a noble metal. In particular, in the method for producing a nitride crystal using an ammonia solvent, pipes and valves are attached to the reaction vessel in order to fill the ammonia solvent. It was difficult to line or coat all with precious metals.

本発明者らは、反応容器およびその付属部品に貴金属でライニングまたはコーティングされていない部分が存在すると、その部分からアンモニア等による浸食が起こり、その結果、得られた窒化物結晶に反応容器に含有されていた遷移金属が混入し得ることを見出した。さらに本発明者らは、反応容器の浸食による遷移金属成分の窒化物結晶への混入は、後述する鉱化剤と呼ばれる溶解析出を促進するための添加物を加えた場合に、特に顕著となることも見出した。   The present inventors, when there is a portion that is not lined or coated with a noble metal in the reaction vessel and its accessory parts, erosion by ammonia or the like occurs from that portion, and as a result, the obtained nitride crystal is contained in the reaction vessel. It has been found that the transition metals that have been used can be mixed. Furthermore, the present inventors show that the mixing of the transition metal component into the nitride crystal due to the erosion of the reaction vessel is particularly remarkable when an additive for promoting dissolution precipitation called a mineralizer described later is added. I also found out.

本発明では、反応容器自体を貴金属で作製することにより、原料や添加物がアンモニア溶媒を介して触れる部分を該貴金属に制限できる。したがって、従来の反応容器で問題とされていた原料や生成する窒化物結晶にCr、NiやFe等遷移金属成分が混入することを回避でき、高品質の窒化物結晶が得られる。本発明では、少なくとも内側の表面がPtまたはPtを含む合金を主成分とする反応容器を用いることが特に好ましい。   In the present invention, the reaction vessel itself is made of a noble metal, so that the portion where the raw materials and additives come into contact with each other through the ammonia solvent can be limited to the noble metal. Accordingly, it is possible to avoid mixing of transition metal components such as Cr, Ni and Fe into the raw material and the nitride crystal to be produced, which have been problematic in the conventional reaction vessel, and a high quality nitride crystal can be obtained. In the present invention, it is particularly preferable to use a reaction vessel having at least an inner surface as a main component of Pt or an alloy containing Pt.

貴金属製の反応容器6を単独で使用した場合、反応条件に付随して発生する超高圧に耐えることは困難である。そこで、本発明では、貴金属製の反応容器6の外側に耐圧性容器3を設け、外側の耐圧性容器3と内側の反応容器6の間の空隙に第二溶媒を入れて、昇温時に反応容器6の内側と外側の圧力のバランスを図ることにより、反応容器6の破裂や潰れを回避する。すなわち、本発明では、昇温反応中に密閉された反応容器6の内側と外側の圧力を実質的にほぼ等しくできるため、反応容器6に対し、昇温反応中の超臨界アンモニアの超高圧に耐え得る程度の耐圧性は要求されない。一方、アンモニア溶媒を充填する作業工程等では、少なくとも作業時の温度におけるアンモニア溶媒の蒸気圧や反応容器6を真空排気して乾燥する場合の減圧状態に耐え得る容器であることが要求される。そこで、本発明の反応容器6は、最も肉薄な部分にあっては少なくとも0.1mm以上、好ましくは0.2mm以上、さらに好ましくは0.3mm以上、特に好ましくは0.5mm以上の厚みとする。   When the precious metal reaction vessel 6 is used alone, it is difficult to withstand the ultra-high pressure generated accompanying the reaction conditions. Therefore, in the present invention, the pressure resistant container 3 is provided outside the noble metal reaction vessel 6, and the second solvent is put into the space between the outer pressure resistant vessel 3 and the inner reaction vessel 6 to react at the time of temperature rise. By trying to balance the pressure inside and outside the container 6, the reaction container 6 can be prevented from being ruptured or crushed. That is, in the present invention, the pressure inside and outside the reaction vessel 6 sealed during the temperature rising reaction can be substantially equalized, so that the reaction vessel 6 can be set to an ultrahigh pressure of supercritical ammonia during the temperature rising reaction. The pressure resistance that can withstand is not required. On the other hand, in an operation process for filling with an ammonia solvent, the container is required to be able to withstand at least the vapor pressure of the ammonia solvent at the temperature at the time of operation and the reduced pressure state when the reaction vessel 6 is evacuated and dried. Therefore, the reaction vessel 6 of the present invention has a thickness of at least 0.1 mm, preferably 0.2 mm, more preferably 0.3 mm, particularly preferably 0.5 mm at the thinnest part. .

反応容器6の形状は、円筒形などをはじめとして任意の形状とすることができる。また、反応容器6は立設しても横置きにしても斜めに設置して使用してもよい。反応容器6には、アンモニア充填用のバルブ4および配管接続口11等を設けることができる(図2〜図5)。反応容器6を耐圧性容器3に挿入して据え付ける際に安定性を確保する目的で、反応容器6の外側にあらかじめフレームなどの構造物を設けてもよい。このフレームなどの構造物も貴金属製とするかまたは該貴金属でコーティングあるいはライニングしたものを用いることが好ましい。   The shape of the reaction vessel 6 can be any shape including a cylindrical shape. In addition, the reaction vessel 6 may be used standing upright, horizontally or diagonally. The reaction vessel 6 can be provided with a valve 4 for filling ammonia, a pipe connection port 11 and the like (FIGS. 2 to 5). A structure such as a frame may be provided outside the reaction vessel 6 in advance for the purpose of ensuring stability when the reaction vessel 6 is inserted into the pressure-resistant vessel 3 and installed. The structure such as the frame is also preferably made of a noble metal or coated or lined with the noble metal.

本発明において、反応容器6には反応容器内部に通ずる少なくともひとつのバルブを設けることが好ましい。バルブを設けることによって、バルブを介して外気に触れずにアンモニアを反応容器に充填し、密閉することができる。また、それとは別に、排気用のバルブを設けることもできる。   In the present invention, the reaction vessel 6 is preferably provided with at least one valve communicating with the inside of the reaction vessel. By providing the valve, the reaction vessel can be filled and sealed with ammonia without touching the outside air through the valve. In addition, an exhaust valve may be provided separately.

バルブには、アンモニアに対する高い耐腐食性を示す材質を用いるのが好ましい。特にバルブを密閉したときに反応容器内側に通じる部分は貴金属製とするか、あるいは該貴金属で表面をコーティングあるいはライニングすることが好ましい。これにより、バルブなどの腐食に由来する反応系内への好ましからざる不純物の混入を抑制することができる。   The valve is preferably made of a material exhibiting high corrosion resistance against ammonia. In particular, it is preferable that a portion leading to the inside of the reaction vessel when the valve is sealed is made of a noble metal, or the surface is coated or lined with the noble metal. Thereby, unwanted impurities can be prevented from being mixed into the reaction system due to corrosion of the valve or the like.

バルブの形状は任意のものを用いることができる。反応容器6にバルブ4が付属する位置も任意であるが、例えば、図2〜図5のように、円筒形の反応容器6を使用した場合、その断面円よりも小さいバルブ4を反応容器6の上部あるいは下部に付属すると、耐圧性容器3への挿入や据付が容易となり、また空間を有効利用できるので好ましい。   Any shape of the valve can be used. The position at which the valve 4 is attached to the reaction vessel 6 is also arbitrary. For example, as shown in FIGS. 2 to 5, when a cylindrical reaction vessel 6 is used, the valve 4 smaller than the cross-sectional circle is connected to the reaction vessel 6. If it is attached to the upper part or the lower part, it is preferable because it can be easily inserted into and installed in the pressure-resistant container 3 and the space can be used effectively.

また、図3〜図5のように、バルブは反応容器と一体の構造としてもよい。このような一体構造とすることにより、反応容器6を耐圧性容器3に挿入したときに、耐圧性容器3との間に生じる空隙を少なくすることができる。バルブ4と反応容器6を同一の貴金属製とした耐食性に優れた一体構造としてもよい。   Further, as shown in FIGS. 3 to 5, the valve may be integrated with the reaction vessel. With such an integrated structure, when the reaction vessel 6 is inserted into the pressure resistant vessel 3, the gap generated between the pressure resistant vessel 3 can be reduced. The valve 4 and the reaction vessel 6 may be made of the same noble metal and have an integrated structure excellent in corrosion resistance.

図2〜図5をより詳細に説明すると、図2の態様は一体型でないという点に特徴があり、バルブの交換が容易であるという利点がある。図3の態様は一体型であるという点に特徴があり、構造的に強度に優れるという利点がある。図4の態様はパッキンリングを併用するという点に特徴があり、簡便に閉められるという利点がある。図5の態様は本体埋めこみ型である点に特徴があり、強度に優れ、空間を有効利用できるという利点がある。   2 to FIG. 5 will be described in more detail. The aspect of FIG. 2 is characterized in that it is not an integral type, and there is an advantage that the replacement of the valve is easy. The aspect of FIG. 3 is characterized in that it is an integral type, and has the advantage that it is structurally excellent in strength. The aspect of FIG. 4 is characterized in that a packing ring is used in combination, and has an advantage that it can be easily closed. The aspect of FIG. 5 is characterized in that it is a body-embedded type, and has the advantages of excellent strength and effective use of space.

バルブの弁の種類や形状は特に制限されないが、仕切り弁、玉形弁、アングル弁、ニードル弁、ボール弁、ダイヤフラム弁等が用いられる。弁体の種類や形状は特に制限されないが、ニードル型、楔形、太鼓型、丸型等が用いられる。ガスケット、パッキンやシールを併用してもよい。弁体や弁座、およびガスケット、パッキンやシールの材質は、貴金属製としてもよいし、また貴金属でコーティングあるいはライニングしたものを用いてもよい。   The type and shape of the valve are not particularly limited, but gate valves, ball valves, angle valves, needle valves, ball valves, diaphragm valves, and the like are used. The type and shape of the valve body are not particularly limited, but a needle type, a wedge type, a drum type, a round type and the like are used. A gasket, packing or seal may be used in combination. The material of the valve body, the valve seat, the gasket, the packing, and the seal may be made of precious metal, or may be coated or lined with precious metal.

バルブは、同形あるいは異形の複数のバルブを設けてもよい。複数のバルブを付属することにより、効率的によくアンモニアを充填や排出を行うことができる。例えば、反応容器の内部にアンモニアを充填しながら反応容器内部の気体を排出したり、反応容器内部に不活性ガスを導入しながら反応容器内のアンモニアを排出することが可能となる。   The valve may be provided with a plurality of valves having the same shape or different shapes. By attaching a plurality of valves, ammonia can be efficiently charged and discharged efficiently. For example, it is possible to discharge the gas in the reaction vessel while filling the reaction vessel with ammonia, or to discharge the ammonia in the reaction vessel while introducing an inert gas into the reaction vessel.

反応容器へのバルブの装着の方法は特に限定されないが、一例を挙げれば溶接などを用いることができる。   A method for attaching the valve to the reaction vessel is not particularly limited, but welding or the like can be used as an example.

本発明では、前述のとおり少なくとも内側の表面がPtに代表される貴金属製である反応容器6と耐圧性容器3との間の空隙にも溶媒を入れることによって、反応容器6の内側と外側の圧力差を最小限に抑えることができる。したがって、バルブ4の耐圧性能は反応容器6を高温に保持した場合には、その内外圧差に耐えられればよい。しかしながら、原料やアンモニアの充填時に求められる性能に鑑みれば、例えば、室温でアンモニアの蒸気圧に耐える耐圧性能や、反応容器6を加熱真空排気して乾燥させる場合の減圧状態にも耐え得る必要がある。   In the present invention, as described above, at least the inner surface is filled with a solvent in the space between the pressure vessel 3 and the reaction vessel 6 made of a noble metal typified by Pt. The pressure difference can be minimized. Therefore, the pressure resistance performance of the valve 4 is only required to withstand the pressure difference between the inside and outside when the reaction vessel 6 is kept at a high temperature. However, in view of performance required at the time of filling the raw material and ammonia, for example, it is necessary to be able to withstand the pressure resistance performance that can withstand the vapor pressure of ammonia at room temperature and the reduced pressure state when the reaction vessel 6 is heated and evacuated and dried. is there.

一方、反応容器6の外側に設置される耐圧性容器3は、昇温反応中に超臨界アンモニアの超高圧に相当する圧力に耐え得る容器であることが好ましい。耐圧性容器3を形成する材料は、耐圧性を有する材料であれば特に制限はないが、高温高圧に耐え、かつアンモニアに対する高い耐腐食性を示すインコネル、ナイモニク、レーネ材に代表されるNi系の合金、ステライト等を用いることが好ましい。   On the other hand, the pressure-resistant container 3 installed outside the reaction container 6 is preferably a container that can withstand a pressure corresponding to the super-high pressure of supercritical ammonia during the temperature rising reaction. The material for forming the pressure-resistant container 3 is not particularly limited as long as it is a pressure-resistant material, but Ni-based materials such as Inconel, Nimonic, and Rene materials that can withstand high temperature and pressure and have high corrosion resistance to ammonia. It is preferable to use alloys, stellite, and the like.

耐圧性容器3の構造は特に制限されないが、多くの場合、耐圧性容器3の形状は円筒形であり、立設して使用する場合には、上部に溶媒充填用のバルブ1やそのための配管や圧力計2等を設けることもできる。バルブ1や配管等は、複数設置されてもよく、また耐圧性容器3の蓋に相当する部分に設置されていてもよい。   The structure of the pressure-resistant container 3 is not particularly limited, but in many cases, the shape of the pressure-resistant container 3 is a cylindrical shape, and when used upright, the solvent-filling valve 1 and the piping for the upper part are used. Or a pressure gauge 2 can be provided. A plurality of valves 1 and pipes may be installed, or may be installed in a portion corresponding to the lid of the pressure-resistant container 3.

耐圧性容器3の胴体部分の厚みは、材料、胴径、長さ等に応じて適宜決定できる。耐圧性容器3は、溶液成長の反応条件に応じて発生する超高圧に耐える必要があるため、その反応条件にもよるが、通常、最も肉薄の部分において、少なくとも2mm以上、好ましくは5mm以上、さらに好ましくは10mm以上、特に好ましくは20mm以上の厚みを有する。   The thickness of the body portion of the pressure-resistant container 3 can be appropriately determined according to the material, the body diameter, the length, and the like. Since the pressure-resistant container 3 needs to withstand the ultra-high pressure generated according to the reaction conditions for the solution growth, depending on the reaction conditions, it is usually at least 2 mm or more, preferably 5 mm or more in the thinnest part. More preferably, it has a thickness of 10 mm or more, particularly preferably 20 mm or more.

本発明では反応容器6を密閉して用いるため、反応容器6内の結晶成長のための原料や鉱化剤等の添加物が耐圧性容器3と接触することはない。しかしながら、密閉された反応容器6を耐圧性容器3に挿入した後、万が一反応容器6から充填された原料や鉱化剤が漏れた場合、耐圧性容器3の内壁および内部構造物、圧力計2やバルブ1の内部、および耐圧性容器3の内部からそれに至る配管の内部が激しく腐食する可能性がある。その対策として、耐圧性容器3の内壁および内部構造物、圧力計2やバルブ1の内部、および耐圧性容器3の内部からそれに至る配管の内部を、前述した貴金属等の耐腐食性の高い材質でコーティングあるいはラインニングすることができる。   In the present invention, since the reaction vessel 6 is used in a sealed state, additives such as raw materials and mineralizers for crystal growth in the reaction vessel 6 do not come into contact with the pressure resistant vessel 3. However, after the sealed reaction vessel 6 is inserted into the pressure-resistant vessel 3, in the unlikely event that the raw material or mineralizer filled from the reaction vessel 6 leaks, the inner wall and internal structure of the pressure-resistant vessel 3 and the pressure gauge 2 In addition, the inside of the valve 1 and the inside of the piping extending from the inside of the pressure-resistant container 3 may corrode severely. As countermeasures, the inner wall and internal structure of the pressure-resistant container 3, the inside of the pressure gauge 2 and the valve 1, and the inside of the piping leading from the inside of the pressure-resistant container 3 to the above-mentioned precious metal or other highly corrosion-resistant material Can be coated or lined with.

本発明で用いられる窒化物結晶の製造原料は、通常、窒化物の多結晶粉末原料(以下「多結晶原料」という)であり、好ましくは窒化ガリウムを含有する原料である。多結晶原料は、完全な窒化物である必要はなく、条件によっては、メタル状態(すなわちゼロ価)の金属成分を含有することもできる。メタル状金属成分を含有可能な理由は定かではないが、反応系に微量の酸素が混入した場合に、メタル状金属成分が、窒素含有溶媒中で酸素が拡散するのを防止する酸素トラップ剤のような役割を果たしていると推測される。また、メタル状金属成分の含有量は特に制限はないが、多すぎると窒化物結晶成長時のメタル成分の酸化に伴うアンモニアからの水素の発生が無視できなくなることを考慮して含有量を決定することが好ましい。   The raw material for producing a nitride crystal used in the present invention is usually a nitride polycrystalline powder raw material (hereinafter referred to as “polycrystalline raw material”), preferably a raw material containing gallium nitride. The polycrystalline raw material does not need to be a complete nitride, and may contain a metal component in a metal state (that is, zero valence) depending on conditions. The reason why the metal-like metal component can be contained is not clear, but when a small amount of oxygen is mixed in the reaction system, the metal-like metal component is an oxygen trap agent that prevents oxygen from diffusing in the nitrogen-containing solvent. It is presumed that they play such a role. The content of the metal-like metal component is not particularly limited, but if it is too much, the content is determined considering that generation of hydrogen from ammonia accompanying the oxidation of the metal component during nitride crystal growth cannot be ignored. It is preferable to do.

原料となる多結晶原料の製造方法は特に制限されない。例えば、アンモニアガスを流通させた反応容器内で、金属またはその酸化物もしくは水酸化物をアンモニアと反応させることにより生成した窒化物多結晶を用いることができる。また、より反応性の高い金属化合物原料として、ハロゲン化物、アミド化合物、イミド化合物、ガラザンなどの共有結合性M−N結合を有する化合物などを用いることができる。さらに、Gaなどの金属を高温高圧で窒素と反応させて作製した窒化物多結晶(例えばGaN)を用いることもできる。   The manufacturing method of the polycrystalline raw material used as the raw material is not particularly limited. For example, a nitride polycrystal produced by reacting a metal or an oxide or hydroxide thereof with ammonia in a reaction vessel in which ammonia gas is circulated can be used. In addition, as a metal compound raw material having higher reactivity, a compound having a covalent MN bond such as a halide, an amide compound, an imide compound, or galazan can be used. Furthermore, nitride polycrystal (for example, GaN) produced by reacting a metal such as Ga with nitrogen at a high temperature and a high pressure can also be used.

上記多結晶原料は、これを結晶成長させて高品質の結晶を得るために、できるだけ水や酸素の混入を回避すべきである。そのために、多結晶原料中の酸素含有量は、通常5質量%以下、好ましくは2質量%以下、特に好ましくは0.5質量%以下である。多結晶原料への酸素の混入しやすさは、水分との反応性または吸収能との関連がある。多結晶原料の結晶性が悪いほど表面等にNH基などの活性基が多く存在し、それが水と反応して一部酸化物や水酸化物が生成する可能性があるためである。このため、多結晶原料としては、通常、できるだけ結晶性が高いものを使用することが望ましく、該結晶性は粉末X線回折の半値幅で見積もることができる。好ましい多結晶原料は、(100)の回折線(ヘキサゴナル型窒化ガリウムでは2θ=約32.5°)の半値幅が、通常0.25°以下、好ましくは0.20°以下、さらに好ましくは0.17°以下である。   In order to obtain high quality crystals by crystal growth of the polycrystalline raw material, mixing of water and oxygen should be avoided as much as possible. Therefore, the oxygen content in the polycrystalline raw material is usually 5% by mass or less, preferably 2% by mass or less, and particularly preferably 0.5% by mass or less. The ease with which oxygen is mixed into the polycrystalline raw material is related to the reactivity with water or the absorption capacity. This is because the worse the crystallinity of the polycrystalline raw material, the more active groups such as NH groups exist on the surface and the like, and this may react with water to generate some oxides or hydroxides. For this reason, it is generally desirable to use a polycrystalline material having as high crystallinity as possible, and the crystallinity can be estimated by the half-value width of powder X-ray diffraction. The preferred polycrystalline raw material has a half-width of (100) diffraction line (2θ = about 32.5 ° for hexagonal gallium nitride), usually 0.25 ° or less, preferably 0.20 ° or less, more preferably 0. .17 ° or less.

多結晶原料の1次粒子の粒径は、平均粒径1〜100μmの範囲であることが好ましい。粒径が小さいものほど比表面積が大きくなり、溶媒への溶解速度が大きくなるので好ましいが、粒径が小さすぎると、粒子が熱対流より反応器の結晶育成部に輸送され、種結晶を用いた場合は種結晶上に付着するおそれがある。   The primary particles of the polycrystalline raw material preferably have an average particle size in the range of 1 to 100 μm. The smaller the particle size, the larger the specific surface area and the higher the rate of dissolution in the solvent, which is preferable. If so, it may adhere to the seed crystal.

また、平均粒径の異なる2種の多結晶原料を用いることにより、小さい粒径の多結晶原料による速い溶解速度と、大きい粒径の遅い溶解速度のものが系内に混在することによりGa(含有)イオンなどの結晶育成部への供給切れを抑止し、その結果、特に種結晶を用いた場合に、種結晶の溶出という塊状単結晶の育成上の不利益を抑止することもできる。   In addition, by using two types of polycrystalline raw materials having different average particle diameters, Ga (( It is also possible to suppress the supply of ions and the like to the crystal growth section, and as a result, it is possible to suppress the disadvantage of growing the bulk single crystal, such as elution of the seed crystal, particularly when a seed crystal is used.

多結晶原料の形状は、特に限定されるものではないが、溶媒への溶解均一性を考慮した場合、通常、2次粒子の形状として球状であることが好ましい。また、充填量を稼ぐため、または熱対流による粒子の移動を防ぐために、多結晶原料の形状をペレット状やブロック状にすることもできる。   The shape of the polycrystalline raw material is not particularly limited, but it is usually preferable that the shape of the secondary particles is spherical when considering the solubility uniformity in the solvent. Further, in order to increase the filling amount or prevent the movement of particles due to thermal convection, the polycrystalline raw material can be formed into a pellet shape or a block shape.

多結晶原料は、通常、鉱化剤と呼ばれる添加物と混合した後で溶液成長に基づく結晶化工程に供される。鉱化剤は、多結晶原料の溶媒への溶解性を高めることができる添加物である。鉱化剤は、1種類を用いるほか、必要に応じて共鉱化剤としてもう1種類を共存させたり、2種類以上を混合して用いたりすること可能である。多結晶原料と鉱化剤の添加量の比は、例えば、GaNの場合、鉱化剤/Gaモル比として、通常0.001〜100の範囲で、原料、鉱化剤等の添加物の種類および目的とする結晶の大きさなどを考慮して適宜選択できる。   The polycrystalline raw material is usually subjected to a crystallization process based on solution growth after being mixed with an additive called a mineralizer. A mineralizer is an additive that can increase the solubility of a polycrystalline raw material in a solvent. In addition to using one kind of mineralizer, it is possible to use another kind as a co-mineralizer or to use a mixture of two or more kinds as necessary. For example, in the case of GaN, the ratio of the addition amount of the polycrystalline raw material and the mineralizer is within the range of 0.001 to 100 as the mineralizer / Ga molar ratio. In addition, it can be appropriately selected in consideration of the size of the target crystal.

鉱化剤は、通常、ハロゲン原子またはアルカリ金属、アルカリ土類金属、希土類金属を含む化合物である。中でも、鉱化剤はアンモニウムイオンやアミドなどの形で窒素原子を含むものが好ましい。ハロゲン原子を含む鉱化剤の例としては、ハロゲン化アンモニウム、ハロゲン化水素、アンモニウムヘキサハロシリケート、及びヒドロカルビルアンモニウムフルオリドや、ハロゲン化テトラメチルアンモニウム、ハロゲン化テトラエチルアンモニウム、ハロゲン化ベンジルトリメチルアンモニウム、ハロゲン化ジプロピルアンモニウム、及びハロゲン化イソプロピルアンモニウムなどのアルキルアンモニウム塩、フッ化アルキルナトリウムのようなハロゲン化アルキル金属等が例示される。   The mineralizer is usually a compound containing a halogen atom or an alkali metal, alkaline earth metal, or rare earth metal. Among them, the mineralizer preferably contains a nitrogen atom in the form of ammonium ion or amide. Examples of mineralizers containing a halogen atom include ammonium halide, hydrogen halide, ammonium hexahalosilicate, and hydrocarbyl ammonium fluoride, tetramethylammonium halide, tetraethylammonium halide, benzyltrimethylammonium halide, halogen Illustrative examples include alkylammonium salts such as dipropylammonium halide and isopropylammonium halide, and alkylmetal halides such as sodium alkyl fluoride.

また、アルカリ金属、アルカリ土類金属、希土類金属を含む鉱化剤としては、アルカリ金属メタル、アルカリ土類金属メタル、ハロゲン化アルカリ、アルカリ土類、希土類のハロゲン化物などが挙げられる。アルカリ、アルカリ土類、希土類の炭酸塩のようなオキソ酸塩も使用可能であるが、生成する結晶が酸素を含まないようにする観点からは、アンモニウムイオンやアミドなどの形で窒素原子を含むものを鉱化剤として使用することが好ましい。窒化物結晶への不純物の混入を防ぐため、必要な場合は鉱化剤を精製、乾燥することが行われる。鉱化剤の純度は、通常95%以上、好ましくは98%以上、さらに好ましくは99%以上、得に好ましくは99.5%以上である。鉱化剤が含む水や酸素はできるだけ少なくすることが望ましく、好ましくは1000ppm以下であり、さらに好ましくは100ppm以下である。   Examples of the mineralizer containing alkali metal, alkaline earth metal, and rare earth metal include alkali metal metal, alkaline earth metal metal, alkali halide, alkaline earth, rare earth halide, and the like. Oxo acid salts such as alkali, alkaline earth, and rare earth carbonates can be used, but from the viewpoint of preventing the generated crystals from containing oxygen, they contain nitrogen atoms in the form of ammonium ions or amides. It is preferable to use those as mineralizers. In order to prevent impurities from being mixed into the nitride crystal, the mineralizer is purified and dried if necessary. The purity of the mineralizer is usually 95% or more, preferably 98% or more, more preferably 99% or more, and particularly preferably 99.5% or more. It is desirable that the mineralizer contains water and oxygen as little as possible, preferably 1000 ppm or less, more preferably 100 ppm or less.

アルカリ金属等と窒素原子を含む鉱化剤の具体例としては、ナトリウムアミド(NaNH2)、カリウムアミド(KNH2)、リチウムアミド(LiNH2)、リチウムジエチルアミド((C25)2NLi)等のアルカリ金属アミドや、Mg(NH2)2などのアルカリ土類金属アミド、La(NH2)3などの希土類アミド、Li3N、Mg32、Ca32、Na3N等の窒化アルカリ金属または窒化アルカリ土類金属、NaN3等のアジド化合物、窒化亜鉛(Zn32)等が挙げられる。その他、NH2NH3Clのようなヒドラジン類の塩、炭酸アンモニウム((NH4)2CO3)、カルバミン酸アンモニウム(NH2COONH4)が挙げられる。 Specific examples of mineralizers containing alkali metals and nitrogen atoms include sodium amide (NaNH 2 ), potassium amide (KNH 2 ), lithium amide (LiNH 2 ), lithium diethylamide ((C 2 H 5 ) 2 NLi) Alkali metal amides such as Mg (NH 2 ) 2 , rare earth amides such as La (NH 2 ) 3 , Li 3 N, Mg 3 N 2 , Ca 3 N 2 , Na 3 N, etc. Alkali metal nitride or alkaline earth metal nitride, azide compounds such as NaN 3 , zinc nitride (Zn 3 N 2 ) and the like. Other examples include hydrazine salts such as NH 2 NH 3 Cl, ammonium carbonate ((NH 4 ) 2 CO 3 ), and ammonium carbamate (NH 2 COONH 4 ).

このうち、好ましくはハロゲン原子を含む添加物(鉱化剤)であるハロゲン化アルカリ、アルカリ土類のハロゲン化物、ハロゲン化アンモニウム、ハロゲン化水素であり、さらに好ましくはハロゲン化アルカリ、ハロゲン化アンモニウムであり、特に好ましくはハロゲン化アンモニウムである。これらの添加物は、超臨界状態のアンモニア溶媒への溶解性が高く、またアンモニア中において窒化能を有し、かつPt等の貴金属に対する反応性が小さい。これらの添加物は、1種類を用いてもよいし、2種類以上の化合物を組み合わせて用いてもかまわない。これらの添加物を用いることによって原料の溶解が促進され、反応条件の適切なコントロールにより、短期間に高品質のサイズの大きい窒化物の塊状結晶が得られる。   Of these, the halogen halide-containing additive (mineralizer) is preferably an alkali halide, alkaline earth halide, ammonium halide, or hydrogen halide, more preferably an alkali halide or ammonium halide. And particularly preferred is ammonium halide. These additives have high solubility in a supercritical ammonia solvent, have nitriding ability in ammonia, and have low reactivity with noble metals such as Pt. One kind of these additives may be used, or two or more kinds of compounds may be used in combination. By using these additives, dissolution of the raw material is promoted, and high-quality large-sized nitride massive crystals can be obtained in a short period of time by appropriately controlling the reaction conditions.

本発明では、上記のように混合された多結晶原料と鉱化剤等の添加物は、例えば図1に示すように、貴金属製の反応容器6内に充填されるが、特に必要でなければ、多結晶原料と1種類以上の鉱化剤等の添加物を別々に反応容器6内に充填してもかまわない。原料や鉱化剤等の添加物の種類によっては、反応容器6を密閉した後に、配管接続口11に接続した配管およびバルブ4を通じて、気体、液体や溶媒に溶かした状態で反応容器6内に充填することもできる。   In the present invention, the polycrystalline raw material and the additive such as the mineralizer mixed as described above are filled in a noble metal reaction vessel 6 as shown in FIG. Alternatively, the polycrystalline raw material and one or more additives such as mineralizer may be separately charged in the reaction vessel 6. Depending on the types of additives such as raw materials and mineralizers, after the reaction vessel 6 is sealed, the reaction vessel 6 is dissolved in a gas, liquid or solvent through the pipe 4 connected to the pipe connection port 11 and the valve 4. It can also be filled.

多結晶原料や鉱化剤等の添加物が吸湿しやすい等の理由がある場合、多結晶原料および鉱化剤は、充填する前に加熱脱気するなどして十分乾燥することが望ましい。さらに、分解性の高い鉱化剤と多結晶原料を混合充填する場合には、酸素や水分を極力排除した雰囲気下で速やかに行うことが望ましい。例えば、不活性ガスを満たした容器または部屋内において、反応容器の内部を不活性ガスで十分置換した後に、分解性の高い鉱化剤と多結晶原料を充填することができる。   When there is a reason that additives such as polycrystalline raw materials and mineralizers easily absorb moisture, it is desirable that the polycrystalline raw materials and mineralizers are sufficiently dried by heating and degassing before filling. Furthermore, when a highly decomposable mineralizer and a polycrystalline raw material are mixed and filled, it is desirable to carry out promptly in an atmosphere in which oxygen and moisture are excluded as much as possible. For example, in a container or room filled with an inert gas, the inside of the reaction vessel can be sufficiently replaced with an inert gas, and then a mineralizer and a polycrystalline raw material with high decomposability can be filled.

多結晶原料と鉱化剤等の添加物を混合して反応容器6内に充填した後、または別々に反応容器6に充填した後、反応容器6を密閉する。その後、配管接続口11に接続した配管およびバルブ4を介して反応容器6および配管部を加熱脱気することも好適に用いられる。また、反応容器6中に酸素や水分を選択的に吸収するスキャベンジャーの役割を果たす物質(例えば、チタンなどの金属片)を混合しておくことも好適に用いられる。   After the polycrystalline raw material and an additive such as a mineralizer are mixed and filled into the reaction vessel 6 or separately filled into the reaction vessel 6, the reaction vessel 6 is sealed. Thereafter, it is also preferable to heat and deaerate the reaction vessel 6 and the piping section through the piping connected to the piping connection port 11 and the valve 4. In addition, it is also preferable to mix in the reaction vessel 6 a substance that functions as a scavenger that selectively absorbs oxygen and moisture (for example, a metal piece such as titanium).

原料、鉱化剤等の添加物は、通常、図1に示すように、反応容器6の下部に設けられた原料充填部7に収まるように充填される。反応容器6の下部と反応容器6の上部との間に温度差を与えることにより、溶解した結晶を反応容器6の上部の結晶育成部5に析出させることができるためである。このように、原料の溶解析出過程を経て結晶を得ることにより、純度の高い高品質で結晶性の高い塊状結晶を得ることが可能となる。   As shown in FIG. 1, additives such as raw materials and mineralizers are usually filled so as to be accommodated in a raw material filling portion 7 provided at the lower part of the reaction vessel 6. This is because, by giving a temperature difference between the lower part of the reaction vessel 6 and the upper part of the reaction vessel 6, the dissolved crystals can be deposited on the crystal growing part 5 at the upper part of the reaction vessel 6. Thus, by obtaining crystals through the process of dissolution and precipitation of raw materials, it is possible to obtain high-quality, high-quality bulk crystals with high crystallinity.

本発明では、さらに反応容器6上部の結晶育成部5に種結晶10を設置することにより、単結晶の生成を促進させ、より大きな単結晶を得ることができる。種結晶10の装填は通常、原料、鉱化剤等の添加物を充填すると同時または充填した後に行われ、通常、反応容器6の内側の表面を構成する貴金属と同様の貴金属製の治具に種結晶10が固定される。必要な場合には、反応容器6に装填した後、加熱脱気することも有効に用いられる。   In the present invention, the seed crystal 10 is further installed in the crystal growth section 5 above the reaction vessel 6, thereby promoting the generation of the single crystal and obtaining a larger single crystal. The seed crystal 10 is usually loaded at the same time as or after filling with additives such as raw materials and mineralizers, and is usually placed in a noble metal jig similar to the noble metal constituting the inner surface of the reaction vessel 6. The seed crystal 10 is fixed. If necessary, heating and deaeration after loading into the reaction vessel 6 is also effectively used.

種結晶10は、目的とする窒化物の単結晶を用いることが望ましいが、必ずしも目的と同一の窒化物でなくてもよく、場合によっては酸化物単結晶を用いてもよい。但し、その場合には、目的の窒化物と一致し、もしくは適合した格子定数、結晶格子のサイズパラメータを有する種結晶であるか、またはヘテロエピタキシー(すなわち若干の原子の結晶学的位置の一致)を保証するよう配位した単結晶材料片もしくは多結晶材料片から構成されている種結晶を用いる必要がある。種結晶の具体例としては、例えば窒化ガリウム(GaN)の場合、GaNの単結晶の他、AlN等の窒化物単結晶、酸化亜鉛(ZnO)の単結晶、炭化ケイ素(SiC)の単結晶、ガリウム酸リチウム(LiGaO2)、二ホウ化ジルコニウム(ZrB2)等が挙げられる。 The seed crystal 10 is desirably a single crystal of the target nitride, but is not necessarily the same nitride as the target, and may be an oxide single crystal in some cases. However, in that case, it is a seed crystal having a lattice constant, crystal lattice size parameter that matches or matches the target nitride, or heteroepitaxy (ie, coincidence of crystallographic positions of some atoms) It is necessary to use a seed crystal composed of a single crystal material piece or a polycrystalline material piece coordinated so as to guarantee the above. Specific examples of the seed crystal include, for example, gallium nitride (GaN), a single crystal of GaN, a single crystal of nitride such as AlN, a single crystal of zinc oxide (ZnO), a single crystal of silicon carbide (SiC), Examples include lithium gallate (LiGaO 2 ) and zirconium diboride (ZrB 2 ).

種結晶10は、アンモニア溶媒への溶解度および鉱化剤との反応性を考慮して決定することができる。例えば、GaNの種結晶としては、MOCVD法やHVPE法でサファイア等の異種基板上にエピタキシャル成長させた後に剥離させて得た単結晶、金属GaからNaやLi、Biをフラックスとして結晶成長させて得た単結晶、LPE法を用いて得たホモ/ヘテロエピタキシャル成長させた単結晶、本発明法を含む溶液成長法に基づき作製された単結晶およびそれらを切断した結晶などを用いることができる。   The seed crystal 10 can be determined in consideration of the solubility in the ammonia solvent and the reactivity with the mineralizer. For example, as a seed crystal of GaN, a single crystal obtained by epitaxial growth on a dissimilar substrate such as sapphire by MOCVD method or HVPE method and then exfoliated, and obtained by crystal growth of Na, Li, Bi from metal Ga as a flux. In addition, single crystals grown by homo / heteroepitaxial growth using the LPE method, single crystals prepared based on the solution growth method including the method of the present invention, and crystals obtained by cutting them can be used.

本発明では反応容器6内の原料を溶解する溶媒としてアンモニア溶媒が用いられる。使用するアンモニアの純度は通常99.9%以上、好ましくは99.99%以上、さらに好ましくは99.999%以上、特に好ましくは99.9999%以上である。アンモニアは、一般に水との親和性が高いため、アンモニア溶媒を反応容器6内に充填する場合、水に由来する酸素を反応容器6内に持ち込みやすく、それが原因となって生成する結晶の混入酸素量が多くなり、ひいては窒化物の結晶性が悪化するおそれがある。そのような観点から、アンモニア溶媒に含まれる水や酸素の量はできるだけ少なくすることが望ましく、好ましくは1000ppm以下であり、さらに好ましくは100ppm以下であり、特に好ましくは10ppm以下である。   In the present invention, an ammonia solvent is used as a solvent for dissolving the raw material in the reaction vessel 6. The purity of ammonia to be used is usually 99.9% or more, preferably 99.99% or more, more preferably 99.999% or more, and particularly preferably 99.9999% or more. Since ammonia generally has a high affinity with water, when ammonia solvent is charged into the reaction vessel 6, oxygen derived from water is likely to be brought into the reaction vessel 6 and the resulting crystals are mixed in. There is a possibility that the amount of oxygen increases and the crystallinity of the nitride deteriorates. From such a viewpoint, it is desirable to reduce the amount of water and oxygen contained in the ammonia solvent as much as possible, preferably 1000 ppm or less, more preferably 100 ppm or less, and particularly preferably 10 ppm or less.

本発明で反応容器6と耐圧性容器3の間の空隙に充填される第二溶媒は、反応容器6の内側と外側をほぼ等しい圧力にすることができる溶媒であればその種類は限定されない。そのような第二溶媒としては、例えば、アンモニア溶媒、水、アルコール、二酸化炭素などを用いることができる。反応容器6の内側と外側の圧力差を小さくするためには、第二溶媒は、反応容器6の溶媒として用いられるアンモニア溶媒であることが好ましい。その理由は、性質の異なる溶媒を用いると、原料の溶解析出によって結晶成長反応を行うために温度を上げたとき、特に昇温過程において、反応容器6の内側と外側の圧力をほぼ同じに保つことが困難だからである。通常、反応容器6の内側と外側には同質の溶媒を用い、空隙に対する充填率をそれぞれほぼ同じにすることが好ましい。   The type of the second solvent filled in the gap between the reaction vessel 6 and the pressure-resistant vessel 3 in the present invention is not limited as long as it is a solvent that can bring the inside and outside of the reaction vessel 6 to substantially the same pressure. As such a second solvent, for example, an ammonia solvent, water, alcohol, carbon dioxide and the like can be used. In order to reduce the pressure difference between the inside and the outside of the reaction vessel 6, the second solvent is preferably an ammonia solvent used as a solvent for the reaction vessel 6. The reason for this is that when solvents having different properties are used, the pressure inside and outside the reaction vessel 6 is kept substantially the same when the temperature is raised in order to carry out the crystal growth reaction by dissolution and precipitation of the raw materials, especially during the temperature raising process. Because it is difficult. Usually, it is preferable to use the same solvent on the inner side and the outer side of the reaction vessel 6 so that the filling ratio to the gaps is almost the same.

反応容器6と耐圧性容器3の間の空隙に充填される第二溶媒がアンモニア溶媒である場合、該アンモニア溶媒は原料等と直接触れることはないので、不純物等の物性に関しては特に問題とならないが、反応容器6内のアンモニア溶媒と反応容器6と耐圧性容器3の間の空隙に充填されるアンモニア溶媒の物理的な物性をほぼ等しくするためには、アンモニア溶媒に含まれる水や酸素の量をできるだけ少なくすることが望ましく、好ましくは1000ppm以下であり、さらに好ましくは100ppm以下である。   When the second solvent filled in the space between the reaction vessel 6 and the pressure-resistant vessel 3 is an ammonia solvent, the ammonia solvent does not come into direct contact with the raw material and the like, so there is no particular problem with respect to physical properties such as impurities. However, in order to make the physical properties of the ammonia solvent in the reaction vessel 6 and the ammonia solvent filled in the gap between the reaction vessel 6 and the pressure-resistant vessel 3 substantially equal, water and oxygen contained in the ammonia solvent It is desirable to reduce the amount as much as possible, preferably 1000 ppm or less, more preferably 100 ppm or less.

次に、本発明の製造方法における手順について説明する。
本発明では、原料、鉱化剤等の添加物(必要に応じて種結晶10)等を反応容器6内に充填した後、反応容器6を閉じる。この工程は、必要な場合、不活性ガス雰囲気で行うことができる。反応容器6を閉じる場合、あらかじめパッキンを併用したねじ込み方式等で閉じるようにしておいてもよいし、溶接等で閉じることもできる。続いて、閉じた反応容器6に、反応容器6を開閉するためのバルブ4と配管接続口11に接続した配管を介してアンモニア溶媒を反応容器6内に充填する。反応容器6側に通ずるバルブ4内部を反応容器6の材料と同様の貴金属製とすることにより、原料、鉱化剤等の添加物やアンモニア溶媒から持ち込まれるものを除いて、得られる窒化物結晶への遷移金属等の混入を事実上排除できる。
Next, the procedure in the manufacturing method of the present invention will be described.
In the present invention, the reaction vessel 6 is closed after filling the reaction vessel 6 with raw materials, additives such as mineralizers (if necessary, seed crystals 10) and the like. This step can be performed in an inert gas atmosphere if necessary. When the reaction vessel 6 is closed, the reaction vessel 6 may be closed in advance by a screwing method using packing together, or may be closed by welding or the like. Subsequently, ammonia solvent is filled into the closed reaction vessel 6 through the valve 4 for opening and closing the reaction vessel 6 and the pipe connected to the pipe connection port 11. By making the inside of the valve 4 leading to the reaction vessel 6 side made of the same noble metal as the material of the reaction vessel 6, the nitride crystals obtained can be obtained except for raw materials, additives such as mineralizers and those brought in from an ammonia solvent Incorporation of transition metals, etc. into can be virtually eliminated.

アンモニア溶媒は、タンクからアンモニア充填用設備の配管を通じて反応容器6に付属したバルブ4および配管接続口11を通して外気と触れることなく反応容器6内に充填される。その際、アンモニア溶媒は気体または液体の状態で充填されることが好ましい。必要によって複数設けたバルブ4をのうちの一部を利用して、反応容器6内の気体を逃がすことができる。
アンモニア溶媒は、その潜熱の大きさから、室温がアンモニアの沸点以上である場合でも、冷却することなしに液体として反応容器6内に充填することができるが、反応容器6を予めアンモニア溶媒の沸点以下に冷却した状態で充填することも好ましい。また原料および鉱化剤等の添加物がアンモニア溶媒に充分可溶である場合には、あらかじめそれらを溶解させておいて、原料等とアンモニア溶媒を同時に反応容器6内に充填することもできる。アンモニアを気体または液体として充填する場合、途中に流量制御装置(図示せず)を設けて、あらかじめ設定された量を充填することもできる。
The ammonia solvent is charged into the reaction vessel 6 from the tank through the piping of the ammonia filling facility through the valve 4 and the pipe connection port 11 attached to the reaction vessel 6 without touching the outside air. At that time, the ammonia solvent is preferably filled in a gas or liquid state. If necessary, a part of the plurality of valves 4 can be used to escape the gas in the reaction vessel 6.
The ammonia solvent can be charged into the reaction vessel 6 as a liquid without cooling even when the room temperature is higher than the boiling point of ammonia because of its latent heat, but the reaction vessel 6 is previously filled with the boiling point of the ammonia solvent. It is also preferable to fill in the cooled state below. Further, when additives such as raw materials and mineralizers are sufficiently soluble in the ammonia solvent, they can be dissolved in advance, and the raw materials and the ammonia solvent can be charged into the reaction vessel 6 simultaneously. When filling ammonia as a gas or liquid, a flow rate control device (not shown) may be provided in the middle to fill a predetermined amount.

アンモニア溶媒を反応容器6に充填する場合、充填時間は要するが、一般に気体の状態で充填する方が配管その他に由来する不純物を反応容器6内への混入を避けることができ、また反応容器6内に入っているガスをアンモニア溶媒で完全に置換できるため、極めて純度の高いアンモニア溶媒を充填することができる。また、吸着剤等を利用した精製装置(図示せず)を介して不純物の少ないアンモニア溶媒を反応容器6内に充填する方法も好適に用いられる。   When the reaction vessel 6 is filled with the ammonia solvent, filling time is required. However, it is generally possible to avoid mixing impurities from the piping and the like into the reaction vessel 6 when filling in the gaseous state. Since the gas contained therein can be completely replaced with the ammonia solvent, it is possible to fill the ammonia solvent with extremely high purity. Further, a method of filling the reaction vessel 6 with an ammonia solvent having a small amount of impurities through a purification device (not shown) using an adsorbent or the like is also preferably used.

アンモニア溶媒を反応容器6内に充填した後、反応容器6に付属するバルブ4を閉じて反応容器6を密閉した後、アンモニア充填設備(図示せず)の配管を取り外す。反応容器6を密閉することは、空気中からの水や酸素の混入を防ぐために重要である。特にアンモニア溶媒を反応容器6内に充填した後に反応容器6が開放された状態にあると、アンモニア溶媒の大きい潜熱により反応容器6が冷却されるため、空気中の水が凝縮しやすい。反応容器6に反応容器6を閉じるためのバルブ4とアンモニア充填のための配管接続口11とをあらかじめ付属させておけば、アンモニア溶媒を外気と接触させることなく連続して充填することが可能となり、アンモニア溶媒を反応容器6内に充填した後、反応容器6を容易に密閉できる。   After filling the reaction vessel 6 with the ammonia solvent, the valve 4 attached to the reaction vessel 6 is closed to seal the reaction vessel 6, and then the piping of the ammonia filling facility (not shown) is removed. Sealing the reaction vessel 6 is important in order to prevent water and oxygen from entering the air. In particular, when the reaction vessel 6 is opened after the ammonia solvent is filled in the reaction vessel 6, the reaction vessel 6 is cooled by the large latent heat of the ammonia solvent, so that water in the air tends to condense. If the valve 4 for closing the reaction vessel 6 and the piping connection port 11 for filling ammonia are attached to the reaction vessel 6 in advance, it is possible to continuously fill the ammonia solvent without contacting with the outside air. After filling the reaction vessel 6 with the ammonia solvent, the reaction vessel 6 can be easily sealed.

反応容器6は、原料や鉱化剤などの添加物とアンモニア溶媒とを充填して密閉した後、立設した耐圧性容器3内に挿入される。挿入方法および設置方法は特に制限はないが、耐圧性容器3の底に反応容器6が自立できるように設置することが好ましい。本発明では、反応中に反応容器6の内側と外側との圧力をほぼ等しくするため、反応容器6と耐圧性容器3の間の空隙に第二溶媒を入れるため、反応容器6と耐圧性容器3の間に所定の空隙を設ける必要がある。耐圧性容器3が一定サイズである場合、反応容器6の側面と耐圧性容器3の側面との隙間は小さいほど反応容器6のサイズを大きくすることができるため、溶液成長反応のための多くの空間が確保でき、生産効率は向上する。しかし、両容器の隙間が小さすぎると、仮に反応容器6の内側の圧力がその外側の圧力より大きくなった場合、反応容器6は膨張して耐圧性容器3の内面に密着し、反応終了後に耐圧性容器3から反応容器6を取り出すことが困難になる場合がある。
そこで、本発明では、反応容器6の側面と耐圧性容器3の側面との間の隙間(両者が円筒形である場合、反応容器6の外径と耐圧性容器3の内径の差)は、少なくとも一部分においては0.1mm以上、好ましくは0.2mm以上、さらに好ましくは0.3mm以上、特に好ましくは0.5mm以上とする。
The reaction vessel 6 is filled with an additive such as raw materials and mineralizers and an ammonia solvent and sealed, and then inserted into the standing pressure-resistant vessel 3. The insertion method and the installation method are not particularly limited, but it is preferable to install the reaction vessel 6 at the bottom of the pressure-resistant vessel 3 so that it can stand on its own. In the present invention, in order to make the pressure inside and outside the reaction vessel 6 approximately equal during the reaction, the second solvent is put into the gap between the reaction vessel 6 and the pressure vessel 3, so that the reaction vessel 6 and the pressure vessel It is necessary to provide a predetermined gap between the three. When the pressure resistant container 3 has a constant size, the smaller the gap between the side surface of the reaction container 6 and the side surface of the pressure resistant container 3, the larger the size of the reaction container 6 can be. Space can be secured and production efficiency is improved. However, if the gap between the two containers is too small, if the pressure inside the reaction vessel 6 becomes larger than the pressure outside the reaction vessel 6, the reaction vessel 6 expands and adheres closely to the inner surface of the pressure-resistant vessel 3, and after the reaction is completed. It may be difficult to take out the reaction vessel 6 from the pressure-resistant vessel 3.
Therefore, in the present invention, the gap between the side surface of the reaction vessel 6 and the side surface of the pressure-resistant vessel 3 (when both are cylindrical, the difference between the outer diameter of the reaction vessel 6 and the inner diameter of the pressure-resistant vessel 3) is In at least a part, it is 0.1 mm or more, preferably 0.2 mm or more, more preferably 0.3 mm or more, and particularly preferably 0.5 mm or more.

反応容器6を室温に戻し、反応容器6の外側表面に付着した結露水を十分に取り除いた後、反応容器6を耐圧性容器3内に挿入する。この際、反応容器6の据え付けや座りを容易にするフレームなどをあらかじめ反応容器6の外側や耐圧性容器3の内部構造物として設けていてもよい。続いて、反応容器6と耐圧性容器3の間の空隙に第二溶媒を充填する。反応容器6の内側と外側には同質の溶媒を用い、空隙に対する充填率をそれぞれほぼ同じにすることが好ましい。反応容器6と耐圧性容器3の間の空隙にアンモニア溶媒を充填する場合、配管および耐圧性容器3に付属したバルブ1等を介することにより、反応容器6に充填する場合と同様に、水や空気などの混入を抑制することが可能である。また耐圧性容器3をアンモニア溶媒の沸点以下に冷却する方法も好適に用いられる。   After returning the reaction vessel 6 to room temperature and sufficiently removing condensed water adhering to the outer surface of the reaction vessel 6, the reaction vessel 6 is inserted into the pressure-resistant vessel 3. At this time, a frame or the like for facilitating the installation and sitting of the reaction vessel 6 may be provided in advance as the outer structure of the reaction vessel 6 or the internal structure of the pressure-resistant vessel 3. Subsequently, the second solvent is filled in the gap between the reaction vessel 6 and the pressure-resistant vessel 3. It is preferable to use the same solvent on the inner side and the outer side of the reaction vessel 6 so that the filling ratios for the gaps are almost the same. When filling the space between the reaction vessel 6 and the pressure-resistant vessel 3 with an ammonia solvent, water or water is filled in the same manner as when filling the reaction vessel 6 through piping, the valve 1 attached to the pressure-resistant vessel 3 or the like. It is possible to suppress mixing of air and the like. Moreover, the method of cooling the pressure | voltage resistant container 3 below to the boiling point of an ammonia solvent is also used suitably.

以上のような操作で、反応容器6内に原料、鉱化剤等の添加物とアンモニア溶媒、反応容器6と耐圧性容器3の間に第二溶媒(多くの場合、アンモニア)を充填した後、耐圧性容器3を付属のバルブ1を閉める等の操作を行い、耐圧性容器3を密閉し、熱電対9を有する電気炉8などを用いて反応容器6を含む外側の耐圧性容器3を加熱昇温する。   After filling the reaction vessel 6 with raw materials, additives such as mineralizer and ammonia solvent, and the second solvent (in many cases, ammonia) between the reaction vessel 6 and the pressure-resistant vessel 3 by the above operation. The pressure-resistant container 3 is operated such as closing the attached valve 1, the pressure-resistant container 3 is sealed, and the outer pressure-resistant container 3 including the reaction container 6 is installed using an electric furnace 8 having a thermocouple 9. The temperature is raised by heating.

ここで、反応容器6内のアンモニア溶媒は、窒化物結晶合成中や育成中に亜臨界状態、さらには超臨界状態にすること好ましい。超臨界流体は、その臨界温度以上で維持される濃ガスを意味し、臨界温度とは圧力によってそのガスが液化させられ得ない温度である。超臨界流体は一般的には、粘度が低く、液体よりも容易に拡散されるが、液体と同様の溶媒和力を有する。アンモニア溶媒の物性は、水熱合成(育成)法において溶媒として使われる水とは異なり、明らかにされているとはいえないため、亜臨界状態または超臨界状態で原料等の溶解や窒化物結晶の生成、溶解析出が促進される理由は確定できないが、水において知られているイオン積の概念を窒素含有溶媒に当てはめれば、温度上昇に伴ってイオン積が増大し、水における加水分解に相当する加安分解のような作用が増大することが寄与していると考えられる。   Here, the ammonia solvent in the reaction vessel 6 is preferably in a subcritical state or even a supercritical state during nitride crystal synthesis or growth. A supercritical fluid means a concentrated gas that is maintained above its critical temperature, and the critical temperature is a temperature at which the gas cannot be liquefied by pressure. Supercritical fluids generally have a lower viscosity and are more easily diffused than liquids, but have solvating power similar to liquids. The physical properties of ammonia solvent, unlike water used as a solvent in hydrothermal synthesis (growth) methods, are not clarified. Therefore, dissolution of raw materials and nitride crystals in subcritical or supercritical states The reason why the formation and dissolution precipitation is promoted cannot be determined, but if the concept of ionic product known in water is applied to a nitrogen-containing solvent, the ionic product increases as the temperature rises, resulting in hydrolysis in water. It is considered that an increase in the corresponding action such as amylolysis contributes.

超臨界状態で溶媒を用いる場合、反応混合物は、一般に溶媒の臨界点よりも高い温度に保持する。アンモニア溶媒の場合、臨界点は臨界温度132℃、臨界圧力11.35MPaであるが、反応容器6に対する充填率が高ければ、臨界温度以下の温度でも圧力は臨界圧力を遥かに越える。本発明において「超臨界状態」とは、このような臨界圧力を越えた状態を含む。反応混合物は、一定の容積の反応容器内に封入されているので、温度上昇は流体の圧力を増大させる。一般に、T>Tc(1つの溶媒の臨界温度)およびP>Pc(1つの溶媒の臨界圧力)であれば、流体は超臨界状態にある。   When using the solvent in a supercritical state, the reaction mixture is generally maintained at a temperature above the critical point of the solvent. In the case of an ammonia solvent, the critical point is a critical temperature of 132 ° C. and a critical pressure of 11.35 MPa. However, if the filling rate of the reaction vessel 6 is high, the pressure far exceeds the critical pressure even at a temperature below the critical temperature. In the present invention, the “supercritical state” includes such a state exceeding the critical pressure. Since the reaction mixture is enclosed in a constant volume reaction vessel, the increase in temperature increases the pressure of the fluid. In general, if T> Tc (critical temperature of one solvent) and P> Pc (critical pressure of one solvent), the fluid is in a supercritical state.

実際、溶媒中の窒化物多結晶原料の溶解度は、亜臨界状態と超臨界状態との間で極めて異なるので、超臨界条件では、窒化物結晶の十分な成長速度が得られる。反応時間は、特に鉱化剤または共鉱化剤の反応性および熱力学的パラメータ、すなわち温度および圧力の数値に依存する。窒化物結晶合成中あるいは育成中、耐圧性容器3内は5MPa〜2GPa程度の圧力範囲で保持され、反応容器6内も耐圧性容器3内と同等の圧力で保持される。圧力は、温度および反応容器6の容積に対する溶媒体積の充填率によって適宜決定される。本来、反応容器6内の圧力は、温度と充填率によって一義的に決まるものではあるが、実際には、原料、鉱化剤などの添加物、反応容器6内の温度の不均一性、および死容積の存在によって多少異なる。   In fact, since the solubility of the nitride polycrystalline raw material in the solvent is very different between the subcritical state and the supercritical state, a sufficient growth rate of the nitride crystal can be obtained under the supercritical condition. The reaction time depends in particular on the reactivity of the mineralizer or co-mineralizer and on the thermodynamic parameters, ie temperature and pressure values. During nitride crystal synthesis or growth, the pressure-resistant vessel 3 is held in a pressure range of about 5 MPa to 2 GPa, and the reaction vessel 6 is also held at a pressure equivalent to that in the pressure-resistant vessel 3. The pressure is appropriately determined depending on the temperature and the filling rate of the solvent volume with respect to the volume of the reaction vessel 6. Originally, the pressure in the reaction vessel 6 is uniquely determined by the temperature and the filling rate, but in practice, additives such as raw materials and mineralizers, temperature heterogeneity in the reaction vessel 6, and Varies slightly depending on the presence of dead volume.

アンモニア溶媒の場合、高温ではその解離平衡が窒素と水素に大きく傾いているため、高温ではそれによる圧力の変化が無視できなくなるおそれがある。一般にその解離反応は、金属成分によって触媒されるものであり、原料や鉱化剤等の添加物の種類によっては平衡に到達する可能性もある。本発明では、反応容器6と耐圧性容器3との間の空隙に第二溶媒が充填されるため、耐圧性容器3内の温度および圧力を調整することにより、反応容器6の内側と外側の温度差および圧力差を可能な限り少なくし、両者を近似させることができる。この点を考慮した上で、少なくとも耐熱性容器6内の温度範囲(すなわち反応容器3内の温度範囲)を、下限として通常150℃以上、好ましくは200℃以上、特に好ましくは300℃以上、上限として通常800℃以下、好ましくは700℃以下、特に好ましくは650℃以下の範囲とすることが望ましい。また少なくとも耐熱性容器3内の圧力範囲(すなわち反応容器6内の圧力範囲)は、下限として通常20MPa以上、好ましくは30MPa以上、特に好ましくは50MPa以上、上限として通常500MPa以下、好ましくは400MPa以下、特に好ましくは200MPa以下に保持することが望ましい。   In the case of an ammonia solvent, the dissociation equilibrium is greatly inclined to nitrogen and hydrogen at a high temperature, so that a change in pressure due to the high temperature may not be negligible. In general, the dissociation reaction is catalyzed by a metal component, and there is a possibility of reaching an equilibrium depending on the types of additives such as raw materials and mineralizers. In the present invention, since the second solvent is filled in the gap between the reaction vessel 6 and the pressure-resistant vessel 3, by adjusting the temperature and pressure in the pressure-resistant vessel 3, the inside and outside of the reaction vessel 6 can be adjusted. The temperature difference and the pressure difference can be reduced as much as possible to approximate both. In consideration of this point, at least the temperature range in the heat-resistant vessel 6 (that is, the temperature range in the reaction vessel 3) is usually 150 ° C. or higher, preferably 200 ° C. or higher, particularly preferably 300 ° C. or higher, as the lower limit. The temperature is usually 800 ° C. or lower, preferably 700 ° C. or lower, particularly preferably 650 ° C. or lower. Further, at least the pressure range in the heat-resistant container 3 (that is, the pressure range in the reaction container 6) is usually 20 MPa or more as a lower limit, preferably 30 MPa or more, particularly preferably 50 MPa or more, and usually 500 MPa or less, preferably 400 MPa or less as an upper limit. It is particularly desirable to keep the pressure at 200 MPa or less.

上記の反応容器6の温度範囲、圧力範囲を達成するための反応容器6へのアンモニア溶媒の注入の割合、すなわち充填率は、反応容器6のフリー容積、すなわち、反応容器6に多結晶原料、および種結晶を用いる場合には、種結晶とそれを設置する構造物の体積を反応容器6の容積から差し引いて残存する容積、また水熱育成法によるバルク単結晶製品の製造に関する業者に公知のバッフル板を設置する場合には、さらにそのバッフル板の体積を反応容器6の容積から差し引いて残存する容積のアンモニアの標準状態での液体密度(標準状態で気体の場合は沸点における液体密度)を基準として、通常20〜95%、好ましくは40〜90%、さらに好ましくは50〜85%とする。反応容器6と耐圧性容器3の間の空隙の第二溶媒の充填率も、前記アンモニア溶媒と同様に、フレームなどの構造物と反応容器の体積を差し引いて残存する容積を基準とした上で、温度を上昇させた時に反応容器6の内側と外側の圧力がほぼ等しくなるように決定された充填率で溶媒を充填すること好ましい。死容積や温度分布を考慮して、昇温過程における反応容器6の内側と外側の圧力が同様となるように微調整することも好適に用いられる。   The ratio of the injection of the ammonia solvent into the reaction vessel 6 for achieving the temperature range and pressure range of the reaction vessel 6 described above, that is, the filling rate, is the free volume of the reaction vessel 6, that is, the polycrystalline raw material in the reaction vessel 6, In the case where a seed crystal is used, the volume remaining after subtracting the volume of the seed crystal and the structure on which the seed crystal is installed from the volume of the reaction vessel 6, or known to those who are involved in the production of bulk single crystal products by the hydrothermal growth method When installing a baffle plate, subtract the volume of the baffle plate from the volume of the reaction vessel 6 to determine the liquid density in the standard state of the remaining volume of ammonia (the liquid density at the boiling point in the case of gas in the standard state). As a reference, it is usually 20 to 95%, preferably 40 to 90%, more preferably 50 to 85%. The filling rate of the second solvent in the gap between the reaction vessel 6 and the pressure-resistant vessel 3 is also based on the volume remaining after subtracting the volume of the structure such as the frame and the reaction vessel, like the ammonia solvent. The solvent is preferably filled at a filling rate determined so that the pressure inside and outside the reaction vessel 6 becomes substantially equal when the temperature is raised. In consideration of dead volume and temperature distribution, it is also preferably used to finely adjust the pressure inside and outside the reaction vessel 6 in the temperature rising process to be the same.

以上の説明したような2重に構成される容器の内側の反応容器6内での窒化物結晶の溶液成長反応は、熱電対9を有する電気炉8などを用いて反応容器6を含む外側の耐圧性容器3を加熱昇温することにより、内側の反応容器6内をアンモニアの亜臨界状態または超臨界状態に保持することにより行われる。加熱の方法、所定の反応温度への昇温速度に付いては特に限定されないが、通常、数時間から数日かけて行われる。必要に応じて、多段の昇温を行ったり、温度域において昇温スピードを変えたりすることもできる。さらに、外側の耐圧性容器3を部分的に温度差を設けて加熱したり、部分的に冷却しながら加熱したりすることもできる。   The solution growth reaction of nitride crystals in the reaction vessel 6 inside the double vessel as described above is performed by using an electric furnace 8 having a thermocouple 9 and the like including the reaction vessel 6 outside. By heating and heating the pressure-resistant vessel 3, the inside reaction vessel 6 is maintained in a subcritical or supercritical state of ammonia. The heating method and the rate of temperature increase to a predetermined reaction temperature are not particularly limited, but are usually performed over several hours to several days. If necessary, the temperature can be raised in multiple stages, or the temperature raising speed can be changed in the temperature range. Furthermore, the outer pressure-resistant container 3 can be heated by partially providing a temperature difference, or can be heated while being partially cooled.

なお、上記の「反応温度」は、耐圧性容器3の外面に接するように設けられた熱電対9によって測定されるものであり、反応容器6の内部温度と近似することができる。反応容器6の内部方向への温度勾配は、反応容器6の形状や納める電気炉8の形状およびその位置関係に代表される加熱、保温状況により異なる。反応温度は、熱電対9用に耐圧性容器3の外面から内方向に開けた、耐圧性容器3内空洞部までは貫通しない穴を利用して、反応容器6内部方向への温度勾配を推測し、あるいは外挿して反応容器6内部の温度から推定できる。同様に、反応容器6の上下方向の温度も、反応容器6の形状や納める電気炉8の形状、およびその位置関係に代表される加熱、保温状況により異なる。よって、図1に示すように耐圧性容器3の外面の上下で温度を数点測定し、かつ各位置での反応容器6内部の温度を推定した上で温度制御を行うことが望ましい。例えば、反応容器6の形状や保温状況によっては、耐圧性容器3外面の温度が上下で同じ、あるいは上部の方が数十℃高い場合でも、反応容器6内部の温度が上部のほうが数十℃低いということもあり得る。また、上記のとおり原料の溶解および熱対流による輸送と折出を促進するために、反応中に上下の温度勾配をあらかじめ設ける場合には、耐圧性容器3外面の数点の温度を測定するとともに、多段に分けたヒーターを用いて、反応容器6の主に上下方向に分けた温度制御を行うことも効果的である。   The “reaction temperature” is measured by the thermocouple 9 provided so as to be in contact with the outer surface of the pressure-resistant vessel 3 and can be approximated to the internal temperature of the reaction vessel 6. The temperature gradient in the inner direction of the reaction vessel 6 varies depending on the shape of the reaction vessel 6, the shape of the electric furnace 8 to be stored, and the heating and heat retention conditions represented by the positional relationship. As for the reaction temperature, a temperature gradient in the inner direction of the reaction vessel 6 is estimated using a hole opened inward from the outer surface of the pressure-resistant vessel 3 for the thermocouple 9 and does not penetrate to the cavity in the pressure-resistant vessel 3. Alternatively, it can be extrapolated and estimated from the temperature inside the reaction vessel 6. Similarly, the temperature in the vertical direction of the reaction vessel 6 also varies depending on the shape of the reaction vessel 6, the shape of the electric furnace 8 to be stored, and the heating and heat insulation conditions represented by the positional relationship. Therefore, as shown in FIG. 1, it is desirable to measure the temperature at several points above and below the outer surface of the pressure-resistant vessel 3 and to estimate the temperature inside the reaction vessel 6 at each position and perform temperature control. For example, depending on the shape of the reaction vessel 6 and the temperature maintaining condition, even if the temperature of the outer surface of the pressure-resistant vessel 3 is the same up and down, or the upper part is several tens of degrees Celsius, the temperature inside the reaction container 6 is several tens of degrees Celsius at the upper part. It can be low. In addition, as described above, in order to promote the transportation and folding of the raw materials by melting and thermal convection, when a vertical temperature gradient is provided in advance during the reaction, the temperature of several points on the outer surface of the pressure-resistant vessel 3 is measured. It is also effective to perform temperature control mainly divided in the vertical direction of the reaction vessel 6 using heaters divided in multiple stages.

所定の温度に達した後の反応時間については、窒化物結晶の種類、用いる原料、鉱化剤の種類、製造する結晶の大きさや量によっても異なるが、通常、数時間から数百日とすることができる。反応中、反応温度は一定にしてもよいし、徐々に昇温または降温させることもできる。所望の結晶を生成させるための反応時間を経た後、降温させる。降温方法は特に限定されないが、ヒーターの加熱を停止してそのまま炉内に反応容器6を含有する耐圧性容器3を設置したまま放冷してもかまわないし、反応容器6を含有する耐圧性容器3を電気炉8から取り外して空冷してもかまわない。必要であれば、冷媒を用いて急冷することも好適に用いられる。また、降温時の結晶の偏析出や特定の鉱化剤等の添加物によっては、その偏析出を防ぐために、耐圧性容器3を部分的に温度差をつけて冷却したり、部分的に微加熱しながら冷却したりすることもできる。   The reaction time after reaching a predetermined temperature varies depending on the type of nitride crystal, the raw material used, the type of mineralizer, and the size and amount of the crystal to be produced, but is usually several hours to several hundred days. be able to. During the reaction, the reaction temperature may be constant, or the temperature may be gradually raised or lowered. After a reaction time for producing desired crystals, the temperature is lowered. Although the temperature lowering method is not particularly limited, the heating may be stopped while the heater is stopped and the pressure-resistant vessel 3 containing the reaction vessel 6 is installed in the furnace as it is, or the pressure-resistant vessel containing the reaction vessel 6 may be used. 3 may be removed from the electric furnace 8 and air-cooled. If necessary, quenching with a refrigerant is also preferably used. In addition, depending on the partial precipitation of crystals at the time of cooling and additives such as a specific mineralizer, the pressure-resistant vessel 3 can be cooled with a partial temperature difference or partially fine to prevent the partial precipitation. It can also be cooled while heating.

耐圧性容器3外面の温度、あるいは推定される反応容器6内部の温度が所定温度以下になった後、耐圧性容器3を開栓する。このときの所定温度は特に限定はなく、通常、−80℃〜200℃、好ましくは−33℃〜100℃である。反応容器6と耐圧性容器3との間の空隙に充填された溶媒がアンモニアである場合、先ず外側の耐圧性容器3に付属したバルブ1の容器側とは反対側の先端を、水などを満たした容器に通じておき、付属したバルブ1を開ける。このときに不活性ガスを通じながら行ってもかまわない。耐圧性容器3内の温度が十分高い場合は、アンモニア溶媒はガスとして移動し、水などに吸収される。このとき移動時間を短くするために耐圧性容器3を再度加熱することも好ましい。また、アンモニアを移動させる側の容器内に水などを満たすことなく冷却することも好ましい。水などの溶媒に吸収させる方法を用いなかった場合、回収したアンモニア溶媒を再使用することが容易となる。また、付属したバルブ1を開けた後、ポンプ等によって直接溶媒を抜き取り、除去してもよい。   After the temperature of the outer surface of the pressure-resistant vessel 3 or the estimated temperature inside the reaction vessel 6 becomes equal to or lower than a predetermined temperature, the pressure-resistant vessel 3 is opened. The predetermined temperature at this time is not particularly limited, and is usually −80 ° C. to 200 ° C., preferably −33 ° C. to 100 ° C. When the solvent filled in the space between the reaction vessel 6 and the pressure-resistant vessel 3 is ammonia, first, the tip of the valve 1 attached to the outer pressure-resistant vessel 3 on the opposite side to the vessel side is first washed with water or the like. Open the attached valve 1 through a filled container. At this time, it may be performed through an inert gas. When the temperature in the pressure-resistant container 3 is sufficiently high, the ammonia solvent moves as a gas and is absorbed by water or the like. At this time, it is also preferable to heat the pressure-resistant container 3 again in order to shorten the moving time. It is also preferable to cool without filling water or the like in the container on the side where ammonia is moved. When a method of absorbing in a solvent such as water is not used, the recovered ammonia solvent can be easily reused. Further, after opening the attached valve 1, the solvent may be directly extracted and removed by a pump or the like.

さらに必要に応じて、真空状態にするなどして耐圧性容器3と反応容器6の間に充填した溶媒を十分に取り除き、乾燥した後に耐圧性容器3の蓋を開け、反応容器6を取り出すこともできる。次いで、反応容器6に付属したバルブ4の配管接続口11に配管を接続し、水などを満たした容器に通じておき、バルブ4を開ける。このときに不活性ガスを通じながらでもかまわない。反応容器6内温度が十分高い場合は、アンモニア溶媒はガスとして移動し、水などに吸収される。このとき移動時間を短くするために反応容器6を再度加熱することも好ましい。また、移動させる側の容器内を水などで満たすことなく冷却することも好ましい。水などの溶媒に吸収させる方法を用いなかった場合には、回収したアンモニア溶媒を再使用することが容易となる。また、付属したバルブ4を開けた後、ポンプ等によって直接アンモニア溶媒を抜き取り、除去してもよい。この方法で、アンモニア溶媒を除去するときに、アンモニアに溶解している鉱化剤等の添加物や未反応の原料を同時に除去することもできる。   Further, if necessary, the solvent filled between the pressure-resistant vessel 3 and the reaction vessel 6 is sufficiently removed by making a vacuum or the like, and after drying, the lid of the pressure-resistant vessel 3 is opened and the reaction vessel 6 is taken out. You can also. Next, a pipe is connected to the pipe connection port 11 of the valve 4 attached to the reaction vessel 6, and the valve 4 is opened by passing through a vessel filled with water or the like. At this time, an inert gas may be used. When the temperature in the reaction vessel 6 is sufficiently high, the ammonia solvent moves as a gas and is absorbed by water or the like. At this time, it is also preferable to reheat the reaction vessel 6 in order to shorten the moving time. It is also preferable to cool the container on the moving side without filling it with water or the like. When the method of absorbing in a solvent such as water is not used, the recovered ammonia solvent can be easily reused. Alternatively, after the attached valve 4 is opened, the ammonia solvent may be directly extracted and removed by a pump or the like. In this method, when the ammonia solvent is removed, additives such as mineralizers dissolved in ammonia and unreacted raw materials can be removed at the same time.

さらに必要に応じて、真空状態にするなどして反応容器6内のアンモニア溶媒を十分に除去した後、乾燥し、反応容器6の蓋等を開けて生成した窒化物結晶および未反応の原料や鉱化剤等の添加物を取り出すことができる。   Further, if necessary, the ammonia solvent in the reaction vessel 6 is sufficiently removed by making a vacuum or the like, and then dried, and the nitride crystal produced by opening the lid of the reaction vessel 6 and the unreacted raw materials, Additives such as mineralizers can be removed.

以上、本発明の製造方法については、窒化物多結晶を原料にした場合を例に説明したが、原理的には窒化物多結晶を原料としなくても、それに類した化合物または準じた化合物、ならびにそれらに転化し得る前駆体を原料にして上記方法を実施することは可能である。そのような化合物または前駆体としては、すでに製造原料で列挙したガラザンなどの共有結合性M−N結合を有する化合物、Ga(NH2)3などの金属アミド、KGa(NH2)4などのアルカリ金属アミド、金属イミド、GaCl3などのハロゲン塩、ハロゲン化物アンモニア付加物、アンモニウムハロガレートなどハロ金属塩などが挙げられる。また、酸素不純物の混入を避ける意味においては、積極的に用いるべきではないが、水酸化物や酸化物、オキソ酸塩などを使用することもできる。 As described above, the production method of the present invention has been described by taking as an example the case where nitride polycrystal is used as a raw material, but in principle, even if nitride polycrystal is not used as a raw material, a similar compound or a similar compound, In addition, it is possible to carry out the above method using a precursor that can be converted into them as a raw material. Examples of such compounds or precursors include compounds having a covalent MN bond such as galazane already listed in the production raw materials, metal amides such as Ga (NH 2 ) 3, and alkalis such as KGa (NH 2 ) 4. Examples include metal amides, metal imides, halogen salts such as GaCl 3 , halide ammonia adducts, and halo metal salts such as ammonium halogallate. In addition, in the sense of avoiding the mixing of oxygen impurities, hydroxides, oxides, oxoacid salts, and the like can be used, although they should not be used actively.

上記窒化物多結晶そのものではない原料を用いて、塊状窒化物結晶を得ようとする場合には、窒化物合成と窒化物の窒素含有溶媒への溶解析出を同時に行うことが必要になるため、より厳密な反応条件のコントロールが求められる。それが非常に難しく、またより大きな塊状結晶を得たいとする場合は、多段に分けた製造方法を好適に用いることができる。すなわち、本発明のPtに代表される貴金属製の内側の反応容器6と外側の耐圧性容器3を含む2重の容器を用いた製造方法によって、上述したような窒化物多結晶原料に類したまたは準じた化合物、ならびにそれらに転化し得る前駆体を原料にして、最初にある反応条件によって多結晶窒化物を製造し、その後、多結晶窒化物を原料として、同様に本発明製造方法によって塊状窒化物結晶を育成する。このような原料を用いる場合は、この多段に分けた方法によって塊状窒化物結晶の製造は容易になる。この時、多段に分けた反応は同一の反応容器でアンモニアなど除去せずにそのまま行ってもよいし、同一または別のアンモニアや鉱化剤に入れ替えて行ってもよい。合成された窒化物多結晶原料を一度取り出して、洗浄などの処理などを施した後、同じ反応容器または別の反応容器に充填し窒化物結晶を育成してもかまわない。その際、先述したように種結晶を設置することも好適に用いることができる。   When trying to obtain a bulk nitride crystal using a raw material that is not the nitride polycrystal itself, it is necessary to simultaneously perform nitride synthesis and dissolution and precipitation of the nitride in a nitrogen-containing solvent. Stricter control of reaction conditions is required. When it is very difficult and it is desired to obtain larger lump crystals, a multistage production method can be suitably used. That is, similar to the nitride polycrystalline raw material as described above by a manufacturing method using a double container including an inner reaction container 6 made of noble metal represented by Pt of the present invention and an outer pressure-resistant container 3. Alternatively, a polycrystalline nitride is first produced under certain reaction conditions using a similar compound and a precursor that can be converted into the raw material, and then the polycrystalline nitride is used as a raw material in the same manner according to the production method of the present invention. Grow nitride crystals. In the case of using such a raw material, it is easy to produce a massive nitride crystal by this multi-stage method. At this time, the reaction divided into multiple stages may be performed as it is without removing ammonia or the like in the same reaction vessel, or may be performed by replacing with the same or different ammonia or mineralizer. The synthesized nitride polycrystalline raw material may be taken out once, subjected to treatment such as washing, and then filled into the same reaction vessel or another reaction vessel to grow nitride crystals. At that time, it is also possible to suitably use a seed crystal as described above.

以上説明したように、本発明の少なくとも内側の表面が貴金属製である反応容器6と耐圧性容器3からなる2重の容器を用いた製造方法により、効率よくかつ安全に遷移金属等の不純物混入の少ない窒化物結晶を製造することができる。本発明の製造方法により、製造される窒化物結晶の遷移金属不純物の混入は酸化物換算で通常0.1重量%以下に抑制できる。本発明により得られた塊状窒化物結晶は、必要な場合、塩酸(HCl)、硝酸(HNO3)等で洗浄することができる。また、生成した結晶および未反応の原料や鉱化剤等の添加物を取り除いた後の反応容器も、必要な場合も同様に洗浄することができる。 As described above, impurities such as transition metals can be efficiently and safely mixed by a manufacturing method using a double vessel comprising a reaction vessel 6 and a pressure-resistant vessel 3 having at least an inner surface made of a noble metal. It is possible to produce a nitride crystal with a small amount. By the production method of the present invention, the inclusion of transition metal impurities in the produced nitride crystal can be normally suppressed to 0.1% by weight or less in terms of oxide. The bulk nitride crystals obtained by the present invention can be washed with hydrochloric acid (HCl), nitric acid (HNO 3 ) or the like, if necessary. Also, the reaction vessel after removing the produced crystals and unreacted raw materials and additives such as mineralizers can be similarly washed when necessary.

洗浄された窒化物結晶はさらにその方位によって、特定の結晶面に対して垂直にスライスし、さらに必要な場合には、エッチングや研磨を施し、窒化物自立単結晶基板として製品化することができる。得られた窒化物単結晶基板は不純物が少なく、結晶性も高いために格子欠陥や転位密度が低くなると共に不純物準位の形成もなく、VPEやMOCVD等で各種デバイスを製造するにあたり、特にホモエピタキシャル成長用基板として優れている。特に、窒化ガリウムの場合、ホモエピタキシャル成長用の高品質の単結晶基板の工業的な製造は知られていない。サファイア上にバッファー層等を介してVPE等の方法でエピタキシャル成長させた後に、サファイアやバッファー層を除去しても窒化ガリウム単結晶の自立基板は製造可能だが、窒化ガリウムと格子定数、熱膨張係数が異なる基板上での、いわゆるヘテロエピタキシャル成長であるために、得られる窒化ガリウムに格子欠陥が発生しやすく、その点において本発明により製造された窒化ガリウム結晶は、格子欠陥や転位密度等の関点からも優れている。   The cleaned nitride crystal is further sliced perpendicularly to a specific crystal plane depending on its orientation, and if necessary, it can be etched or polished to produce a nitride free-standing single crystal substrate. . The obtained nitride single crystal substrate has few impurities and high crystallinity, so that lattice defects and dislocation density are reduced and impurity levels are not formed, and in manufacturing various devices by VPE, MOCVD, etc. Excellent substrate for epitaxial growth. In particular, in the case of gallium nitride, industrial production of a high-quality single crystal substrate for homoepitaxial growth is not known. After epitaxial growth on the sapphire via a buffer layer or the like by a method such as VPE, a gallium nitride single crystal free-standing substrate can be manufactured even if the sapphire and the buffer layer are removed, but gallium nitride has a lattice constant and thermal expansion coefficient. Due to so-called heteroepitaxial growth on different substrates, lattice defects are likely to occur in the obtained gallium nitride, and in that respect, the gallium nitride crystal produced according to the present invention is from the viewpoint of lattice defects and dislocation density. Is also excellent.

さらに、本発明により製造された窒化物結晶やそれを切断、スライス、エッチング、研磨したものは、アンモニア溶媒を用いる溶液成長法も含めた各種の溶液成長法や昇華法、メルト成長法に用いる種結晶としても不純物が少なく結晶性が高いために優れている。   Furthermore, the nitride crystal produced according to the present invention and the one obtained by cutting, slicing, etching, and polishing the crystal are various kinds of solution growth methods including a solution growth method using an ammonia solvent, sublimation methods, and melt growth methods. A crystal is excellent because it has few impurities and high crystallinity.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順、処理装置等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. Materials, usage amounts, ratios, processing contents, processing procedures, processing apparatuses, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

(実施例1)
本実施例は、図1に示す製造装置を用いて実施した。また、反応容器に附属するバルブは図4の構造を有するものを採用した。
上下部分に分割された、バルブを付属したPt製の反応容器(約40ml)を十分に乾燥し、不活性ガス雰囲気中において、反応容器の下部に原料としてXRDで(100)の回折線(2θ=約32.5°)の半値幅(2θ)が0.17°以下、LECO社製酸素窒素分析装置TC−436型で測定した酸素量が0.2重量%の十分に乾燥させた多結晶h−GaN(ヘキサゴナル型窒化ガリウム)原料1.0gを入れた。さらに鉱化剤として十分に乾燥した99.995%のNH4Cl 0.2gを反応容器6内に入れた。Pt製のバッフル板等の結晶育成部を設置した後、素早く反応容器の上下部分を閉じた。次いで反応容器に付属したバルブの配管接続口に配管を接続し、バルブを介して反応容器を真空ポンプに通じるように操作し、バルブを開けて真空脱気した後、真空状態を維持しながら反応容器をドライアイスエタノール溶媒によって冷却し、いったんバルブを閉じた。次いで、NH3タンクに通じるように操作した後、再びバルブを開け、連続して外気に触れることなく99.999%のNH3を反応容器に充填した。流量制御に基づき、NH3を反応容器の内部の空洞部の60%に相当する液体として充填(−33℃のNH3密度で換算)した後、バルブを閉じて反応容器を密閉した。次いで反応容器の温度を室温に戻した後、外表面を十分に乾燥させた。
Example 1
In this example, the manufacturing apparatus shown in FIG. 1 was used. Further, the valve attached to the reaction vessel has the structure shown in FIG.
A Pt reaction vessel (about 40 ml) with a valve, which is divided into upper and lower parts, is sufficiently dried, and in an inert gas atmosphere, a XRD (100) diffraction line (2θ = Approximately 32.5 °) half-width (2θ) is 0.17 ° or less, and the oxygen amount measured by LECO oxygen-nitrogen analyzer TC-436 is 0.2% by weight. 1.0 g of h-GaN (hexagonal gallium nitride) raw material was added. Further, 0.2 g of 99.995% NH 4 Cl sufficiently dried as a mineralizer was placed in the reaction vessel 6. After installing a crystal growing part such as a Pt baffle plate, the upper and lower parts of the reaction vessel were quickly closed. Next, connect the pipe to the pipe connection port of the valve attached to the reaction vessel, operate the reaction vessel to communicate with the vacuum pump through the valve, open the valve and degas the vacuum, then react while maintaining the vacuum state The vessel was cooled with dry ice ethanol solvent and the valve was once closed. Then, after operating as leading to NH 3 tank, again opening the valve, it was charged with 99.999% of NH 3 without touching the open air continuously to the reaction vessel. Based on the flow rate control, NH 3 was filled as a liquid corresponding to 60% of the hollow portion inside the reaction vessel (converted with an NH 3 density of −33 ° C.), and then the valve was closed to seal the reaction vessel. Then, after returning the temperature of the reaction vessel to room temperature, the outer surface was sufficiently dried.

続いて、反応容器を配管から取り外してインコネル製の耐圧性容器内に収め、バルブが装着された耐圧性容器の蓋を閉じた。次いで耐圧性容器に付属したバルブを介して配管を真空ポンプに通じるように操作し、バルブを開けて真空脱気した後、真空状態を維持しながら耐圧性容器をドライアイスエタノール溶媒によって冷却し、一旦バルブを閉じた。次いで、NH3タンクに通じるように操作した後、再びバルブを開け、連続して外気に触れることなくNH3を反応容器と耐圧性容器との間の空隙に充填した。流量制御に基づき、NH3を反応容器と耐圧性容器の間の空隙部の約60%に相当する液体として充填(−33℃のNH3密度で換算)した後、バルブを閉じて、耐圧性容器の温度を室温に戻し、外表面を十分に乾燥させた。 Subsequently, the reaction vessel was removed from the piping and placed in a pressure vessel made of Inconel, and the lid of the pressure vessel equipped with a valve was closed. Next, the pipe is connected to a vacuum pump through a valve attached to the pressure-resistant container, and after opening the valve and vacuum degassing, the pressure-resistant container is cooled with dry ice ethanol solvent while maintaining the vacuum state. Once the valve was closed. Then, after operating as leading to NH 3 tank, again opening the valve, he was charged with NH 3 without touching the open air continuously in the gap between the reaction vessel and the pressure vessel. Based on the flow rate control, NH 3 was filled as a liquid corresponding to about 60% of the gap between the reaction vessel and the pressure-resistant vessel (converted to the NH 3 density at −33 ° C.), and then the valve was closed to The temperature of the container was returned to room temperature, and the outer surface was sufficiently dried.

続いて、中に反応容器を含む耐圧性容器を配管から取り外し、上下に2分割されたヒーターで構成された電気炉内に収納した。耐圧性容器の下部外面の温度が530℃になるように6時間かけて昇温し、耐圧性容器の下部外面の温度が530℃に達した後、その温度でさらに72時間保持した。耐圧性容器内の圧力は約130MPaであった。また保持中の温度幅は±10℃以下であった。その後、ヒーターによる加熱を止め、電気炉内で自然放冷した。耐圧性容器の下部外面の温度がほぼ室温まで降下したことを確認した後、耐圧性容器に付属したバルブに配管を接続した。そして、バルブの反応容器側でない配管部に不活性ガスを流した後、バルブを開放し、反応容器と耐圧性容器の間の空隙部のNH3を取り除いた。一旦バルブを閉じ、真空ポンプに通ずるように操作した後、バルブを再び開放し、反応容器と耐圧性容器の間の空隙部のNH3をほぼ完全に除去した。その後、耐圧性容器の蓋を開け、反応容器を取り外した。 Subsequently, the pressure-resistant vessel including the reaction vessel therein was removed from the pipe and housed in an electric furnace composed of a heater that was divided into two vertically. The temperature was increased over 6 hours so that the temperature of the lower outer surface of the pressure-resistant container reached 530 ° C., and after the temperature of the lower outer surface of the pressure-resistant container reached 530 ° C., the temperature was further maintained for 72 hours. The pressure in the pressure resistant container was about 130 MPa. The temperature range during holding was ± 10 ° C. or less. Thereafter, heating by the heater was stopped and the mixture was naturally cooled in an electric furnace. After confirming that the temperature of the lower outer surface of the pressure-resistant container had dropped to almost room temperature, piping was connected to a valve attached to the pressure-resistant container. Then, after flowing the inert gas into the pipe portion not reactive vessel side of the valve, it opens the valve to remove NH 3 in the gap portion between the reaction vessel and the pressure vessel. The valve was once closed and operated so as to be connected to the vacuum pump, and then the valve was opened again, so that NH 3 in the gap between the reaction vessel and the pressure-resistant vessel was almost completely removed. Thereafter, the pressure-resistant container was opened and the reaction container was removed.

次に、反応容器に付属したバルブを介して反応容器内部と通ずるように配管を継ぎ込み、配管部に不活性ガスを流した後、バルブを開放し、反応容器内のNH3を取り除いた。一旦、バルブを閉じて、真空ポンプに通ずるように操作した後、バルブを再び開放し、反応容器内部のNH3をほぼ完全に除去した。その後、反応容器を開け、内部を確認したところ、反応容器の上部に約0.3gの塊状窒化ガリウム結晶が析出していた。
得られた窒化ガリウム結晶を取り出してX線回折測定した結果、結晶形はヘキサゴナル型であった。得られた窒化ガリウム結晶を細かく粉砕し、LECO社製酸素窒素分析装置TC−436型で測定した酸素量は0.5重量%以下であった。また、島津EDX700蛍光X線分析装置で元素分析を行ったところ、Gaのみが検出され、Ga以外のNaより重い金属成分は検出限界以下であった。
Next, piping was connected so as to communicate with the inside of the reaction vessel through a valve attached to the reaction vessel, and after flowing an inert gas into the piping portion, the valve was opened, and NH 3 in the reaction vessel was removed. Once the valve was closed and operated to communicate with the vacuum pump, the valve was opened again, and NH 3 inside the reaction vessel was almost completely removed. Then, when the reaction container was opened and the inside was confirmed, about 0.3 g of massive gallium nitride crystals were deposited on the upper part of the reaction container.
The obtained gallium nitride crystal was taken out and subjected to X-ray diffraction measurement. As a result, the crystal form was hexagonal. The obtained gallium nitride crystal was finely pulverized, and the amount of oxygen measured with an oxygen-nitrogen analyzer TC-436 manufactured by LECO was 0.5% by weight or less. Moreover, when elemental analysis was performed with the Shimadzu EDX700 X-ray fluorescence spectrometer, only Ga was detected, and metal components heavier than Na other than Ga were below the detection limit.

(実施例2)
実施例1における以下の条件を変更した以外は、実施例1と同様にして窒化ガリウム結晶の析出を試みた。すなわち、多結晶h−GaN原料の重量を3.0gにした点、鉱化剤NH4Clの重量を0.96gにした点、流量制御に基づきNH3を反応容器の内部の空洞部の70%に相当する液体として充填(−33℃のNH3密度で換算)した点、流量制御に基づきNH3を反応容器と耐圧性容器の間の空隙部の約70%に相当する液体として充填(−33℃のNH3密度で換算)した点、耐圧性容器の下部外面の温度が500℃になるように6時間かけて昇温し耐圧性容器の下部外面の温度が500℃に達した後その温度でさらに72時間保持した点について条件を変更した。
その結果、実施例1と同様に、反応容器の上部に約0.3gの塊状窒化ガリウム結晶が析出していた。
また、実施例1と同様に、得られた窒化ガリウム結晶を取り出してX線回折測定した結果、結晶形はヘキサゴナル型であった。得られた窒化ガリウム結晶を細かく粉砕し、LECO社製酸素窒素分析装置TC−436型で測定した酸素量は0.5重量%以下であった。また、島津EDX700蛍光X線分析装置で元素分析を行ったところ、Gaのみが検出され、Ga以外のNaより重い金属成分は検出限界以下であった。
(Example 2)
Precipitation of gallium nitride crystals was attempted in the same manner as in Example 1 except that the following conditions in Example 1 were changed. That is, a point where the weight of the polycrystalline h-GaN raw material is 3.0 g, a point where the weight of the mineralizer NH 4 Cl is 0.96 g, and NH 3 is 70% of the cavity inside the reaction vessel based on the flow rate control. % As liquid (corresponding to NH 3 density of −33 ° C.) and NH 3 as liquid corresponding to about 70% of the gap between the reaction vessel and pressure-resistant vessel based on flow rate control (converted as NH 3 density at −33 ° C.) After conversion to the NH 3 density of −33 ° C., the temperature of the lower outer surface of the pressure-resistant container is raised to 500 ° C. over 6 hours, and the temperature of the lower outer surface of the pressure-resistant container reaches 500 ° C. The conditions were changed for the point held at that temperature for a further 72 hours.
As a result, as in Example 1, about 0.3 g of massive gallium nitride crystals were deposited on the top of the reaction vessel.
As in Example 1, the obtained gallium nitride crystal was taken out and subjected to X-ray diffraction measurement. As a result, the crystal form was a hexagonal type. The obtained gallium nitride crystal was finely pulverized, and the amount of oxygen measured with an oxygen-nitrogen analyzer TC-436 manufactured by LECO was 0.5% by weight or less. Moreover, when elemental analysis was performed with the Shimadzu EDX700 X-ray fluorescence spectrometer, only Ga was detected, and metal components heavier than Na other than Ga were below the detection limit.

(比較例1)
実施例1の比較例として、Pt製の反応容器を用いることの効果を実証するため、Pt製の反応容器を用いずに、インコネル製の耐圧性容器のみを用いた。該耐圧性容器を十分に乾燥し不活性ガス雰囲気中において、耐圧性容器の下部に原料として、実施例で用いたのと同じ十分に乾燥させた多結晶h−GaN(ヘキサゴナル型窒化ガリウム)原料1.0gを入れた。さらに鉱化剤として十分に乾燥した99.995%のNH4Cl 0.2gを入れた。Pt製のバッフル板等の構造物を設置した後、耐圧性容器を閉じた。
(Comparative Example 1)
As a comparative example of Example 1, in order to demonstrate the effect of using a Pt reaction vessel, only an Inconel pressure resistant vessel was used without using a Pt reaction vessel. The polycrystalline h-GaN (hexagonal gallium nitride) raw material sufficiently dried as in the examples as a raw material in the lower part of the pressure resistant container in an inert gas atmosphere after sufficiently drying the pressure resistant container 1.0 g was added. Furthermore, 0.2 g of 99.995% NH 4 Cl sufficiently dried as a mineralizer was added. After a structure such as a Pt baffle plate was installed, the pressure resistant container was closed.

続いて、耐圧性容器に付属したバルブに配管を接続し、実施例と同様の手順で99.999%のNH3を耐圧性容器に充填した。流量制御に基づき、NH3を耐圧性容器の空洞部の60%に相当する液体として充填(−33℃のNH3密度で換算)した後、バルブを閉じて耐圧性容器を密閉した。次いで耐圧性容器の温度を室温に戻し、外表面を十分に乾燥させた。 Subsequently, piping was connected to a valve attached to the pressure resistant container, and 99.999% NH 3 was filled in the pressure resistant container in the same procedure as in the example. Based on the flow rate control, NH 3 was filled as a liquid corresponding to 60% of the cavity of the pressure-resistant container (converted with an NH 3 density of −33 ° C.), and then the valve was closed to seal the pressure-resistant container. Next, the temperature of the pressure-resistant container was returned to room temperature, and the outer surface was sufficiently dried.

実施例と同様の条件で昇温、反応を行い、炉内で自然放冷した。耐圧性容器下部外面の温度がほぼ室温まで降下したのを確認した後、実施例と同様の手順で耐圧性容器内部のNH3をほぼ完全に除去した。その後、耐圧性容器を開けて内部を確認したところ、耐圧性容器上部に約0.2gの塊状窒化ガリウム結晶が析出していた。 The temperature was raised and the reaction was carried out under the same conditions as in the examples, and the mixture was naturally cooled in the furnace. After confirming that the temperature of the outer surface of the lower part of the pressure-resistant container had dropped to substantially room temperature, NH 3 inside the pressure-resistant container was almost completely removed by the same procedure as in the example. Thereafter, when the pressure resistant container was opened and the inside was confirmed, about 0.2 g of massive gallium nitride crystals were deposited on the pressure resistant container.

X線回折を測定したところ結晶形はヘキサゴナル型であったが、ブロードなピークとなり結晶性が低下していた。島津EDX700蛍光X線分析装置で元素分析を行ったところ、Ga以外のNaより重い金属成分として、Cr、Fe、Ni、Taが検出され、特にCrは酸化物換算で0.1重量%ほど検出された。   When the X-ray diffraction was measured, the crystal form was hexagonal, but it became a broad peak and the crystallinity was lowered. When elemental analysis was performed with Shimadzu EDX700 X-ray fluorescence spectrometer, Cr, Fe, Ni, and Ta were detected as metal components heavier than Na other than Ga, and in particular, Cr was detected as 0.1% by weight in terms of oxide. It was done.

(比較例2)
実施例2の比較例として、Pt製の反応容器を用いることの効果を実証するため、Pt製の反応容器を用いずに、インコネル製の耐圧性容器のみを用いた点以外は、実施例2と同様にして窒化ガリウム結晶の析出を試みた。
その結果、比較例1と同様に、耐圧性容器上部に約0.2gの塊状窒化ガリウム結晶が析出していた。
また、比較例1と同様に、結晶形はヘキサゴナル型であったが、ブロードなピークとなり結晶性が低下していた。島津EDX700蛍光X線分析装置で元素分析を行ったところ、Ga以外のNaより重い金属成分として、Cr、Fe、Ni、Taが検出され、特にCrは酸化物換算で0.1重量%ほど検出された。
(Comparative Example 2)
As a comparative example of Example 2, in order to demonstrate the effect of using a Pt reaction vessel, Example 2 was used except that only a Inconel pressure vessel was used without using a Pt reaction vessel. In the same manner as described above, precipitation of gallium nitride crystals was attempted.
As a result, as in Comparative Example 1, about 0.2 g of massive gallium nitride crystal was deposited on the top of the pressure resistant container.
Further, as in Comparative Example 1, the crystal form was a hexagonal type, but it became a broad peak and the crystallinity was lowered. When elemental analysis was performed with Shimadzu EDX700 X-ray fluorescence spectrometer, Cr, Fe, Ni, and Ta were detected as metal components heavier than Na other than Ga, and in particular, Cr was detected as 0.1% by weight in terms of oxide. It was done.

以上の実施例1、2と比較例1、2の結果から、本発明の方法で得られる窒化物結晶(実施例1、2)が、比較例1、2の方法で得られた窒化物結晶よりも結晶性が高く、不純物が少なく高品質であることが分かる。
また、本発明の方法で得られた窒化ガリウム結晶は、1)Cr、Fe、Ni、Taなどの遷移金属成分の混入が0.1重量%以下であり、2)酸素量が0.5重量%以下という特徴を有することも分かる。
From the results of Examples 1 and 2 and Comparative Examples 1 and 2, the nitride crystals (Examples 1 and 2) obtained by the method of the present invention are nitride crystals obtained by the methods of Comparative Examples 1 and 2. It can be seen that the crystallinity is higher and the quality is lower with less impurities.
Further, the gallium nitride crystal obtained by the method of the present invention is 1) the content of transition metal components such as Cr, Fe, Ni and Ta is 0.1% by weight or less, and 2) the oxygen content is 0.5% by weight. It can also be seen that it has a characteristic of less than

本発明の製造方法で得られた窒化物結晶は、不純物が少なく、結晶性も高いため、格子欠陥や転位密度が低くなると共に不純物準位の形成もなく、VPEやMOCVD等で各種デバイスを製造するにあたり、エピタキシャル成長用基板として利用することができる。   The nitride crystal obtained by the manufacturing method of the present invention has few impurities and high crystallinity, so that lattice defects and dislocation density are reduced and impurity levels are not formed, and various devices are manufactured by VPE, MOCVD, etc. In doing so, it can be used as a substrate for epitaxial growth.

1 バルブ
2 圧力計
3 耐圧性容器
4 バルブ
5 結晶育成部
6 反応容器
7 原料充填部
8 電気炉
9 熱電対
10 種結晶
11 配管接続口
12 パッキンリング
DESCRIPTION OF SYMBOLS 1 Valve 2 Pressure gauge 3 Pressure-resistant container 4 Valve 5 Crystal growth part 6 Reaction container 7 Raw material filling part 8 Electric furnace 9 Thermocouple 10 Seed crystal 11 Pipe connection port 12 Packing ring

Claims (11)

少なくとも内側の表面が貴金属製であって、少なくともひとつのバルブを付属している反応容器に原料とアンモニア溶媒を充填して前記反応容器を密閉した後、さらに前記反応容器を耐圧性容器内に挿入し、前記反応容器と前記耐圧性容器との間の空隙にアンモニア溶媒、水、アルコール、または二酸化炭素から選択される第二溶媒を充填して前記耐圧性容器を密閉した後、昇温することにより窒化物結晶を得ることを特徴とする窒化物結晶の製造方法。 At least the inner surface is made of precious metal, and the reaction vessel with at least one valve is filled with raw materials and ammonia solvent, and the reaction vessel is sealed, and then the reaction vessel is inserted into the pressure-resistant vessel And filling the space between the reaction vessel and the pressure-resistant vessel with a second solvent selected from ammonia solvent, water, alcohol, or carbon dioxide , sealing the pressure-resistant vessel, and then raising the temperature. A method for producing a nitride crystal, comprising obtaining a nitride crystal by: 前記第二溶媒がアンモニア溶媒であることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the second solvent is an ammonia solvent. 前記反応容器内のアンモニア溶媒を亜臨界状態または超臨界状態で保持することを特徴とする請求項1または2に記載の製造方法。 3. The method according to claim 1, wherein the ammonia solvent in the reaction vessel is maintained in a subcritical state or a supercritical state. 少なくとも前記耐圧性容器内を20〜500MPaに保持することを特徴とする請求項1〜のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3 , wherein at least the inside of the pressure-resistant container is held at 20 to 500 MPa. 少なくとも前記耐圧性容器内を20〜400MPaに保持することを特徴とする請求項1〜のいずれか一項に記載の製造方法。 The process according to any one of claims 1 to 4, characterized in that to hold at least the pressure-resistant vessel 20~400MPa. 少なくとも前記耐圧性容器内を200〜700℃に昇温することを特徴とする請求項1〜のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5 , wherein at least the inside of the pressure-resistant container is heated to 200 to 700 ° C. 前記反応容器内に少なくとも1種類の添加物を添加することを特徴とする請求項1〜のいずれか一項に記載の製造方法。 The process according to any one of claims 1 to 6, wherein adding at least one additive into said reaction vessel. 前記添加物が少なくとも1種類のハロゲン原子を含むことを特徴とする請求項に記載の製造方法。 The manufacturing method according to claim 7 , wherein the additive contains at least one halogen atom. 前記原料中の酸素含有量が5質量%以下であることを特徴とする請求項1〜のいずれか一項に記載の製造方法。 The process according to any one of claims 1 to 8, characterized in that the oxygen content in said raw material is not more than 5 wt%. 前記原料中に窒化ガリウムを含有することを特徴とする請求項1〜のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 9 , wherein the raw material contains gallium nitride. 前記反応容器内に少なくとも1種類の種結晶を設置し、アンモニア溶媒に溶解した原料が前記種結晶上に析出することを特徴とする請求項1〜10のいずれか一項に記載の窒化物結晶の製造方法。 The nitride crystal according to any one of claims 1 to 10 , wherein at least one kind of seed crystal is installed in the reaction vessel, and a raw material dissolved in an ammonia solvent is deposited on the seed crystal. Manufacturing method.
JP2010074531A 2004-03-10 2010-03-29 Method for producing nitride crystal Active JP5213899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010074531A JP5213899B2 (en) 2004-03-10 2010-03-29 Method for producing nitride crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004067066 2004-03-10
JP2004067066 2004-03-10
JP2010074531A JP5213899B2 (en) 2004-03-10 2010-03-29 Method for producing nitride crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005066543A Division JP4541935B2 (en) 2004-03-10 2005-03-10 Method for producing nitride crystal

Publications (2)

Publication Number Publication Date
JP2010189266A JP2010189266A (en) 2010-09-02
JP5213899B2 true JP5213899B2 (en) 2013-06-19

Family

ID=41389555

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009154484A Active JP5356933B2 (en) 2004-03-10 2009-06-30 Nitride crystal manufacturing equipment
JP2010074531A Active JP5213899B2 (en) 2004-03-10 2010-03-29 Method for producing nitride crystal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009154484A Active JP5356933B2 (en) 2004-03-10 2009-06-30 Nitride crystal manufacturing equipment

Country Status (1)

Country Link
JP (2) JP5356933B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282554A (en) 2010-12-27 2013-09-04 三菱化学株式会社 Method for producing semiconductor crystal, crystal production device, and group 13 nitride semiconductor crystal
JP2012171862A (en) * 2011-02-18 2012-09-10 Mitsubishi Chemicals Corp Method for producing nitride crystal
EP2690204B1 (en) 2011-03-22 2023-03-15 Mitsubishi Chemical Corporation Process for producing gallium nitride crystal
JP5953943B2 (en) * 2011-05-31 2016-07-20 三菱化学株式会社 Nitride semiconductor crystal manufacturing method, reaction vessel and member
KR101336805B1 (en) 2011-06-21 2013-12-03 한국화학연구원 Pressure Vessel For Growing Single Crystal
WO2013062042A1 (en) 2011-10-28 2013-05-02 三菱化学株式会社 Method for producing nitride crystal, and nitride crystal
JP2014062023A (en) * 2011-10-28 2014-04-10 Mitsubishi Chemicals Corp Method for producing nitride crystal
WO2014129544A1 (en) 2013-02-22 2014-08-28 三菱化学株式会社 Crystal of nitride of group-13 metal on periodic table, and method for producing same
CN103132130B (en) * 2013-03-15 2015-11-18 中国有色桂林矿产地质研究院有限公司 A kind of apparatus and method using suspension liner pipe ammonia thermal growth gan body monocrystalline
JP6300543B2 (en) * 2014-01-29 2018-03-28 三菱ケミカル株式会社 Nitride crystal growth vessel and method for producing nitride crystal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398867B1 (en) * 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
RU2296189C2 (en) * 2001-06-06 2007-03-27 АММОНО Сп.з о.о. Method and apparatus for producing three-dimensional monocrystalline gallium-containing nitride (variants)
US7125453B2 (en) * 2002-01-31 2006-10-24 General Electric Company High temperature high pressure capsule for processing materials in supercritical fluids
JP4513264B2 (en) * 2002-02-22 2010-07-28 三菱化学株式会社 Method for producing nitride single crystal
JP4229624B2 (en) * 2002-03-19 2009-02-25 三菱化学株式会社 Method for producing nitride single crystal
JP4279510B2 (en) * 2002-05-17 2009-06-17 東京電波株式会社 Raw material production method, single crystal growth method

Also Published As

Publication number Publication date
JP2009263229A (en) 2009-11-12
JP2010189266A (en) 2010-09-02
JP5356933B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4541935B2 (en) Method for producing nitride crystal
JP5213899B2 (en) Method for producing nitride crystal
JP4433696B2 (en) Method for producing nitride crystal
JP5023312B2 (en) Crystal manufacturing method, crystal growth apparatus, crystal and device using supercritical solvent
US9551088B2 (en) Method for growing group III-nitride crystals in supercritical ammonia using an autoclave
TWI394871B (en) Crystal production process using supercritical solvent
JP5454829B2 (en) Crystal manufacturing method and crystal manufacturing apparatus using supercritical solvent
KR20090064379A (en) Process for producing nitride semiconductor, crystal growth rate enhancement agent, nitride single crystal, wafer and device
JP2007290921A (en) Method for producing nitride single crystal, nitride single crystal, and device
JP5888208B2 (en) Method for producing nitride crystal
JP2011513179A (en) Method for testing group III nitride wafers and group III nitride wafers with test data
JP5454828B2 (en) Crystal manufacturing method and crystal manufacturing apparatus using supercritical solvent
WO2012128263A1 (en) Process for producing nitride crystal
WO2012176318A1 (en) Method for producing nitride single crystal and autoclave used therefor
JP6493588B2 (en) Method for producing nitride crystal
JP5167752B2 (en) Method for filling liquefied ammonia and method for producing nitride crystal
JP2012171863A (en) Method for producing nitride crystal, and crystal production apparatus
JP4867884B2 (en) Method for filling liquefied ammonia and method for producing nitride crystal
JP2009114057A (en) Manufacturing process of nitride crystal
JP5454830B2 (en) Crystal manufacturing method and crystal manufacturing apparatus using supercritical solvent
JP2013056821A (en) Method for producing group iii nitride crystal
JP2013203652A (en) Method for producing nitride single crystal
JP5747810B2 (en) Nitride crystal manufacturing method and crystal manufacturing apparatus
JP2013014502A (en) Method for producing nitride crystal, nitride crystal and apparatus for producing the same
JP6192956B2 (en) Method for producing nitride single crystal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250