JP5213052B2 - Stretchable conductive fiber and manufacturing method thereof - Google Patents

Stretchable conductive fiber and manufacturing method thereof Download PDF

Info

Publication number
JP5213052B2
JP5213052B2 JP2009054516A JP2009054516A JP5213052B2 JP 5213052 B2 JP5213052 B2 JP 5213052B2 JP 2009054516 A JP2009054516 A JP 2009054516A JP 2009054516 A JP2009054516 A JP 2009054516A JP 5213052 B2 JP5213052 B2 JP 5213052B2
Authority
JP
Japan
Prior art keywords
fiber
iodine
stretchable
sheath
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009054516A
Other languages
Japanese (ja)
Other versions
JP2010209481A (en
Inventor
保太郎 瀬戸
善春 西野
智朗 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2009054516A priority Critical patent/JP5213052B2/en
Publication of JP2010209481A publication Critical patent/JP2010209481A/en
Application granted granted Critical
Publication of JP5213052B2 publication Critical patent/JP5213052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電繊維及びその製造方法に関するもので、特に伸縮して繊維が変形しても安定した導電性能の得られる伸縮性導電繊維及びその製造方法に関するものである。   The present invention relates to a conductive fiber and a method for producing the same, and more particularly to a stretchable conductive fiber that can obtain stable conductive performance even when the fiber is deformed and deformed, and a method for producing the same.

弾性糸(エラストマ繊維)は、その優れた伸縮性能から、アウター、インナー、スポーツ、レッグ等の衣料用途をはじめ、車のシート地やシューズなどの資材用途、あるいはサポーターやテーピング等の医療用途等にひろく使われている。しかしながら例えばポリウレタン弾性糸は、他の繊維に比較して導電性が劣ることから、ポリウレタン弾性糸の混率を上げた布帛では、埃の付着や静電気の発生等の問題があった。   Elastic yarn (elastomer fiber) is used for apparel applications such as outer, inner, sports, legs, materials for car seats and shoes, medical applications such as supporters and taping, etc. Widely used. However, for example, polyurethane elastic yarns are inferior in conductivity as compared to other fibers, and therefore fabrics with an increased mixing ratio of polyurethane elastic yarns have problems such as dust adhesion and generation of static electricity.

特許文献1においては、伸縮性複合弾性糸として、芯部を構成する伸縮性弾性糸として、破断伸度が400%以上あり、繊度が70〜460デニールのポリウレタン系弾性糸を使用し、鞘部を構成する導電性複合糸として、鞘部がポリエステル重合体等の熱可塑性重合体、芯部が低融点金属からなる複合繊維からなるもので、前記伸縮性弾性糸を芯部に、該導電性複合糸がまわりをカバリングする伸縮性複合弾性糸を開示している。しかしながら該伸縮性複合弾性糸の鞘部を構成する導電性複合糸には伸縮性はないことから、製糸工程や糸加工工程での問題や、使用中に鞘部に亀裂を生じて芯部が表面に露出し、製品品位を低下させたり静電性能の低下を招いてしまうこともあった。また、該伸縮性複合弾性糸の製造工程が複雑になり高価なものになっていた。   In Patent Document 1, as a stretchable composite elastic yarn, a polyurethane elastic yarn having a breaking elongation of 400% or more and a fineness of 70 to 460 denier is used as a stretchable elastic yarn constituting the core portion, and a sheath portion. The sheath is made of a thermoplastic polymer such as a polyester polymer, and the core is made of a composite fiber made of a low-melting-point metal. A stretchable composite elastic yarn is disclosed in which the composite yarn covers around. However, since the conductive composite yarn constituting the sheath portion of the stretchable composite elastic yarn is not stretchable, there is a problem in the yarn making process and the yarn processing step, and the core portion is cracked during use and the core portion is It may be exposed on the surface, which may reduce product quality or reduce electrostatic performance. In addition, the manufacturing process of the stretchable composite elastic yarn is complicated and expensive.

また、特許文献2においては、ポリウレタン糸の紡糸液にBET比表面積が50m/g以上であるアセチレンブラックを添加することにより導電性ポリウレタン糸を得る技術を開示している。しかしながら製糸性や糸強度、伸縮性能等の低下の問題や、アセチレンブラックが均一分散しない場合は安定した導電性能を得るのは難しいとされている。 Patent Document 2 discloses a technique for obtaining a conductive polyurethane yarn by adding acetylene black having a BET specific surface area of 50 m 2 / g or more to a spinning solution of polyurethane yarn. However, it is said that it is difficult to obtain a stable conductive performance when there is a problem of lowering the spinning performance, yarn strength, stretching performance, or when acetylene black is not uniformly dispersed.

また、特許文献3においては、銅イオンを含む水溶液に繊維を浸漬し、繊維表面に銅イオンを吸着させ、ヨウ化物イオンを含む水溶液に浸漬し、繊維上にヨウ化銅を形成せしめ電気伝導及び抗菌性を高める技術が記載されている。しかしながらこの方法で得られた繊維は、繊維の伸縮時に、繊維表面上のヨウ化銅に亀裂を生じ、導電性能の低下や製品品位の低下を招いてしまうものもあった。   Moreover, in patent document 3, a fiber is immersed in the aqueous solution containing a copper ion, a copper ion is made to adsorb | suck to the fiber surface, it is immersed in the aqueous solution containing an iodide ion, copper iodide is formed on a fiber, electric conduction and A technique for enhancing antibacterial properties is described. However, some of the fibers obtained by this method have cracks in the copper iodide on the fiber surface when the fibers are expanded and contracted, leading to a decrease in conductive performance and product quality.

また、出願人は特許文献4において、ヨウ素イオンを含む水溶液に繊維を浸漬し、繊維表面内部近傍にヨウ素を含浸させた後に、繊維を一価の銅イオンを含む水溶液で処理することにより、繊維の表面側内部近傍にヨウ化銅からなる導電層を形成せしめる技術を開示している。しかしながらこの方法で得られた導電繊維を電子機器等に使用した場合には、使用中に過剰ヨウ素が内部から昇華離脱して、電子機器に悪影響を与えるという問題があった。
特開平5−214646 特開2005−281878 特開平5−247842 特願2008−195962
In addition, in Patent Document 4, after immersing fibers in an aqueous solution containing iodine ions and impregnating iodine inside the fiber surface, the fibers are treated with an aqueous solution containing monovalent copper ions. Discloses a technique in which a conductive layer made of copper iodide is formed in the vicinity of the inside of the surface. However, when the conductive fiber obtained by this method is used in an electronic device or the like, there has been a problem that excessive iodine is sublimated from the inside during use and adversely affects the electronic device.
JP-A-5-214646 JP-A-2005-281878 JP-A-5-247842 Japanese Patent Application No. 2008-195962.

伸縮性繊維の表面側内部近傍(鞘部)にヨウ化銅からなる導電層を形成させ、使用中に過剰ヨウ素が内部から昇華離脱することがなく、耐久性があり、導電性能の低下をきたさない伸縮性導電繊維を得ることを目的とする。   A conductive layer made of copper iodide is formed in the vicinity of the inner surface (sheath portion) of the elastic fiber, so that excess iodine is not sublimated from the inside during use, and is durable, resulting in a decrease in conductive performance. The object is to obtain a non-stretchable conductive fiber.

本発明は、かかる技術的背景に鑑みてなされたものであって、芯鞘構造の伸縮性繊維を作成し、芯部をヨウ素の含浸しにくい伸縮性繊維とし、鞘部はヨウ素の含浸し易い伸縮性繊維とすることにより、過剰なヨウ素が内部に含浸して残らないようにすることにより、使用中に過剰ヨウ素が内部から昇華離脱しない伸縮性導電繊維の得られることを見いだし本発明に到達した。本発明は、前記目的を達成するために以下の手段を提供する。   The present invention has been made in view of such a technical background, and made a stretchable fiber having a core-sheath structure, making the core portion a stretchable fiber that is hard to be impregnated with iodine, and the sheath portion is easily impregnated with iodine. It has been found that by using a stretchable fiber, it is possible to obtain a stretchable conductive fiber in which excess iodine does not sublimate and leave from the inside during use by preventing excessive iodine from being impregnated and remaining inside. did. The present invention provides the following means to achieve the above object.

[1]ヨウ素イオンを含む水溶液に芯鞘構造の伸縮性繊維を浸漬し、該繊維の鞘部にヨウ素を含浸させた後に、該繊維を一価の銅イオンを含む水溶液で処理することにより、該繊維の鞘部にヨウ化銅からなる導電層を形成することを特徴とする伸縮性導電繊維の製造方法。 [1] A core-sheath stretchable fiber is immersed in an aqueous solution containing iodine ions, and the sheath of the fiber is impregnated with iodine, and then the fiber is treated with an aqueous solution containing monovalent copper ions, A method for producing a stretchable conductive fiber, comprising forming a conductive layer made of copper iodide on a sheath of the fiber.

[2]前記芯鞘構造の伸縮性繊維の鞘部がポリエステルエラストマで、芯部がポリオレフィンエラストマであることを特徴とする前項1に記載の伸縮性導電繊維の製造方法。 [2] The method for producing a stretchable conductive fiber according to item 1 above, wherein the sheath portion of the stretchable fiber having the core-sheath structure is a polyester elastomer and the core portion is a polyolefin elastomer.

[3]前項1又は2に記載した製造方法で製造した伸縮性導電繊維。 [3] Stretchable conductive fiber manufactured by the manufacturing method described in the preceding item 1 or 2.

[4]前項1又は2に記載した製造方法で製造した伸縮性導電繊維であって、定常状態での体積抵抗率が5.0×10Ω・cm以下、40%伸長時の体積抵抗率が2.5×10Ω・cm以下、100%伸長時の体積抵抗率が5.0×10Ω・cm以下であることを特徴とする伸縮性導電繊維。 [4] A stretchable conductive fiber produced by the production method described in the preceding item 1 or 2, wherein the volume resistivity in a steady state is 5.0 × 10 2 Ω · cm or less and the volume resistivity at 40% elongation 2.5 × 10 3 Ω · cm or less, and a volume resistivity at 100% elongation of 5.0 × 10 3 Ω · cm or less is a stretchable conductive fiber.

[1]の発明では、ヨウ素イオンを含む水溶液に芯鞘構造の伸縮性繊維を浸漬するので、ヨウ素は繊維の鞘部から内部に入り込み、鞘部にヨウ素が含浸され芯部にまでは含浸されにくく、過剰なヨウ素が芯部にまでは到達しにくい。しかる後に該伸縮性繊維を一価の銅イオンを含む水溶液で処理することにより、繊維の鞘部に含浸したヨウ素と、銅が反応し、ヨウ化銅からなる導電層を繊維の鞘部に形成することができる。繊維の表面に導電層が付着形成する構造ではなく、繊維の内部に導電層が形成されるので、良好な導電性能をえることができ、耐久性があり、伸縮等の形状変化にも性能の低下をきたしにくく、使用中にヨウ素が内部から昇華離脱しない伸縮性導電繊維の製造方法とすることができる。 In the invention of [1], since stretchable fibers having a core-sheath structure are immersed in an aqueous solution containing iodine ions, iodine enters the inside from the sheath of the fiber, the sheath is impregnated with iodine, and the core is impregnated. It is difficult, and it is difficult for excess iodine to reach the core. After that, by treating the stretchable fiber with an aqueous solution containing monovalent copper ions, iodine impregnated in the fiber sheath reacts with copper to form a conductive layer made of copper iodide on the fiber sheath. can do. It is not a structure in which a conductive layer adheres to the surface of the fiber, but a conductive layer is formed inside the fiber, so that good conductive performance can be obtained, it is durable, and it is also resistant to shape changes such as expansion and contraction. It can be made into the manufacturing method of the elastic conductive fiber which does not cause a fall easily, and an iodine does not sublimate and detach | leave from an inside during use.

[2]の発明では、前記芯鞘構造の伸縮性繊維の鞘部がヨウ素の含浸し易すいポリエステルエラストマであるので、ヨウ素は鞘部に含浸し、芯部がヨウ素の含浸しにくいポリオレフィンエラストマであるので、鞘部を含浸したヨウ素は芯部には含浸しない。よって、一価の銅イオンを含む水溶液で処理するときに、過剰なヨウ素が繊維内部に残ることのない伸縮性導電繊維の製造方法とすることができる。 In the invention of [2], since the sheath part of the stretchable fiber having the core-sheath structure is a polyester elastomer that is easily impregnated with iodine, iodine is impregnated into the sheath part, and the core part is a polyolefin elastomer that is difficult to impregnate with iodine. Therefore, iodine impregnating the sheath does not impregnate the core. Therefore, when it processes with the aqueous solution containing a monovalent | monohydric copper ion, it can be set as the manufacturing method of the stretchable conductive fiber in which excess iodine does not remain inside a fiber.

[3]の発明では、前項1または2に記載した製造方法で製造しているので、繊維の柔軟性を損なうことなく、優れた導電性能を備え、使用中にヨウ素が内部から昇華離脱しない伸縮性導電繊維とすることができる。 In the invention of [3], since it is manufactured by the manufacturing method described in the preceding item 1 or 2, it has excellent conductive performance without impairing the flexibility of the fiber, and the expansion and contraction in which iodine does not sublimate from the inside during use. Conductive fiber.

[4]の発明では、前項1又は2に記載した製造方法で製造し、定常状態での体積抵抗率が5.0×10Ω・cm以下、40%伸長時の体積抵抗率が2.5×10Ω・cm以下、100%伸長時の体積抵抗率が5.0×10Ω・cm以下となっているので、定常状態でも、伸長状態でも十分な導電性能を得ることができ、柔軟で使用中にヨウ素が内部から昇華離脱しない伸縮性導電繊維とすることができる。 In the invention of [4], the volume resistivity in the steady state is 5.0 × 10 2 Ω · cm or less and the volume resistivity at 40% elongation is 2. 5 × 10 3 Ω · cm or less, and volume resistivity at 100% elongation is 5.0 × 10 3 Ω · cm or less, so that sufficient conductive performance can be obtained both in a steady state and in an elongated state. It is flexible and can be made into a stretchable conductive fiber in which iodine is not sublimated from the inside during use.

本発明では、図1〜4の顕微鏡写真に示すように、芯鞘構造の伸縮性繊維の鞘部にヨウ化銅の導電層を形成する。従来から、繊維に機能性を付与する加工では、繊維の表面にバインダー樹脂等を使って機能材を付着させる加工方法が多く、洗濯や使用中に機能材が剥離してしまう耐久性の問題や、風合いが硬くなってしまう等の問題があった。本発明では、ヨウ素イオンが繊維の内部に含浸しやすい性質と、ヨウ素イオンが金属を吸着する性質を利用するもので、繊維の内部に含浸したヨウ素イオンが金属を繊維内によび込み、表面内部に金属の被膜を形成させて、導電性のある伸縮性繊維を製造するものである。ヨウ素イオンとしてはI 又はI が好適で繊維の表面側内部近傍に含浸しやすく、金属を吸着しやすい。本発明は、特に一価の銅イオンとヨウ素イオンとは結合しやすく、ヨウ化銅被膜を形成しやすい性質を応用している。 In this invention, as shown to the micrograph of FIGS. 1-4, the electroconductive layer of copper iodide is formed in the sheath part of the stretchable fiber of a core sheath structure. Conventionally, in the process of imparting functionality to the fiber, there are many processing methods to attach the functional material to the surface of the fiber using a binder resin, etc., and the durability problem that the functional material peels off during washing and use There was a problem that the texture became hard. In the present invention, utilizing the property that iodine ions are easily impregnated inside the fiber and the property that iodine ions adsorb metals, the iodine ions impregnated inside the fibers penetrate the metal into the fibers, A conductive film is produced by forming a metal film. I 3 - or I 5 - is preferable as the iodine ion, and it is easy to impregnate the inside near the surface side of the fiber and easily adsorb the metal. In particular, the present invention applies the property that monovalent copper ions and iodine ions are easily bonded to each other and a copper iodide film is easily formed.

本発明の一実施形態では、まず第一の工程として、ヨウ素イオンを含む水溶液を作成し、芯鞘構造の伸縮性繊維を浸漬して、繊維の鞘部にヨウ素を含浸させる。ヨウ素イオンを含む水溶液は、例えばヨウ化カリウム、ヨウ化ナトリウムを含む水溶液にヨウ素を常温で溶解して作成する。ヨウ素の濃度は0.1〜3.0mol/Lにするのが好ましい。3.0mol/Lを上回ると、過剰なヨウ素が繊維の引張強度や伸度を低下させ、過剰なヨウ素が使用中に昇華離脱するので好ましくない。また、0.1mol/Lを下回っても、繊維の鞘部のヨウ素密度が低下し、体積抵抗率を増大させてしまうので好ましくない。次に該ヨウ素イオンを含む水溶液に繊維を浸漬する。常温〜85℃で10〜90分浸漬処理し繊維の鞘部にヨウ素を含浸させる。このときの鞘部の繊維は特に限定されないが、ポリエステル繊維がヨウ素を含浸しやすいことから好適である。また、伸縮性のある鞘部の繊維としては、エラストマ繊維が好適で、特にポリエステルエラストマ繊維に加工を行えばその効果は顕著である。   In one embodiment of the present invention, as the first step, an aqueous solution containing iodine ions is prepared, and a stretchable fiber having a core-sheath structure is immersed to impregnate the sheath of the fiber with iodine. The aqueous solution containing iodine ions is prepared by, for example, dissolving iodine at room temperature in an aqueous solution containing potassium iodide or sodium iodide. The concentration of iodine is preferably 0.1 to 3.0 mol / L. If it exceeds 3.0 mol / L, excessive iodine reduces the tensile strength and elongation of the fiber, and excessive iodine is sublimated during use, which is not preferable. Moreover, even if it is less than 0.1 mol / L, the iodine density of the sheath part of a fiber will fall and it will increase a volume resistivity, and is unpreferable. Next, the fiber is immersed in an aqueous solution containing the iodine ions. Immersion treatment is performed at room temperature to 85 ° C. for 10 to 90 minutes, and the fiber sheath is impregnated with iodine. The fiber of the sheath at this time is not particularly limited, but is suitable because the polyester fiber is easily impregnated with iodine. The elastic sheath fiber is preferably an elastomer fiber, and the effect is particularly remarkable when the polyester elastomer fiber is processed.

また、伸縮性のある鞘部の繊維の厚さは、芯部の繊維繊度にもよるが、例えば、直径0.6mmのモノフィラメント糸の場合、20〜100μmが好適である。伸縮性のある鞘部の繊維の厚さが20μmを下回ると伸長時に安定した導電性が得られなくなり、100μmを上回ってもヨウ化銅の被膜が厚くなり、伸縮性能が低下したり風合が硬くなり好ましくない。より好ましくは30〜70μmがよい。   Further, the thickness of the stretchable sheath portion fiber depends on the fiber fineness of the core portion. For example, in the case of a monofilament yarn having a diameter of 0.6 mm, 20 to 100 μm is preferable. If the thickness of the stretchable sheath fiber is less than 20 μm, stable conductivity cannot be obtained when stretched, and even if the thickness exceeds 100 μm, the copper iodide film becomes thick and the stretch performance deteriorates or feels. It becomes hard and is not preferable. More preferably, 30-70 micrometers is good.

また、芯部の繊維は特に限定されないが、ポリオレフィン繊維がヨウ素を含浸しにくいことから好適である。また、伸縮性のある芯部の繊維としては、エラストマ繊維が好適で、特にポリオレフィンエラストマ繊維が好適である。   Moreover, the fiber of the core part is not particularly limited, but it is preferable because the polyolefin fiber hardly impregnates iodine. In addition, as the core fiber having elasticity, an elastomer fiber is preferable, and a polyolefin elastomer fiber is particularly preferable.

次に第二の工程として、前記ヨウ素を繊維の鞘部に含浸した繊維を、ヨウ素水溶液から取り出し、マングルで絞ってから、一価の銅イオンを含む水溶液に65〜85℃で10〜90分浸漬処理することにより、前工程で繊維の鞘部に入り込んだヨウ素イオンと、一価の銅イオンが反応し、ヨウ化銅からなる導電層を繊維の鞘部に形成する。一価の銅イオンとヨウ素イオンとは結合しやすく被膜を形成しやすい。その後水洗し乾燥すれば、繊維の鞘部にヨウ化銅からなる導電層が形成された繊維を製造することができる。   Next, as a second step, the fiber impregnated with iodine in the fiber sheath is taken out from the aqueous iodine solution, squeezed with a mangle, and then into an aqueous solution containing monovalent copper ions at 65 to 85 ° C. for 10 to 90 minutes. By dipping, the iodine ions that have entered the fiber sheath in the previous step react with monovalent copper ions to form a conductive layer made of copper iodide on the fiber sheath. Monovalent copper ions and iodine ions are easy to bond and form a film. If it wash | cleans after that and it dries, the fiber by which the electroconductive layer which consists of copper iodide was formed in the sheath part of a fiber can be manufactured.

一価の銅イオンを含む水溶液は、例えば塩化第一銅をアンモニウムイオンを含む水溶液に溶解して作成する。一価の銅イオンの濃度は0.1〜0.5mol/L、反応温度は65〜85℃にするのが好ましい。0.1mol/Lを下回ると、充分な量のヨウ化銅を形成することができない。また、0.5mol/L、を上回っても、ヨウ化銅の形成量が増えるわけではなく好ましくない。また、反応温度が65℃を下回るとヨウ化銅を形成しにくくなり、85℃を上回っても、ヨウ化銅の形成量が増えるわけではなく、水溶液が沸点近くになるため好ましくない。   The aqueous solution containing monovalent copper ions is prepared by, for example, dissolving cuprous chloride in an aqueous solution containing ammonium ions. The concentration of monovalent copper ions is preferably 0.1 to 0.5 mol / L, and the reaction temperature is preferably 65 to 85 ° C. If it is less than 0.1 mol / L, a sufficient amount of copper iodide cannot be formed. Moreover, even if it exceeds 0.5 mol / L, the amount of copper iodide formed does not increase, which is not preferable. Further, when the reaction temperature is lower than 65 ° C., it is difficult to form copper iodide, and even if it exceeds 85 ° C., the amount of copper iodide formed does not increase, and the aqueous solution is close to the boiling point, which is not preferable.

導電繊維を製造する繊維をエラストマ繊維とすれば、伸縮性能に優れた導電繊維を製造することができる。エラストマ繊維は、本来電気抵抗値が大きく、摩擦によって容易に帯電しやすく、塵や埃を吸引して外観を損ねてしまう性質をもっており、制電性や導電性が要求される用途での展開が制限されていた。従来からの、エラストマ繊維に導電性を付与する方法として導電性カーボンブラックを配合することで、制電性、導電性を付与することが知られているが、導電性カーボンブラックとのを混練にバラツキを生じ、体積抵抗率が一定しなかった。また、黒色系となって意匠的にも限られるものであった。本発明は、繊維の内部に安定的に導電層を形成するので、上述の欠点を解消し、帯電防止性、柔軟性、伸縮性の優れたエラストマ繊維とすることができる。   If the fiber for producing the conductive fiber is an elastomer fiber, the conductive fiber having excellent stretchability can be produced. Elastomer fibers are inherently large in electrical resistance, easily charged by friction, and have the property of sucking dust and dirt and deteriorating their appearance, and can be used in applications where antistatic and electrical conductivity are required. It was restricted. As a conventional method for imparting conductivity to elastomer fibers, it has been known to impart antistatic properties and conductivity by blending conductive carbon black. Variations occurred and the volume resistivity was not constant. Moreover, it was black and limited in design. Since the present invention stably forms the conductive layer inside the fiber, the above-mentioned drawbacks can be solved and an elastomer fiber excellent in antistatic property, flexibility and stretchability can be obtained.

また、導電繊維を構成する繊維をポリエステルエラストマ繊維とすれば、ポリエステル繊維がヨウ素を含浸しやすい性質をもつことから、さらに安定した導電性能のえられる伸縮性の優れたエラストマ繊維とすることができる。   Further, if the fiber constituting the conductive fiber is a polyester elastomer fiber, the polyester fiber has a property of being easily impregnated with iodine, so that it can be made an elastomer fiber excellent in stretchability that can provide more stable conductive performance. .

また、定常状態での体積抵抗率が5.0×10Ω・cm以下、40%伸長時の体積抵抗率が2.5×10Ω・cm以下、100%伸長時の体積抵抗率が5.0×10Ω・cm以下となっているので、導電繊維の変位量に伴って体積抵抗率が変化する性質を応用し、各種センサーにも利用可能で、様々な用途拡大も期待できる。 Further, the volume resistivity in a steady state is 5.0 × 10 2 Ω · cm or less, the volume resistivity at 40% elongation is 2.5 × 10 3 Ω · cm or less, and the volume resistivity at 100% elongation is Since it is 5.0 × 10 3 Ω · cm or less, it can be applied to various sensors by applying the property that the volume resistivity changes with the amount of displacement of the conductive fiber. .

次に、この発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、体積抵抗率は以下の測定器にて測定した。   Next, examples of the present invention will be described, but the scope of the present invention is not limited to these examples. The volume resistivity was measured with the following measuring instrument.

<試験方法>
体積抵抗率・・・抵抗率計(三菱化学株式会社製ロレスターGP)によって測定した。
<Test method>
Volume resistivity: measured by a resistivity meter (Lorestar GP, manufactured by Mitsubishi Chemical Corporation).

<実施例1>
ポリオレフィンエラストマ弾性糸としてエチレンプロピレンエラストマ弾性糸(モノフィラ糸5000dtex)を用意し、ポリエステルエラストマ樹脂溶液(ポリエステル−ポリエーテルエラストマ樹脂、塩化メチレンを溶媒にし、10重量%溶液)を通過させ、50℃で乾燥して芯鞘構造の伸縮性繊維(初期体積抵抗率6.8×1013Ω・cm)を作成した。次に、ヨウ素イオンを含む水溶液(ヨウ素0.2mol/L、ヨウ化カリウム3.0mol/L水溶液、80℃)に60分浸漬し、マングルで絞って、伸縮性繊維の鞘部にヨウ素を含浸させた。伸縮性繊維の表面は褐色となっていた。さらに、この伸縮性繊維を一価の銅イオンを含む水溶液(水1リットルにCuCl40g、NHCl85gを溶解させた水溶液)に85℃で60分間浸漬処理することによって、伸縮性繊維の鞘部のヨウ素と銅を反応させてヨウ化銅を形成させた。伸縮性繊維を浴から取り出し、水洗し乾燥機で乾燥させた。伸縮性繊維は淡黄色となって、ヨウ化銅が伸縮性繊維の鞘部に形成されたことを示していた。(図1〜4に示す。鞘部の厚さは30μm) 定常状態での体積抵抗率が5.0×10Ω・cm、40%伸長時の体積抵抗率が1.2×10Ω・cm、100%伸長時の体積抵抗率が2×10Ω・cmを示し、伸長状態でも良好な導電性を得ることができた。つぎに該伸縮性導電繊維を透明なアクリルボックスに入れ、80℃に加熱して、アクリルボックスの壁面を観察(ヨウ素の離脱試験)したが、ヨウ素の離脱はみられなかった。
<Example 1>
Prepare ethylene propylene elastomer elastic yarn (monofilament yarn 5000dtex) as polyolefin elastomer elastic yarn, pass through polyester elastomer resin solution (polyester-polyether elastomer resin, 10% by weight solution using methylene chloride as solvent), and dry at 50 ° C. Thus, a stretchable fiber (initial volume resistivity 6.8 × 10 13 Ω · cm) having a core-sheath structure was prepared. Next, it is immersed in an aqueous solution containing iodine ions (iodine 0.2 mol / L, potassium iodide 3.0 mol / L, 80 ° C.) for 60 minutes, squeezed with a mangle, and impregnated with iodine in the sheath of the stretchable fiber I let you. The surface of the stretchable fiber was brown. Further, this stretchable fiber is immersed in an aqueous solution containing monovalent copper ions (an aqueous solution in which 40 g of CuCl and 85 g of NH 4 Cl are dissolved in 1 liter of water) at 85 ° C. for 60 minutes, so that the sheath of the stretchable fiber is formed. Iodine and copper were reacted to form copper iodide. The stretchable fiber was taken out of the bath, washed with water and dried with a dryer. The stretchable fiber became light yellow, indicating that copper iodide was formed in the sheath of the stretchable fiber. (Shown in FIGS. 1 to 4. The thickness of the sheath is 30 μm.) The volume resistivity in a steady state is 5.0 × 10 1 Ω · cm, and the volume resistivity at 40% elongation is 1.2 × 10 2 Ω. -The volume resistivity at the time of 100% elongation was 2 × 10 2 Ω · cm, and good conductivity could be obtained even in the stretched state. Next, the stretchable conductive fiber was put in a transparent acrylic box, heated to 80 ° C., and the wall surface of the acrylic box was observed (iodine release test), but no iodine release was observed.

<実施例2>
実施例1において、ポリエステル−ポリエーテルエラストマ樹脂に替えてポリエステル−ポリウレタンエラストマ樹脂を用いた以外は実施例1と同様にして芯鞘構造の伸縮性導電繊維を得た。伸縮性繊維は実施例1と同様に、淡黄色となって、ヨウ化銅が伸縮性繊維の鞘部に形成されたことを示していた。 定常状態での体積抵抗率が9.0×10Ω・cm、40%伸長時の体積抵抗率が2.9×10Ω・cm、100%伸長時の体積抵抗率が6.4×10Ω・cmを示し、伸長状態でも良好な導電性を得ることができた。ヨウ素の離脱試験では、ヨウ素の離脱はみられなかった。

<Example 2>
In Example 1, a stretchable conductive fiber having a core-sheath structure was obtained in the same manner as in Example 1 except that a polyester-polyurethane elastomer resin was used instead of the polyester- polyether elastomer resin . As in Example 1, the stretchable fiber became light yellow, indicating that copper iodide was formed on the sheath of the stretchable fiber. The volume resistivity in a steady state is 9.0 × 10 1 Ω · cm, the volume resistivity at 40% elongation is 2.9 × 10 2 Ω · cm, and the volume resistivity at 100% elongation is 6.4 ×. 10 2 Ω · cm was exhibited, and good conductivity could be obtained even in the stretched state. In the iodine withdrawal test, no iodine withdrawal was observed.

<比較例1>
実施例1において、芯鞘構造の伸縮性繊維に代えてポリエステルエラストマ繊維(ポリエステルモノフィラ糸5000dtex、初期体積抵抗率2.5×1013Ω・cm)とした以外は実施例1と同様にして導電繊維を得た。図5に示すように、ヨウ化銅がポリエステルエラストマ繊維の表面内部にしっかりと形成され、一部は表面より深く入り込んでいるのがわかる。定常状態での体積抵抗率が1.9×10Ω・cm、40%伸長時の体積抵抗率が9.5×10Ω・cm、100%伸長時の体積抵抗率が2.0×10Ω・cmを示し、耐久性や導電性の良好な導電繊維を得ることができた。伸長状態でも良好な導電性を得ることができたが、ヨウ素の離脱試験では、アクリルボックスの壁面が褐色にくもり、ヨウ素の離脱がみられた。
<Comparative Example 1>
In Example 1, it was conducted in the same manner as in Example 1 except that the polyester elastomer fiber (polyester monofilament yarn 5000 dtex, initial volume resistivity 2.5 × 10 13 Ω · cm) was used instead of the core-sheath stretchable fiber. Fiber was obtained. As shown in FIG. 5, it can be seen that the copper iodide is firmly formed inside the surface of the polyester elastomer fiber, and a part of the copper iodide penetrates deeper than the surface. The volume resistivity in a steady state is 1.9 × 10 2 Ω · cm, the volume resistivity at 40% elongation is 9.5 × 10 2 Ω · cm, and the volume resistivity at 100% elongation is 2.0 ×. It was 10 3 Ω · cm, and a conductive fiber having good durability and conductivity could be obtained. Although good conductivity was obtained even in the stretched state, in the iodine detachment test, the wall surface of the acrylic box was clouded in brown, and iodine detachment was observed.

<比較例2>
実施例1において、エチレンプロピレンエラストマ弾性糸に代えてナイロンモノフィラメント(5000dtex)とした以外は実施例1と同様にして導電繊維を得た。ヨウ化銅が繊維の鞘部に形成されているが、さらに芯部のナイロンの中にもヨウ素が侵入していた。 定常状態での体積抵抗率が5.1×10Ω・cmであるが、40%、100%伸長時の体積抵抗率は伸度がなく測定できなかった。ヨウ素の離脱試験では、比較例1と同様にアクリルボックスの壁面が褐色にくもり、ヨウ素の離脱がみられた。
<Comparative example 2>
A conductive fiber was obtained in the same manner as in Example 1 except that nylon monofilament (5000 dtex) was used instead of the ethylene propylene elastomer elastic yarn. Copper iodide was formed in the fiber sheath, but iodine also penetrated into the core nylon. Although the volume resistivity in a steady state was 5.1 × 10 1 Ω · cm, the volume resistivity at 40% and 100% elongation could not be measured because there was no elongation. In the iodine detachment test, the wall surface of the acrylic box clouded brown as in Comparative Example 1, and iodine detachment was observed.

この発明の実施例1に係る伸縮性導電繊維の横断面を示す顕微鏡写真である。(倍率100)It is a microscope picture which shows the cross section of the stretchable conductive fiber which concerns on Example 1 of this invention. (Magnification 100) この発明の実施例1に係る伸縮性導電繊維の横断面を示す顕微鏡写真である。(倍率500)It is a microscope picture which shows the cross section of the stretchable conductive fiber which concerns on Example 1 of this invention. (Magnification 500) この発明の実施例1に係る伸縮性導電繊維の縦断面を示す顕微鏡写真である。(倍率100)It is a microscope picture which shows the longitudinal cross-section of the stretchable conductive fiber which concerns on Example 1 of this invention. (Magnification 100) この発明の実施例1に係る伸縮性導電繊維の縦断面を示す顕微鏡写真である。(倍率500)It is a microscope picture which shows the longitudinal cross-section of the stretchable conductive fiber which concerns on Example 1 of this invention. (Magnification 500) この発明の比較例1に係る伸縮性導電繊維の横断面を示す顕微鏡写真である。(倍率300)It is a microscope picture which shows the cross section of the stretchable conductive fiber which concerns on the comparative example 1 of this invention. (Magnification 300)

Claims (3)

ヨウ素イオンを含む水溶液に鞘部がポリエステルエラストマで、芯部がポリオレフィンエラストマである芯鞘構造の伸縮性繊維を浸漬し、該繊維の鞘部にヨウ素を含浸させた後に、該繊維を一価の銅イオンを含む水溶液で処理することにより、該繊維の鞘部にヨウ化銅からなる導電層を形成することを特徴とする伸縮性導電繊維の製造方法。 A core- sheath stretchable fiber whose sheath is made of polyester elastomer and whose core is made of polyolefin elastomer is immersed in an aqueous solution containing iodine ions, and after impregnating iodine in the sheath of the fiber, the fiber is monovalent. A process for producing a stretchable conductive fiber, wherein a conductive layer made of copper iodide is formed on a sheath of the fiber by treating with an aqueous solution containing copper ions. 請求項1に記載した製造方法で製造した伸縮性導電繊維。 A stretchable conductive fiber produced by the production method according to claim 1 . 請求項1に記載した製造方法で製造した伸縮性導電繊維であって、定常状態での体積抵抗率が5.0×10Ω・cm以下、40%伸長時の体積抵抗率が2.5×10Ω・cm以下、100%伸長時の体積抵抗率が5.0×10Ω・cm以下であることを特徴とする伸縮性導電繊維。 A stretchable conductive fiber manufactured by the manufacturing method according to claim 1, wherein the volume resistivity in a steady state is 5.0 × 10 2 Ω · cm or less, and the volume resistivity at 40% elongation is 2.5. A stretchable conductive fiber having a volume resistivity of not more than × 10 3 Ω · cm and a 100% elongation of 5.0 × 10 3 Ω · cm or less.
JP2009054516A 2009-03-09 2009-03-09 Stretchable conductive fiber and manufacturing method thereof Expired - Fee Related JP5213052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054516A JP5213052B2 (en) 2009-03-09 2009-03-09 Stretchable conductive fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054516A JP5213052B2 (en) 2009-03-09 2009-03-09 Stretchable conductive fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010209481A JP2010209481A (en) 2010-09-24
JP5213052B2 true JP5213052B2 (en) 2013-06-19

Family

ID=42969930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054516A Expired - Fee Related JP5213052B2 (en) 2009-03-09 2009-03-09 Stretchable conductive fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5213052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630360A (en) * 2017-09-30 2018-01-26 中国科学院上海硅酸盐研究所 A kind of difunctional conductive fiber and its preparation method and application

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107504A (en) * 1979-02-14 1980-08-18 Teijin Ltd Conductive fibers and their production
JPH02182970A (en) * 1988-12-28 1990-07-17 Toray Ind Inc Polyester fiber and production thereof
JPH03241010A (en) * 1990-02-19 1991-10-28 Kanebo Ltd Electrically conductive conjugate fiber
JP2003313727A (en) * 2002-04-19 2003-11-06 Toray Ind Inc Electroconductive polyester fiber having excellent stretchability
JP2006161190A (en) * 2004-12-03 2006-06-22 Toray Ind Inc Conductive synthetic resin filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630360A (en) * 2017-09-30 2018-01-26 中国科学院上海硅酸盐研究所 A kind of difunctional conductive fiber and its preparation method and application
CN107630360B (en) * 2017-09-30 2020-05-19 中国科学院上海硅酸盐研究所 Difunctional conductive fiber and preparation method and application thereof

Also Published As

Publication number Publication date
JP2010209481A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US10337122B2 (en) Stretchable conductive nanofibers, stretchable electrode using the same and method of producing the stretchable conductive nanofibers
CN102121192B (en) Elastic conductive composite fiber and preparation method thereof
EP3100678A1 (en) Electrode member and device
CN108517688B (en) Production process of RGO/Ag layer-by-layer assembled cellulose conductive yarn
CN110073732B (en) Flexible electromagnetic wave shielding material, electromagnetic wave shielding circuit module, and electronic device
JP2007191811A (en) Elastic electroconductive fiber material
KR101635171B1 (en) Electronic textile and producing method thereof
Varesano et al. Improving electrical performances of wool textiles: synthesis of conducting polypyrrole on the fiber surface
Hossain et al. Durability of smart electronic textiles
Shak Sadi et al. Advances in the robustness of wearable electronic textiles: strategies, stability, washability and perspective
Liman et al. Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives
JP2006328610A (en) Conductive fiber and method for producing the same
JP2020180406A (en) Conductive fiber structure and electrode member
JP5213052B2 (en) Stretchable conductive fiber and manufacturing method thereof
Vahle et al. Conductive polyacrylonitrile/graphite textile coatings
JP6963998B2 (en) Method for manufacturing conductive fiber structure, electrode member and conductive fiber structure
JP6095159B2 (en) Method for producing conductive cellulose fiber material
JP2010031423A (en) Conductive fiber and method for producing the same
CN114657770A (en) Preparation method of silk spandex composite conductive yarn flexible sensor
Savitha et al. An overview of electrically conducting textiles
JP2011231421A (en) Suede-like artificial leather
Yin et al. Functionalization of fiber materials for washable smart wearable textiles
WO2021065955A1 (en) Electrically conductive woven/knitted material
US20230002961A1 (en) Graphene-impregnated microfiber fabric
WO2023210539A1 (en) Electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

R150 Certificate of patent or registration of utility model

Ref document number: 5213052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees