JP5213412B2 - Power supply temperature detection method - Google Patents

Power supply temperature detection method Download PDF

Info

Publication number
JP5213412B2
JP5213412B2 JP2007280349A JP2007280349A JP5213412B2 JP 5213412 B2 JP5213412 B2 JP 5213412B2 JP 2007280349 A JP2007280349 A JP 2007280349A JP 2007280349 A JP2007280349 A JP 2007280349A JP 5213412 B2 JP5213412 B2 JP 5213412B2
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
power supply
priority
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007280349A
Other languages
Japanese (ja)
Other versions
JP2009109271A (en
Inventor
明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007280349A priority Critical patent/JP5213412B2/en
Publication of JP2009109271A publication Critical patent/JP2009109271A/en
Application granted granted Critical
Publication of JP5213412B2 publication Critical patent/JP5213412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、複数の素電池の温度を複数の温度センサで検出し、検出した温度信号を所定の周期でデジタル信号に変換して出力する電源装置の温度検出方法に関する。   The present invention relates to a temperature detection method for a power supply device that detects temperatures of a plurality of unit cells with a plurality of temperature sensors, converts the detected temperature signals into digital signals at a predetermined cycle, and outputs the digital signals.

複数の素電池を直列や並列に接続している電源装置は、素電池の温度を検出して、電池の充放電の電流をコントロールしている。電池が温度特性を有し、温度によって充放電できる最大電流が変化するからである。とくに、多数の素電池を直列や並列に接続している電源装置は、大出力が要求されることから電池の電流が大きく、大電流によって素電池の温度が高くなることがある。電池は、温度が高くなると電流を制限して電池温度を低くする必要がある。電池の高温における大電流が性能を低下させるからである。また、温度に対する安全性からも、温度が高い状態での大電流を制限することが大切である。   A power supply device in which a plurality of unit cells are connected in series or in parallel detects the temperature of the unit cells and controls the charging / discharging current of the cells. This is because the battery has temperature characteristics and the maximum current that can be charged and discharged changes depending on the temperature. In particular, a power supply device in which a large number of unit cells are connected in series or in parallel requires a large output, so that the battery current is large, and the large current may increase the unit cell temperature. When the temperature of the battery increases, it is necessary to limit the current to lower the battery temperature. This is because a large current at a high temperature of the battery deteriorates the performance. It is also important to limit a large current at a high temperature from the viewpoint of temperature safety.

さらに、多数の素電池を直列に接続している電源装置は、全ての素電池の温度を均一にできない。このため、複数の温度センサを使用して複数の素電池の温度を検出している。理想的なシステムは、全ての素電池に温度センサを熱結合し、各々の素電池の温度を温度センサで検出するものである。ただ、このシステムは、多数の素電池を備える電源装置にあっては、極めて多数の温度センサを必要とする。この弊害を避けるために、複数の素電池の温度を、集熱部材を介してひとつの温度センサで検出するシステムが開発されている。(特許文献1参照)
特開2000−331659号公報
Furthermore, a power supply device in which a large number of unit cells are connected in series cannot make the temperatures of all the unit cells uniform. For this reason, the temperature of several unit cells is detected using several temperature sensors. An ideal system is one in which a temperature sensor is thermally coupled to all the unit cells, and the temperature of each unit cell is detected by the temperature sensor. However, this system requires a very large number of temperature sensors in a power supply device including a large number of unit cells. In order to avoid this adverse effect, a system has been developed that detects the temperature of a plurality of unit cells with a single temperature sensor via a heat collecting member. (See Patent Document 1)
JP 2000-331659 A

特許文献1の電源装置は、ひとつの温度センサで複数の素電池の温度を検出できることから、少ない温度センサで多数の素電池の温度を検出できる。この電源装置は、各々の電池の温度を検出するシステムに比較して温度センサの個数を減少できるが、車両用の電源装置のように、多数の素電池を備える装置にあっては、減少した温度センサの個数も相当な数になる。   Since the power supply apparatus of patent document 1 can detect the temperature of several unit cells with one temperature sensor, it can detect the temperature of many unit cells with few temperature sensors. This power supply device can reduce the number of temperature sensors compared to a system that detects the temperature of each battery, but it is reduced in a device having a large number of unit cells, such as a power supply device for a vehicle. The number of temperature sensors is also considerable.

複数の温度センサで素電池の温度を検出する電源装置は、温度センサから出力される温度信号をデジタル信号に変換している。電池の電流をコントロールする制御回路がデジタル処理するからである。温度センサの温度信号は、A/Dコンバータでデジタル信号に変換される。デジタル信号に変換する方式は、各々の温度センサの出力に専用のA/Dコンバータを接続する専用方式と、複数の温度センサの出力を一定の周期で順番に切り換えてひとつのA/Dコンバータでデジタル信号に変換する切り換え方式とがある。専用方式は、温度センサと同じ個数のA/Dコンバータを必要とすることから、回路構成が複雑になってコストが高くなる。切り換え方式は、ひとつのA/Dコンバータで複数の温度センサの温度信号をデジタル信号に変換できることから、コストを低減でき、多くの電源装置はこの方式を採用している。ただ、切り換え方式は、複数の温度センサを一定のサンプリング周期で順番に切り換えて、温度信号をデジタル信号に変換することから、温度を検出するタイミングが長くなる。とくに、温度センサの個数に比例して、温度を検出するタイミングが長くなる。たとえば、アナログ信号をデジタル信号に変換するサンプリング周期を10msecとするA/Dコンバータで10個の温度センサの温度信号をデジタル信号に変換する方式にあっては、各々の温度センサの温度信号は100msecのサンプリング周期でデジタル信号に変換される。すなわち、温度センサの温度信号がデジタル信号に変換される周期は、温度センサの個数が多くなると長くなり、素電池の温度を検出するタイミングが遅れる。さらに、温度センサで検出される温度で電池の電流をコントロールする方式は、1回の検出温度で電流をコントロールするのではなく、複数回の検出温度から電池の温度を特定して電流をコントロールすることから、素電池の温度検出が遅れると、現実に電流をコントロールする時間はさらに遅れることになる。   A power supply device that detects the temperature of a unit cell with a plurality of temperature sensors converts a temperature signal output from the temperature sensor into a digital signal. This is because the control circuit that controls the battery current performs digital processing. The temperature signal of the temperature sensor is converted into a digital signal by an A / D converter. There are two types of conversion to digital signals: one dedicated A / D converter that connects dedicated A / D converters to each temperature sensor output, and one A / D converter that switches the outputs of multiple temperature sensors in a certain cycle in order. There is a switching method for converting to a digital signal. Since the dedicated method requires the same number of A / D converters as the temperature sensor, the circuit configuration becomes complicated and the cost increases. Since the switching method can convert the temperature signals of a plurality of temperature sensors into digital signals with a single A / D converter, the cost can be reduced, and many power supply apparatuses employ this method. However, in the switching method, the temperature signal is converted into a digital signal by sequentially switching a plurality of temperature sensors at a constant sampling period, and therefore the temperature detection timing becomes longer. In particular, the temperature detection timing is lengthened in proportion to the number of temperature sensors. For example, in an A / D converter that converts an analog signal to a digital signal at a sampling period of 10 msec and converts the temperature signals of ten temperature sensors into digital signals, the temperature signal of each temperature sensor is 100 msec. Is converted into a digital signal at a sampling period of. That is, the cycle in which the temperature signal of the temperature sensor is converted into a digital signal becomes longer as the number of temperature sensors increases, and the timing for detecting the temperature of the unit cell is delayed. Furthermore, the method of controlling the battery current by the temperature detected by the temperature sensor does not control the current at a single detected temperature, but controls the current by specifying the battery temperature from a plurality of detected temperatures. Therefore, when the temperature detection of the unit cell is delayed, the time for actually controlling the current is further delayed.

この弊害は、A/Dコンバータのサンプリング周期を短く、すなわち高速処理のA/Dコンバータを使用して解消できる。ただ、高速処理のA/Dコンバータはコストが高く、現実の電源回路においては、部品コストからA/Dコンバータのサンプリング周期に制限を受ける。このため、多数の温度センサで素電池の温度を検出する電源装置にあっては、電池の温度検出の時間遅れが制御に悪影響を与える欠点がある。   This problem can be solved by using a short A / D converter sampling period, that is, a high-speed A / D converter. However, the high-speed A / D converter is expensive, and in an actual power supply circuit, the sampling period of the A / D converter is limited by the component cost. For this reason, in a power supply device that detects the temperature of a unit cell with a large number of temperature sensors, there is a drawback that the time delay of the temperature detection of the battery adversely affects the control.

本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、A/Dコンバータのサンプリングを高速化することなく、複数の温度センサの検出電圧をデジタル信号に変換しながら、必要な電池の温度を速やかに検出して、温度検出の時間遅れによる制御の悪影響を防止できる電源装置の温度検出方法を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to quickly detect necessary battery temperatures while converting the detection voltages of a plurality of temperature sensors into digital signals without increasing the sampling speed of the A / D converter. It is an object of the present invention to provide a temperature detection method for a power supply device that can prevent adverse effects of control due to the time delay.

本発明の電源装置の温度検出方法は、前述の目的を達成するために以下の構成を備える。
電源装置の温度検出方法は、複数の素電池1の温度を複数の温度センサ2で検出し、複数の温度センサ2の検出信号を所定のサンプリング周期でデジタル信号に変換する。さらに、温度検出方法は、温度センサ2の検出温度によって、温度センサ2からの出力信号をデジタル信号に変換する順番を変更する。
The temperature detection method for a power supply device according to the present invention includes the following configuration in order to achieve the above-described object.
The temperature detection method of a power supply device detects the temperature of the some unit cell 1 with the some temperature sensor 2, and converts the detection signal of the some temperature sensor 2 into a digital signal with a predetermined sampling period. Further, in the temperature detection method, the order in which the output signal from the temperature sensor 2 is converted into a digital signal is changed according to the temperature detected by the temperature sensor 2.

本発明の請求項2の電源装置の温度検出方法は、検出温度が高くて温度差が大きく、又は温度上昇率が大きい温度センサを優先温度センサとし、この優先温度センサから出力される温度信号を優先してデジタル信号に変換する。   According to the temperature detection method of the power supply device of claim 2 of the present invention, a temperature sensor having a high detection temperature and a large temperature difference or a large temperature rise rate is set as a priority temperature sensor, and a temperature signal output from the priority temperature sensor is obtained. Convert to a digital signal with priority.

本発明の請求項3の電源装置の温度検出方法は、複数の温度センサ2から出力される温度信号をマルチプレクサ4に入力し、マルチプレクサ4が入力側に接続している温度センサ2を順番に切り換えて、各々の温度センサ2から入力される温度信号をA/Dコンバータ5に出力し、A/Dコンバータ5でもってマルチプレクサ4から入力される温度信号をデジタル信号に変換する。さらに、この温度検出方法は、マルチプレクサ4が、優先温度センサを優先して入力側に接続するように切り換える順番を変更して、優先温度センサからの温度信号を優先してデジタル信号に変換する。   According to a third aspect of the present invention, there is provided a temperature detection method for a power supply apparatus, wherein temperature signals output from a plurality of temperature sensors 2 are input to a multiplexer 4 and the temperature sensors 2 connected to the input side of the multiplexer 4 are switched in order. Thus, the temperature signal input from each temperature sensor 2 is output to the A / D converter 5, and the temperature signal input from the multiplexer 4 is converted into a digital signal by the A / D converter 5. Further, in this temperature detection method, the multiplexer 4 changes the order of switching so that the priority temperature sensor is connected to the input side with priority, and converts the temperature signal from the priority temperature sensor into a digital signal with priority.

さらに、本発明の請求項4の電源装置の温度検出方法は、電源装置を車両用の電源装置としている。   In the power supply device temperature detection method according to claim 4 of the present invention, the power supply device is a power supply device for a vehicle.

本発明の電源装置の温度検出方法は、A/Dコンバータを高速化することなく、ひとつのA/Dコンバータでもって、複数の温度センサの検出電圧を順番に切り換えてデジタル信号に変換しながら、必要な電池の温度を速やかに検出して、温度検出の時間遅れによる制御の悪影響を防止できる。それは、本発明の温度検出方法が、従来のように、一定の決められた順番で繰り返し複数の温度センサの温度信号をデジタル信号に変換するのではなく、温度センサの検出温度によって、温度センサからの出力信号をデジタル信号に変換する順番を変更するからである。   The temperature detection method of the power supply device of the present invention converts the detection voltages of a plurality of temperature sensors in order and converts them into digital signals with one A / D converter without increasing the speed of the A / D converter, The necessary battery temperature can be detected quickly, and adverse effects of control due to a time delay in temperature detection can be prevented. The temperature detection method of the present invention does not repeatedly convert the temperature signals of a plurality of temperature sensors into digital signals in a fixed order as in the prior art. This is because the order of converting the output signals into digital signals is changed.

とくに、本発明の請求項2の温度検出方法は、検出温度が高くて温度差が大きく、又は温度上昇率が大きい温度センサを優先温度センサとし、この優先温度センサから出力される温度信号を優先してデジタル信号に変換して、優先温度センサのサンプリング周期を短くする。この方法は、温度が他の電池温度よりも高くて温度差が大きい電池の温度を短いサンプリング周期で検出できるので、高温になって電流を制限する電池の温度を、速やかに時間遅れを少なくして検出できる。このため、温度が高くなった電池の電流を速やかに最適電流に制御して、温度と電流による電池の劣化を防止できる。   In particular, according to the temperature detection method of claim 2 of the present invention, a temperature sensor having a high detected temperature and a large temperature difference or a large temperature rise rate is set as a priority temperature sensor, and a temperature signal output from the priority temperature sensor is prioritized. Then, the digital signal is converted to shorten the sampling period of the priority temperature sensor. This method can detect the temperature of a battery whose temperature is higher than other battery temperatures and has a large temperature difference in a short sampling period, so that the temperature of the battery that becomes hot and limits the current can be quickly reduced with less time delay. Can be detected. For this reason, the current of the battery whose temperature has increased can be quickly controlled to the optimum current, and deterioration of the battery due to temperature and current can be prevented.

また、本発明の請求項3の温度検出方法は、複数の温度センサから出力される温度信号をマルチプレクサに入力し、マルチプレクサが入力側に接続される温度センサを順番に切り換えて、各々の温度センサから入力される温度信号をA/Dコンバータに出力し、A/Dコンバータでもってマルチプレクサから入力される温度信号をデジタル信号に変換すると共に、マルチプレクサが、優先温度センサを優先して入力側に接続するように切り換える順番を変更して、優先温度センサからの温度信号を優先してデジタル信号に変換する。この方法は、マルチプレクサが温度センサを切り換える順番を変更して、優先温度センサの温度を速やかに検出できる。   According to a third aspect of the present invention, there is provided a temperature detection method in which temperature signals output from a plurality of temperature sensors are input to a multiplexer, the temperature sensors connected to the input side of the multiplexer are sequentially switched, and each temperature sensor is switched. The temperature signal input from is output to the A / D converter, the A / D converter converts the temperature signal input from the multiplexer into a digital signal, and the multiplexer prioritizes the priority temperature sensor and connects it to the input side. The switching order is changed so that the temperature signal from the priority temperature sensor is converted into a digital signal with priority. In this method, the order of switching the temperature sensors by the multiplexer can be changed to quickly detect the temperature of the priority temperature sensor.

また、本発明の請求項4は、電源装置を車両用の電源装置とするが、車両用の電源装置は特に多数の素電池と温度センサを備えることから、温度で電流を制限する電池の温度を速やかに検出して、電池の温度による電流値を最適値にコントロールして電池の寿命を長く、また理想的な状態にコントロールできる。   Further, according to claim 4 of the present invention, the power supply device is a vehicle power supply device. Since the vehicle power supply device includes a large number of unit cells and temperature sensors, the temperature of the battery that limits the current by the temperature. Can be detected quickly, and the current value according to the temperature of the battery can be controlled to an optimum value, thereby extending the life of the battery and controlling it to an ideal state.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置の温度検出方法を例示するものであって、本発明は温度検出方法を以下の方法に特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiments described below exemplify the temperature detection method of the power supply device for embodying the technical idea of the present invention, and the present invention does not specify the temperature detection method as the following method.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

以下、電源装置が、ハイブリッドカーや電気自動車などの車両用の電源装置である具体例を詳述する。ただし、本発明は、電源装置として、多数の素電池を直列又は並列に接続している全てのもの、たとえば、無停電電源装置、電動バイクや電動自転車等の電源装置も利用できることから、電源装置を車両用の電源装置に特定しない。   Hereinafter, a specific example in which the power supply device is a power supply device for a vehicle such as a hybrid car or an electric vehicle will be described in detail. However, since the present invention can also use all power units connected in series or in parallel, such as uninterruptible power units, electric bikes, electric bicycles, etc. Is not specified as a vehicle power supply.

図1の電源装置は、直列に接続している複数の素電池1と、複数の素電池1の温度を検出する温度センサ2と、温度センサ2から出力される温度信号をデジタル信号に変換する変換回路3とを備える。   The power supply device of FIG. 1 converts a plurality of unit cells 1 connected in series, a temperature sensor 2 that detects temperatures of the plurality of unit cells 1, and a temperature signal output from the temperature sensor 2 into a digital signal. And a conversion circuit 3.

素電池1は、ニッケル水素電池又はリチウムイオン電池である。ただし、素電池には現在使用され、あるいはこれから開発される全ての充電できる電池を使用できる。素電池をニッケル水素電池とする電源装置は、複数の素電池を直列に直線状に連結して電池モジュールとし、さらに複数の電池モジュールを直列に接続している。この素電池は、各々の電池モジュールの温度を温度センサで検出し、あるいは集熱部材を介して複数の電池モジュールの温度を温度センサで検出し、あるいはまた、高温領域や低温領域にある特定の電池モジュールの温度を温度センサで検出する。たとえば、40〜50個の電池モジュールを直列に接続している車両用の電源装置にあっては、10個の温度センサで電池モジュールの温度を検出する。ただし、車両用の電源装置は、素電池の個数が異なり、また電池モジュールの個数も異なることから、温度センサの個数も異なり、たとえば、5〜20個とすることもできる。さらに、素電池をリチウムイオン電池とする車両用の電源装置にあっても、約3〜20個の温度センサで素電池の温度を検出する。   The unit cell 1 is a nickel metal hydride battery or a lithium ion battery. However, all rechargeable batteries that are currently used or will be developed can be used as the unit cells. In a power supply device in which a unit cell is a nickel metal hydride battery, a plurality of unit cells are linearly connected in series to form a battery module, and the plurality of battery modules are further connected in series. In this unit cell, the temperature of each battery module is detected by a temperature sensor, or the temperature of a plurality of battery modules is detected by a temperature sensor via a heat collecting member, or a specific temperature in a high temperature region or a low temperature region is detected. The temperature of the battery module is detected by a temperature sensor. For example, in a vehicle power supply device in which 40 to 50 battery modules are connected in series, the temperature of the battery module is detected by 10 temperature sensors. However, since the number of unit cells and the number of battery modules are different in the power supply device for vehicles, the number of temperature sensors is also different. For example, it can be 5 to 20. Further, even in a vehicle power supply apparatus using a lithium ion battery as a unit cell, the temperature of the unit cell is detected by about 3 to 20 temperature sensors.

温度センサ2は、素電池1に密着して、すなわち素電池1に熱結合するように固定されて、素電池1の温度を検出する。温度センサ2はサーミスタである。ただし、温度センサには、温度で電気抵抗が変化する全ての素子を使用できる。温度センサ2は、直接に素電池1の表面に密着して熱結合され、あるいは集熱部材(図示せず)を介して素電池に熱結合するように固定される。温度センサ2は、温度で電気抵抗が変化される。図1の電源装置は、温度センサ2と直列に分圧抵抗8を接続している。温度センサ2と分圧抵抗8の直列回路は、温度センサ2の一端をアース側に、分圧抵抗8の一端を定電圧電源9の+側に接続している。この回路は、温度センサ2の電気抵抗が変化すると、温度センサ2と分圧抵抗8の接続点10の電圧が変化する。サーミスタは、温度が上昇すると電気抵抗が減少する。したがって、温度センサ2が検出する温度が高くなると、接続点10の電圧は低下する。このため、接続点10の電圧を検出して、温度センサ2の電気抵抗を検出でき、この電気抵抗から温度を検出できる。このことから、接続点10の電圧が素電池1の温度信号として出力される。   The temperature sensor 2 is in close contact with the unit cell 1, that is, is fixed so as to be thermally coupled to the unit cell 1, and detects the temperature of the unit cell 1. The temperature sensor 2 is a thermistor. However, all elements whose electrical resistance changes with temperature can be used for the temperature sensor. The temperature sensor 2 is directly attached to the surface of the unit cell 1 and thermally coupled thereto, or is fixed so as to be thermally coupled to the unit cell via a heat collecting member (not shown). The electrical resistance of the temperature sensor 2 changes with temperature. In the power supply device of FIG. 1, a voltage dividing resistor 8 is connected in series with the temperature sensor 2. In the series circuit of the temperature sensor 2 and the voltage dividing resistor 8, one end of the temperature sensor 2 is connected to the ground side, and one end of the voltage dividing resistor 8 is connected to the + side of the constant voltage power source 9. In this circuit, when the electrical resistance of the temperature sensor 2 changes, the voltage at the connection point 10 between the temperature sensor 2 and the voltage dividing resistor 8 changes. The thermistor decreases in electrical resistance as the temperature rises. Therefore, when the temperature detected by the temperature sensor 2 increases, the voltage at the connection point 10 decreases. For this reason, the voltage of the connection point 10 can be detected to detect the electrical resistance of the temperature sensor 2, and the temperature can be detected from this electrical resistance. From this, the voltage at the connection point 10 is output as a temperature signal of the unit cell 1.

変換回路3は、温度センサ2から出力される温度信号、すなわち接続点10の電圧をデジタル信号に変換して出力する。図の変換回路3は、温度センサ2を切り換えるマルチプレクサ4と、このマルチプレクサ4の出力側に接続されてマルチプレクサ4から出力される温度信号をデジタル信号に変換するA/Dコンバータ5と、このA/Dコンバータ5の出力をデジタル処理してマルチプレクサ4が切り換える順番をコントロールする制御回路6とを備える。   The conversion circuit 3 converts the temperature signal output from the temperature sensor 2, that is, the voltage at the connection point 10 into a digital signal and outputs the digital signal. The conversion circuit 3 in the figure includes a multiplexer 4 that switches the temperature sensor 2, an A / D converter 5 that is connected to the output side of the multiplexer 4 and converts the temperature signal output from the multiplexer 4 into a digital signal, and the A / D converter 5 And a control circuit 6 that digitally processes the output of the D converter 5 and controls the order in which the multiplexer 4 switches.

マルチプレクサ4は、ひとつのスイッチ7を順番にオンに切り換えて、ひとつの温度センサ2をA/Dコンバータ5に接続する。マルチプレクサ4は、ひとつのスイッチ7をオン、他のスイッチ7をオフとして、オン状態のスイッチに接続される温度センサ2の温度信号をA/Dコンバータ5に入力する。マルチプレクサ4がスイッチ7を切り換えるタイミングは、A/Dコンバータ5が入力信号をデジタル信号に変換できるサンプリング周期を考慮して特定される。たとえば、10msecのサンプリング周期で入力される信号をデジタル信号に変換できるA/Dコンバータ5に接続されるマルチプレクサ4は、10msecのサンプリング周期でスイッチ7を切り換える。マルチプレクサ4がスイッチ7を切り換えて温度センサ2をA/Dコンバータ5に接続した後、A/Dコンバータ5は入力される温度信号をデジタル信号に変換する。マルチプレクサ4は、制御回路6から入力されるタイミング信号に制御されてスイッチ7を切り換え、さらにA/Dコンバータ5も制御回路6から入力されるタイミング信号に制御されて、入力される信号をデジタル信号に変換する。すなわち、マルチプレクサ4がスイッチ7を切り換えるタイミングと、A/Dコンバータ5が入力信号をデジタル信号に変換するタイミングは制御回路6で制御される。制御回路6は、スイッチ7を切り換えるタイミング信号をマルチプレクサ4に出力した後、A/Dコンバータ5に、デジタル信号に変換するタイミングを出力する。   The multiplexer 4 sequentially turns on one switch 7 to connect one temperature sensor 2 to the A / D converter 5. The multiplexer 4 turns on one switch 7 and turns off the other switch 7, and inputs the temperature signal of the temperature sensor 2 connected to the switch in the on state to the A / D converter 5. The timing at which the multiplexer 4 switches the switch 7 is specified in consideration of a sampling period in which the A / D converter 5 can convert an input signal into a digital signal. For example, the multiplexer 4 connected to the A / D converter 5 that can convert a signal input at a sampling period of 10 msec into a digital signal switches the switch 7 at a sampling period of 10 msec. After the multiplexer 4 switches the switch 7 to connect the temperature sensor 2 to the A / D converter 5, the A / D converter 5 converts the input temperature signal into a digital signal. The multiplexer 4 is controlled by the timing signal input from the control circuit 6 and switches the switch 7. Further, the A / D converter 5 is also controlled by the timing signal input from the control circuit 6, and the input signal is converted into a digital signal. Convert to That is, the timing at which the multiplexer 4 switches the switch 7 and the timing at which the A / D converter 5 converts the input signal into a digital signal are controlled by the control circuit 6. The control circuit 6 outputs a timing signal for switching the switch 7 to the multiplexer 4, and then outputs a timing for conversion to a digital signal to the A / D converter 5.

制御回路6は、マルチプレクサ4にタイミング信号を出力してスイッチ7を切り換える。タイミング信号は、スイッチ7を切り換えるタイミングを特定すると共に、オンに切り換えるスイッチ7を特定する。ノーマル状態において、制御回路6はマルチプレクサ4のスイッチ7を順番にオンに切り換えて、温度センサ2を順番にA/Dコンバータ5に接続する。たとえば、10個のスイッチ7を備えるマルチプレクサ4は、スイッチSW1、SW2・・・SW10の順番にオンに切り換え、さらに、この順番で繰り返しスイッチ7をオンに切り換えて、温度センサ2の温度信号をA/Dコンバータ5に入力する。   The control circuit 6 outputs a timing signal to the multiplexer 4 and switches the switch 7. The timing signal identifies the timing for switching the switch 7 and identifies the switch 7 to be turned on. In the normal state, the control circuit 6 sequentially turns on the switches 7 of the multiplexer 4 to connect the temperature sensors 2 to the A / D converter 5 in order. For example, the multiplexer 4 having ten switches 7 switches on in the order of the switches SW1, SW2,... SW10, and further switches on the switch 7 repeatedly in this order. / D Input to D converter 5.

さらに、制御回路6は、常に決められた順番でスイッチ7を切り換えず、温度センサ2の検出温度によって、マルチプレクサ4のスイッチ7を切り換える順番を変更する。したがって、温度センサ2の検出温度によって、温度センサ2から出力される温度信号をデジタル信号に変換する順番を変更する。すなわち、制御回路6は、電池の温度を検出してノーマル状態と異常状態を判別し、異常状態においては、マルチプレクサ4のスイッチ7をオンに切り換える順番を変更して、温度を検出する必要性の高い温度センサを優先温度センサとして、優先温度センサを優先的にA/Dコンバータ5に接続する。すなわち、優先温度センサが検出する温度信号が優先してデジタル信号に変換して検出される。   Furthermore, the control circuit 6 does not always switch the switch 7 in a predetermined order, but changes the order in which the switch 7 of the multiplexer 4 is switched according to the temperature detected by the temperature sensor 2. Therefore, the order in which the temperature signal output from the temperature sensor 2 is converted into a digital signal is changed according to the temperature detected by the temperature sensor 2. That is, the control circuit 6 detects the temperature of the battery to discriminate between the normal state and the abnormal state, and in the abnormal state, it is necessary to change the order of switching on the switch 7 of the multiplexer 4 to detect the temperature. The priority temperature sensor is preferentially connected to the A / D converter 5 with the high temperature sensor as the priority temperature sensor. That is, the temperature signal detected by the priority temperature sensor is preferentially converted into a digital signal and detected.

制御回路6は、ノーマル状態と異常状態を、温度センサ2が検出する電池の温度で識別する。異常状態とは、特定の電池の温度を優先して検出する必要がある状態であり、ノーマル状態とは、全ての電池の温度を検出する状態である。異常状態は、特定の温度センサの検出温度が高く、しかも、この温度センサの検出温度が他の温度センサの検出温度よりも高い第1の異常状態と、特定の温度センサが検出する温度上昇率が大きい第2の異常状態である。   The control circuit 6 identifies a normal state and an abnormal state based on the battery temperature detected by the temperature sensor 2. The abnormal state is a state in which it is necessary to preferentially detect the temperature of a specific battery, and the normal state is a state in which the temperatures of all the batteries are detected. The abnormal state includes a first abnormal state in which the temperature detected by a specific temperature sensor is high and the temperature detected by this temperature sensor is higher than the temperature detected by another temperature sensor, and the rate of temperature increase detected by the specific temperature sensor. Is a second abnormal state with a large.

第1の異常状態は、特定の電池の温度が他の電池の温度よりも高く、しかも設定温度よりも高くなって、この電池の電流を速やかに制限する必要がある状態である。全ての電池の温度が設定温度よりも高くなると、全ての電池の温度を検出する必要がある。したがって、第1の異常状態は、全部でなくて一部の温度センサの検出温度が設定温度よりも高くなるが、設定温度よりも低い温度を検出する温度センサもある状態である。第1の異常状態は、たとえば10個の温度センサ2において、温度センサT1〜T5の検出温度が40℃を超え、温度センサT6〜T10の検出温度が40℃となる状態である。この異常状態において、40℃を超える温度を検出した温度センサT1〜T5を優先温度センサとし、40℃以下の温度を検出する温度センサT6〜T10を非優先温度センサとし、優先温度センサを非優先温度センサに優先して温度を検出する。   The first abnormal state is a state in which the temperature of a specific battery is higher than that of other batteries and higher than a set temperature, and it is necessary to quickly limit the current of this battery. When the temperature of all the batteries becomes higher than the set temperature, it is necessary to detect the temperature of all the batteries. Therefore, the first abnormal state is a state in which the temperature detected by some but not all temperature sensors is higher than the set temperature, but there is also a temperature sensor that detects a temperature lower than the set temperature. The first abnormal state is a state in which, for example, in the ten temperature sensors 2, the temperature detected by the temperature sensors T1 to T5 exceeds 40 ° C., and the temperature detected by the temperature sensors T6 to T10 is 40 ° C. In this abnormal state, temperature sensors T1 to T5 that detect temperatures exceeding 40 ° C. are designated as priority temperature sensors, temperature sensors T6 to T10 that detect temperatures below 40 ° C. are designated as non-priority temperature sensors, and priority temperature sensors are designated as non-priority. The temperature is detected in preference to the temperature sensor.

第2の異常状態は、特定の温度センサが検出する温度上昇率が設定値よりも大きくなり、他の温度センサの検出する温度上昇率が設定値よりも小さい状態で、温度上昇率の高い電池の電流をコントロールする必要がある状態である。第2の異常状態は、特定の電池の温度上昇率が設定値よりも大きくなって、この電池の電流を速やかに制限する必要がある状態である。全ての電池の温度上昇率が設定温度よりも高くなると、全ての電池の温度を検出する必要がある。したがって、第2の異常状態は、全部でなくて一部の温度センサが検出する温度上昇率が設定値よりも高くなるが、温度上昇率が設定値よりも低くなる温度センサもある状態である。第2の異常状態は、たとえば10個の温度センサ2において、温度センサT1〜T5の温度上昇率が1℃/secを超え、温度センサT6〜T10が検出する温度上昇率が1℃/sec以下となる状態である。この異常状態において、1℃/secを超える温度上昇率の温度センサT1〜T5を優先温度センサとし、温度上昇率が1℃/sec以下である温度センサT6〜T10を非優先温度センサとし、優先温度センサを非優先温度センサに優先して温度を検出する。   The second abnormal state is a battery having a high temperature increase rate when the temperature increase rate detected by a specific temperature sensor is larger than the set value and the temperature increase rate detected by another temperature sensor is smaller than the set value. This is a state where it is necessary to control the current. The second abnormal state is a state in which the temperature increase rate of a specific battery becomes larger than a set value, and it is necessary to quickly limit the current of this battery. When the rate of temperature rise of all the batteries becomes higher than the set temperature, it is necessary to detect the temperature of all the batteries. Therefore, the second abnormal state is a state in which the temperature increase rate detected by some but not all temperature sensors is higher than the set value, but there is a temperature sensor in which the temperature increase rate is lower than the set value. . In the second abnormal state, for example, in 10 temperature sensors 2, the temperature increase rate of the temperature sensors T1 to T5 exceeds 1 ° C./sec, and the temperature increase rate detected by the temperature sensors T6 to T10 is 1 ° C./sec or less. This is the state. In this abnormal state, temperature sensors T1 to T5 having a temperature rise rate exceeding 1 ° C./sec are designated as priority temperature sensors, and temperature sensors T6 to T10 having a temperature rise rate of 1 ° C./sec or less are designated as non-priority temperature sensors. The temperature sensor is detected in preference to the non-priority temperature sensor.

異常状態において、制御回路6は、優先温度センサに接続されるマルチプレクサ4のスイッチSW1〜SW5を優先してオンに切り換えて、温度センサT1〜T5の温度を優先して検出する。ただ、スイッチSW1〜SW5のみを繰り返しオンに切り換えて、スイッチSW6〜SW10をオンに切り換えないと、温度センサT6〜T10の検出温度をデジタル信号に変換できなくなる。したがって、制御回路6は、マルチプレクサ4のスイッチSW1〜SW5を優先してオンに切り換えて、このスイッチ7に接続している温度センサ2の温度信号をデジタル信号に変換した後は、全てのスイッチ7をオンに切り換えて、再び全ての温度センサ2の検出温度を検出し、その後、また優先温度センサに接続しているスイッチを優先してオンに切り換える。すなわち、制御回路6は、全てのスイッチ7を順番にオンに切り換える全スイッチ切換タイミングと、優先温度センサに接続しているスイッチのみをオンに切り換える優先スイッチ切換タイミングとを繰り返して、温度センサ2の温度信号をデジタル信号に変換する。制御回路6は、全スイッチ切換タイミングと優先スイッチ切換タイミングとを交互に切り換え、あるいは優先スイッチ切換タイミングを複数回繰り返した後、全スイッチ切換タイミングに切り換えて、優先温度センサの温度信号を優先してデジタル信号に変換する。   In the abnormal state, the control circuit 6 preferentially switches on the switches SW1 to SW5 of the multiplexer 4 connected to the priority temperature sensor, and detects the temperature of the temperature sensors T1 to T5 with priority. However, unless only the switches SW1 to SW5 are repeatedly turned on and the switches SW6 to SW10 are turned on, the temperatures detected by the temperature sensors T6 to T10 cannot be converted into digital signals. Therefore, the control circuit 6 preferentially switches on the switches SW1 to SW5 of the multiplexer 4 and converts all the switches 7 after converting the temperature signal of the temperature sensor 2 connected to the switch 7 into a digital signal. Is switched on and the detected temperatures of all the temperature sensors 2 are detected again, and then the switch connected to the priority temperature sensor is switched on with priority. That is, the control circuit 6 repeats the all switch switching timing for sequentially turning on all the switches 7 and the priority switch switching timing for switching on only the switch connected to the priority temperature sensor. Converts temperature signals into digital signals. The control circuit 6 switches all switch switching timing and priority switch switching timing alternately or repeats the priority switch switching timing a plurality of times and then switches to all switch switching timing to give priority to the temperature signal of the priority temperature sensor. Convert to digital signal.

A/Dコンバータ5は、オン状態のスイッチ7を介して温度センサ2に接続される。したがって、スイッチ7が切り換えられる毎に、温度センサ2から入力される温度信号をデジタル信号に変換する。制御回路6は、スイッチ7を切り換えるタイミング信号をマルチプレクサ4に出力した後、A/Dコンバータ5に入力される温度信号をデジタル信号に変換するタイミング信号を出力する。A/Dコンバータ5は、タイミング信号が入力されると、入力される温度信号をデジタル信号に変換して出力する。   The A / D converter 5 is connected to the temperature sensor 2 via the switch 7 in the on state. Therefore, each time the switch 7 is switched, the temperature signal input from the temperature sensor 2 is converted into a digital signal. The control circuit 6 outputs a timing signal for switching the switch 7 to the multiplexer 4 and then outputs a timing signal for converting the temperature signal input to the A / D converter 5 into a digital signal. When the timing signal is input, the A / D converter 5 converts the input temperature signal into a digital signal and outputs the digital signal.

図2は、制御回路6がマルチプレクサ4のスイッチ7を順番にオンに切り換えるフローチャートを示す。
[n=1のステップ]
制御回路6は、全スイッチ切換タイミングとして、マルチプレクサ4の全てのスイッチSW1〜SW10を順番にオンに切り換える。このステップにおいて、A/Dコンバータ5は、オン状態のスイッチ7を介して接続される温度センサ2から出力される温度信号をデジタル信号に変換する。
[n=2のステップ]
制御回路6は、A/Dコンバータ5から入力される温度信号から異常状態かノーマル状態かを判定する。異常状態であるとn=3のステップに進み、異常状態でないとノーマル状態と判定して、n=1のステップにジャンプして、n=1、2のステップをループする。
[n=3のステップ]
異常状態と判定されると、制御回路6は優先温度センサと非優先温度センサを識別する。
[n=4のステップ]
制御回路6は、優先スイッチ切換タイミングとして、優先温度センサに接続しているスイッチのみを順番にオンに切り換える。このステップで、優先温度センサのみがA/Dコンバータ5に接続される。したがって、優先温度センサの温度信号のみがデジタル信号に変換して出力される。
[n=5のステップ]
優先スイッチ切換タイミングを所定回数繰り返したかどうかを判定する。優先スイッチ切換タイミングを繰り返す回数は、例えば、2〜3回とすることができる。優先スイッチ切換タイミングを所定回数繰り返すまで、n=4、5のステップをループして、優先温度センサに接続しているスイッチのみを順番にオンに切り換え、優先温度センサの温度信号を優先してデジタル信号に変換して出力する。
優先スイッチ切換タイミングが所定回数繰り返されると、n=1のステップにループして、再び全スイッチ切換タイミングとして、全てのスイッチを順番にオンに切り換えて、全ての温度センサ2の温度信号をデジタル信号に変換して出力する。
FIG. 2 shows a flowchart in which the control circuit 6 turns on the switches 7 of the multiplexer 4 in turn.
[Step of n = 1]
The control circuit 6 sequentially turns on all the switches SW1 to SW10 of the multiplexer 4 as the all switch switching timing. In this step, the A / D converter 5 converts the temperature signal output from the temperature sensor 2 connected via the switch 7 in the ON state into a digital signal.
[Step of n = 2]
The control circuit 6 determines whether it is in an abnormal state or a normal state from the temperature signal input from the A / D converter 5. If it is in an abnormal state, the process proceeds to step n = 3, and if not in an abnormal state, it is determined as a normal state, jumps to step n = 1, and loops steps n = 1 and 2.
[Step n = 3]
If it is determined that the state is abnormal, the control circuit 6 identifies a priority temperature sensor and a non-priority temperature sensor.
[Step n = 4]
As the priority switch switching timing, the control circuit 6 switches on only the switches connected to the priority temperature sensor in turn. In this step, only the priority temperature sensor is connected to the A / D converter 5. Therefore, only the temperature signal of the priority temperature sensor is converted into a digital signal and output.
[Step n = 5]
It is determined whether the priority switch switching timing has been repeated a predetermined number of times. The number of times the priority switch switching timing is repeated can be set to 2 to 3 times, for example. Until the priority switch switching timing is repeated a predetermined number of times, the steps of n = 4 and 5 are looped, and only the switch connected to the priority temperature sensor is turned on in order, and the temperature signal of the priority temperature sensor is given priority and digital Convert to signal and output.
When the priority switch switching timing is repeated a predetermined number of times, the process loops to a step of n = 1, and all switches are turned on in turn as the all switch switching timing, and the temperature signals of all the temperature sensors 2 are digital signals. Convert to and output.

本発明の一実施例にかかる温度検出方法に使用する電源装置の概略構成図である。It is a schematic block diagram of the power supply device used for the temperature detection method concerning one Example of this invention. 制御回路がマルチプレクサのスイッチを制御するフローチャートである。It is a flowchart in which a control circuit controls the switch of a multiplexer.

符号の説明Explanation of symbols

1…素電池
2…温度センサ
3…変換回路
4…マルチプレクサ
5…A/Dコンバータ
6…制御回路
7…スイッチ
8…分圧抵抗
9…定電圧電源
10…接続点
DESCRIPTION OF SYMBOLS 1 ... Unit cell 2 ... Temperature sensor 3 ... Conversion circuit 4 ... Multiplexer 5 ... A / D converter 6 ... Control circuit 7 ... Switch 8 ... Voltage dividing resistor 9 ... Constant voltage power source 10 ... Connection point

Claims (4)

複数の素電池(1)の温度を複数の温度センサ(2)で検出し、複数の温度センサ(2)の検出信号を所定のサンプリング周期でデジタル信号に変換する電源装置の温度検出方法において、
温度センサ(2)の検出温度によって、温度センサ(2)からの出力信号をデジタル信号に変換する順番を変更することを特徴とする電源装置の温度検出方法。
In the temperature detection method of the power supply device that detects the temperature of the plurality of unit cells (1) with the plurality of temperature sensors (2) and converts the detection signals of the plurality of temperature sensors (2) into digital signals at a predetermined sampling period.
A method for detecting a temperature of a power supply device, wherein the order of converting an output signal from the temperature sensor (2) into a digital signal is changed according to a temperature detected by the temperature sensor (2).
検出温度が高くて温度差が大きく、又は温度上昇率が大きい温度センサを優先温度センサとし、この優先温度センサから出力される温度信号を優先してデジタル信号に変換する請求項1に記載される電源装置の温度検出方法。   The temperature sensor having a high detection temperature and a large temperature difference or a large temperature rise rate is set as a priority temperature sensor, and a temperature signal output from the priority temperature sensor is preferentially converted into a digital signal. Power supply temperature detection method. 複数の温度センサ(2)から出力される温度信号をマルチプレクサ(4)に入力し、マルチプレクサ(4)が入力側に接続している温度センサ(2)を順番に切り換えて、各々の温度センサ(2)から入力される温度信号をA/Dコンバータ(5)に出力し、A/Dコンバータ(5)でもってマルチプレクサ(4)から入力される温度信号をデジタル信号に変換すると共に、
マルチプレクサ(4)が、優先温度センサを優先して入力側に接続するように切り換える順番を変更して、優先温度センサからの温度信号を優先してデジタル信号に変換する請求項1に記載される電源装置の温度検出方法。
The temperature signals output from the multiple temperature sensors (2) are input to the multiplexer (4), and the temperature sensor (2) connected to the input side by the multiplexer (4) is switched in order, and each temperature sensor ( 2) Outputs the temperature signal input from the A / D converter (5), converts the temperature signal input from the multiplexer (4) by the A / D converter (5) into a digital signal,
The multiplexer (4) changes the switching order so that the priority temperature sensor is connected to the input side with priority, and converts the temperature signal from the priority temperature sensor into a digital signal with priority. Power supply temperature detection method.
前記電源装置が車両用の電源装置である請求項1に記載される電源装置の温度検出方法。   The temperature detection method for a power supply device according to claim 1, wherein the power supply device is a power supply device for a vehicle.
JP2007280349A 2007-10-29 2007-10-29 Power supply temperature detection method Active JP5213412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280349A JP5213412B2 (en) 2007-10-29 2007-10-29 Power supply temperature detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280349A JP5213412B2 (en) 2007-10-29 2007-10-29 Power supply temperature detection method

Publications (2)

Publication Number Publication Date
JP2009109271A JP2009109271A (en) 2009-05-21
JP5213412B2 true JP5213412B2 (en) 2013-06-19

Family

ID=40777909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280349A Active JP5213412B2 (en) 2007-10-29 2007-10-29 Power supply temperature detection method

Country Status (1)

Country Link
JP (1) JP5213412B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569216B1 (en) 2009-11-24 2015-11-16 삼성에스디아이 주식회사 Battery pack
KR101084216B1 (en) 2009-12-23 2011-11-17 삼성에스디아이 주식회사 Energy storage system and method for controlling thereof
KR101451806B1 (en) 2010-09-16 2014-10-17 삼성에스디아이 주식회사 Energy storage system
FR2968842B1 (en) * 2010-12-14 2014-10-31 Renault Sa DIAGNOSIS OF A MOTOR VEHICLE BATTERY
JP2012130159A (en) * 2010-12-15 2012-07-05 Mitsubishi Heavy Ind Ltd Battery monitoring device and battery monitoring method
JP5421942B2 (en) * 2011-03-02 2014-02-19 三菱電機株式会社 Power storage management device
JP5659967B2 (en) * 2011-06-24 2015-01-28 ソニー株式会社 Monitoring device
DE102012210262A1 (en) 2011-11-18 2013-05-23 Robert Bosch Gmbh Battery with a battery cell with external and integrated temperature sensor and method of operation of the battery
KR101596596B1 (en) * 2014-10-20 2016-02-22 한국항공우주연구원 Circuit for monitoring analogue channel
KR101616335B1 (en) * 2014-10-22 2016-04-29 삼성중공업 주식회사 Fault diagnosis apparatus of thermal sensor for vessel and fault diagnosis method thereof
JP6300756B2 (en) * 2015-05-29 2018-03-28 オリンパス株式会社 Encoder signal processing circuit
JP2017141771A (en) * 2016-02-12 2017-08-17 株式会社荏原製作所 Feed water device and control method of feed water device
KR102209933B1 (en) * 2017-10-16 2021-01-29 주식회사 엘지화학 System and method for detecting battery temperature
CN116698220B (en) * 2023-08-04 2023-11-10 新汽有限公司 Battery temperature acquisition circuit, product and battery temperature acquisition method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255922A (en) * 1988-08-22 1990-02-26 Kanebo Ltd Temperature centralized monitoring method
JP4931378B2 (en) * 2005-07-06 2012-05-16 三洋電機株式会社 Power supply for vehicle

Also Published As

Publication number Publication date
JP2009109271A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5213412B2 (en) Power supply temperature detection method
JP4931378B2 (en) Power supply for vehicle
US10008862B2 (en) Power storage device, power storage system, and control method of power storage device
US9444267B2 (en) Cell voltage equalizer for multi-cell battery pack which determines the waiting time between equalization operations based on the voltage difference and the state of charge level
US10056773B2 (en) Battery control device, control method, control system and electric vehicle
WO2015029332A2 (en) Battery apparatus and electric vehicle
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
JP5624907B2 (en) Power storage device, disconnection detection device, vehicle, and disconnection detection method
JP5274110B2 (en) Power supply for vehicle
US20100026241A1 (en) Apparatus and method for balancing of battery cell's charge capacity
JPWO2011061902A1 (en) Charge control circuit, battery pack, and charging system
JP2007250521A (en) Voltage regulator of battery pack
JP2006197727A (en) Method of controlling limited current of battery
JP6544310B2 (en) Battery monitoring system
US20150293182A1 (en) Control apparatus, control method, power supply system, and electric-powered vehicle
WO2014045567A1 (en) Power source device, and electric vehicle and power accumulation device provided with said power source device
JP5477254B2 (en) Battery status monitoring device
JP2008189065A (en) Electric source device for vehicle
JP2010068558A (en) Apparatus and method for charging
JP2009052991A (en) Power supply device for vehicle
WO2019188889A1 (en) Power storage system and charging control method
JP5561049B2 (en) Battery voltage measuring device
JP2004364388A (en) Charger of secondary battery and charge control program thereof
JP4920306B2 (en) Storage battery state monitoring device, storage battery state monitoring method, storage battery state monitoring program
JP5030665B2 (en) Battery remaining capacity detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R151 Written notification of patent or utility model registration

Ref document number: 5213412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3