JP5212696B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP5212696B2
JP5212696B2 JP2008053955A JP2008053955A JP5212696B2 JP 5212696 B2 JP5212696 B2 JP 5212696B2 JP 2008053955 A JP2008053955 A JP 2008053955A JP 2008053955 A JP2008053955 A JP 2008053955A JP 5212696 B2 JP5212696 B2 JP 5212696B2
Authority
JP
Japan
Prior art keywords
motor
rotor
electric motor
relative displacement
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008053955A
Other languages
Japanese (ja)
Other versions
JP2009213266A (en
Inventor
正明 貝塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008053955A priority Critical patent/JP5212696B2/en
Publication of JP2009213266A publication Critical patent/JP2009213266A/en
Application granted granted Critical
Publication of JP5212696B2 publication Critical patent/JP5212696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、永久磁石界磁型の電動機の界磁弱め制御を、回転軸の周囲に同心円状に設けられた2つの回転子の相対変位角を変更することによって行う電動機の制御装置に関する。   The present invention relates to a motor control device that performs field weakening control of a permanent magnet field motor by changing the relative displacement angles of two rotors provided concentrically around a rotation shaft.

永久磁石界磁型の回転電動機の回転軸の周囲に同心円状に設けた第1ロータ及び第2ロータを備え、回転速度に応じて第1ロータと第2ロータの位相差を変更することで界磁弱め制御を行う電動機が知られている(例えば、特許文献1参照)。   A first rotor and a second rotor are provided concentrically around the rotating shaft of a permanent magnet field-type rotary motor, and the field is changed by changing the phase difference between the first rotor and the second rotor according to the rotational speed. An electric motor that performs magnetic field weakening control is known (see, for example, Patent Document 1).

図12は、2重ロータを備えた電動機の断面図である。図12に示す電動機1は、永久磁石11a,11bの界磁が周方向に沿って等間隔に配設された内側ロータ11と、永久磁石12a,12bの界磁が周方向に沿って等間隔に配設された外側ロータ12と、内側ロータ11及び外側ロータ12に対する回転磁界を発生させるための電機子10aを有するステータ10とを備える。   FIG. 12 is a cross-sectional view of an electric motor including a double rotor. In the electric motor 1 shown in FIG. 12, the inner rotor 11 in which the fields of the permanent magnets 11a and 11b are arranged at equal intervals along the circumferential direction, and the field of the permanent magnets 12a and 12b are at equal intervals along the circumferential direction. And the stator 10 having the armature 10a for generating a rotating magnetic field for the inner rotor 11 and the outer rotor 12.

内側ロータ11と外側ロータ12は、共に回転軸が電動機1の回転軸2と同軸となるように同心円状に配置されている。そして、内側ロータ11においては、N極を回転軸2側とする永久磁石11aとS極を回転軸2側とする永久磁石11bが交互に配設されている。同様に、外側ロータ12においても、N極を回転軸2側とする永久磁石12aとS極を回転軸2側とする永久磁石12bが交互に配設されている。   The inner rotor 11 and the outer rotor 12 are both arranged concentrically so that the rotating shaft is coaxial with the rotating shaft 2 of the electric motor 1. In the inner rotor 11, permanent magnets 11 a having the N pole as the rotating shaft 2 side and permanent magnets 11 b having the S pole as the rotating shaft 2 side are alternately arranged. Similarly, in the outer rotor 12, permanent magnets 12 a having the N pole as the rotating shaft 2 side and permanent magnets 12 b having the S pole as the rotating shaft 2 side are alternately arranged.

外側ロータ12と内側ロータ11の位相差(以下「ロータ位相差」という。)は、少なくとも電気角で180度の範囲で進角側又は遅角側に変更することができる。このため、電動機1の状態は、外側ロータ12の永久磁石12a,12bと内側ロータ11の永久磁石11a,11bが異極同士を対向して配置された界磁強め状態と、外側ロータ12の永久磁石12a,12bと内側ロータ11の永久磁石11a,11bが同極同士を対向して配置された界磁弱め状態との間で、適宜設定可能である。   The phase difference between the outer rotor 12 and the inner rotor 11 (hereinafter referred to as “rotor phase difference”) can be changed to the advance side or the retard side at least in the range of 180 degrees in electrical angle. For this reason, the state of the electric motor 1 includes a field-enhanced state in which the permanent magnets 12a and 12b of the outer rotor 12 and the permanent magnets 11a and 11b of the inner rotor 11 are arranged opposite to each other, and a permanent state of the outer rotor 12. It can be set as appropriate between the magnets 12a, 12b and the field weakening state in which the permanent magnets 11a, 11b of the inner rotor 11 are arranged with the same poles facing each other.

ロータ位相差は、電動機1の内部に設けられたロータ位相差変更部によって変更される。図13は、電動機1が有するロータ位相差変更部の内部構造を示す図である。図13に示すように、ロータ位相差変更部30は、内側ロータ11の内周側の中空部に配置されたシングルピニオン型の遊星歯車機構であり、外側ロータ12と同軸且つ一体に形成された第1リングギアR1、内側ロータ11と同軸且つ一体に形成された第2リングギアR2、第1リングギアR1と噛合する第1プラネタリギア31、第2リングギアR2に噛合する第2プラネタリギア32、第1プラネタリギア31及び第2プラネタリギア32と噛合するアイドルギアであるサンギアS、第1プラネタリギア31を回転自在に支持すると共に回転軸2に回転可能に軸支された第1プラネタリキャリアC1、及び第2プラネタリギア32を回転自在に支持すると共にステータ10に固定された第2プラネタリキャリアC2を備える。   The rotor phase difference is changed by a rotor phase difference changing unit provided inside the electric motor 1. FIG. 13 is a diagram illustrating an internal structure of a rotor phase difference changing unit included in the electric motor 1. As shown in FIG. 13, the rotor phase difference changing unit 30 is a single pinion type planetary gear mechanism disposed in the hollow portion on the inner peripheral side of the inner rotor 11, and is formed coaxially and integrally with the outer rotor 12. The first ring gear R1, the second ring gear R2 that is coaxially and integrally formed with the inner rotor 11, the first planetary gear 31 that meshes with the first ring gear R1, and the second planetary gear 32 that meshes with the second ring gear R2. The first planetary carrier C1 rotatably supports the sun gear S and the first planetary gear 31 that are engaged with the first planetary gear 31 and the second planetary gear 32. , And a second planetary carrier C2 that rotatably supports the second planetary gear 32 and is fixed to the stator 10.

第1リングギアR1及び第2リングギアR2は略同等のギア形状であり、第1プラネタリギア31及び第2プラネタリギア32も略同等のギア形状である。また、サンギアSの回転軸33は電動機1の回転軸2と同軸に配置されると共に、軸受け34により回転可能に軸支されている。このため、第1プラネタリギア31及び第2プラネタリギア32がサンギアSと噛合し、外側ロータ12と内側ロータ11が同期して回転する。さらに、第1プラネタリキャリアC1の回転軸35は、電動機1の回転軸2と同軸に配置されると共にアクチュエータ25に接続されており、第2プラネタリキャリアC2はステータ10に固定されている。   The first ring gear R1 and the second ring gear R2 have substantially the same gear shape, and the first planetary gear 31 and the second planetary gear 32 also have substantially the same gear shape. The rotating shaft 33 of the sun gear S is disposed coaxially with the rotating shaft 2 of the electric motor 1 and is rotatably supported by a bearing 34. For this reason, the 1st planetary gear 31 and the 2nd planetary gear 32 mesh with the sun gear S, and the outer side rotor 12 and the inner side rotor 11 rotate in synchronization. Further, the rotation shaft 35 of the first planetary carrier C1 is disposed coaxially with the rotation shaft 2 of the electric motor 1 and is connected to the actuator 25, and the second planetary carrier C2 is fixed to the stator 10.

アクチュエータ25は、制御装置の位相差制御系から入力される制御信号に応じて、油圧により第1プラネタリキャリアC1を正転方向又は逆転方向に回転させ、或いは回転軸2回りの第1プラネタリキャリアC1の回転を規制する。アクチュエータ25によって第1プラネタリキャリアC1が回転すると、外側ロータ12と内側ロータ11間の相対的な位置関係(位相差)が変化する。   The actuator 25 rotates the first planetary carrier C1 in the normal rotation direction or the reverse rotation direction by hydraulic pressure according to a control signal input from the phase difference control system of the control device, or the first planetary carrier C1 around the rotation axis 2. Regulate the rotation of When the first planetary carrier C1 is rotated by the actuator 25, the relative positional relationship (phase difference) between the outer rotor 12 and the inner rotor 11 changes.

図14は、電動機1の界磁強め状態(a)及び界磁弱め状態(b)を示す図である。図14(a)に示す界磁強め状態では、外側ロータ12の永久磁石12a,12bの磁束Q2と内側ロータ11の永久磁石11a,11bの磁束Q1の向きが同一であるため、合成された磁束Q3は大きい。一方、図14(b)に示す界磁弱め状態では、外側ロータ12の永久磁石12a,12bの磁束Q2と内側ロータ11の永久磁石11a,11bの磁束Q1の向きが逆であるため、合成された磁束Q3は小さい。   FIG. 14 is a diagram showing a field strengthening state (a) and a field weakening state (b) of the electric motor 1. In the field-strengthened state shown in FIG. 14A, the direction of the magnetic flux Q2 of the permanent magnets 12a and 12b of the outer rotor 12 and the magnetic flux Q1 of the permanent magnets 11a and 11b of the inner rotor 11 is the same. Q3 is large. On the other hand, in the field weakening state shown in FIG. 14B, the directions of the magnetic flux Q2 of the permanent magnets 12a and 12b of the outer rotor 12 and the magnetic flux Q1 of the permanent magnets 11a and 11b of the inner rotor 11 are reversed. The magnetic flux Q3 is small.

このように、2重ロータを備えた電動機1では、ロータ位相差を変更して界磁の磁束を増減させることにより、誘起電圧定数Keを変化させることができる。図15は、誘起電圧定数Keに応じて変化する電動機1の回転数及びトルクに応じた運転可能領域を示す図である。図15に示すように、ロータ位相差が小さく誘起電圧定数Keが大きいとき(界磁強め状態)、電動機1の運転可能な回転数は低下するが、大きなトルクを出力可能である。一方、ロータ位相差が大きく誘起電圧定数Keが小さいとき(界磁弱め状態)、電動機1の出力可能なトルクは低下するが、高い回転数まで運転可能となる。このように、回転数及びトルクに対する電動機1の運転可能領域は、誘起電圧定数Keに応じて変化する。   As described above, in the electric motor 1 including the double rotor, the induced voltage constant Ke can be changed by changing the rotor phase difference to increase or decrease the magnetic flux of the field. FIG. 15 is a diagram showing an operable region according to the rotation speed and torque of the electric motor 1 that changes according to the induced voltage constant Ke. As shown in FIG. 15, when the rotor phase difference is small and the induced voltage constant Ke is large (field strong state), the operable speed of the electric motor 1 decreases, but a large torque can be output. On the other hand, when the rotor phase difference is large and the induced voltage constant Ke is small (field weakening state), the torque that can be output from the electric motor 1 is reduced, but operation is possible up to a high rotational speed. As described above, the operable range of the electric motor 1 with respect to the rotation speed and the torque changes according to the induced voltage constant Ke.

以上説明したように、ロータ位相差を変更すると電動機1の誘起電圧定数Keが変化し、電動機1の運転可能領域が図15に示したように変化する。このため、電動機1の運転可能領域及び電動機1の運転効率が最適となるロータ位相差は、図16のように表すことができる。従来、電動機1の制御装置が有する位相差制御系は、図16に示したグラフに基づいて、電動機1の運転効率が最大となるようロータ位相差を制御する。   As described above, when the rotor phase difference is changed, the induced voltage constant Ke of the electric motor 1 changes, and the operable region of the electric motor 1 changes as shown in FIG. For this reason, the rotor phase difference in which the operating range of the electric motor 1 and the operating efficiency of the electric motor 1 are optimal can be expressed as shown in FIG. Conventionally, the phase difference control system included in the control device of the electric motor 1 controls the rotor phase difference based on the graph shown in FIG. 16 so that the operation efficiency of the electric motor 1 is maximized.

特開2002−204541号公報JP 2002-204541 A 特開2007−159219号公報JP 2007-159219 A 特開2007−259549号公報JP 2007-259549 A

図16に示されたグラフを用いる電動機1の制御装置は、要求されたトルク値及び電動機1の回転数に応じて、電動機1の運転効率が最大となるようロータ位相差を制御する。上述したように、ロータ位相差は、制御装置からの制御信号によってアクチュエータ25が機械的に動作し、電動機1の内部に設けられたロータ位相差変更部30が機能することによって変化する。したがって、例えばロータ位相差が100°かつ低トルク状態のときに最大トルク値が要求されると、制御装置は、ロータ位相差を100°から0°に変えるよう制御する。但し、アクチュエータ25及びロータ位相差変更部30は油圧等によって機械的に動作するため、ロータ位相差が100°遅角するまでには例えば1秒程度の時間を要する。   The control device for the electric motor 1 using the graph shown in FIG. 16 controls the rotor phase difference so that the operating efficiency of the electric motor 1 is maximized according to the requested torque value and the rotational speed of the electric motor 1. As described above, the rotor phase difference changes when the actuator 25 is mechanically operated by the control signal from the control device and the rotor phase difference changing unit 30 provided in the electric motor 1 functions. Therefore, for example, when the maximum torque value is requested when the rotor phase difference is 100 ° and the torque is low, the control device controls the rotor phase difference to change from 100 ° to 0 °. However, since the actuator 25 and the rotor phase difference changing unit 30 are mechanically operated by hydraulic pressure or the like, it takes, for example, about 1 second until the rotor phase difference is delayed by 100 °.

電動機1が車両の駆動源として用いられている場合、車両が回生制動されている状態であれば、ロータ位相差の進角又は遅角に要する時間が秒単位であっても特に問題はない。しかし、ドライバによって急激な加速操作等が行われた際にロータ位相差の調整に1秒かかると、車両の走行性能としては満足な結果が得られない場合がある。   When the electric motor 1 is used as a vehicle drive source, there is no particular problem even if the time required for the advance or delay of the rotor phase difference is in seconds as long as the vehicle is in a regenerative braking state. However, if it takes 1 second to adjust the rotor phase difference when a rapid acceleration operation or the like is performed by the driver, a satisfactory result may not be obtained as a running performance of the vehicle.

本発明の目的は、電動機が有する2つの回転子の相対変位角を調整する手段の稼動時間の影響を受けずに、要求されたトルクを電動機が出力可能な電動機の制御装置を提供することである。   An object of the present invention is to provide an electric motor control device that can output a required torque without being affected by the operation time of a means for adjusting the relative displacement angle of two rotors of the electric motor. is there.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の電動機の制御装置は、永久磁石界磁型の電動機(例えば、実施の形態での電動機1)の回転軸(例えば、実施の形態での回転軸2)の周囲に同心円状に設けられた第1回転子(例えば、実施の形態での外側ロータ12)及び第2回転子(例えば、実施の形態での内側ロータ11)の相対変位角(例えば、実施の形態でのロータ位相差)を制御する電動機の制御装置であって、前記第1回転子又は前記第2回転子の単位時間当たりの回転数を検出する回転数検出部(例えば、実施の形態でのレゾルバ101及び回転数算出部103)と、要求されたトルク値(例えば、実施の形態でのトルク指令値T)及び前記回転数検出部によって検出された回転数(例えば、実施の形態での回転数Nm)に基づいて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角(例えば、実施の形態でのロータ位相差の指令値θc)又は当該相対変位角に相関する変数(例えば、実施の形態での誘起電圧定数Ke_cの指令値θc)の指令値を決定する指令値決定部(例えば、実施の形態での指令値決定部121,321)と、前記指令値決定部によって決定された指令値に応じて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角を制御する制御部(例えば、実施の形態でのロータ位相差制御部123,323)と、を備え、前記指令値決定部は、前記電動機のトルクと回転数との関係を示すグラフ上の、前記電動機に対して界磁弱め制御が不要な直交領域(例えば、実施の形態での直交領域X)内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、前記回転数における前記電動機の誘起電圧が最大となる相対変位角と前記電動機の運転効率が最も良い相対変位角の中間の値を前記指令値として決定することを特徴としている。 In order to solve the above-described problems and achieve the object, an electric motor control device according to a first aspect of the present invention is a rotating shaft (for example, electric motor 1 in the embodiment) of a permanent magnet field type electric motor. For example, a first rotor (for example, outer rotor 12 in the embodiment) and a second rotor (for example, inner side in the embodiment) provided concentrically around the rotation shaft 2) in the embodiment. A control device for an electric motor that controls a relative displacement angle of the rotor (11) (for example, a rotor phase difference in the embodiment), and detects the number of rotations per unit time of the first rotor or the second rotor. Detected by the rotation speed detection unit (for example, the resolver 101 and the rotation speed calculation unit 103 in the embodiment), the requested torque value (for example, the torque command value T in the embodiment), and the rotation speed detection unit Number of revolutions (eg, implementation form On the basis of the rotational speed Nm) of the first and second rotors of the electric motor (for example, the rotor phase difference command value θc in the embodiment) or the relative displacement angle. A command value determining unit (for example, command value determining units 121 and 321 in the embodiment) for determining a command value of a variable to be correlated (for example, a command value θc of the induced voltage constant Ke_c in the embodiment), and the command A control unit that controls the relative displacement angles of the first rotor and the second rotor of the electric motor according to the command value determined by the value determination unit (for example, the rotor phase difference control unit 123 in the embodiment). , 323), and the command value determining unit on the graph showing the relationship between the torque and the rotational speed of the motor, the orthogonal region where the field weakening control is not required for the motor (for example, implementation) orthogonal region X) in the form, the In a region where the operating efficiency of the motor is better when the counter displacement angle is advanced than the relative displacement angle at which the induced voltage of the motor at the rotational speed is maximum, the induced voltage of the motor at the rotational speed is maximum. An intermediate value between the relative displacement angle and the relative displacement angle with the best operating efficiency of the motor is determined as the command value.

さらに、請求項に記載の発明の電動機の制御装置では、前記指令値決定部は、前記直交領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、請求項1に記載の前記指令値決定部による決定に代えて、前記回転数における前記電動機の誘起電圧が最大となる相対変位角に相関する変数と前記電動機の運転効率が最も良い相対変位角に相関する変数の中間の値を前記指令値として決定することを特徴としている。 Furthermore, in the motor control device according to claim 2 , the command value determination unit is configured such that the relative displacement angle within the orthogonal region is a relative displacement angle at which an induced voltage of the motor is maximized at the rotation speed. In a region where the operation efficiency of the electric motor is better when advanced, the relative displacement at which the induced voltage of the electric motor at the rotation speed becomes maximum instead of the determination by the command value determination unit according to claim 1. An intermediate value between a variable correlated with an angle and a variable correlated with a relative displacement angle with the best operating efficiency of the electric motor is determined as the command value.

さらに、請求項に記載の発明の電動機の制御装置では、永久磁石界磁型の電動機(例えば、実施の形態での電動機1)の回転軸(例えば、実施の形態での回転軸2)の周囲に同心円状に設けられた第1回転子(例えば、実施の形態での外側ロータ12)及び第2回転子(例えば、実施の形態での内側ロータ11)の相対変位角(例えば、実施の形態でのロータ位相差)を制御する電動機の制御装置であって、前記第1回転子又は前記第2回転子の単位時間当たりの回転数を検出する回転数検出部(例えば、実施の形態でのレゾルバ101及び回転数算出部103)と、要求されたトルク値(例えば、実施の形態でのトルク指令値T)及び前記回転数検出部によって検出された回転数(例えば、実施の形態での回転数Nm)に基づいて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角(例えば、実施の形態でのロータ位相差の指令値θc)又は当該相対変位角に相関する変数(例えば、実施の形態での誘起電圧定数Ke_cの指令値θc)の指令値を決定する指令値決定部(例えば、実施の形態での指令値決定部221,321)と、前記指令値決定部によって決定された指令値に応じて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角を制御する制御部(例えば、実施の形態でのロータ位相差制御部223,323)と、を備え、前記指令値決定部は、前記電動機のトルクと回転数との関係を示すグラフ上の、前記電動機に対して界磁弱め制御が不要な直交領域(例えば、実施の形態での直交領域X)と、前記電動機に対して界磁弱め制御が必要な領域内の、前記電動機の誘起電圧が最大となる相対変位角に固定した状態で前記電動機を駆動した際に発生する誘起電圧が、前記電動機又は前記電動機に関係する電子部品の耐圧を超える回転数よりも低い所定回転数以下の特定領域(例えば、実施の形態での領域Z)とでは、前記回転数における前記電動機の誘起電圧が最大となる相対変位角又は当該相対変位角に関係する変数を前記指令値として決定することを特徴としている。 Furthermore, in the motor control device according to the third aspect of the present invention, the rotating shaft (for example, the rotating shaft 2 in the embodiment) of the permanent magnet field motor (for example, the motor 1 in the embodiment) is provided. Relative displacement angles (for example, implementation) of a first rotor (for example, outer rotor 12 in the embodiment) and a second rotor (for example, inner rotor 11 in the embodiment) provided concentrically around the circumference. a control unit for an electric motor for controlling the rotor phase difference) in the form, the rotation speed detector which detects the number of revolutions per unit time of the first rotor or the second rotor (e.g., in the embodiment Resolver 101 and rotation speed calculation unit 103), requested torque value (for example, torque command value T in the embodiment) and rotation speed detected by the rotation speed detection unit (for example, in the embodiment) Based on the rotational speed Nm) Relative displacement angle of the first rotor and the second rotor of the motive (for example, the command value θc of the rotor phase difference in the embodiment) or a variable correlated with the relative displacement angle (for example, in the embodiment A command value determining unit (for example, command value determining units 221 and 321 in the embodiment) for determining a command value of the induced voltage constant Ke_c), and a command value determined by the command value determining unit A control unit (for example, rotor phase difference control unit 223, 323 in the embodiment) for controlling the relative displacement angle of the first rotor and the second rotor of the electric motor, and the command value The determination unit includes an orthogonal region (for example, an orthogonal region X in the embodiment) that does not require field weakening control on the electric motor on the graph indicating the relationship between the torque and the rotational speed of the electric motor, and the electric motor. Where field weakening control is required The induced voltage generated when the motor is driven in a state where the induced voltage of the motor is fixed at a relative displacement angle at which the maximum is maximized, from the rotation speed exceeding the withstand voltage of the motor or the electronic component related to the motor. In a specific region (e.g., region Z in the embodiment) that is less than a predetermined rotational speed, the relative displacement angle at which the induced voltage of the electric motor at the rotational speed is maximum or a variable related to the relative displacement angle is It is characterized by being determined as a command value.

さらに、請求項に記載の発明の電動機の制御装置では、前記指令値決定部は、前記直交領域及び前記特定領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、請求項3に記載の前記指令値決定部による決定に代えて、前記回転数における前記電動機の誘起電圧が最大となる相対変位角と前記電動機の運転効率が最も良い相対変位角の中間の値を前記指令値として決定することを特徴としている。 Furthermore, in the motor control device of the invention according to claim 4 , the command value determining unit is configured to determine that the induced voltage of the motor at the rotational speed is the maximum in the relative displacement angle in the orthogonal region and the specific region. In an area where the operating efficiency of the electric motor is better when the angle is advanced than the relative displacement angle, the induced voltage of the electric motor at the rotational speed is the maximum instead of the determination by the command value determining unit according to claim 3. An intermediate value between the relative displacement angle and the relative displacement angle with the best operating efficiency of the motor is determined as the command value.

さらに、請求項に記載の発明の電動機の制御装置では、前記指令値決定部は、前記直交領域及び前記特定領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、請求項3に記載の前記指令値決定部による決定に代えて、前記回転数における前記電動機の誘起電圧が最大となる相対変位角に相関する変数と前記電動機の運転効率が最も良い相対変位角に相関する変数の中間の値を前記指令値として決定することを特徴としている。 Furthermore, in the motor control device of the invention according to claim 5 , the command value determination unit is configured to determine that the induced voltage of the motor at the rotational speed is the maximum in the relative displacement angle in the orthogonal region and the specific region. In an area where the operating efficiency of the electric motor is better when the angle is advanced than the relative displacement angle, the induced voltage of the electric motor at the rotational speed is the maximum instead of the determination by the command value determining unit according to claim 3. An intermediate value between a variable that correlates with the relative displacement angle and a variable that correlates with the relative displacement angle with the best operating efficiency of the motor is determined as the command value.

さらに、請求項に記載の発明の電動機の制御装置では、永久磁石界磁型の電動機(例えば、実施の形態での電動機1)の回転軸(例えば、実施の形態での回転軸2)の周囲に同心円状に設けられた第1回転子(例えば、実施の形態での外側ロータ12)及び第2回転子(例えば、実施の形態での内側ロータ11)の相対変位角(例えば、実施の形態でのロータ位相差)を制御する電動機の制御装置であって、前記第1回転子又は前記第2回転子の単位時間当たりの回転数を検出する回転数検出部(例えば、実施の形態でのレゾルバ101及び回転数算出部103)と、要求されたトルク値(例えば、実施の形態でのトルク指令値T)及び前記回転数検出部によって検出された回転数(例えば、実施の形態での回転数Nm)に基づいて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角(例えば、実施の形態でのロータ位相差の指令値θc)又は当該相対変位角に相関する変数(例えば、実施の形態での誘起電圧定数Ke_cの指令値θc)の指令値を決定する指令値決定部(例えば、実施の形態での指令値決定部121,221,321)と、前記指令値決定部によって決定された指令値に応じて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角を制御する制御部(例えば、実施の形態でのロータ位相差制御部123,223,323)と、を備え、前記指令値決定部は、前記電動機のトルクと回転数との関係を示すグラフ上の、前記回転数における前記電動機の誘起電圧が最大となる相対変位角又は当該相対変位角に関係する変数を前記指令値として決定する領域を、前記電動機の運転状態に応じて、前記電動機に対して界磁弱め制御が不要な直交領域(例えば、実施の形態での直交領域X)、又は、前記電動機に対して界磁弱め制御が必要な領域内の、前記電動機の誘起電圧が最大となる相対変位角に固定した状態で前記電動機を駆動した際に発生する誘起電圧が、前記電動機又は前記電動機に関係する電子部品の耐圧を超える回転数よりも低い所定回転数以下の特定領域(例えば、実施の形態での領域Z)及び前記直交領域に設定することを特徴としている。 Furthermore, in the motor control device according to the sixth aspect of the present invention, the rotating shaft (for example, the rotating shaft 2 in the embodiment) of the permanent magnet field motor (for example, the motor 1 in the embodiment) is provided. Relative displacement angles (for example, implementation) of a first rotor (for example, outer rotor 12 in the embodiment) and a second rotor (for example, inner rotor 11 in the embodiment) provided concentrically around the circumference. a control unit for an electric motor for controlling the rotor phase difference) in the form, the rotation speed detector which detects the number of revolutions per unit time of the first rotor or the second rotor (e.g., in the embodiment Resolver 101 and rotation speed calculation unit 103), requested torque value (for example, torque command value T in the embodiment) and rotation speed detected by the rotation speed detection unit (for example, in the embodiment) Based on the rotational speed Nm) Relative displacement angle of the first rotor and the second rotor of the motive (for example, the command value θc of the rotor phase difference in the embodiment) or a variable correlated with the relative displacement angle (for example, in the embodiment A command value determining unit (for example, command value determining units 121, 221 and 321 in the embodiment) for determining a command value of the induced voltage constant Ke_c), and a command value determined by the command value determining unit And a control unit (for example, rotor phase difference control units 123, 223, and 323 in the embodiment) that controls relative displacement angles of the first rotor and the second rotor of the electric motor. The command value determining unit, on a graph showing the relationship between the torque of the motor and the rotational speed, a relative displacement angle at which the induced voltage of the motor at the rotational speed is maximum or a variable related to the relative displacement angle. As the command value The region to be determined is an orthogonal region (for example, the orthogonal region X in the embodiment) that does not require field weakening control for the electric motor, or a field for the electric motor, depending on the operating state of the electric motor. The induced voltage generated when the motor is driven in a state where the induced voltage of the motor is fixed at a relative displacement angle at which the induced voltage of the motor is maximum is within a region where weak control is necessary. It is characterized in that it is set in a specific region (for example, region Z in the embodiment) which is lower than a predetermined rotational speed lower than the rotational speed exceeding the withstand voltage and the orthogonal region.

請求項1〜に記載の発明の電動機の制御装置によれば、運転効率は多少犠牲になるが、急に最高トルクが要求された場合であってもロータ位相差は変更されない。その結果、電動機は、2つの回転子の相対変位角を調整する手段の稼動時間の影響を受けずに、要求されたトルクを出力することができる。 According to the motor control device of the first to sixth aspects of the present invention, the operation efficiency is somewhat sacrificed, but the rotor phase difference is not changed even when the maximum torque is suddenly requested. As a result, the electric motor can output the required torque without being affected by the operation time of the means for adjusting the relative displacement angle of the two rotors.

また、請求項又はに記載の発明の電動機の制御装置によれば、運転効率をより良い状態に保ちつつ、急に最高トルクが要求された場合であっても、2つの回転子の相対変位角を調整する手段の稼動時間の影響をあまり受けずに、要求されたトルクを出力することができる。 In addition, according to the control device for an electric motor of the invention according to claim 1 , 2 , 4, or 5 , even if the maximum torque is suddenly requested while maintaining the driving efficiency in a better state, The required torque can be output without being greatly affected by the operation time of the means for adjusting the relative displacement angle of the rotor.

また、請求項に記載の発明の電動機の制御装置によれば、最適な運転効率及び急な最高トルク要求に応じたトルク出力の特性を、電動機の運転状態に応じて変更することができる。
According to the electric motor control apparatus of the sixth aspect of the invention, it is possible to change the characteristics of the torque output according to the optimum operating efficiency and the sudden maximum torque request according to the operating state of the electric motor.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下説明する実施形態で用いられる電動機は、図12及び図13に示した永久磁石界磁型の電動機1と同様であり、回転軸2の周囲に同心円状に設けた内側ロータ11及び外側ロータ12と、電機子10aを有するステータ10と、ロータ位相差変更部30とを備える。当該電動機は、例えばハイブリッド車両や電動車両の駆動源として使用され、ハイブリッド車両に搭載されたときは、電動機及び発電機として動作する。また、電動機1の制御装置(以下、単に「制御装置」という。)は、トルク指令値等に基づいて電動機1に供給する電流を制御する電流制御系と、トルク指令値及び回転数等に応じて電動機1の2重ロータの位相差を制御する位相差制御系とから構成される。   The electric motors used in the embodiments described below are the same as the permanent magnet field motor 1 shown in FIGS. 12 and 13, and the inner rotor 11 and the outer rotor 12 provided concentrically around the rotating shaft 2. And a stator 10 having an armature 10a and a rotor phase difference changing unit 30. The electric motor is used as, for example, a drive source of a hybrid vehicle or an electric vehicle, and operates as an electric motor and a generator when mounted on the hybrid vehicle. Further, the control device for the electric motor 1 (hereinafter simply referred to as “control device”) corresponds to a current control system for controlling the current supplied to the electric motor 1 based on the torque command value and the like, the torque command value and the rotational speed, and the like. And a phase difference control system for controlling the phase difference of the double rotor of the electric motor 1.

(第1の実施形態)
図1は、本発明に係る第1の実施形態の電動機1の制御装置を示すブロック図である。図1に示すように、第1の実施形態の制御装置は、レゾルバ101と、回転数算出部103と、電流制御系に含まれる電流指令算出部105、バンドパスフィルタ(BPF)107、3相−dp変換部109、電流FB制御部111、rθ変換部113及びPWM演算部115と、上記説明したアクチュエータ25と、Ke算出部119と、位相差制御系に含まれる指令値決定部121及びロータ位相差制御部123とを備える。
(First embodiment)
FIG. 1 is a block diagram showing a control device for an electric motor 1 according to a first embodiment of the present invention. As shown in FIG. 1, the control device of the first embodiment includes a resolver 101, a rotation speed calculation unit 103, a current command calculation unit 105 included in a current control system, a bandpass filter (BPF) 107, and a three-phase. -Dp conversion unit 109, current FB control unit 111, rθ conversion unit 113, PWM calculation unit 115, actuator 25 described above, Ke calculation unit 119, command value determination unit 121 and rotor included in the phase difference control system And a phase difference control unit 123.

レゾルバ101は、外側ロータ12の機械角度を検出し、検出した機械角度に応じた電気角度θmを出力する。レゾルバ101から出力された電気角度θmは、3相−dq変換部109及び回転数算出部103に送られる。回転数算出部103は、レゾルバ101から入力された電気角度θmから、外側ロータ12の角速度ω及び外側ロータ12の単位時間当たりの回転数Nmを算出する。回転数算出部103によって算出された回転数Nmは、電流指令算出部105及び指令値決定部121に送られる。また、回転数算出部103によって算出された角速度ωは、Ke算出部119に送られる。   The resolver 101 detects the mechanical angle of the outer rotor 12 and outputs an electrical angle θm corresponding to the detected mechanical angle. The electrical angle θm output from the resolver 101 is sent to the three-phase-dq converter 109 and the rotation speed calculator 103. The rotational speed calculation unit 103 calculates the angular speed ω of the outer rotor 12 and the rotational speed Nm per unit time of the outer rotor 12 from the electrical angle θm input from the resolver 101. The rotation speed Nm calculated by the rotation speed calculation unit 103 is sent to the current command calculation unit 105 and the command value determination unit 121. Further, the angular velocity ω calculated by the rotation speed calculation unit 103 is sent to the Ke calculation unit 119.

電流指令算出部105は、外部から入力されたトルク指令値Tと、回転数算出部103によって算出された電動機1の回転数Nmと、Ke算出部119によって算出された誘起電圧定数Keとに基づいて、d軸側の電機子(以下「d軸電機子」という。)に流す電流(以下「d軸電流」という。)の指令値Id_c及びq軸側の電機子(以下「q軸電機子」という。)に流す電流(以下「q軸電流」という。)の指令値Iq_cを決定する。   The current command calculation unit 105 is based on the torque command value T input from the outside, the rotation number Nm of the motor 1 calculated by the rotation number calculation unit 103, and the induced voltage constant Ke calculated by the Ke calculation unit 119. The command value Id_c of the current (hereinafter referred to as “d-axis current”) flowing through the d-axis side armature (hereinafter referred to as “d-axis armature”) and the q-axis side armature (hereinafter referred to as “q-axis armature”). The command value Iq_c of the current (hereinafter referred to as “q-axis current”) to be passed through is determined.

3相−dq変換部109は、電流センサ131,133により検出されBPF107により不要成分が除去された電流検出信号Iu,Iwと、レゾルバ73によって検出された外側ロータ12の電気角度θmとに基づいて3相−dq変換を行って、d軸電流の検出値Id_s及びq軸電流の検出値Iq_sを算出する。   The three-phase-dq converter 109 is based on the current detection signals Iu and Iw detected by the current sensors 131 and 133 and unnecessary components removed by the BPF 107, and the electrical angle θm of the outer rotor 12 detected by the resolver 73. Three-phase-dq conversion is performed to calculate a detected value Id_s of the d-axis current and a detected value Iq_s of the q-axis current.

電流FB制御部111は、d軸電流の指令値Id_cと検出値Id_sの偏差ΔId及びq軸電流の指令値Iq_cと検出値Iq_sの偏差ΔIqが減少するよう、d軸電機子の端子間電圧(以下「d軸電圧」という。)の指令値Vd_c及びq軸電機子の端子間電圧(以下「q軸電圧」という。)の指令値Vq_cを決定する。なお、偏差ΔIdは、界磁制御部141によって制御される。また、偏差ΔIqは、電力制御部143によって制御される。   The current FB control unit 111 is configured to reduce the deviation ΔId between the d-axis current command value Id_c and the detection value Id_s and the deviation between the q-axis current command value Iq_c and the detection value Iq_s ΔIq. Hereinafter, a command value Vd_c of “d-axis voltage”) and a command value Vq_c of a terminal voltage of the q-axis armature (hereinafter referred to as “q-axis voltage”) are determined. The deviation ΔId is controlled by the field controller 141. The deviation ΔIq is controlled by the power control unit 143.

rθ変換部113は、d軸電圧の指令値Vd_c及びq軸電圧の指令値Vq_cを大きさV1と角度θの成分に変換する。PWM演算部115は、大きさV1と角度θの成分をPWM制御により3相(U,V,W)の交流電圧に変換する。   The rθ converter 113 converts the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c into components of magnitude V1 and angle θ. The PWM calculation unit 115 converts the component of the magnitude V1 and the angle θ into a three-phase (U, V, W) AC voltage by PWM control.

Ke算出部119は、以下の式(1)から誘起電圧定数Keを算出する。
Ke=(Vq−ω・Ld・Id−R・Iq)/ω …(1)
(ω:電動機1の角速度、R:q軸電機子及びd軸電機子の抵抗、Iq:q軸電流、Vq:q軸電機子の端子間電圧、Ld:d軸電機子のインダクタンス、Id:d軸電流)
The Ke calculator 119 calculates an induced voltage constant Ke from the following formula (1).
Ke = (Vq−ω · Ld · Id−R · Iq) / ω (1)
(Ω: angular velocity of motor 1, R: resistance of q-axis armature and d-axis armature, Iq: q-axis current, Vq: voltage between terminals of q-axis armature, Ld: inductance of d-axis armature, Id: d-axis current)

指令値決定部121は、外部から入力されたトルク指令値Tと、回転数算出部103によって算出された電動機1の回転数Nmと、外部から入力された図示しない蓄電器のバッテリ電圧Vdcとに基づいて、誘起電圧定数の指令値Ke_cを決定する。指令値決定部121は、誘起電圧定数の指令値Ke_cを決定する際に、図示しないメモリに格納された図2に示す第1Keマップを利用する。第1Keマップは、図3に示すグラフに基づき予め作成され、メモリに格納される。図3は、電動機1の回転数Nmとトルクとの関係及び第1の実施形態で設定される誘起電圧定数を示すグラフである。   The command value determination unit 121 is based on the torque command value T input from the outside, the rotation speed Nm of the electric motor 1 calculated by the rotation speed calculation unit 103, and the battery voltage Vdc of a capacitor (not shown) input from the outside. Thus, the command value Ke_c of the induced voltage constant is determined. The command value determination unit 121 uses the first Ke map shown in FIG. 2 stored in a memory (not shown) when determining the command value Ke_c of the induced voltage constant. The first Ke map is created in advance based on the graph shown in FIG. 3 and stored in the memory. FIG. 3 is a graph showing the relationship between the rotational speed Nm and the torque of the electric motor 1 and the induced voltage constant set in the first embodiment.

図4は、電動機1の界磁弱め制御が必要な領域を示すグラフである。図3と同様に、当該グラフの縦軸はトルク、横軸は回転数Nmを示す。また、図中の符号uは、電動機1の直交ライン(界磁弱め制御を行わずに電動機1を作動させたとき、回転数Nmとトルクの組合わせにより電動機1の相電圧が電源電圧と等しくなる点を結んだ線)を示す。また、符号Xは、界磁弱め制御が不要な領域(直交領域)を示し、符号Yは界磁弱め制御が必要な領域(非直交領域)を示す。   FIG. 4 is a graph showing a region where the field weakening control of the electric motor 1 is necessary. Similar to FIG. 3, the vertical axis of the graph represents torque, and the horizontal axis represents the rotational speed Nm. In addition, the symbol u in the figure is an orthogonal line of the electric motor 1 (when the electric motor 1 is operated without performing field weakening control, the phase voltage of the electric motor 1 is equal to the power supply voltage by the combination of the rotational speed Nm and the torque. Line connecting the points. Symbol X indicates a region (orthogonal region) that does not require field weakening control, and symbol Y indicates a region (non-orthogonal region) that requires field weakening control.

本実施形態では、指令値決定部121によって、直交領域Xでは誘起電圧定数が最大に設定され、非直交領域Yでは回転数Nmとトルクとの関係に応じて誘起電圧定数が適宜設定される。図3に示した例では、誘起電圧定数がKe1>Ke2>Ke3>Ke4>Ke5の関係を有するとき、直交領域Xでは誘起電圧定数Ke1に設定され、非直交領域Yではトルクとの関係に応じて適した誘起電圧定数(Ke1〜Ke5)が適宜設定される。   In the present embodiment, the command value determination unit 121 sets the induced voltage constant to the maximum in the orthogonal region X, and appropriately sets the induced voltage constant in the non-orthogonal region Y according to the relationship between the rotational speed Nm and the torque. In the example shown in FIG. 3, when the induced voltage constant has a relationship of Ke1> Ke2> Ke3> Ke4> Ke5, the induced voltage constant Ke1 is set in the orthogonal region X, and in the non-orthogonal region Y, depending on the relationship with the torque. Appropriate induced voltage constants (Ke1 to Ke5) are appropriately set.

なお、電動機1の回転数とトルクの関係は、蓄電器のバッテリ電圧Vdcに応じて変化する。このため、第1Keマップには、バッテリ電圧Vdcに応じて異なる複数のテーブルが設けられている。例えば、図2に示すように、バッテリ電圧VdcがV1程度のときに用いられるテーブル、V2程度のときに用いられるテーブルといった複数のテーブルが第1Keマップに設けられている。   Note that the relationship between the rotation speed and torque of the electric motor 1 changes according to the battery voltage Vdc of the battery. Therefore, the first Ke map is provided with a plurality of tables that differ depending on the battery voltage Vdc. For example, as shown in FIG. 2, a plurality of tables such as a table used when the battery voltage Vdc is about V1 and a table used when the battery voltage Vdc is about V2 are provided in the first Ke map.

指令値決定部121は、図5に示すように、外部から入力されたバッテリ電圧Vdcに対応するテーブルの第1Keマップを用いて、トルク指令値T及び回転数Nmに応じた誘起電圧定数Keを決定し、誘起電圧定数の指令値ke_cを出力する。   As shown in FIG. 5, the command value determination unit 121 uses the first Ke map of the table corresponding to the battery voltage Vdc input from the outside, and generates an induced voltage constant Ke corresponding to the torque command value T and the rotational speed Nm. Then, the command value ke_c of the induced voltage constant is output.

ロータ位相差制御部123は、指令値決定部121から出力された誘起電圧定数の指令値Ke_cとKe算出部119によって算出された誘起電圧定数Keの偏差ΔKeが減少するよう制御信号を出力し、アクチュエータ25を制御する。なお、アクチュエータ25によってロータ位相差が変わると界磁の磁束が変化するため、電動機1の誘起電圧定数Keも変化する。   The rotor phase difference control unit 123 outputs a control signal such that the deviation ΔKe between the command value Ke_c of the induced voltage constant output from the command value determination unit 121 and the induced voltage constant Ke calculated by the Ke calculation unit 119 is reduced, The actuator 25 is controlled. When the rotor phase difference is changed by the actuator 25, the magnetic flux of the field changes, so that the induced voltage constant Ke of the electric motor 1 also changes.

以上説明したように、本実施形態の制御装置によれば、直交領域Xでは、要求されたトルク値T及び回転数Nmにかかわらず誘起電圧定数が最大に設定されるため、電動機1のロータ位相差は一定に保たれ、非直交領域Yでは、従来と同様に、電動機1の運転効率が最大となるよう要求されたトルク値T及び回転数Nmに応じてロータ位相差が調整される。したがって、直交領域Xでは、運転効率は多少犠牲になるが、ドライバによって急激な加速操作等が行われた場合であってもロータ位相差は変更されない。その結果、電動機1は、ロータ位相差の進角又は遅角時におけるアクチュエータ25及びロータ位相差変更部30の稼動時間の影響を受けることなく、要求されたトルクを出力することができる。   As described above, according to the control device of the present embodiment, in the orthogonal region X, the induced voltage constant is set to the maximum regardless of the required torque value T and the rotational speed Nm, so the rotor position of the electric motor 1 is The phase difference is kept constant, and in the non-orthogonal region Y, the rotor phase difference is adjusted according to the torque value T and the rotational speed Nm required to maximize the operating efficiency of the electric motor 1 as in the conventional case. Therefore, in the orthogonal region X, the driving efficiency is somewhat sacrificed, but the rotor phase difference is not changed even when a rapid acceleration operation or the like is performed by the driver. As a result, the electric motor 1 can output the required torque without being affected by the operating time of the actuator 25 and the rotor phase difference changing unit 30 when the rotor phase difference is advanced or retarded.

なお、指令値決定部121は、誘起電圧定数を直交領域XでKe1以上Ke2の半分程度以下の値に設定しても良い。すなわち、図16のグラフに示したように、直交領域Xには、ロータ位相差を100°〜120°進角させた方が電動機1の運転効率が良い領域がある。上記説明では、この領域でもロータ位相差を進角させない、すなわち誘起電圧定数を一定に保つと説明したが、ロータ位相差を50°〜60°程度進角させても良い。   The command value determination unit 121 may set the induced voltage constant to a value not less than about Ke1 and not more than about half of Ke2 in the orthogonal region X. That is, as shown in the graph of FIG. 16, the orthogonal region X includes a region where the operating efficiency of the electric motor 1 is better when the rotor phase difference is advanced by 100 ° to 120 °. In the above description, the rotor phase difference is not advanced even in this region, that is, the induced voltage constant is kept constant. However, the rotor phase difference may be advanced by about 50 ° to 60 °.

(第2の実施形態)
第2の実施形態の指令値決定部221は、第1の指令値決定部121と同様に、外部から入力されたトルク指令値Tと、回転数算出部103によって算出された電動機1の回転数Nmと、外部から入力された図示しない蓄電器のバッテリ電圧Vdcとに基づいて、誘起電圧定数の指令値Ke_cを決定する。但し、指令値決定部221は、誘起電圧定数の指令値Ke_cを決定する際に、図示しないメモリに格納された図6に示す第2Keマップを利用する。第2Keマップは、図7に示すグラフに基づき予め作成され、メモリに格納される。図7は、電動機1の回転数Nmとトルクとの関係及び第2の実施形態で設定される誘起電圧定数を示すグラフである。
(Second Embodiment)
Similarly to the first command value determination unit 121, the command value determination unit 221 of the second embodiment and the torque command value T input from the outside and the rotation speed of the electric motor 1 calculated by the rotation speed calculation unit 103. A command value Ke_c of the induced voltage constant is determined based on Nm and a battery voltage Vdc of a capacitor (not shown) input from the outside. However, the command value determination unit 221 uses the second Ke map shown in FIG. 6 stored in a memory (not shown) when determining the command value Ke_c of the induced voltage constant. The second Ke map is created in advance based on the graph shown in FIG. 7 and stored in the memory. FIG. 7 is a graph showing the relationship between the rotational speed Nm and the torque of the electric motor 1 and the induced voltage constant set in the second embodiment.

本実施形態では、指令値決定部221によって、直交領域X及び非直交領域Y内の図7中の点線vが示す回転数以下の領域Zでは、誘起電圧定数が最大に設定され、非直交領域Yの領域Z以外の領域では回転数Nmとトルクとの関係に応じて誘起電圧定数が適宜設定される。図7に示した例では、誘起電圧定数がKe1>>Ke4>Ke5の関係を有するとき、直交領域X及び領域Zでは、誘起電圧定数Ke1に設定され、非直交領域Yの領域Z以外の領域では、トルクとの関係に応じて適した誘起電圧定数(Ke4又はKe5)が適宜設定される。   In the present embodiment, the command value determining unit 221 sets the induced voltage constant to the maximum in the region Z equal to or less than the rotation speed indicated by the dotted line v in FIG. In the region other than the region Z of Y, the induced voltage constant is appropriately set according to the relationship between the rotational speed Nm and the torque. In the example shown in FIG. 7, when the induced voltage constant has a relationship of Ke1 >> Ke4> Ke5, the orthogonal region X and the region Z are set to the induced voltage constant Ke1 and the regions other than the region Z of the non-orthogonal region Y Then, an appropriate induced voltage constant (Ke4 or Ke5) is appropriately set according to the relationship with the torque.

図7中の点線vが示す回転数は、最大の誘起電圧定数Ke1に設定した状態、すなわちロータ位相差を0°に固定した状態で電動機1を駆動した際に、電動機1で発生する誘起電圧(=誘起電圧定数×回転数)が、電動機1に接続されたインバータのスイッチング素子等の耐圧を超えるときの回転数よりも低い回転数である。   The rotational speed indicated by the dotted line v in FIG. 7 is the induced voltage generated in the motor 1 when the motor 1 is driven in a state where the maximum induced voltage constant Ke1 is set, that is, in a state where the rotor phase difference is fixed at 0 °. The number of rotations is lower than the number of rotations when (= induced voltage constant × number of rotations) exceeds the breakdown voltage of the switching element of the inverter connected to the electric motor 1.

なお、第2Keマップにも、第1の実施形態で説明した第1Keマップと同様に、バッテリ電圧Vdcに応じて異なる複数のテーブルが設けられている。例えば、図6に示すように、バッテリ電圧VdcがV1程度のときに用いられるテーブル、V2程度のときに用いられるテーブルといった複数のテーブルが第2Keマップに設けられている。   Note that the second Ke map also includes a plurality of different tables depending on the battery voltage Vdc, as in the first Ke map described in the first embodiment. For example, as shown in FIG. 6, a plurality of tables such as a table used when the battery voltage Vdc is about V1 and a table used when the battery voltage Vdc is about V2 are provided in the second Ke map.

指令値決定部221は、外部から入力されたバッテリ電圧Vdcに対応するテーブルの第2Keマップを用いて、トルク指令値T及び回転数Nmに応じた誘起電圧定数Keを決定し、誘起電圧定数の指令値ke_cを出力する。   The command value determination unit 221 determines an induced voltage constant Ke corresponding to the torque command value T and the rotational speed Nm using the second Ke map of the table corresponding to the battery voltage Vdc input from the outside, and the induced voltage constant Command value ke_c is output.

このように、本実施形態では、界磁弱め制御が必要な非直交領域Yの一部の領域Zでも、誘起電圧定数が最大に設定される。しかし、領域Zで誘起電圧定数を最大に設定する、すなわちロータ位相差を0°に固定すると、電動機1の運転効率が低下する。したがって、本実施形態の制御装置では、領域Zで、位相差制御系は誘起電圧定数を最大に設定するが、電動機1に供給する電流を制御する電流制御系は界磁弱め電流を電動機1に通電する。   Thus, in the present embodiment, the induced voltage constant is set to the maximum even in a part of the region Z of the non-orthogonal region Y that requires field weakening control. However, if the induced voltage constant is set to the maximum in the region Z, that is, if the rotor phase difference is fixed at 0 °, the operating efficiency of the electric motor 1 is lowered. Therefore, in the control device of the present embodiment, in the region Z, the phase difference control system sets the induced voltage constant to the maximum, but the current control system that controls the current supplied to the motor 1 supplies the field weakening current to the motor 1. Energize.

なお、指令値決定部221は、誘起電圧定数を直交領域X及び領域ZでKe1以上Ke2、Ke3又はKe4の半分程度以下の値に設定しても良い。すなわち、図16のグラフに示したように、直交領域Xには、ロータ位相差を100°〜120°進角させた方が電動機1の運転効率が良い領域があり、領域Zには、100°〜150°進角させた方が電動機1の運転効率が良い領域がある。上記説明では、この領域でもロータ位相差を進角させない、すなわち誘起電圧定数を一定に保つと説明したが、ロータ位相差を50°〜75°程度進角させても良い。   The command value determination unit 221 may set the induced voltage constant to a value not less than Ke1 and not more than about half of Ke2, Ke3, or Ke4 in the orthogonal region X and the region Z. That is, as shown in the graph of FIG. 16, in the orthogonal region X, there is a region where the operating efficiency of the electric motor 1 is better when the rotor phase difference is advanced by 100 ° to 120 °. There is a region where the operating efficiency of the electric motor 1 is better when the angle is advanced by 150 °. In the above description, the rotor phase difference is not advanced even in this region, that is, the induced voltage constant is kept constant. However, the rotor phase difference may be advanced by about 50 ° to 75 °.

本実施形態の制御装置は、以上説明した指令値決定部221及び電流制御系による界磁弱め電流の通電を除いて、第1の実施形態の制御装置と同様であるため、他の構成要素の説明は省略する。   The control device according to the present embodiment is the same as the control device according to the first embodiment, except for the energization of the field weakening current by the command value determination unit 221 and the current control system described above. Description is omitted.

以上説明したように、本実施形態の制御装置によれば、直交領域X及び非直交領域Yの一部の領域Zでは、要求されたトルク値T及び回転数Nmにかかわらず誘起電圧定数が最大に設定されるため、電動機1のロータ位相差は一定に保たれ、非直交領域Yの領域Zを除く領域では、従来と同様に、電動機1の運転効率が最大となるよう要求されたトルク値T及び回転数Nmに応じてロータ位相差が調整される。したがって、直交領域X及び領域Zでは、運転効率は犠牲になるが、ドライバによって急激な加速操作等が行われた場合であってもロータ位相差は変更されない。その結果、電動機1は、ロータ位相差の進角又は遅角時におけるアクチュエータ25及びロータ位相差変更部30の稼動時間の影響を受けることなく、要求されたトルクを出力することができる。   As described above, according to the control device of the present embodiment, in the partial region Z of the orthogonal region X and the non-orthogonal region Y, the induced voltage constant is maximum regardless of the required torque value T and the rotational speed Nm. Therefore, the rotor phase difference of the electric motor 1 is kept constant, and the torque value required to maximize the operating efficiency of the electric motor 1 in the region excluding the region Z of the non-orthogonal region Y is the same as in the past. The rotor phase difference is adjusted according to T and the rotational speed Nm. Therefore, in the orthogonal region X and the region Z, the driving efficiency is sacrificed, but the rotor phase difference is not changed even when a rapid acceleration operation or the like is performed by the driver. As a result, the electric motor 1 can output the required torque without being affected by the operating time of the actuator 25 and the rotor phase difference changing unit 30 when the rotor phase difference is advanced or retarded.

なお、上記実施形態では、指令値決定部121が第1Keマップを利用し,指令値決定部221が第2Keマップを利用すると説明したが、指令値決定部121,221は、電動機1の運転状態に応じて、図16に示したグラフに基づくKeマップ、第1Keマップ及び第2Keマップのいずれかを選択し、選択したKeマップを利用しても良い。   In the above-described embodiment, the command value determination unit 121 uses the first Ke map and the command value determination unit 221 uses the second Ke map. However, the command value determination units 121 and 221 are operating states of the electric motor 1. Accordingly, any one of the Ke map, the first Ke map, and the second Ke map based on the graph shown in FIG. 16 may be selected and the selected Ke map may be used.

また、以上説明した第1の実施形態及び第2の実施形態では、指令値決定部121,221が、要求されたトルク値T及び回転数Nmに応じて誘起電圧定数を決定し、ロータ位相差制御部123は、指令値決定部121,221から出力された誘起電圧定数の指令値Ke_cとKe算出部119によって算出された誘起電圧定数Keの偏差ΔKeが減少するようアクチュエータ25に制御信号を出力している。他の実施形態として、図8に示すように、指令値決定部121,221の代わりに指令値決定部321を設け、ロータ位相差制御部123の代わりにロータ位相差制御部323を設けても良い。   In the first embodiment and the second embodiment described above, the command value determination units 121 and 221 determine the induced voltage constant according to the requested torque value T and the rotational speed Nm, and the rotor phase difference The control unit 123 outputs a control signal to the actuator 25 so that the deviation ΔKe between the command value Ke_c of the induced voltage constant output from the command value determination units 121 and 221 and the induced voltage constant Ke calculated by the Ke calculation unit 119 decreases. doing. As another embodiment, as shown in FIG. 8, a command value determining unit 321 may be provided instead of the command value determining units 121 and 221, and a rotor phase difference control unit 323 may be provided instead of the rotor phase difference control unit 123. good.

指令値決定部321は、外部から入力されたトルク指令値Tと、回転数算出部103によって算出された電動機1の回転数Nmと、外部から入力された図示しない蓄電器のバッテリ電圧Vdcとに基づいて、ロータ位相差の指令値θcを決定する。指令値決定部321は、ロータ位相差の指令値θcを決定する際に、図示しないメモリに格納された図9に示すθマップを利用する。θマップは、図3又は図7に示すグラフに基づき予め作成され、メモリに格納される。なお、θマップには、図3及び図7中の各誘起電圧定数Keに括弧書きで付された角度がロータ位相差として設定される。   The command value determination unit 321 is based on the torque command value T input from the outside, the rotation speed Nm of the electric motor 1 calculated by the rotation speed calculation unit 103, and the battery voltage Vdc of a capacitor (not shown) input from the outside. Thus, the rotor phase difference command value θc is determined. The command value determining unit 321 uses the θ map shown in FIG. 9 stored in a memory (not shown) when determining the rotor phase difference command value θc. The θ map is created in advance based on the graph shown in FIG. 3 or 7 and stored in the memory. In the θ map, an angle given in parentheses to each induced voltage constant Ke in FIGS. 3 and 7 is set as a rotor phase difference.

ロータ位相差制御部323は、指令値決定部321から出力されたロータ位相差の指令値θcとロータ位相差検出部117によって検出された実際のロータ位相差θsの偏差Δθが減少するよう制御信号を出力し、アクチュエータ25を制御する。   The rotor phase difference control unit 323 controls the rotor phase difference command value θc output from the command value determination unit 321 and the control signal so that the deviation Δθ between the actual rotor phase difference θs detected by the rotor phase difference detection unit 117 decreases. And the actuator 25 is controlled.

また、第1の実施形態で説明した式(1)に基づいて誘起電圧定数Keを算出するKe算出部119の代わりに、ロータ位相差検出部117によって得られた実際のロータ位相差θsから誘起電圧定位数Keを算出するKe算出部319を備えても良い。   Further, instead of the Ke calculation unit 119 that calculates the induced voltage constant Ke based on the equation (1) described in the first embodiment, the induction is performed from the actual rotor phase difference θs obtained by the rotor phase difference detection unit 117. A Ke calculator 319 for calculating the voltage localization number Ke may be provided.

さらに、上記実施形態では、要求されたトルク指令値Tが力行トルクの場合について説明したが、回生トルクの場合についても同様に適用できる。図10に、電動機1の回転数Nmと力行トルク又は回生トルクとの関係及び設定される誘起電圧定数を示すグラフの変形例を示す。また、図11に、力行トルク及び回生トルクの双方に適用可能な第1Keマップの変形例を示す。   Furthermore, although the said embodiment demonstrated the case where the requested | required torque command value T was power running torque, it is applicable similarly also in the case of regenerative torque. FIG. 10 shows a modification of the graph showing the relationship between the rotational speed Nm of the electric motor 1 and the power running torque or the regenerative torque and the set induced voltage constant. FIG. 11 shows a modification of the first Ke map applicable to both the power running torque and the regenerative torque.

本発明に係る第1の実施形態又は第2の実施形態の電動機1の制御装置を示すブロック図The block diagram which shows the control apparatus of the electric motor 1 of 1st Embodiment or 2nd Embodiment which concerns on this invention 第1の実施形態の制御装置で用いられる第1Keマップを示す図The figure which shows the 1st Ke map used with the control apparatus of 1st Embodiment. 電動機1の回転数Nmとトルクとの関係及び第1の実施形態で設定される誘起電圧定数を示すグラフThe graph which shows the relationship between the rotation speed Nm of the electric motor 1, and a torque, and the induced voltage constant set in 1st Embodiment. 電動機1の界磁弱め制御が必要な領域を示すグラフThe graph which shows the area | region where the field weakening control of the electric motor 1 is required 第1の実施形態の制御装置が備える指令値決定部121の動作を示すフローチャートThe flowchart which shows operation | movement of the command value determination part 121 with which the control apparatus of 1st Embodiment is provided. 第2の実施形態の制御装置で用いられる第2Keマップを示す図The figure which shows the 2nd Ke map used with the control apparatus of 2nd Embodiment. 電動機1の回転数Nmとトルクとの関係及び第2の実施形態で設定される誘起電圧定数を示すグラフThe graph which shows the relationship between the rotation speed Nm of the electric motor 1, and a torque and the induced voltage constant set in 2nd Embodiment. 本発明に係る他の実施形態の電動機1の制御装置を示すブロック図The block diagram which shows the control apparatus of the electric motor 1 of other embodiment which concerns on this invention. 他の実施形態の制御装置で用いられるθマップを示す図The figure which shows (theta) map used with the control apparatus of other embodiment. 電動機1の回転数Nmと力行トルク又は回生トルクとの関係及び設定される誘起電圧定数を示すグラフThe graph which shows the relationship between the rotation speed Nm of the electric motor 1, power running torque, or regenerative torque, and the induced voltage constant set. 力行トルク及び回生トルクの双方に適用可能な第1Keマップの変形例を示す図The figure which shows the modification of the 1st Ke map applicable to both power running torque and regenerative torque. 2重ロータを備えた電動機の断面図Cross section of electric motor with double rotor 電動機1が有するロータ位相差変更部の内部構造を示す図The figure which shows the internal structure of the rotor phase difference change part which the electric motor 1 has 電動機1の界磁強め状態(a)及び界磁弱め状態(b)を示す図The figure which shows the field strengthening state (a) and the field weakening state (b) of the electric motor 1 誘起電圧定数Keに応じて変化する電動機1の回転数及びトルクに応じた運転可能領域を示す図The figure which shows the driveable area | region according to the rotation speed and torque of the electric motor 1 which changes according to the induced voltage constant Ke. 電動機1の回転数Nmとトルクとの関係及び従来設定される誘起電圧定数を示すグラフThe graph which shows the relationship between the rotation speed Nm of the electric motor 1, and a torque, and the induced voltage constant set conventionally.

符号の説明Explanation of symbols

1 電動機
2 回転軸
11 内側ロータ
12 外側ロータ
10a 電機子
10 ステータ
30 ロータ位相差変更部
R1 第1リングギア
R2 第2リングギア
31 第1プラネタリギア
32 第2プラネタリギア
33,35 回転軸
34 軸受け
S サンギア
C1 第1プラネタリキャリア
C2 第2プラネタリキャリア
101 レゾルバ
103 回転数算出部
105 電流指令算出部
107 バンドパスフィルタ(BPF)
109 3相−dp変換部
111 電流FB制御部
113 rθ変換部
115 PWM演算部
25 アクチュエータ
117 ロータ位相差検出部
119,319 Ke算出部
121,221,321 指令値決定部
123,323 ロータ位相差制御部
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Rotating shaft 11 Inner rotor 12 Outer rotor 10a Armature 10 Stator 30 Rotor phase difference change part R1 1st ring gear R2 2nd ring gear 31 1st planetary gear 32 2nd planetary gear 33, 35 Rotating shaft 34 Bearing S Sun gear C1 1st planetary carrier C2 2nd planetary carrier 101 Resolver 103 Rotation speed calculation part 105 Current command calculation part 107 Band pass filter (BPF)
109 3-phase-dp conversion unit 111 Current FB control unit 113 rθ conversion unit 115 PWM calculation unit 25 Actuator 117 Rotor phase difference detection unit 119, 319 Ke calculation units 121, 221 and 321 Command value determination unit 123, 323 Rotor phase difference control Part

Claims (6)

永久磁石界磁型の電動機の回転軸の周囲に同心円状に設けられた第1回転子及び第2回転子の相対変位角を制御する電動機の制御装置であって、
前記第1回転子又は前記第2回転子の単位時間当たりの回転数を検出する回転数検出部と、
要求されたトルク値及び前記回転数検出部によって検出された回転数に基づいて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角又は当該相対変位角に相関する変数の指令値を決定する指令値決定部と、
前記指令値決定部によって決定された指令値に応じて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角を制御する制御部と、を備え、
前記指令値決定部は、
前記電動機のトルクと回転数との関係を示すグラフ上の、前記電動機に対して界磁弱め制御が不要な直交領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、前記回転数における前記電動機の誘起電圧が最大となる相対変位角と前記電動機の運転効率が最も良い相対変位角の中間の値を前記指令値として決定することを特徴とする電動機の制御装置。
A control device for an electric motor for controlling a relative displacement angle between a first rotor and a second rotor provided concentrically around a rotation shaft of a permanent magnet field motor,
A rotational speed detector for detecting the rotational speed per unit time of the first rotor or the second rotor;
Based on the requested torque value and the rotational speed detected by the rotational speed detection unit, the relative displacement angle of the first rotor and the second rotor of the electric motor or a variable command correlated with the relative displacement angle A command value determining unit for determining a value;
A control unit that controls a relative displacement angle of the first rotor and the second rotor of the electric motor according to the command value determined by the command value determination unit;
The command value determining unit
On the graph showing the relationship between the torque of the motor and the number of revolutions, in the orthogonal region where field weakening control is not required for the motor , the relative displacement angle is the maximum induced voltage of the motor at the number of revolutions. In the region where the operating efficiency of the motor is better than the relative displacement angle, the relative displacement angle at which the induced voltage of the motor at the rotational speed is maximum and the relative displacement angle at which the operating efficiency of the motor is the best An intermediate value of the motor is determined as the command value.
請求項1に記載の電動機の制御装置であって、
前記指令値決定部は、
前記直交領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、請求項1に記載の前記指令値決定部による決定に代えて、前記回転数における前記電動機の誘起電圧が最大となる相対変位角に相関する変数と前記電動機の運転効率が最も良い相対変位角に相関する変数の中間の値を前記指令値として決定することを特徴とする電動機の制御装置。
The motor control device according to claim 1,
The command value determining unit
2. The region according to claim 1, wherein the operating efficiency of the electric motor is better when the relative displacement angle in the orthogonal region is advanced than the relative displacement angle at which the induced voltage of the electric motor at the rotational speed is maximum. Instead of the determination by the command value determination unit , the intermediate between the variable correlated with the relative displacement angle at which the induced voltage of the electric motor at the rotational speed is maximum and the variable correlated with the relative displacement angle at which the operating efficiency of the electric motor is the best Is determined as the command value.
永久磁石界磁型の電動機の回転軸の周囲に同心円状に設けられた第1回転子及び第2回転子の相対変位角を制御する電動機の制御装置であって、
前記第1回転子又は前記第2回転子の単位時間当たりの回転数を検出する回転数検出部と、
要求されたトルク値及び前記回転数検出部によって検出された回転数に基づいて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角又は当該相対変位角に相関する変数の指令値を決定する指令値決定部と、
前記指令値決定部によって決定された指令値に応じて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角を制御する制御部と、を備え、
前記指令値決定部は、
前記電動機のトルクと回転数との関係を示すグラフ上の、前記電動機に対して界磁弱め制御が不要な直交領域と、前記電動機に対して界磁弱め制御が必要な領域内の、前記電動機の誘起電圧が最大となる相対変位角に固定した状態で前記電動機を駆動した際に発生する誘起電圧が、前記電動機又は前記電動機に関係する電子部品の耐圧を超える回転数よりも低い所定回転数以下の特定領域とでは、前記回転数における前記電動機の誘起電圧が最大となる相対変位角又は当該相対変位角に関係する変数を前記指令値として決定することを特徴とする電動機の制御装置。
A control device for an electric motor for controlling a relative displacement angle between a first rotor and a second rotor provided concentrically around a rotation shaft of a permanent magnet field motor,
A rotation speed detector which detects the number of revolutions per unit time of the first rotor or the second rotor,
Based on the requested torque value and the rotational speed detected by the rotational speed detection unit, the relative displacement angle of the first rotor and the second rotor of the electric motor or a variable command correlated with the relative displacement angle A command value determining unit for determining a value;
A control unit that controls a relative displacement angle of the first rotor and the second rotor of the electric motor according to the command value determined by the command value determination unit;
The command value determining unit
On the graph showing the relationship between the torque and the rotational speed of the motor, the motor in an orthogonal region where field weakening control is not required for the motor and in a region where field weakening control is required for the motor A predetermined rotational speed at which the induced voltage generated when the electric motor is driven with the relative displacement angle at which the induced voltage of the electric motor is fixed is lower than the rotational speed exceeding the withstand voltage of the electric motor or the electronic component related to the electric motor. In the following specific region, the relative displacement angle at which the induced voltage of the electric motor at the rotational speed becomes maximum or a variable related to the relative displacement angle is determined as the command value.
請求項に記載の電動機の制御装置であって、
前記指令値決定部は、
前記直交領域及び前記特定領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、請求項3に記載の前記指令値決定部による決定に代えて、前記回転数における前記電動機の誘起電圧が最大となる相対変位角と前記電動機の運転効率が最も良い相対変位角の中間の値を前記指令値として決定することを特徴とする電動機の制御装置。
The motor control device according to claim 3 ,
The command value determining unit
Wherein the orthogonal region and the specific region, in the operating efficiency is good area towards the induced voltage of the motor to the relative angular displacement in the rotational speed was advanced from the relative displacement angle that maximizes said motor, wherein Instead of the determination by the command value determination unit according to Item 3, an intermediate value between a relative displacement angle at which the induced voltage of the electric motor at the rotational speed is maximum and a relative displacement angle at which the operating efficiency of the electric motor is the best is A control device for an electric motor, wherein the control device determines the command value.
請求項に記載の電動機の制御装置であって、
前記指令値決定部は、
前記直交領域及び前記特定領域内の、前記相対変位角を前記回転数における前記電動機の誘起電圧が最大となる相対変位角よりも進角させた方が前記電動機の運転効率が良い領域では、請求項3に記載の前記指令値決定部による決定に代えて、前記回転数における前記電動機の誘起電圧が最大となる相対変位角に相関する変数と前記電動機の運転効率が最も良い相対変位角に相関する変数の中間の値を前記指令値として決定することを特徴とする電動機の制御装置。
The motor control device according to claim 3 ,
The command value determining unit
Wherein the orthogonal region and the specific region, in the operating efficiency is good area towards the induced voltage of the motor to the relative angular displacement in the rotational speed was advanced from the relative displacement angle that maximizes said motor, wherein Instead of the determination by the command value determination unit according to Item 3, the variable correlates with a relative displacement angle at which the induced voltage of the electric motor at the rotation speed is maximum and a relative displacement angle at which the operating efficiency of the electric motor is the best. An intermediate value of a variable to be determined is determined as the command value.
永久磁石界磁型の電動機の回転軸の周囲に同心円状に設けられた第1回転子及び第2回転子の相対変位角を制御する電動機の制御装置であって、
前記第1回転子又は前記第2回転子の単位時間当たりの回転数を検出する回転数検出部と、
要求されたトルク値及び前記回転数検出部によって検出された回転数に基づいて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角又は当該相対変位角に相関する変数の指令値を決定する指令値決定部と、
前記指令値決定部によって決定された指令値に応じて、前記電動機の前記第1回転子及び前記第2回転子の相対変位角を制御する制御部と、を備え、
前記指令値決定部は、
前記電動機のトルクと回転数との関係を示すグラフ上の、前記回転数における前記電動機の誘起電圧が最大となる相対変位角又は当該相対変位角に関係する変数を前記指令値として決定する領域を、前記電動機の運転状態に応じて、前記電動機に対して界磁弱め制御が不要な直交領域、又は、前記電動機に対して界磁弱め制御が必要な領域内の、前記電動機の誘起電圧が最大となる相対変位角に固定した状態で前記電動機を駆動した際に発生する誘起電圧が、前記電動機又は前記電動機に関係する電子部品の耐圧を超える回転数よりも低い所定回転数以下の特定領域及び前記直交領域に設定することを特徴とする電動機の制御装置。
A control device for an electric motor for controlling a relative displacement angle between a first rotor and a second rotor provided concentrically around a rotation shaft of a permanent magnet field motor,
A rotation speed detector which detects the number of revolutions per unit time of the first rotor or the second rotor,
Based on the requested torque value and the rotational speed detected by the rotational speed detection unit, the relative displacement angle of the first rotor and the second rotor of the electric motor or a variable command correlated with the relative displacement angle A command value determining unit for determining a value;
A control unit that controls a relative displacement angle of the first rotor and the second rotor of the electric motor according to the command value determined by the command value determination unit;
The command value determining unit
On the graph showing the relationship between the torque of the motor and the rotational speed, an area for determining, as the command value, a relative displacement angle at which the induced voltage of the motor at the rotational speed is maximum or a variable related to the relative displacement angle. Depending on the operating state of the motor, the induced voltage of the motor is maximum in an orthogonal region where field weakening control is not required for the motor or in a region where field weakening control is required for the motor. A specific region below a predetermined number of revolutions that is lower than the number of revolutions in which the induced voltage generated when the electric motor is driven in a state of being fixed at a relative displacement angle that exceeds the pressure resistance of the electric motor or the electronic component related to the electric motor, and The motor control device is set in the orthogonal region.
JP2008053955A 2008-03-04 2008-03-04 Electric motor control device Expired - Fee Related JP5212696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053955A JP5212696B2 (en) 2008-03-04 2008-03-04 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053955A JP5212696B2 (en) 2008-03-04 2008-03-04 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2009213266A JP2009213266A (en) 2009-09-17
JP5212696B2 true JP5212696B2 (en) 2013-06-19

Family

ID=41185870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053955A Expired - Fee Related JP5212696B2 (en) 2008-03-04 2008-03-04 Electric motor control device

Country Status (1)

Country Link
JP (1) JP5212696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080652A (en) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd Controller of driving device
JP2012080656A (en) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd Controller of driving device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527082B2 (en) * 2006-05-24 2010-08-18 本田技研工業株式会社 Control device for hybrid vehicle
JP4712638B2 (en) * 2006-08-04 2011-06-29 本田技研工業株式会社 Electric motor control device

Also Published As

Publication number Publication date
JP2009213266A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4754379B2 (en) Electric motor control device
JP4452735B2 (en) Boost converter control device and control method
JP4879657B2 (en) Electric motor control device
US7622875B2 (en) Controller for motor
JP4985956B2 (en) Electric motor control device
JP4879649B2 (en) Electric motor control device
JP4712585B2 (en) Electric motor control device
US7583048B2 (en) Controller for motor
JP2008259302A (en) Controller of electric motor
JP4385185B2 (en) Electric motor control device
JP4699309B2 (en) Electric motor control device
JP2007274779A (en) Electromotive drive control device, and electromotive drive control method
JP4960748B2 (en) Axial gap type motor
JP4749941B2 (en) Electric motor control device
JP4163226B2 (en) Motor control device
JP2009240125A (en) Controller for motor system
JP2006304441A (en) Synchronous motor control device
JP4749936B2 (en) Electric motor control device
JP5212696B2 (en) Electric motor control device
JP2012239302A (en) Rotary electric machine controller
JP5212697B2 (en) Electric motor control device
JP5995079B2 (en) Motor control device
JP2006050705A (en) Motor control unit
JP4860408B2 (en) Electric motor control device
JP4850631B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees