JP5212275B2 - Electrode plate for plasma processing equipment - Google Patents

Electrode plate for plasma processing equipment Download PDF

Info

Publication number
JP5212275B2
JP5212275B2 JP2009157663A JP2009157663A JP5212275B2 JP 5212275 B2 JP5212275 B2 JP 5212275B2 JP 2009157663 A JP2009157663 A JP 2009157663A JP 2009157663 A JP2009157663 A JP 2009157663A JP 5212275 B2 JP5212275 B2 JP 5212275B2
Authority
JP
Japan
Prior art keywords
electrode plate
outer peripheral
electrode
gas passage
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009157663A
Other languages
Japanese (ja)
Other versions
JP2011014720A (en
Inventor
治 山田
孝志 米久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009157663A priority Critical patent/JP5212275B2/en
Publication of JP2011014720A publication Critical patent/JP2011014720A/en
Application granted granted Critical
Publication of JP5212275B2 publication Critical patent/JP5212275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマ処理装置においてプラズマ生成用ガスを厚さ方向に通過させながら放電するプラズマ処理装置用電極板に関する。   The present invention relates to an electrode plate for a plasma processing apparatus that discharges a plasma generating gas while passing it in the thickness direction in the plasma processing apparatus.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、チャンバー内に、高周波電源に接続される上部電極と下部電極とを例えば上下に対向配置し、下部電極の上に被処理基板を配置した状態として、上部電極に形成した貫通孔からガスを被処理基板に向かって流通させながら高周波電圧を印加することによりプラズマを発生させ、被処理基板にエッチング等の処理を行う構成とされている。このプラズマ処理装置に用いられる電極板は、例えば単結晶シリコンにより外径400mm程度の円板状に形成され、その面全体に内径約0.5mmのガス通過孔が8mm程度のピッチで多数貫通状態に形成される。   In a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process, an upper electrode and a lower electrode connected to a high-frequency power source are disposed in a chamber so as to face each other, for example, vertically. The substrate to be processed is placed in a state where a plasma is generated by applying a high frequency voltage while flowing a gas from the through hole formed in the upper electrode toward the substrate to be processed, and the substrate to be processed is subjected to processing such as etching. It is configured to do. The electrode plate used in this plasma processing apparatus is formed in a disk shape having an outer diameter of about 400 mm by, for example, single crystal silicon, and a large number of gas passage holes having an inner diameter of about 0.5 mm are penetrated through the entire surface at a pitch of about 8 mm. Formed.

また、この電極板の背面にはアルミニウム製などの金属からなる冷却板が設けられる。
例えば、特許文献1では、電極板の背面に、表面にアルマイト処理されたアルミニウム等の金属からなる冷却板が設けられており、また、特許文献2では、電極板の背面に金属膜を介して冷却板が締結固定されている。
A cooling plate made of a metal such as aluminum is provided on the back surface of the electrode plate.
For example, in Patent Document 1, a cooling plate made of a metal such as aluminum whose surface is anodized is provided on the back surface of the electrode plate, and in Patent Document 2, a metal film is provided on the back surface of the electrode plate. The cooling plate is fastened and fixed.

特開2003−332314号公報JP 2003-332314 A 特開平11−256370号公報Japanese Patent Laid-Open No. 11-256370

ところで、上記のように構成されたプラズマ処理装置では、ウエハの口径が200mmから300mmに大型化し、また、数nmの寸法ばらつきが許されない厳しいプロセス制御が要求されるようになってきており、プラズマエッチングなどのプラズマ処理に対して、高い面内均一性が不可欠になってきている。
この要求を実現するために、プラズマ処理中において電極板の外周部と中央部との温度を一定にすることが望ましいが、現状では、電極板の外周部は周辺に放熱し易いのに対して中央部は放熱しにくく、中央部と外周部との間に温度差が生じて、プラズマ処理の面内均一性を確保する障害になっていた。
By the way, in the plasma processing apparatus configured as described above, the diameter of the wafer is increased from 200 mm to 300 mm, and strict process control that does not allow dimensional variations of several nanometers has been required. High in-plane uniformity has become indispensable for plasma processing such as etching.
In order to realize this requirement, it is desirable to keep the temperature of the outer peripheral portion and the central portion of the electrode plate constant during the plasma treatment, but at present, the outer peripheral portion of the electrode plate tends to radiate heat to the periphery. The central part is difficult to dissipate heat, and a temperature difference is generated between the central part and the outer peripheral part, which is an obstacle to ensuring in-plane uniformity of plasma processing.

本発明は、このような事情に鑑みてなされたもので、電極板の中央部と外周部に生じる温度差を小さくして、プラズマ処理の面内均一性を向上させることができるプラズマ処理装置用電極板の提供を目的とする。   The present invention has been made in view of such circumstances, and it is for a plasma processing apparatus capable of reducing the temperature difference generated between the central portion and the outer peripheral portion of the electrode plate and improving the in-plane uniformity of the plasma processing. An object is to provide an electrode plate.

本発明の電極板は、厚さ方向に貫通するガス通過孔が複数形成されるとともに、これらガス通過孔を避けて溝状又はスポット状の凹部が背面部の面方向に分散するように形成され、電極板の単位体積当たりの前記凹部の占有体積が、電極板の中央部に比べて外周部の方が大きく形成されていることを特徴とする。
また、本発明の電極板は、複数枚の電極構成板が積層されるとともに、これら電極構成板を厚さ方向に貫通するガス通過孔が複数形成されてなり、これら電極構成板の積層面間に、前記ガス通過孔を避けて溝状又はスポット状の中空部が面方向に分散するように形成され、電極板の単位体積当たりの前記中空部の占有体積が、電極板の中央部に比べて外周部の方が大きく形成されていることを特徴とする。
The electrode plate of the present invention is formed such that a plurality of gas passage holes penetrating in the thickness direction are formed, and groove-like or spot-like concave portions are dispersed in the surface direction of the back surface portion avoiding these gas passage holes. The volume occupied by the recess per unit volume of the electrode plate is larger in the outer peripheral portion than in the central portion of the electrode plate.
The electrode plate of the present invention is formed by laminating a plurality of electrode component plates and a plurality of gas passage holes penetrating these electrode component plates in the thickness direction. In addition, groove-shaped or spot-shaped hollow portions are formed so as to be dispersed in the surface direction while avoiding the gas passage holes, and the occupied volume of the hollow portions per unit volume of the electrode plate is larger than that of the central portion of the electrode plate. Thus, the outer peripheral portion is formed larger.

本発明の電極板において、凹部又は中空部が形成されていることにより、その部分が断熱空間となっている。そして、電極板全体としては、凹部又は中空部が面方向に分散するように設けられていることから、断熱空間が面方向に分散することになる。この場合、電極板の単位面積当たりの凹部又は中空部の占有体積が、電極板の中央部に比べて外周部の方が大きく形成されているので、電極板の外周部の方が中央部より厚さ方向の熱伝達に対して断熱効果が大きく、これにより、周辺に放熱し易い電極板の外周部の厚さ方向への熱伝達を抑制して、電極板全体として、外周部と中央部との温度差を小さくすることができる。
電極板の単位体積当たりの前記凹部の占有体積を電極板の中央部に比べて外周部の方で大きく形成する手段としては、凹部又は中空部の横断面積を電極板の中央部に比べて外周部の方で大きくする、凹部又は中空部が横断面積としては一様の場合、その配設間隔を中央部に比べて外周部の方で小さくする、あるいは、これらの横断面積と配設間隔とを組み合わせる、などの手段を適用することができる。
In the electrode plate of the present invention, the recessed portion or the hollow portion is formed, so that the portion becomes a heat insulating space. And since it is provided so that a recessed part or a hollow part may be disperse | distributed to a surface direction as the whole electrode plate, a heat insulation space will disperse | distribute to a surface direction. In this case, the volume occupied by the concave portion or the hollow portion per unit area of the electrode plate is formed larger in the outer peripheral portion than in the central portion of the electrode plate, so that the outer peripheral portion of the electrode plate is more than the central portion. The heat insulation effect is great for heat transfer in the thickness direction, which suppresses heat transfer in the thickness direction of the outer periphery of the electrode plate that easily dissipates heat to the periphery, and as a whole electrode plate, the outer periphery and the center And the temperature difference can be reduced.
As a means for forming the occupied volume of the concave portion per unit volume of the electrode plate larger in the outer peripheral portion than in the central portion of the electrode plate, the transverse area of the concave portion or the hollow portion is set in the outer peripheral portion compared with the central portion of the electrode plate. When the recess or hollow part is uniform as the cross-sectional area, the arrangement interval is made smaller at the outer peripheral part than the center part, or these cross-sectional area and arrangement interval It is possible to apply means such as combining the above.

本発明の電極板は、厚さ方向に貫通するガス通過孔が複数形成されるとともに、これらガス通過孔を避けて溝状又はスポット状の凹部が背面部の面方向に分散するように形成され、電極板の単位体積当たりの前記凹部の占有体積が、電極板の中央部に比べて外周部の方が小さく形成され、前記凹部内に熱伝導材が設けられていることを特徴とする。
また、本発明の電極板は、複数枚の電極構成板が積層されるとともに、これら電極構成板を厚さ方向に貫通するガス通過孔が複数形成されてなり、これら電極構成板の積層面間に、前記ガス通過孔を避けて溝状又はスポット状の中空部が面方向に分散するように形成され、電極板の単位体積当たりの前記中空部の占有体積が、電極板の中央部に比べて外周部の方が小さく形成され、前記中空部内に熱伝導材が設けられていることを特徴とする。
The electrode plate of the present invention is formed such that a plurality of gas passage holes penetrating in the thickness direction are formed, and groove-like or spot-like concave portions are dispersed in the surface direction of the back surface portion avoiding these gas passage holes. The volume occupied by the concave portion per unit volume of the electrode plate is smaller in the outer peripheral portion than in the central portion of the electrode plate, and a heat conductive material is provided in the concave portion.
The electrode plate of the present invention is formed by laminating a plurality of electrode component plates and a plurality of gas passage holes penetrating these electrode component plates in the thickness direction. In addition, groove-shaped or spot-shaped hollow portions are formed so as to be dispersed in the surface direction while avoiding the gas passage holes, and the occupied volume of the hollow portions per unit volume of the electrode plate is larger than that of the central portion of the electrode plate. The outer peripheral part is formed smaller, and a heat conductive material is provided in the hollow part.

この場合は、先の発明とは逆で、凹部又は中空部内に設けた熱伝導材によって電極板の放熱性を高めつつこれを面方向に沿って制御することができる。すなわち、熱伝導材による占有体積が電極板の中央部に比べて外周部の方が小さく形成されることにより、中央部は電極板の厚さ方向に放熱し易いのに対して外周部は厚さ方向への放熱がしにくくなっている。これにより、全体として均等な放熱を行わせるようにしたものである。したがって、プラズマ放電面で発生した熱は、この熱伝導材を経由して速やかに背面側に伝達されて冷却板に放散される。その結果、電極板全体として、外周部と中央部との温度差を小さくすることができる。   In this case, contrary to the previous invention, this can be controlled along the surface direction while enhancing the heat dissipation of the electrode plate by the heat conducting material provided in the recess or the hollow part. That is, the occupied volume by the heat conductive material is formed smaller in the outer peripheral portion than in the central portion of the electrode plate, so that the central portion easily dissipates heat in the thickness direction of the electrode plate, whereas the outer peripheral portion is thicker. It is difficult to dissipate heat in the vertical direction. Thereby, uniform heat dissipation is performed as a whole. Therefore, the heat generated on the plasma discharge surface is quickly transmitted to the back side via this heat conducting material and dissipated to the cooling plate. As a result, the temperature difference between the outer peripheral portion and the central portion can be reduced as the entire electrode plate.

本発明の電極板によれば、その背面に形成した凹部又は内部に形成した中空部が面方向に分散し、単位体積当たりの占有体積が電極板の中央部と外周部とで異なっていることにより、電極板の中央部と外周部とで熱の伝達性を制御して、中央部と外周部との温度差を小さくすることができ、面内均一なプラズマ処理を行わせることができる。   According to the electrode plate of the present invention, the concave portion formed on the back surface or the hollow portion formed inside is dispersed in the surface direction, and the occupied volume per unit volume is different between the central portion and the outer peripheral portion of the electrode plate. Thus, the heat transferability is controlled between the central portion and the outer peripheral portion of the electrode plate, the temperature difference between the central portion and the outer peripheral portion can be reduced, and the in-plane uniform plasma treatment can be performed.

本発明の電極板の第1実施形態を示す(a)が背面図、(b)が縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) which shows 1st Embodiment of the electrode plate of this invention is a rear view, (b) is a longitudinal cross-sectional view. 図1の電極板が用いられるプラズマ処理装置の例を示す概略構成図である。It is a schematic block diagram which shows the example of the plasma processing apparatus in which the electrode plate of FIG. 1 is used. 本発明の電極板の第2実施形態を示す(a)が背面図、(b)が縦断面図である。(A) which shows 2nd Embodiment of the electrode plate of this invention is a rear view, (b) is a longitudinal cross-sectional view. 本発明の電極板の第3実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the electrode plate of this invention. 本発明の電極板の第4実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 4th Embodiment of the electrode plate of this invention. 本発明の電極板の第5実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 5th Embodiment of the electrode plate of this invention.

以下、本発明の電極板の実施形態を図面を参照しながら説明する。
まず、この電極板が用いられるプラズマ処理装置としてプラズマエッチング装置について説明する。
このプラズマエッチング装置1は、図2の概略断面図に示されるように、真空チャンバー2内の上部に電極板(上部電極)3が設けられるとともに、下部に上下動可能な架台(下部電極)4が電極板3と相互間隔をおいて平行に設けられている。この場合、上部の電極板3は絶縁体5により真空チャンバー2の壁に対して絶縁状態に支持されているとともに、架台4の上には、静電チャック6と、その周りを囲むシリコン製の支持リング7とが設けられており、静電チャック6の上に、支持リング7により周縁部を支持した状態でウエハ(被処理基板)8を載置するようになっている。また、真空チャンバー2の上部にはエッチングガス供給管9が設けられ、このエッチングガス供給管9から送られてきたエッチングガスは拡散部材10を経由した後、電極板3に設けられたガス通過孔11を通してウエハ8に向って流され、真空チャンバー2の側部の排出口12から外部に排出される構成とされている。一方、電極板3と架台4との間には高周波電源13により高周波電圧が印加されるようになっている。
Hereinafter, embodiments of the electrode plate of the present invention will be described with reference to the drawings.
First, a plasma etching apparatus will be described as a plasma processing apparatus using this electrode plate.
As shown in the schematic cross-sectional view of FIG. 2, the plasma etching apparatus 1 is provided with an electrode plate (upper electrode) 3 in the upper part of the vacuum chamber 2 and a pedestal (lower electrode) 4 that can be moved up and down in the lower part. Are provided in parallel with the electrode plate 3 at a distance from each other. In this case, the upper electrode plate 3 is supported in an insulated state by the insulator 5 with respect to the wall of the vacuum chamber 2, and the electrostatic chuck 6 and the silicon-made surrounding material are placed on the mount 4. A support ring 7 is provided, and a wafer (substrate to be processed) 8 is placed on the electrostatic chuck 6 with the peripheral edge supported by the support ring 7. Further, an etching gas supply pipe 9 is provided in the upper part of the vacuum chamber 2, and the etching gas sent from the etching gas supply pipe 9 passes through the diffusion member 10 and then is a gas passage hole provided in the electrode plate 3. 11 is made to flow toward the wafer 8 and discharged from the discharge port 12 on the side of the vacuum chamber 2 to the outside. On the other hand, a high frequency voltage is applied between the electrode plate 3 and the gantry 4 by a high frequency power source 13.

また、電極板3は、シリコンによって円板状に形成されており、その背面には熱伝導性に優れるアルミニウム等からなる冷却板14が固定され、この冷却板14にも、電極板3のガス通過孔11に連通するように、このガス通過孔11と同じピッチで貫通孔15が形成されている。この電極板3の構造については後述する。   The electrode plate 3 is formed in a disk shape with silicon, and a cooling plate 14 made of aluminum or the like having excellent thermal conductivity is fixed to the back surface of the electrode plate 3, and the gas of the electrode plate 3 is also fixed to the cooling plate 14. Through holes 15 are formed at the same pitch as the gas passage holes 11 so as to communicate with the passage holes 11. The structure of the electrode plate 3 will be described later.

このプラズマエッチング装置1では、高周波電源13から高周波電圧を印加してエッチングガスを供給すると、このエッチングガスは拡散部材10を経由して、電極板3に設けられたガス通過孔11を通って電極板3と架台4との間の空間に放出され、この空間内でプラズマとなってウエハ8に当り、このプラズマによるスパッタリングすなわち物理反応と、エッチングガスの化学反応とにより、ウエハ8の表面がエッチングされる。
また、ウエハ8の均一なエッチングを行う目的で、発生したプラズマをウエハ8の中央部に集中させ、外周部へ拡散するのを阻止して電極板3とウエハ8との間に均一なプラズマを発生させるために、通常、プラズマ発生領域16がシリコン製のシールドリング17で囲われた状態とされている。
In this plasma etching apparatus 1, when an etching gas is supplied by applying a high-frequency voltage from a high-frequency power source 13, the etching gas passes through the diffusion member 10 and passes through the gas passage hole 11 provided in the electrode plate 3 to form an electrode. It is released into the space between the plate 3 and the gantry 4 and becomes plasma in this space, hits the wafer 8, and the surface of the wafer 8 is etched by sputtering, that is, physical reaction and chemical reaction of the etching gas. Is done.
Further, for the purpose of uniformly etching the wafer 8, the generated plasma is concentrated on the central portion of the wafer 8, and is prevented from diffusing to the outer peripheral portion, thereby generating a uniform plasma between the electrode plate 3 and the wafer 8. In order to generate the plasma, the plasma generation region 16 is usually surrounded by a silicon shield ring 17.

次に、電極板3の詳細構造について図1を参照しながら説明する。
この電極板3は、単結晶シリコン、柱状晶シリコン、又は多結晶シリコンにより円板状に形成されており、ガス通過孔11は、径の異なる複数の同心円上に並んで多数設けられている。
また、この電極板3は、冷却板14に接合される背面部に、リング溝状の凹部21A〜21Fが同心状に複数形成されている。これら凹部21A〜21Fは、ガス通過孔11が形成する各ピッチ円p1〜p7の間に一つずつ配置されており、図1(b)に示すように、いずれも同じ深さに形成されているが、その最も外周部に配置された凹部21Aが最も広幅に形成され、この最外周部の凹部21Aから半径方向内方に向かうに従って漸次幅を小さくするようにして複数の凹部21B〜21Eが配置され、最も内周側の中央部付近に配置される凹部21Fの幅が最も小さく形成されている。
Next, the detailed structure of the electrode plate 3 will be described with reference to FIG.
The electrode plate 3 is formed in a disc shape from single crystal silicon, columnar crystal silicon, or polycrystalline silicon, and a large number of gas passage holes 11 are provided side by side on a plurality of concentric circles having different diameters.
In addition, the electrode plate 3 has a plurality of concentric ring groove-shaped recesses 21 </ b> A to 21 </ b> F formed on the back surface portion joined to the cooling plate 14. These recesses 21A to 21F are arranged one by one between the pitch circles p1 to p7 formed by the gas passage holes 11, and are all formed to the same depth as shown in FIG. However, the concave portion 21A arranged at the outermost peripheral portion is formed with the widest width, and a plurality of concave portions 21B to 21E are formed so that the width gradually decreases from the concave portion 21A at the outermost peripheral portion inward in the radial direction. The width of the recessed portion 21F that is disposed and is disposed in the vicinity of the central portion on the innermost peripheral side is formed to be the smallest.

そして、この電極板3は、その背面が冷却板14に接触した状態でねじ止め等によってプラズマ処理装置1内に固定される。この固定状態では、背面の凹部21A〜21Fは冷却板14によって覆われることにより、リング状の空洞部となる。したがって、電極板3と冷却板14との間に、電極板3の外周部から中央部に向かうにしたがって漸次断面積を小さくした複数のリング状の空洞部が形成される。   The electrode plate 3 is fixed in the plasma processing apparatus 1 by screwing or the like with its back surface in contact with the cooling plate 14. In this fixed state, the recesses 21 </ b> A to 21 </ b> F on the back surface are covered with the cooling plate 14 to form a ring-shaped cavity. Therefore, between the electrode plate 3 and the cooling plate 14, a plurality of ring-shaped cavities with gradually decreasing cross-sectional areas are formed from the outer peripheral portion of the electrode plate 3 toward the central portion.

この電極板3を使用してプラズマ処理を行うことにより、背面の凹部21A〜21Fによる空間が断熱空間となり、電極板3の内部を伝導する熱は、凹部21A〜21Fの部分で厚さ方向への熱伝達が遮断され、その分、放熱が抑制されることになる。そして、この凹部21A〜21Fの断面積が電極板3の外周部から中央部に向かうにしたがって漸次小さくなっていることにより、凹部21A〜21Fによる断熱効果が外周部では大きく、中央部では小さくなる。
したがって、この電極板3は、厚さ方向の熱伝達が中央部よりも外周部で進みにくい状態となっており、その外周部は本来、半径外方等の周辺には放熱され易い状態であることにより、これらの総和として、電極板3全体としては面内で均等に放熱されることになる。これにより、電極板3の中央部と外周部との温度差を小さくして、温度を面内で均一にし、プラズマ処理の面内均一性、例えばエッチング深さの面内均一性を向上させることができる。
By performing plasma treatment using this electrode plate 3, the space formed by the recesses 21A to 21F on the back surface becomes a heat insulating space, and the heat conducted inside the electrode plate 3 flows in the thickness direction at the portions of the recesses 21A to 21F. Heat transfer is cut off, and heat radiation is suppressed accordingly. And since the cross-sectional area of this recessed part 21A-21F becomes small gradually as it goes to the center part from the outer peripheral part of the electrode plate 3, the heat insulation effect by recessed part 21A-21F is large in an outer peripheral part, and becomes small in a center part. .
Therefore, this electrode plate 3 is in a state in which heat transfer in the thickness direction is less likely to proceed in the outer peripheral portion than in the central portion, and the outer peripheral portion is originally in a state in which heat is easily radiated to the periphery such as radially outward. Thus, as a sum of these, the entire electrode plate 3 is radiated heat evenly in the plane. Thereby, the temperature difference between the central portion and the outer peripheral portion of the electrode plate 3 is reduced, the temperature is made uniform in the surface, and the in-plane uniformity of the plasma processing, for example, the in-plane uniformity of the etching depth is improved. Can do.

図3は本発明の電極板の第2実施形態を示している。
この実施形態の電極板25も、冷却板14に接触する背面に、リング溝状の凹部26A〜26Fが同心状に複数(ガス通過孔11のピッチ円p1〜p7の間に一つずつ)設けられている点は、第1実施形態の電極板3の場合と同様である。第1実施形態の電極板3では、各凹部21A〜21Fの深さは一定にし、その幅を電極板3の外周部から中央部に向けて変えていったが、第2実施形態の電極板25は、図2(b)に示すように、その背面の各凹部26A〜26Fの幅が一定で、深さが電極板25の外周部から中央部に向けて漸次浅くなるように形成されている。
したがって、凹部26A〜26Fの横断面積としては、第1実施形態のものと同様に、電極板25の外周部から中央部に向かうにしたがって漸次小さくなっており、第1実施形態の電極板3と同様に、電極板25の中央部と外周部との温度差を小さくして、温度を面内で均一にし、プラズマ処理の面内均一性を向上させることができる。
FIG. 3 shows a second embodiment of the electrode plate of the present invention.
The electrode plate 25 of this embodiment is also provided with a plurality of concentric ring groove-like recesses 26A to 26F (one each between the pitch circles p1 to p7 of the gas passage hole 11) on the back surface in contact with the cooling plate 14. This is the same as in the case of the electrode plate 3 of the first embodiment. In the electrode plate 3 of the first embodiment, the depth of each of the recesses 21A to 21F is constant, and the width is changed from the outer peripheral portion of the electrode plate 3 toward the central portion. However, the electrode plate of the second embodiment 2B, the width of each of the recesses 26A to 26F on the back surface thereof is constant, and the depth is gradually shallower from the outer periphery to the center of the electrode plate 25, as shown in FIG. Yes.
Accordingly, the cross-sectional areas of the recesses 26A to 26F are gradually decreased from the outer peripheral portion of the electrode plate 25 toward the central portion, similar to that of the first embodiment, and with the electrode plate 3 of the first embodiment. Similarly, the temperature difference between the central portion and the outer peripheral portion of the electrode plate 25 can be reduced, the temperature can be made uniform in the surface, and the in-plane uniformity of the plasma treatment can be improved.

図4は本発明の電極板の第3実施形態を示している。
この実施形態の電極板31は、二枚の電極構成板32を積層した構成とされ、これらの積層面の間にリング状の中空部33A〜33Fが同心状に複数(ガス通過孔11のピッチ円p1〜p7の間に一つずつ)形成されている。これら中空部33は、各電極構成板32の積層面に同一形状で形成した凹溝を突き合わせることにより形成されている。また、各中空部33A〜33Fとも、電極板31の厚さ方向に沿う寸法は同じに設定されているが、電極板31の面方向に沿う幅は、電極板31の外周部から中央部に向けて漸次小さくなるように設定されている。
したがって、この電極板31は、各中空部33A〜33Fの横断面積が電極板31の外周部から中央部に向けて漸次小さくなるように形成され、上記各実施形態の電極板と同様の効果が得られる。
FIG. 4 shows a third embodiment of the electrode plate of the present invention.
The electrode plate 31 of this embodiment has a configuration in which two electrode component plates 32 are laminated, and a plurality of ring-shaped hollow portions 33A to 33F are concentrically disposed between these laminated surfaces (pitch of the gas passage holes 11). Are formed between the circles p1 to p7). These hollow portions 33 are formed by abutting concave grooves formed in the same shape on the laminated surface of each electrode component plate 32. Moreover, although the dimension along the thickness direction of the electrode plate 31 is set to be the same for each of the hollow portions 33A to 33F, the width along the surface direction of the electrode plate 31 is from the outer peripheral portion of the electrode plate 31 to the central portion. It is set so as to gradually become smaller.
Therefore, this electrode plate 31 is formed so that the cross-sectional area of each of the hollow portions 33A to 33F gradually decreases from the outer peripheral portion of the electrode plate 31 toward the center portion, and the same effect as the electrode plate of each of the above embodiments is obtained. can get.

図5は本発明の電極板の第4実施形態を示している。
この実施形態の電極板35は、第3実施形態のものと同様に二枚の電極構成板36を積層した構成とされ、これらの積層面の間に形成したリング状の中空部37A〜37Fが、電極板35の面方向に沿う幅寸法は同じに設定され、厚さ方向に沿う寸法が電極板35の外周部から中央部に向けて漸次小さくなるように設定されている。
この電極板35においても、中空部37A〜37Fの横断面積が電極板35の外周部から中央部に向けて漸次小さくなっており、上記実施形態のものと同様の効果が得られる。
FIG. 5 shows a fourth embodiment of the electrode plate of the present invention.
The electrode plate 35 of this embodiment has a configuration in which two electrode component plates 36 are stacked in the same manner as in the third embodiment, and ring-shaped hollow portions 37A to 37F formed between these stacked surfaces are provided. The width dimension along the surface direction of the electrode plate 35 is set to be the same, and the dimension along the thickness direction is set to gradually decrease from the outer peripheral portion of the electrode plate 35 toward the central portion.
Also in this electrode plate 35, the cross-sectional areas of the hollow portions 37A to 37F are gradually reduced from the outer peripheral portion to the center portion of the electrode plate 35, and the same effect as that of the above embodiment can be obtained.

以上の各実施形態は、電極板に凹部又は中空部による断熱空間を形成し、その断熱空間の横断面積を電極板の外周部から中央部に向けて変えていくことにより、電極板の厚さ方向の放熱特性を制御して、これを面内均一にするようにしたものであるが、電極板に、その構成材であるシリコンよりも熱伝導性に優れる熱伝導材を配設することにより、電極板の放熱特性を制御するようにしてもよい。
図6に示す第5実施形態は、そのような熱伝導材を配設した電極板を示している。この電極板41は、その背面にリング溝状の凹部42A〜42Fが同心状に複数(ガス通過孔11のピッチ円p1〜p7の間に一つずつ)形成されるとともに、これら凹部42A〜42Fの横断面積が、上記の各実施形態のものとは逆に、電極板41の外周部から中央部に向けて漸次大きくなるように形成され、その凹部42A〜42F内に熱伝導材43が緊密に配設されている。
この電極板41においては、厚さ方向に伝わる熱が熱伝導材43の部分で速やかに移動して背面の冷却板14に伝えられる。そして、その場合に、その熱伝導材43の横断面積が電極板41の外周部から中央部に向けて漸次大きくなっているので、周辺に放熱し易い外周部よりも放熱しにくい中央部の方が厚さ方向には熱伝導性が高くなり、これにより、全体として面内均一な放熱特性とされ、放電面の温度分布が面内均一になる。
In each of the above embodiments, the thickness of the electrode plate is formed by forming a heat insulating space by a concave portion or a hollow portion in the electrode plate and changing the cross-sectional area of the heat insulating space from the outer peripheral portion of the electrode plate toward the central portion. The heat radiation characteristics of the direction are controlled to make it uniform in the surface, but by disposing a heat conductive material having better heat conductivity than silicon, which is a constituent material, on the electrode plate. The heat dissipation characteristics of the electrode plate may be controlled.
The fifth embodiment shown in FIG. 6 shows an electrode plate provided with such a heat conductive material. The electrode plate 41 has a plurality of concentric ring groove-like recesses 42A to 42F (one each between the pitch circles p1 to p7 of the gas passage hole 11) formed on the back surface thereof, and these recesses 42A to 42F. The cross sectional area of the electrode plate 41 is formed so as to gradually increase from the outer peripheral portion toward the central portion of the electrode plate 41, and the heat conducting material 43 is tightly fitted in the concave portions 42A to 42F. It is arranged.
In the electrode plate 41, the heat transmitted in the thickness direction is quickly moved in the portion of the heat conductive material 43 and transmitted to the cooling plate 14 on the back surface. In that case, since the cross-sectional area of the heat conducting material 43 gradually increases from the outer peripheral portion of the electrode plate 41 toward the central portion, the central portion is more difficult to dissipate than the outer peripheral portion that easily dissipates heat to the periphery. However, the thermal conductivity increases in the thickness direction, and as a result, the entire surface has uniform heat dissipation characteristics, and the temperature distribution on the discharge surface is uniform in the surface.

このように電極板41に熱伝導材43を配設する場合、その横断面積を電極板41の外周部から中央部に向けて漸次大きくすることにより、温度分布の面内均一性を達成することができる。この場合、第5実施形態では、第1実施形態のものと同じ考え方により、各凹部42A〜42Fは同一深さで幅を変えた例を図示したが、第2実施形態のように幅は同じで深さを変える(電極板の外周部から中央部に向けて漸次深くする)ようにしてもよいし、第3実施形態あるいは第4実施形態のように、二枚の電極構成板の間に形成した中空部内に熱伝導材を配設してもよい。
熱伝導材としては、電極板の本体を構成しているシリコンよりも熱伝導性の良い金属として、例えばアルミニウム等を適用することができる。また、導電性接着剤も適用可能であり、導電性接着剤としては、銀、銅、アルミニウム、インジウム等の金属ろう、エポキシ樹脂等の接着剤に銀、アルミニウム、ニッケル、カーボン等の導電フィラーを混入した導電性接着剤などを用いることができる。
When the heat conductive material 43 is arranged on the electrode plate 41 in this way, the in-plane uniformity of the temperature distribution is achieved by gradually increasing the cross-sectional area from the outer peripheral portion of the electrode plate 41 toward the central portion. Can do. In this case, in the fifth embodiment, the recesses 42A to 42F are illustrated with the same depth and the same width as the first embodiment, but the width is the same as in the second embodiment. The depth may be changed (by gradually increasing the depth from the outer periphery to the center of the electrode plate), or it may be formed between the two electrode component plates as in the third or fourth embodiment. You may arrange | position a heat conductive material in a hollow part.
As the heat conductive material, for example, aluminum or the like can be applied as a metal having better heat conductivity than silicon constituting the main body of the electrode plate. In addition, a conductive adhesive can also be applied. As the conductive adhesive, a conductive filler such as silver, aluminum, nickel, or carbon is used as an adhesive such as silver, copper, aluminum, or indium, or an epoxy resin. A mixed conductive adhesive or the like can be used.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記各実施形態では、ガス通過孔を同心円状に並べたことにより、そのピッチ円の間に配置されるように凹部又は中空部をリング状に形成したが、ガス貫通孔を縦横にマトリクス状に配置し、凹部又は中空部をこれらガス貫通孔の間を通る平面視格子状に形成してもよい。また、これら凹部又は中空部を溝状でなく、ガス通過孔を避けた位置にスポット状に分散させてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in each of the embodiments described above, the gas passage holes are arranged concentrically so that the recesses or hollow portions are formed in a ring shape so as to be arranged between the pitch circles. The concave portions or the hollow portions may be formed in a lattice shape in a plan view passing between these gas through holes. Moreover, you may disperse | distribute these recessed parts or hollow parts in the spot form not in groove shape but in the position which avoided the gas passage hole.

また、これら凹部又は中空部の横断面積を電極板の外周部から中央部に向けて変えていったが、横断面積は変えずに、例えば電極板の外周部では狭い間隔で配置し、中央部では広い間隔で配置するなど、配置間隔を変えるようにしてもよい。また、横断面積と配置間隔との両方を組み合わせて異ならせるようにしてもよい。要は、電極板の単位体積当たりの凹部又は中空部の占有体積を電極板の中央部と外周部とで変えればよく、外周部の厚さ方向の断熱効果を中央部より大きくする場合は、単位体積当たりの凹部又は中空部の占有体積が電極板の中央部に比べて外周部の方で大きく形成されるようにすればよく、凹部又は中空部に熱伝導材を配設して中央部の厚さ方向の放熱を促進させる場合は、単位体積当たりの凹部又は中空部の占有体積が電極板の外周部に比べて中央部の方で大きく形成されるようにすればよい。   In addition, the cross-sectional area of these concave portions or hollow portions was changed from the outer peripheral portion of the electrode plate toward the central portion, but the cross-sectional area was not changed, for example, the outer peripheral portion of the electrode plate was arranged at a narrow interval, and the central portion Then, the arrangement interval may be changed, for example, the arrangement interval may be wide. Moreover, you may make it differ combining both a cross-sectional area and arrangement | positioning space | interval. In short, the occupied volume of the recess or hollow part per unit volume of the electrode plate may be changed between the central part and the outer peripheral part of the electrode plate, and when the heat insulating effect in the thickness direction of the outer peripheral part is made larger than the central part, The occupied volume of the concave portion or the hollow portion per unit volume may be formed larger in the outer peripheral portion than in the central portion of the electrode plate. When the heat dissipation in the thickness direction is promoted, the occupied volume of the concave portion or the hollow portion per unit volume may be formed larger in the central portion than in the outer peripheral portion of the electrode plate.

さらに、第3実施形態及び第4実施形態のように複数枚の電極構成板を積層して電極板とする場合、三枚以上の電極構成板を重ね合わせた構成としてもよい。また、これら複数枚の電極構成板の内、放電面を形成する下側電極構成板の貫通孔を厚さ方向に対して傾斜させることにより屈曲したガス通過孔を形成するようにしてもよく、プラズマの背面側への回り込み防止に有効である。   Furthermore, when a plurality of electrode configuration plates are stacked to form an electrode plate as in the third embodiment and the fourth embodiment, a configuration in which three or more electrode configuration plates are stacked may be employed. Further, among these multiple electrode component plates, a bent gas passage hole may be formed by inclining the through hole of the lower electrode component plate forming the discharge surface with respect to the thickness direction, This is effective in preventing the plasma from wrapping around the back side.

1 プラズマ処理装置
2 真空チャンバ
3 電極板
11 ガス通過孔
13 高周波電源
14 冷却板
15 貫通孔
21A〜21F 凹部
25 電極板
26A〜26F 凹部
31 電極板
32 電極構成板
33A〜33F 中空部
35 電極板
36 電極構成板
37A〜37F 中空部
41 電極板
42A〜42F 凹部
43 熱伝導材
p1〜p7 ピッチ円
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 2 Vacuum chamber 3 Electrode plate 11 Gas passage hole 13 High frequency power supply 14 Cooling plate 15 Through-hole 21A-21F Recess 25 Electrode plate 26A-26F Recess 31 Electrode plate 32 Electrode component plate 33A-33F Hollow part 35 Electrode plate 36 Electrode component plates 37A to 37F Hollow portion 41 Electrode plates 42A to 42F Recess 43 Heat conduction material p1 to p7 Pitch circle

Claims (4)

厚さ方向に貫通するガス通過孔が複数形成されるとともに、これらガス通過孔を避けて溝状又はスポット状の凹部が背面部の面方向に分散するように形成され、電極板の単位体積当たりの前記凹部の占有体積が、電極板の中央部に比べて外周部の方が大きく形成されていることを特徴とするプラズマ処理装置用電極板。   A plurality of gas passage holes penetrating in the thickness direction are formed, and groove-like or spot-like concave portions are formed so as to be dispersed in the surface direction of the back surface while avoiding these gas passage holes. The electrode plate for a plasma processing apparatus is characterized in that the occupied volume of the recess is larger in the outer peripheral portion than in the central portion of the electrode plate. 複数枚の電極構成板が積層されるとともに、これら電極構成板を厚さ方向に貫通するガス通過孔が複数形成されてなり、これら電極構成板の積層面間に、前記ガス通過孔を避けて溝状又はスポット状の中空部が面方向に分散するように形成され、電極板の単位体積当たりの前記中空部の占有体積が、電極板の中央部に比べて外周部の方が大きく形成されていることを特徴とするプラズマ処理装置用電極板。   A plurality of electrode component plates are laminated, and a plurality of gas passage holes penetrating these electrode component plates in the thickness direction are formed. Avoid the gas passage holes between the lamination surfaces of these electrode component plates. Groove-shaped or spot-shaped hollow portions are formed so as to be dispersed in the surface direction, and the occupied volume of the hollow portion per unit volume of the electrode plate is formed larger in the outer peripheral portion than in the central portion of the electrode plate. An electrode plate for a plasma processing apparatus. 厚さ方向に貫通するガス通過孔が複数形成されるとともに、これらガス通過孔を避けて溝状又はスポット状の凹部が背面部の面方向に分散するように形成され、電極板の単位体積当たりの前記凹部の占有体積が、電極板の中央部に比べて外周部の方が小さく形成され、前記凹部内に熱伝導材が設けられていることを特徴とするプラズマ処理装置用電極板。   A plurality of gas passage holes penetrating in the thickness direction are formed, and groove-like or spot-like concave portions are formed so as to be dispersed in the surface direction of the back surface while avoiding these gas passage holes. The electrode plate for a plasma processing apparatus is characterized in that the volume occupied by the recess is smaller in the outer peripheral portion than in the central portion of the electrode plate, and a heat conductive material is provided in the recess. 複数枚の電極構成板が積層されるとともに、これら電極構成板を厚さ方向に貫通するガス通過孔が複数形成されてなり、これら電極構成板の積層面間に、前記ガス通過孔を避けて溝状又はスポット状の中空部が面方向に分散するように形成され、電極板の単位体積当たりの前記中空部の占有体積が、電極板の中央部に比べて外周部の方が小さく形成され、前記中空部内に熱伝導材が設けられていることを特徴とするプラズマ処理装置用電極板。   A plurality of electrode component plates are laminated, and a plurality of gas passage holes penetrating these electrode component plates in the thickness direction are formed. Avoid the gas passage holes between the lamination surfaces of these electrode component plates. Groove-shaped or spot-shaped hollow portions are formed so as to be dispersed in the surface direction, and the occupied volume of the hollow portion per unit volume of the electrode plate is smaller in the outer peripheral portion than in the central portion of the electrode plate. An electrode plate for a plasma processing apparatus, wherein a heat conductive material is provided in the hollow portion.
JP2009157663A 2009-07-02 2009-07-02 Electrode plate for plasma processing equipment Active JP5212275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157663A JP5212275B2 (en) 2009-07-02 2009-07-02 Electrode plate for plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157663A JP5212275B2 (en) 2009-07-02 2009-07-02 Electrode plate for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2011014720A JP2011014720A (en) 2011-01-20
JP5212275B2 true JP5212275B2 (en) 2013-06-19

Family

ID=43593327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157663A Active JP5212275B2 (en) 2009-07-02 2009-07-02 Electrode plate for plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5212275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530774B (en) * 2019-09-17 2024-04-05 中微半导体设备(上海)股份有限公司 Plasma processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645341B2 (en) * 2003-12-23 2010-01-12 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
JP4463583B2 (en) * 2004-02-13 2010-05-19 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP5008478B2 (en) * 2007-06-27 2012-08-22 東京エレクトロン株式会社 Substrate processing apparatus and shower head

Also Published As

Publication number Publication date
JP2011014720A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5962833B2 (en) Electrostatic chuck
JP6341457B1 (en) Electrostatic chuck
KR102644272B1 (en) electrostatic chuck assembly
US20160035610A1 (en) Electrostatic chuck assemblies having recessed support surfaces, semiconductor fabricating apparatuses having the same, and plasma treatment methods using the same
JP6195029B1 (en) Electrostatic chuck
TWI717394B (en) Electrostatic chuck with thermal choke
US9240307B2 (en) Plasma processing apparatus
JP6226092B2 (en) Electrostatic chuck
KR101495230B1 (en) Plasma treatment apparatus
TWI757242B (en) Thermal management systems and methods for wafer processing systems
JP5411136B2 (en) Microwave plasma processing apparatus and cooling jacket manufacturing method
JP6165452B2 (en) Plasma processing equipment
JP5212275B2 (en) Electrode plate for plasma processing equipment
JP6238097B1 (en) Electrostatic chuck
JP5387662B2 (en) Substrate support structure and plasma processing apparatus
JP2012199428A (en) Electrode plate for plasma processing apparatus
JP5316393B2 (en) Electrode plate for plasma processing equipment
WO2017159590A1 (en) Electrostatic chuck
JP2011204754A (en) Electrode plate for plasma processing apparatus and plasma processing apparatus
JP2011129557A (en) Electrode plate for plasma processing apparatus
JP2011003731A (en) Electrode plate for plasma treatment apparatus
WO2016114399A1 (en) Electrostatic chuck
JP2012222272A (en) Electrode plate for plasma processing apparatus
JP2012222119A (en) Electrode plate for plasma processing apparatus
JP2013110140A (en) Electrode plate for plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5212275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3