WO2016114399A1 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
WO2016114399A1
WO2016114399A1 PCT/JP2016/051182 JP2016051182W WO2016114399A1 WO 2016114399 A1 WO2016114399 A1 WO 2016114399A1 JP 2016051182 W JP2016051182 W JP 2016051182W WO 2016114399 A1 WO2016114399 A1 WO 2016114399A1
Authority
WO
WIPO (PCT)
Prior art keywords
support plate
heater
heater element
electrostatic chuck
plate
Prior art date
Application number
PCT/JP2016/051182
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 前畑
俊平 近藤
佐々木 均
康介 山口
雄一 吉井
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015190103A external-priority patent/JP5962833B2/en
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201680005123.1A priority Critical patent/CN107112274B/en
Priority to KR1020177017977A priority patent/KR102000004B1/en
Publication of WO2016114399A1 publication Critical patent/WO2016114399A1/en
Priority to US15/647,369 priority patent/US10607874B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work

Definitions

  • An aspect of the present invention generally relates to an electrostatic chuck.
  • an electrostatic chuck is used as means for adsorbing and holding a processing object such as a semiconductor wafer or a glass substrate.
  • the electrostatic chuck applies electrostatic attraction power to a built-in electrode and attracts a substrate such as a silicon wafer by electrostatic force.
  • temperature control of the wafer is required in order to improve yield and quality.
  • Two types of performance are required for temperature control of the wafer.
  • One performance is temperature uniformity that makes the temperature distribution in the plane of the wafer uniform.
  • Another performance is temperature controllability that intentionally makes a difference in the in-plane temperature of the wafer.
  • temperature uniformity is in a trade-off relationship with temperature controllability.
  • the heat capacity of the heater built in the electrostatic chuck is relatively small.
  • an RF (Radio Frequency) voltage high frequency voltage
  • a general heater generates heat under the influence of a high frequency. Then, the temperature controllability decreases. Moreover, when the RF voltage is applied, a leakage current flows to the equipment side. Therefore, a mechanism such as a filter is required on the equipment side.
  • the heater is built in the electrostatic chuck, the reliability of the heater built-in method (for example, bonding method) is one of the important factors.
  • plasmas with various intensities and various distributions are irradiated onto the wafer.
  • the wafer is irradiated with plasma, it is required to control the temperature of the wafer to a temperature suitable for the process.
  • temperature uniformity and temperature controllability are required.
  • it is required to reach the wafer temperature to a predetermined temperature in a relatively short time. Even when there is a rapid temperature change, heat supply, or application of a high-frequency voltage, high reliability is required for the electrostatic chuck and the wafer. It is difficult to satisfy such requirements at the same time.
  • the present invention has been made based on recognition of such problems, and an object thereof is to provide an electrostatic chuck that can satisfy temperature uniformity and temperature controllability.
  • a ceramic dielectric substrate having the first main surface on which the processing object is placed and the second main surface opposite to the first main surface, and the ceramic A base plate provided at a position away from the dielectric substrate and supporting the ceramic dielectric substrate; and a heater plate provided between the ceramic dielectric substrate and the base plate, wherein the heater plate is a metal A first support plate containing metal, a second support plate containing metal, a heater element that is provided between the first support plate and the second support plate and generates heat when an electric current flows, A first resin layer provided between the first support plate and the heater element; and a second resin layer provided between the second support plate and the heater element. Electrostatic chatter There is provided.
  • 1st invention has the 1st main surface in which a process target object is mounted, and the 2nd main surface on the opposite side to the 1st main surface, a ceramic dielectric substrate, and the ceramic dielectric substrate And a heater plate provided between the ceramic dielectric substrate and the base plate, the heater plate including a metal.
  • a first resin layer provided between a support plate and the heater element; and a second resin layer provided between the second support plate and the heater element.
  • Electrostatic chuck Electrostatic chuck.
  • the heater element is provided between the first support plate and the second support plate.
  • the uniformity of the temperature distribution in the surface of a heater plate can be improved, and the uniformity of the temperature distribution in the surface of a process target object can be improved.
  • the first support plate and the second support plate can block the heater element from high frequency and suppress the heater element from generating heat to an abnormal temperature.
  • the second invention is the electrostatic chuck according to the first invention, wherein the first support plate is electrically joined to the second support plate.
  • This electrostatic chuck can shield the heater element from high frequency. Thereby, it can suppress that a heater element generates heat to abnormal temperature. Moreover, the impedance of the heater plate can be suppressed.
  • the area of the region where the first support plate is joined to the second support plate is smaller than the area of the upper surface of the first support plate.
  • the electrostatic chuck is smaller than the area of the lower surface of the support plate.
  • This electrostatic chuck can shield the heater element from high frequency. Thereby, it can suppress that a heater element generates heat to abnormal temperature. Moreover, the impedance of the heater plate can be suppressed.
  • the area of the region where the first support plate is joined to the second support plate is the area of the heater element from the area of the upper surface of the first support plate.
  • the electrostatic chuck is narrower than an area of the difference obtained by subtracting, and smaller than an area of the difference obtained by subtracting the area of the heater element from the area of the lower surface of the second support plate.
  • this electrostatic chuck for example, it is possible to suppress the heat supplied from the heater element from being transmitted to the second support plate via the joint portion. For example, the uniformity of the temperature distribution in the surface of the processing object can be improved.
  • the upper surface of the first support plate has first irregularities
  • the lower surface of the second support plate has second irregularities. It is an electrostatic chuck characterized by having.
  • the bonding area between the first support plate and the heater element can be increased, and the first support The adhesive strength between the plate and the heater element can be improved.
  • the lower surface of the second support plate has the second unevenness
  • the bonding area between the second support plate and the heater element can be increased, and the second support plate and the heater element The adhesive strength between them can be improved.
  • the upper surface of the first support plate has the first unevenness
  • the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
  • a sixth invention is the electrostatic chuck according to the fifth invention, wherein the first unevenness follows the shape of the heater element, and the second unevenness follows the shape of the heater element. .
  • the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
  • the distance between the first concave-convex concave portion and the second concave-convex concave portion is the distance between the first concave-convex convex portion and the second concave-convex convex portion.
  • An electrostatic chuck characterized by being shorter than the distance between the convex and concave portions.
  • the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
  • the eighth invention is the electrostatic chuck according to any one of the fifth to seventh inventions, wherein the height of the first unevenness is different from the height of the second unevenness.
  • the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
  • a ninth invention is the electrostatic chuck according to the eighth invention, wherein the height of the first unevenness is lower than the height of the second unevenness.
  • the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
  • a tenth aspect of the invention is the electrostatic chuck according to the eighth aspect of the invention, wherein the height of the first unevenness is higher than the height of the second unevenness.
  • the bonding area between the heater plate and the ceramic dielectric substrate can be widened, and the bonding strength between the heater plate and the ceramic dielectric substrate can be improved.
  • the heater element has a belt-like heater electrode, and the heater electrode is provided in a plurality of regions independently of each other. This is an electrostatic chuck.
  • the heater electrodes are provided in a plurality of regions independently of each other, the temperature in the surface of the processing object can be controlled independently for each region. Thereby, it is possible to intentionally make a difference in the in-plane temperature of the processing object (temperature controllability).
  • a twelfth aspect of the invention is characterized in that, in any one of the first to eleventh aspects, a plurality of the heater elements are provided, and the plurality of heater elements are provided independently in different layers. Electrostatic chuck.
  • the in-plane temperature of the processing object can be controlled independently for each region. Thereby, it is possible to intentionally make a difference in the in-plane temperature of the processing object (temperature controllability).
  • a thirteenth invention is characterized in that, in any one of the first to eleventh inventions, further comprising a conductive bypass layer provided between the heater element and the second support plate. Electrostatic chuck.
  • this electrostatic chuck According to this electrostatic chuck, a greater degree of freedom can be given to the arrangement of terminals for supplying power to the heater element.
  • the bypass layer By providing the bypass layer, it is not necessary to directly join the terminal having a large heat capacity to the heater element as compared with the case where the bypass layer is not provided. Thereby, the uniformity of the temperature distribution in the surface of a process target object can be improved.
  • the heater element is electrically joined to the bypass layer, and is electrically insulated from the first support plate and the second support plate. This is an electrostatic chuck.
  • the fifteenth invention is the electrostatic chuck according to the thirteenth or fourteenth invention, wherein the thickness of the bypass layer is thicker than the thickness of the first resin layer.
  • this electrostatic chuck According to this electrostatic chuck, a greater degree of freedom can be given to the arrangement of terminals for supplying power to the heater element.
  • the electrical resistance of the bypass layer can be suppressed, and the heat generation amount of the bypass layer can be suppressed.
  • the sixteenth invention is the electrostatic chuck according to any one of the thirteenth to fifteenth inventions, wherein the thickness of the bypass layer is larger than the thickness of the heater element.
  • this electrostatic chuck According to this electrostatic chuck, a greater degree of freedom can be given to the arrangement of terminals for supplying power to the heater element.
  • the electrical resistance of the bypass layer can be suppressed, and the heat generation amount of the bypass layer can be suppressed.
  • the seventeenth invention is the electrostatic chuck according to any one of the thirteenth to sixteenth inventions, wherein the bypass layer is provided between the heater element and the base plate.
  • the bypass layer suppresses the heat supplied from the heater element from being transmitted to the base plate. That is, the bypass layer has a heat insulating effect on the base plate side as viewed from the bypass layer, and can improve the uniformity of the temperature distribution in the surface of the processing object.
  • An eighteenth aspect of the invention is characterized in that, in any one of the first to seventeenth aspects of the invention, a conductive bypass layer is further provided between the heater element and the ceramic dielectric substrate. Electrostatic chuck.
  • the diffusibility of the heat supplied from the heater element can be improved by the bypass layer. That is, the bypass layer improves the thermal diffusivity in the in-plane direction of the process symmetrical object. Thereby, for example, the uniformity of the temperature distribution in the surface of the processing object can be improved.
  • the area of the upper surface of the first support plate is larger than the area of the lower surface of the second support plate. It is a chuck.
  • a terminal for supplying power to the heater element can be more easily connected on the second support plate side as viewed from the heater element.
  • the first support plate has a plurality of support portions, and the plurality of support portions are provided independently of each other.
  • An electrostatic chuck characterized by the following.
  • This electrostatic chuck can intentionally provide a temperature difference in the radial direction within the surface of the first support plate (temperature controllability).
  • a temperature difference can be provided in a step shape from the center to the outer periphery within the plane of the first support plate. Thereby, a temperature difference can be intentionally provided within the surface of the processing object (temperature controllability).
  • a twenty-first aspect of the present invention is the static electricity system according to any one of the first to twentieth aspects, further comprising a power supply terminal that is provided from the heater plate toward the base plate and supplies electric power to the heater plate. It is an electric chuck.
  • the power supply terminal is provided from the heater plate toward the base plate, power can be supplied to the power supply terminal from a lower surface side of the base plate through a member called a socket. Thereby, the wiring of the heater is realized while suppressing the supply terminal from being exposed in the chamber in which the electrostatic chuck is installed.
  • the power supply terminal includes a pin portion connected to a socket for supplying electric power from the outside, a conductive wire portion thinner than the pin portion, and a support connected to the conductive wire portion.
  • An electrostatic chuck comprising: a portion; and a joint portion connected to the support portion and joined to the heater element.
  • the pin portion since the pin portion is thicker than the conducting wire portion, the pin portion can supply a relatively large current to the heater element. Moreover, since the conducting wire portion is thinner than the pin portion, the conducting wire portion is more easily deformed than the pin portion, and the position of the pin portion can be shifted from the center of the joint portion. Thereby, a power feeding terminal can be fixed to a member (for example, a base plate) different from the heater plate. For example, when the support portion is joined to the lead wire portion and the joint portion by welding, joining using laser light, soldering, brazing, etc., the stress applied to the power supply terminal is reduced while the heater element is relaxed. A wider contact area can be ensured.
  • a member for example, a base plate
  • the power supply terminal further includes a power supply terminal that is provided from the heater plate toward the base plate and supplies power to the heater plate.
  • a pin portion connected to a socket for supplying power from, a conductive wire portion thinner than the pin portion, a support portion connected to the conductive wire portion, and a joint portion connected to the support portion and bonded to the bypass layer
  • the electrostatic chuck is configured to supply the electric power to the heater element through the bypass layer.
  • the pin portion since the pin portion is thicker than the conducting wire portion, the pin portion can supply a relatively large current to the heater element. Moreover, since the conducting wire portion is thinner than the pin portion, the conducting wire portion is more easily deformed than the pin portion, and the position of the pin portion can be shifted from the center of the joint portion. Thereby, a power feeding terminal can be fixed to a member (for example, a base plate) different from the heater plate.
  • a member for example, a base plate
  • the support portion is joined to the lead wire portion and the joint portion by welding, joining using laser light, soldering, brazing, or the like, the stress applied to the power supply terminal is reduced while the stress is applied to the bypass layer. A wider contact area can be ensured.
  • the joint portion when the support portion is joined to the lead wire portion and the joint portion by, for example, welding, joining using laser light, soldering, brazing, etc., the joint portion having substantially the same thickness as the heater plate and the bypass layer Can be provided.
  • FIG. 1 is a schematic perspective view showing an electrostatic chuck according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the electrostatic chuck according to the present embodiment.
  • FIG. 1 shows a cross-sectional view of a part of the electrostatic chuck.
  • FIG. 2A is a schematic cross-sectional view taken along the cut plane A1-A1 shown in FIG. 1, for example.
  • FIG. 2B is a schematic enlarged view of the region B1 shown in FIG.
  • the electrostatic chuck 10 includes a ceramic dielectric substrate 100, a heater plate 200, and a base plate 300.
  • the ceramic dielectric substrate 100 is provided at a position away from the base plate 300.
  • the heater plate 200 is provided between the base plate 300 and the ceramic dielectric substrate 100.
  • the adhesive 403 is provided between the base plate 300 and the heater plate 200.
  • An adhesive 403 is provided between the heater plate 200 and the ceramic dielectric substrate 100.
  • Examples of the material of the adhesive 403 include heat-resistant resins such as silicone having relatively high thermal conductivity.
  • the thickness of the adhesive 403 is, for example, about 0.1 millimeter (mm) or more and 1.0 mm or less. The thickness of the adhesive 403 is the same as the distance between the base plate 300 and the heater plate 200 or the distance between the heater plate 200 and the ceramic dielectric substrate 100.
  • the ceramic dielectric substrate 100 is a flat base material made of, for example, a polycrystalline ceramic sintered body, and is opposite to the first main surface 101 on which the processing object W such as a semiconductor wafer is placed, and the first main surface 101. Second main surface 102 on the side.
  • the direction connecting the first main surface 101 and the second main surface 102 is the Z direction
  • one of the directions orthogonal to the Z direction is orthogonal to the X direction, the Z direction, and the X direction.
  • the direction to do is referred to as the Y direction.
  • Examples of the crystal material included in the ceramic dielectric substrate 100 include Al 2 O 3 , Y 2 O 3, and YAG. By using such a material, infrared transmittance, insulation resistance, and plasma durability in the ceramic dielectric substrate 100 can be enhanced.
  • An electrode layer 111 is provided inside the ceramic dielectric substrate 100.
  • the electrode layer 111 is interposed between the first main surface 101 and the second main surface 102. That is, the electrode layer 111 is formed so as to be inserted into the ceramic dielectric substrate 100.
  • the electrode layer 111 is integrally sintered with the ceramic dielectric substrate 100.
  • the electrode layer 111 is not limited to be interposed between the first main surface 101 and the second main surface 102, and may be attached to the second main surface 102.
  • the electrostatic chuck 10 generates a charge on the first main surface 101 side of the electrode layer 111 by applying a suction holding voltage to the electrode layer 111, and holds the processing target W by electrostatic force.
  • the heater plate 200 generates heat when the heater current flows, and the temperature of the processing object W can be increased as compared with the case where the heater plate 200 does not generate heat.
  • the electrode layer 111 is provided along the first main surface 101 and the second main surface 102.
  • the electrode layer 111 is an adsorption electrode for adsorbing and holding the processing object W.
  • the electrode layer 111 may be monopolar or bipolar.
  • the electrode layer 111 may be a tripolar type or other multipolar type. The number of the electrode layers 111 and the arrangement of the electrode layers 111 are appropriately selected.
  • the ceramic dielectric substrate 100 includes a first dielectric layer 107 between the electrode layer 111 and the first main surface 101, and a second dielectric layer 109 between the electrode layer 111 and the second main surface 102.
  • the infrared spectral transmittance of at least the first dielectric layer 107 of the ceramic dielectric substrate 100 is preferably 20% or more. In the present embodiment, the infrared spectral transmittance is a value in terms of a thickness of 1 mm.
  • the infrared spectral transmittance of at least the first dielectric layer 107 of the ceramic dielectric substrate 100 is 20% or more, infrared rays emitted from the heater plate 200 in a state where the processing object W is placed on the first main surface 101. Can efficiently pass through the ceramic dielectric substrate 100. Therefore, it becomes difficult for heat to accumulate in the processing object W, and the controllability of the temperature of the processing object W is improved.
  • the temperature of the processing object W is likely to increase as the plasma power increases.
  • the heat transmitted to the processing object W by the plasma power is efficiently transmitted to the ceramic dielectric substrate 100.
  • the heat transmitted to the ceramic dielectric substrate 100 by the heater plate 200 is efficiently transmitted to the processing object W. Therefore, it becomes easy to efficiently transfer the processing object W and maintain it at a desired temperature.
  • the infrared spectral transmittance of the second dielectric layer 109 is desirably 20% or more. Since the infrared spectral transmittance of the first dielectric layer 107 and the second dielectric layer 109 is 20% or more, the infrared rays emitted from the heater plate 200 are more efficiently transmitted through the ceramic dielectric substrate 100, and are to be processed. The temperature controllability of the object W can be improved.
  • the base plate 300 is provided on the second main surface 102 side of the ceramic dielectric substrate 100 and supports the ceramic dielectric substrate 100 via the heater plate 200.
  • a communication path 301 is provided in the base plate 300. That is, the communication path 301 is provided inside the base plate 300.
  • An example of the material of the base plate 300 is aluminum.
  • the base plate 300 serves to adjust the temperature of the ceramic dielectric substrate 100. For example, when cooling the ceramic dielectric substrate 100, the cooling medium is introduced into the communication path 301, passed through the communication path 301, and the cooling medium is flowed out from the communication path 301. Thereby, the heat of the base plate 300 can be absorbed by the cooling medium, and the ceramic dielectric substrate 100 mounted thereon can be cooled.
  • the ceramic dielectric substrate 100 when the ceramic dielectric substrate 100 is heated, it is possible to put a heating medium in the communication path 301.
  • a heater (not shown) can be built in the base plate 300. As described above, when the temperature of the ceramic dielectric substrate 100 is adjusted by the base plate 300, the temperature of the processing object W attracted and held by the electrostatic chuck 10 can be easily adjusted.
  • a convex portion 113 is provided on the first main surface 101 side of the ceramic dielectric substrate 100 as necessary.
  • a groove 115 is provided between the convex portions 113 adjacent to each other. The grooves 115 communicate with each other. A space is formed between the back surface of the processing object W mounted on the electrostatic chuck 10 and the groove 115.
  • the introduction path 321 that penetrates the base plate 300 and the ceramic dielectric substrate 100 is connected to the groove 115.
  • a transmission gas such as helium (He)
  • He helium
  • FIG. 3 is a schematic perspective view showing the heater plate of the present embodiment.
  • FIG. 4 is a schematic perspective view showing the heater plate of the present embodiment.
  • FIG. 5 is a schematic exploded view showing the heater plate of the present embodiment.
  • FIG. 6 is a schematic exploded view showing a modification of the heater plate of the present embodiment.
  • FIG. 3 is a schematic perspective view of the heater plate according to the present embodiment as viewed from the upper surface (the surface on the ceramic dielectric substrate 100 side).
  • FIG. 4A is a schematic perspective view of the heater plate according to the present embodiment as viewed from the lower surface (the surface on the base plate 300 side).
  • FIG. 4B is a schematic enlarged view of the region B2 shown in FIG.
  • the heater plate 200 of the present embodiment includes a first support plate 210, a first resin layer 220, a heater element (heat generation layer) 230, a second resin layer 240, A bypass layer 250, a third resin layer 260, a second support plate 270, and a power supply terminal 280 are included.
  • the surface 211 (upper surface) of the first support plate 210 forms the upper surface of the heater plate 200.
  • the surface 271 (lower surface) of the second support plate 270 forms the lower surface of the heater plate 200.
  • the first support plate 210 and the second support plate 270 are support plates that support the heater element 230 and the like.
  • the first support plate 210 and the second support plate 270 include a first resin layer 220, a heater element 230, a second resin layer 240, a bypass layer 250, and a third resin layer 260. , And support these.
  • the first resin layer 220 is provided between the first support plate 210 and the second support plate 270.
  • the heater element 230 is provided between the first resin layer 220 and the second support plate 270.
  • the second resin layer 240 is provided between the heater element 230 and the second support plate 270.
  • the bypass layer 250 is provided between the second resin layer 240 and the second support plate 270.
  • the third resin layer 260 is provided between the bypass layer 250 and the second support plate 270.
  • the bypass layer 250 and the third resin layer 260 are not necessarily provided.
  • the second resin layer 240 is provided between the heater element 230 and the second support plate 270.
  • a case where the heater plate 200 includes the bypass layer 250 and the third resin layer 260 is taken as an example.
  • the first support plate 210 has a relatively high thermal conductivity.
  • Examples of the material of the first support plate 210 include a metal containing at least one of aluminum, copper, and nickel, and graphite having a multilayer structure.
  • As the material of the first support plate 210 from the viewpoint of achieving both “in-plane temperature uniformity of the object to be processed” and “high throughput”, which are generally in a trade-off relationship, and from the viewpoint of contamination and magnetism of the chamber, Aluminum or aluminum alloy is suitable.
  • the thickness (length in the Z direction) of the first support plate 210 is, for example, about 0.1 mm or more and 3.0 mm or less.
  • the thickness of the first support plate 210 is, for example, about 0.3 mm or more and 1.0 mm or less.
  • the first support plate 210 improves the uniformity of the temperature distribution in the surface of the heater plate 200.
  • the first support plate 210 suppresses the warp of the heater plate 200.
  • the first support plate 210 improves the strength of adhesion between the heater plate 200 and the ceramic dielectric substrate 100.
  • RF Radio Frequency
  • high frequency voltage high frequency voltage
  • the heater element 230 may generate heat under the influence of the high frequency.
  • the temperature controllability of the heater element 230 decreases.
  • the first support plate 210 blocks the heater element 230 and the bypass layer 250 from high frequencies. Thereby, the first support plate 210 can suppress the heater element 230 from generating heat to an abnormal temperature.
  • the material, thickness, and function of the second support plate 270 can be freely set according to required performance, dimensions, and the like.
  • the material, thickness, and function of the second support plate 270 may be the same as the material, thickness, and function of the first support plate 210, respectively.
  • the first support plate 210 is electrically joined to the second support plate 270.
  • contact is included in the range of “joining” in the present specification. The details of the electrical connection between the second support plate 270 and the first support plate 210 will be described later.
  • the first support plate 210 and the second support plate 270 have a relatively high thermal conductivity. Thereby, the first support plate 210 and the second support plate 270 improve the thermal diffusibility of the heat supplied from the heater element 230. Moreover, the 1st support body 210 and the 2nd support body 270 have the moderate thickness and rigidity, and suppress the curvature of the heater plate 200, for example. Furthermore, the first support 210 and the second support 270 improve the shielding performance against an RF voltage applied to, for example, an electrode of a wafer processing apparatus. For example, the influence of the RF voltage on the heater element 230 is suppressed. As described above, the first support 210 and the second support 270 have a function of thermal diffusion, a function of suppressing warpage, and a function of shielding against an RF voltage.
  • the material of the first resin layer 220 examples include polyimide and polyamideimide.
  • the thickness (length in the Z direction) of the first resin layer 220 is, for example, about 0.01 mm or more and 0.20 mm or less.
  • the first resin layer 220 joins the first support plate 210 and the heater element 230 to each other.
  • the first resin layer 220 electrically insulates between the first support plate 210 and the heater element 230.
  • the first resin layer 220 has a function of electrical insulation and a function of surface bonding.
  • the material and thickness of the second resin layer 240 are approximately the same as the material and thickness of the first resin layer 220, respectively.
  • the material and thickness of the third resin layer 260 are approximately the same as the material and thickness of the first resin layer 220, respectively.
  • the second resin layer 240 joins the heater element 230 and the bypass layer 250 to each other.
  • the second resin layer 240 electrically insulates between the heater element 230 and the bypass layer 250.
  • the second resin layer 240 has a function of electrical insulation and a function of surface bonding.
  • the third resin layer 260 joins the bypass layer 250 and the second support plate 270 to each other.
  • the third resin layer 260 electrically insulates between the bypass layer 250 and the second support plate 270.
  • the third resin layer 260 has a function of electrical insulation and a function of surface bonding.
  • Examples of the material of the heater element 230 include metals including at least one of stainless steel, titanium, chromium, nickel, copper, and aluminum.
  • the thickness (length in the Z direction) of the heater element 230 is, for example, about 0.01 mm or more and 0.20 mm or less.
  • the heater element 230 is electrically joined to the bypass layer 250.
  • the heater element 230 is electrically insulated from the first support plate 210 and the second support plate 270. The details of the electrical connection between the heater element 230 and the bypass layer 250 will be described later.
  • the heater element 230 generates heat when current flows, and controls the temperature of the processing target W. For example, the heater element 230 heats the processing object W to a predetermined temperature. For example, the heater element 230 makes the temperature distribution in the surface of the processing object W uniform. For example, the heater element 230 intentionally makes a difference in the in-plane temperature of the processing object W.
  • the bypass layer 250 is disposed substantially parallel to the first support plate 210 and is disposed substantially parallel to the second support plate 270.
  • the bypass layer 250 has a plurality of bypass portions 251.
  • the bypass layer 250 has, for example, eight bypass parts 251.
  • the number of bypass units 251 is not limited to “8”.
  • the bypass layer 250 has a plate shape.
  • the heater element 230 has a belt-like heater electrode 239. When viewed perpendicular to the surface of the bypass layer 250 (surface 251a of the bypass portion 251), the area of the bypass layer 250 is larger than the area of the heater element 230 (area of the heater electrode 239). Details of this will be described later.
  • the bypass layer 250 has conductivity.
  • the bypass layer 250 is electrically insulated from the first support plate 210 and the second support plate 270.
  • Examples of the material of the bypass layer 250 include metals including stainless steel.
  • the thickness of the bypass layer 250 (the length in the Z direction) is, for example, about 0.03 mm or more and 0.30 mm or less.
  • the bypass layer 250 is thicker than the first resin layer 220.
  • the bypass layer 250 is thicker than the second resin layer 240.
  • the bypass layer 250 is thicker than the third resin layer 260.
  • the material of the bypass layer 250 is the same as the material of the heater element 230.
  • the bypass layer 250 is thicker than the heater element 230. Therefore, the electrical resistance of the bypass layer 250 is lower than the electrical resistance of the heater element 230. Thereby, even when the material of the bypass layer 250 is the same as the material of the heater element 230, the heat generation of the bypass layer 250 like the heater element 230 can be suppressed. That is, the electrical resistance of the bypass layer 250 can be suppressed, and the heat generation amount of the bypass layer 250 can be suppressed.
  • the means for suppressing the electrical resistance of the bypass layer 250 and suppressing the heat generation amount of the bypass layer 250 may be realized by using a material having a relatively low volume resistivity instead of the thickness of the bypass layer 250. That is, the material of the bypass layer 250 may be different from the material of the heater element 230. Examples of the material of the bypass layer 250 include metals including at least one of stainless steel, titanium, chromium, nickel, copper, and aluminum.
  • the power supply terminal 280 is electrically joined to the bypass layer 250.
  • the power supply terminal 280 is provided from the heater plate 200 toward the base plate 300.
  • the power supply terminal 280 supplies power supplied from the outside of the electrostatic chuck 10 to the heater element 230 via the bypass layer 250.
  • the power supply terminal 280 may be directly connected to the heater element 230, for example. Thereby, the bypass layer 250 can be omitted.
  • the heater plate 200 has a plurality of power supply terminals 280.
  • the heater plate 200 shown in FIGS. 3 to 5 has eight power supply terminals 280.
  • the number of power supply terminals 280 is not limited to “8”.
  • One power supply terminal 280 is electrically joined to one bypass unit 251.
  • the hole 273 passes through the second support plate 270.
  • the power feeding terminal 280 is electrically joined to the bypass unit 251 through the hole 273.
  • the junction between the heater element 230 and the bypass layer 250 includes a portion where the current enters the heater element 230 and a portion where the current exits from the heater element 230. That is, a pair exists at the joint between the heater element 230 and the bypass layer 250. Since the heater plate 200 shown in FIGS. 3 to 5 has eight power supply terminals 280, there are four pairs at the junction between the heater element 230 and the bypass layer 250.
  • the heater element 230 is provided between the first support plate 210 and the second support plate 270.
  • the uniformity of the temperature distribution in the surface of the heater plate 200 can be improved, and the uniformity of the temperature distribution in the surface of the processing object W can be improved.
  • the first support plate 210 and the second support plate 270 can block the heater element 230 and the bypass layer 250 from high frequency, and suppress the heater element 230 from generating heat to an abnormal temperature.
  • the bypass layer 250 is provided between the heater element 230 and the second support plate 270. That is, the bypass layer 250 is provided between the heater element 230 and the base plate 300.
  • the thermal conductivity of stainless steel is lower than that of aluminum and copper. Therefore, the bypass layer 250 suppresses the heat supplied from the heater element 230 from being transmitted to the second support plate 270. That is, the bypass layer 250 has a heat insulating effect on the second support plate 270 side when viewed from the bypass layer 250, and can improve the uniformity of the temperature distribution in the surface of the processing object W.
  • the bypass layer 250 can have a greater degree of freedom with respect to the arrangement of the power supply terminals 280. By providing the bypass layer 250, it is not necessary to directly join the power supply terminal having a large heat capacity to the heater element 230 as compared to the case where the bypass layer 250 is not provided. Thereby, the uniformity of the temperature distribution in the surface of the processing target W can be improved. Further, it is not necessary to join the power supply terminal 280 to the thin heater element 230 as compared with the case where the bypass layer 250 is not provided. Thereby, the reliability of the heater plate 200 can be improved.
  • the power supply terminal 280 is provided from the heater plate 200 toward the base plate 300. Therefore, electric power can be supplied to the power supply terminal 280 from the side of the lower surface 303 (see FIGS. 2A and 2B) of the base plate 300 through a member called a socket. Thus, the heater wiring is realized while suppressing the power supply terminal 280 from being exposed in the chamber in which the electrostatic chuck 10 is installed.
  • FIG. 7 is a schematic cross-sectional view illustrating an example of the manufacturing method according to this embodiment.
  • FIG. 8 is a schematic cross-sectional view illustrating another example of the manufacturing method of this embodiment.
  • Fig.7 (a) is typical sectional drawing showing the state before joining a bypass layer and a heater element.
  • FIG.7 (b) is typical sectional drawing showing the state after joining a bypass layer and a heater element.
  • FIG. 8 is a schematic cross-sectional view illustrating an example of a joining process between the bypass layer and the power feeding terminal.
  • the first support plate 210 and the second support plate 270 are manufactured by first machining aluminum.
  • the inspection of the first support plate 210 and the second support plate 270 is performed using, for example, a three-dimensional measuring instrument.
  • the first resin layer 220, the second resin layer 240, and the third resin layer 260 are manufactured by cutting the polyimide film by laser, machining, die cutting, or melting.
  • the inspection of the first resin layer 220, the second resin layer 240, and the third resin layer 260 is performed using, for example, visual observation.
  • a heater pattern is formed by cutting stainless steel by etching, machining, die cutting, etc. using photolithography technology or printing technology. Thereby, the heater element 230 is manufactured. Further, the resistance value of the heater element 230 is measured.
  • the heater element 230 and the bypass layer 250 are joined.
  • the heater element 230 and the bypass layer 250 are joined by soldering, brazing, welding, or contact.
  • the second resin layer 240 is provided with a hole 241.
  • the hole 241 passes through the second resin layer 240.
  • the heater element 230 and the bypass layer 250 are joined by performing spot welding from the side of the bypass layer 250 as indicated by an arrow C11 illustrated in FIG.
  • joining of the heater element 230 and the bypass layer 250 is not limited to welding.
  • the heater element 230 and the bypass layer 250 may be joined by joining using laser light, soldering, brazing, or contact.
  • each member of the heater plate 200 is laminated and pressed by a hot press machine.
  • the power feeding terminal 280 and the bypass layer 250 are joined.
  • the power supply terminal 280 and the bypass layer 250 are joined by welding, laser, soldering, brazing, or the like.
  • the second support plate 270 is provided with a hole 273.
  • the hole 273 passes through the second support plate 270.
  • a hole 261 is provided in the third resin layer 260.
  • the hole 261 passes through the third resin layer 260.
  • the heater plate 200 of this embodiment is manufactured.
  • inspection etc. are suitably performed with respect to the heater plate 200 after manufacture.
  • FIG. 9 is a schematic exploded view showing the electrostatic chuck according to the present embodiment.
  • FIG. 10 is an electric circuit diagram showing the electrostatic chuck according to the present embodiment.
  • FIG. 10A is an electric circuit diagram illustrating an example in which the first support plate and the second support plate are electrically joined.
  • FIG. 10B is an electric circuit diagram illustrating an example in which the first support plate and the second support plate are not electrically joined.
  • the first support plate 210 is electrically joined to the second support plate 270.
  • the first support plate 210 and the second support plate 270 are joined by, for example, welding, joining using laser light, soldering, or contact.
  • the first support plate 210 is the second support plate. 270 may be electrically joined or not electrically joined. Then, the etching rate when plasma is generated may vary. Even if the first support plate 210 is not electrically joined to the second support plate 270, current may flow to the heater element 230 when the plasma is generated, and the heater element 230 may generate heat. In other words, if the first support plate 210 is not securely joined to the second support plate 270, the heater element 230 may generate heat due to a current other than the heater current.
  • the first support plate 210 is electrically joined to the second support plate 270 as shown in FIG.
  • the current flows from the first support plate 210 to the second support plate 270, or the current flows from the second support plate 270 to the first support plate 210, resulting in an etching rate when plasma is generated.
  • the occurrence of variations can be suppressed.
  • the heater element 230 can be prevented from generating heat due to a current other than the heater current.
  • the heater element 230 and the bypass layer 250 can be shielded from high frequencies. Thereby, it is possible to suppress the heater element 230 from generating heat to an abnormal temperature. Moreover, the impedance of the heater plate 200 can be suppressed.
  • FIG. 11 is a schematic plan view illustrating a specific example of the heater plate of the present embodiment.
  • 12 and 13 are schematic plan views illustrating the heater element of this example.
  • FIG. 14 is a schematic plan view illustrating the bypass layer of this example.
  • FIG. 15 is an enlarged view schematically showing a part of the heater plate of this example.
  • FIG. 11A is a schematic plan view of the heater plate of this example viewed from above.
  • FIG. 11B is a schematic plan view of the heater plate of this specific example viewed from the lower surface.
  • FIG. 12A is a schematic plan view illustrating an example of a heater element region.
  • FIGS. 12B and 13 are schematic plan views illustrating another example of the heater element region.
  • At least one of the plurality of bypass portions 251 of the bypass layer 250 has a notch 253 at the edge.
  • four notches 253 are provided in the bypass layer 250 shown in FIG. 13, four notches 253 are provided.
  • the number of notches 253 is not limited to “4”. Since at least one of the plurality of bypass layers 250 has the cutout portion 253, the second support plate 270 can contact the first support plate 210.
  • the first support plate 210 is electrically joined to the second support plate 270 in the regions B11 to B14 and the regions B31 to B34. Yes.
  • Each of the regions B11 to B14 corresponds to each of the regions B31 to B34. That is, in the specific examples shown in FIG. 11A to FIG. 13, the first support plate 210 is electrically joined to the second support plate 270 in four regions, and the second support plate 210 in the eight regions. The support plate 270 is not electrically joined.
  • FIGS. 15A and 15B are enlarged views showing an example of the region B31 (region B11).
  • FIG. 14A is a schematic plan view of the region B31
  • FIG. 15B is a schematic cross-sectional view of the region B31.
  • FIG. 15B schematically shows a cut surface A2-A2 of FIG. Since the other regions B12 to B14 and the regions B32 to B34 are the same as the regions B11 and B31, detailed description thereof is omitted.
  • the region B31 is provided with a bonding region JA.
  • the joint area JA joins the first support plate 210 and the second support plate 270 to each other.
  • the joining area JA is provided on the outer edge of the first support plate 210 and the second support plate 270 corresponding to the notch 253 of the bypass layer 250.
  • the joining area JA is formed by, for example, laser welding from the second support plate 270 side. Thereby, the joining area JA is formed in a spot shape.
  • the bonding area JA may be formed from the first support plate 210 side.
  • region JA is not restricted to laser welding, Another method may be sufficient.
  • the shape of the bonding area JA is not limited to a spot shape, and may be an elliptical shape, a semicircular shape, a square shape, or the like.
  • the area of the joint area JA where the first support plate 210 is joined to the second support plate 270 is smaller than the area of the surface 211 (see FIG. 3) of the first support plate 210.
  • the area of the bonding area JA is smaller than the area of the difference obtained by subtracting the area of the heater element 230 from the area of the surface 211.
  • the area of the bonding area JA is smaller than the area of the area that does not overlap the heater element 230 when projected onto a plane parallel to the surface 211 of the first support plate 210.
  • the area of the joint area JA where the first support plate 210 is joined to the second support plate 270 is smaller than the area of the surface 271 of the second support plate 270 (see FIG. 4A).
  • the area of the bonding area JA is smaller than the area of the difference obtained by subtracting the area of the heater element 230 from the area of the surface 271. In other words, the area of the bonding area JA is smaller than the area of the area that does not overlap the heater element 230 when projected onto a plane parallel to the surface 271 of the second support plate 270.
  • the diameter of the joining area JA formed in a spot shape is, for example, 1 mm (0.5 mm or more and 3 mm or less).
  • the diameters of the first support plate 210 and the second support plate 270 are, for example, 300 mm.
  • the diameters of the first support plate 210 and the second support plate 270 are set according to the processing object W to be held.
  • the area of the bonding area JA is sufficiently smaller than the area of the surface 211 of the first support plate 210 and the area of the surface 271 of the second support plate 270.
  • the area of the bonding region JA is, for example, 1/5000 or less of the area of the surface 211 (area of the surface 271).
  • the area of the bonding area JA is more specifically the area when projected onto a plane parallel to the surface 211 of the first support plate 210.
  • the area of the bonding area JA is an area in a top view.
  • the number of joining areas JA is not limited to four.
  • the number of the joining areas JA may be an arbitrary number.
  • twelve bonding areas JA may be provided on the first support plate 210 and the second support plate 270 every 30 °.
  • the shape of the bonding area JA is not limited to a spot shape.
  • the shape of the bonding area JA may be elliptical, square, linear, or the like.
  • the joining area JA may be formed in an annular shape along the outer edges of the first support plate 210 and the second support plate 270.
  • the second support plate 270 has a hole 273 (see FIG. 4B and FIG. 8).
  • the first support plate 210 does not have a hole through which the power supply terminal 280 passes. Therefore, the area of the surface 211 of the first support plate 210 is larger than the area of the surface 271 of the second support plate 270.
  • the heater element 230 has, for example, a belt-like heater electrode 239.
  • the heater electrode 239 is arranged to draw a substantially circle.
  • the heater electrode 239 is disposed in the first region 231, the second region 232, the third region 233, and the fourth region 234.
  • the first region 231 is located at the center of the heater element 230.
  • the second region 232 is located outside the first region 231.
  • the third region 233 is located outside the second region 232.
  • the fourth region 234 is located outside the third region 233.
  • the heater electrode 239 disposed in the first region 231 is not electrically joined to the heater electrode 239 disposed in the second region 232.
  • the heater electrode 239 disposed in the second region 232 is not electrically joined to the heater electrode 239 disposed in the third region 233.
  • the heater electrode 239 disposed in the third region 233 is not electrically joined to the heater electrode 239 disposed in the fourth region 234. That is, the heater electrode 239 is provided in a plurality of regions in an independent state.
  • the heater electrode 239 is arranged so as to draw at least a part of a substantially fan shape.
  • the heater electrode 239 includes a first region 231a, a second region 231b, a third region 231c, a fourth region 231d, a fifth region 231e, a sixth region 231f, and a seventh region.
  • the region 232a, the eighth region 232b, the ninth region 232c, the tenth region 232d, the eleventh region 232e, and the twelfth region 232f are arranged.
  • the heater electrode 239 arranged in an arbitrary region is not electrically joined to the heater electrode 239 arranged in another region. That is, the heater electrode 239 is provided in a plurality of regions in an independent state. As shown in FIGS. 12A and 12B, the region where the heater electrode 239 is disposed is not particularly limited.
  • the heater element 230 has more areas.
  • the first region 231 shown in FIG. 12A is further divided into four regions 231a to 231d.
  • the second area 232 shown in FIG. 12A is further divided into eight areas 232a to 232h.
  • the third area 233 shown in FIG. 12A is further divided into eight areas 233a to 233h.
  • the fourth area 234 shown in FIG. 12A is further divided into 16 areas 234a to 234p.
  • the number and shape of the regions of the heater element 230 in which the heater electrode 239 is disposed may be arbitrary.
  • the bypass portion 251 of the bypass layer 250 has a fan shape.
  • a plurality of fan-shaped bypass portions 251 are arranged apart from each other, and the bypass layer 250 has a substantially circular shape as a whole.
  • the separation portion 257 between the adjacent bypass portions 251 extends in the radial direction from the center 259 of the bypass layer 250.
  • the separation portion 257 between the adjacent bypass portions 251 extends radially from the center 259 of the bypass layer 250.
  • the area of the surface 251 a of the bypass part 251 is larger than the area of the separation part 257.
  • the area of the bypass layer 250 (area of the surface 251a of the bypass portion 251) is larger than the area of the heater element 230 (area of the heater electrode 239).
  • the shape of the plurality of bypass portions 251 of the bypass layer 250 may be, for example, a curved fan shape.
  • the number and shape of the plurality of bypass portions 251 provided in the bypass layer 250 may be arbitrary.
  • the heater electrode 239 is disposed so as to draw a substantially circle, and a plurality of fan-shaped bypass portions 251 are arranged apart from each other. Therefore, when viewed perpendicular to the surface 251 a of the bypass portion 251, the heater electrode 239 intersects with the separation portion 257 between the adjacent bypass portions 251. Further, when viewed perpendicular to the surface 251 a of the bypass portion 251, each region of the adjacent heater element 230 (the first region 231, the second region 232, the third region 233, and the fourth region 234). ) Between the adjacent bypass portions 251 intersects with the separation portion 257 between the adjacent bypass portions 251.
  • a plurality of imaginary lines connecting each of the joint portions 255a to 255h between the heater element 230 and the bypass layer 250 and the center 203 of the heater plate 200 are , Do not overlap each other.
  • the joint portions 255 a to 255 h between the heater element 230 and the bypass layer 250 are arranged in different directions as viewed from the center 203 of the heater plate 200.
  • the power supply terminal 280 exists on an imaginary line that connects each of the joint portions 255a to 255h and the center 203 of the heater plate 200.
  • the joint portions 255 a and 255 b are portions that join the heater electrode 239 and the bypass layer 250 disposed in the first region 231.
  • the joint portions 255a and 255b correspond to the first region 231.
  • One of the joint portion 255a and the joint portion 255b is a portion where current enters the heater element 230.
  • the other of the joining portion 255a and the joining portion 255b is a portion where current flows out of the heater element 230.
  • the joint portions 255 c and 255 d are portions that join the heater electrode 239 and the bypass layer 250 disposed in the second region 232.
  • the joint portions 255 c and 255 d correspond to the second region 232.
  • One of the joint portion 255c and the joint portion 255d is a portion where current enters the heater element 230.
  • the other of the joining portion 255c and the joining portion 255d is a portion where current flows out of the heater element 230.
  • the joint portions 255e and 255f are portions that join the heater electrode 239 and the bypass layer 250 disposed in the third region 233.
  • the joint portions 255e and 255f correspond to the third region 233.
  • One of the joint portion 255e and the joint portion 255f is a portion where current enters the heater element 230.
  • the other of the joining portion 255e and the joining portion 255f is a portion where the current exits from the heater element 230.
  • the joint portions 255g and 255h are portions that join the heater electrode 239 and the bypass layer 250 disposed in the fourth region 234.
  • the joint portions 255g and 255h correspond to the fourth region 234.
  • One of the junction 255g and the junction 255h is a portion where current enters the heater element 230.
  • the other of the joining portion 255g and the joining portion 25h is a portion where current flows out of the heater element 230.
  • the joint portions 255a and 255b exist on a circle different from the circle passing through the joint portions 255c and 255d with the center 203 of the heater plate 200 as the center.
  • the joint portions 255a and 255b exist on a circle different from the circle passing through the joint portions 255e and 255f with the center 203 of the heater plate 200 as the center.
  • the joints 255a and 255b exist on a circle different from the circle passing through the joints 255g and 255h with the center 203 of the heater plate 200 as the center.
  • the joint portions 255c and 255d exist on a circle different from the circle passing through the joint portions 255e and 255f with the center 203 of the heater plate 200 as the center.
  • the joint portions 255c and 255d exist on a circle different from the circle passing through the joint portions 255g and 255h with the center 203 of the heater plate 200 as the center.
  • the joint portions 255e and 255f exist on a circle different from the circle passing through the joint portions 255g and 255h with the center 203 of the heater plate 200 as the center.
  • the heater plate 200 has a lift pin hole 201. As shown in FIG. In the specific examples shown in FIGS. 11A and 11B, the heater plate 200 has three lift pin holes 201. The number of lift pin holes 201 is not limited to “3”.
  • the power supply terminal 280 is provided in a region on the side of the center 203 of the heater plate 200 when viewed from the lift pin hole 201.
  • the heater electrode 239 is arranged in a plurality of regions, the temperature in the surface of the processing object W can be controlled independently for each region. Thereby, it is possible to intentionally make a difference in the in-plane temperature of the processing object W (temperature controllability).
  • FIG. 16 is a schematic diagram for explaining the shape of the surface of the heater plate of the present embodiment.
  • FIG. 16A is a graph illustrating an example of a result of measurement of the shape of the surface 271 of the second support plate 270 by the inventor.
  • FIG. 16B is a schematic cross-sectional view illustrating the shape of the surface of the heater plate 200 of the present embodiment.
  • each member of the heater plate 200 is pressed by a hot press machine in a stacked state.
  • the first unevenness is generated on the surface 211 (upper surface) of the first support plate 210.
  • the second unevenness is generated on the surface 271 (lower surface) of the second support plate 270.
  • a third unevenness is generated on the surface 213 (lower surface) of the first support plate 210.
  • a fourth unevenness is generated on the surface 275 (upper surface) of the second support plate 270.
  • the inventor measured the shape of the surface 271 of the second support plate 270.
  • An example of the measurement result is as shown in FIG.
  • the shape of the surface 211 (upper surface) of the first support plate 210 and the shape of the surface 271 of the second support plate 270 are the shapes of the heater element 230.
  • the heater element 230 is arranged.
  • the shape of the heater element 230 refers to the thickness of the heater element 230 and the width of the heater element 230 (the width of the heater electrode 239).
  • the distance D1 in the direction is such that the convex portion 211b (first concave / convex convex portion 211b) of the surface 211 of the first support plate 210 and the convex portion 271b (second concave / convex portion of the surface 271 of the second supporting plate 270). It is shorter than the distance D2 in the Z direction between the convex portion 271b).
  • the distance D3 in the Z direction between the concave portion 211a of the surface 211 of the first support plate 210 and the convex portion 211b of the surface 211 of the first support plate 210 (the uneven height of the surface 211 of the first support plate 210) (The height of the first unevenness) is a distance D4 (Z4) between the concave portion 271a of the surface 271 of the second support plate 270 and the convex portion 271b of the surface 271 of the second support plate 270.
  • the unevenness height of the surface 271 of the second support plate 270 is shorter than the height of the second unevenness. That is, the unevenness height (first unevenness height) of the surface 211 of the first support plate 210 is higher than the unevenness height (second unevenness height) of the surface 271 of the second support plate 270. Low.
  • the width of the concave portion 271a of the surface 271 of the second support plate 270 is approximately the same as the width of the region between the two adjacent heater electrodes 239 (the slit portion of the heater element 230).
  • the width of the concave portion 271a of the surface 271 of the second support plate 270 is, for example, not less than 0.25 times and not more than 2.5 times the width of the region between two adjacent heater electrodes 239.
  • the width of the convex portion 271b of the surface 271 of the second support plate 270 is approximately the same as the width of the heater electrode 239.
  • the width of the convex portion 271b of the surface 271 of the second support plate 270 is, for example, not less than 0.8 times and not more than 1.2 times the width of the heater electrode 230.
  • the uneven height D4 of the surface 271 of the second support plate 270 is approximately the same as the thickness of the heater element 230 (the thickness of the heater electrode 239).
  • the uneven height D4 of the second support plate 270 is not less than 0.8 times and not more than 1.2 times the thickness of the heater element 230.
  • the width of the recess 211a of the surface 211 of the first support plate 210 is approximately the same as the width of the region between the two adjacent heater electrodes 239.
  • the width of the convex portion 211 b of the surface 211 of the first support plate 210 is approximately the same as the width of the heater electrode 239.
  • the uneven height D 3 of the surface 211 of the first support plate 210 is lower than the thickness of the heater element 230.
  • the height of the surface 271 of the second support plate 270 changes gradually from the convex portion 271b toward the adjacent concave portion 271a.
  • the height of the surface 271 of the second support plate 270 continuously decreases from the center in the width direction of the convex portion 271b toward the center in the width direction of the adjacent concave portion 271a.
  • the center in the width direction of the convex portion 271b is a position overlapping with the center in the width direction of the heater electrode 239 in the surface 271 in the Z direction.
  • the center in the width direction of the concave portion 271a is a position overlapping in the Z direction with the center in the width direction of the region between the two adjacent heater electrodes 239 in the surface 271.
  • the height of the surface 271 of the second support plate 270 changes in a wave shape with the portion overlapping with the heater electrode 239 as the apex and the portion not overlapping with the heater electrode 239 as the lowest point.
  • the height of the surface 211 of the first support plate 210 changes in a wave shape with the portion overlapping the heater electrode 239 as the apex and the portion not overlapping with the heater electrode 239 as the lowest point.
  • the bonding area between the first support plate 210 and the heater element 230 can be further increased, and the first The adhesive strength between the one support plate 210 and the heater element 230 can be improved.
  • the adhesion area of the 1st support plate 210 and the adhesive agent 403 can be made wider according to the 1st unevenness
  • transformation of the heater plate 200 can be reduced.
  • the surface 271 of the second support plate 270 has the second unevenness, the adhesion area between the second support plate 270 and the bypass layer 250 can be increased, and the second support plate 270 can be increased.
  • the adhesive strength between the bypass layer 250 can be improved.
  • the adhesion area of the 2nd support plate 270 and the adhesive agent 403 can be made wider according to the 2nd unevenness
  • the joint strength between the second support plate 270 and the adhesive 403 can also be improved.
  • the second support plate 270 has irregularities, the rigidity of the second support plate 270 increases. For this reason, even if the 2nd support plate 270 is thin, the curvature and deformation
  • the surface 211 of the first support plate 210 has the first unevenness, the distance between the heater element 230 and the processing object W can be further shortened. Thereby, the speed which raises the temperature of the processing target object W can be improved.
  • FIG. 17A to FIG. 17C are schematic cross-sectional views illustrating the shape of the surface of the heater plate according to the modification of the present embodiment. Also in the heater plate 200 shown in FIGS. 17A to 17C, the first to fourth irregularities are generated in the same manner as described with reference to FIG. As shown in FIG. 17A, the distance D1a in the Z direction between the concave portion 211a and the concave portion 271a is shorter than the distance D2a in the Z direction between the convex portion 211b and the convex portion 271b. .
  • Unevenness height the height of the first unevenness is the distance D4a in the Z direction between the recesses 271a and 271b (the unevenness height of the surface 271 of the second support plate 270: the height of the second unevenness). Longer than). That is, in this example, the unevenness height (the height of the first unevenness) of the surface 211 of the first support plate 210 is the unevenness height (the height of the second unevenness) of the surface 271 of the second support plate 270. Is higher than
  • the uneven height D3a of the surface 211 of the first support plate 210 is approximately the same as the thickness of the heater element 230, for example, 0.8 times or more and 1.2 times or less of the thickness of the heater element 230.
  • the uneven height D4a of the surface 271 of the second support substrate 270 is lower than the thickness of the heater element 230.
  • the width of the recess 211a and the width of the recess 271a are approximately the same as the width of the region between two adjacent heater electrodes 239, respectively.
  • the width of the convex portion 211b and the width of the convex portion 271b are approximately the same as the width of the heater electrode 239, respectively.
  • the height of the surface 271 of the second support plate 270 and the height of the surface 211 of the first support substrate 210 are the same as in the description related to FIG. Each of them changes in a wave shape.
  • the heater plate 200, the base plate 300, The bonding area can be increased. Thereby, the adhesive strength between the heater plate 200 and the base plate 300 can be improved.
  • the first unevenness height (distance D3a) is higher than the second unevenness height (distance D4a) as in the example shown in FIG.
  • the bonding area with the dielectric substrate 100 can be increased. Thereby, the adhesive strength between the heater plate 200 and the ceramic dielectric substrate 100 can be improved.
  • the heater element 230 is provided between the first support plate 210 and the bypass layer 250.
  • the diffusibility of heat supplied from the heater element 230 to the base plate 300 can be improved.
  • the thermal diffusibility in the in-plane direction (horizontal direction) of the processing target W can be improved.
  • the heat supplied to the refrigerant flowing in the base plate 300 becomes more uniform in the in-plane direction. Thereby, an in-plane temperature difference caused by the base plate 300 (refrigerant) can be reduced.
  • the first support plate 210, the first resin layer 220, the second resin layer 240, the third resin layer 260, and the heater element are also provided.
  • 230, a bypass layer 250, and a second support plate 270 are provided.
  • FIGS. 17B and 17C is different from the heater plate 200 shown in FIG. 17A in the stacking order.
  • the bypass layer 250 is provided between the first support plate 210 and the heater element 230.
  • the diffusibility of the heat supplied from the heater element 230 to the processing object W side can be improved.
  • the thermal diffusibility in the in-plane direction (horizontal direction) of the processing target W can be improved.
  • the in-plane temperature difference caused by the heat generated by the heater element 230 can be reduced. Details of this structure will be described later with reference to FIG.
  • the distance D1b in the Z direction between the recess 211a and the recess 271a is shorter than the distance D2b in the Z direction between the protrusion 211b and the protrusion 271b.
  • the distance D3b in the Z direction between the concave portion 211a and the convex portion 211b is the distance between the concave portion 271a and the convex portion 271b. It is longer than the distance D4b in the Z direction (the height of the unevenness of the surface 271 of the second support plate 270: the height of the second unevenness). That is, in this example, the unevenness height (the height of the first unevenness) of the surface 211 of the first support plate 210 is the unevenness height (the height of the second unevenness) of the surface 271 of the second support plate 270. Is higher than
  • the unevenness height D3b of the surface 211 of the first support plate 210 is approximately the same as the thickness of the heater element 230, and is, for example, 0.8 times or more and 1.2 times or less the thickness of the heater element 230.
  • the uneven height D4b of the surface 271 of the second support substrate 270 is lower than the thickness of the heater element 230.
  • the first unevenness height (distance D3b) is higher than the second unevenness height (distance D4b), which is the same as in the case of FIG. Further, the adhesive strength between the heater plate 200 and the ceramic dielectric substrate 100 can be improved.
  • the temperature difference (relative displacement) between the heater plate 200 and the ceramic dielectric substrate 100 may easily increase due to heat transferred from the processing object W to the electrostatic chuck along with the plasma processing.
  • the reliability is increased by improving the adhesive strength between the heater plate 200 and the ceramic dielectric substrate 100 as in the case of the heater plate shown in FIGS. 17 (a) and 17 (b). Can be improved.
  • the distance D1c in the Z direction between the recess 211a and the recess 271a is shorter than the distance D2c in the Z direction between the protrusion 211b and the protrusion 271b.
  • the distance D3c in the Z direction between the concave portion 211a and the convex portion 211b is the distance between the concave portion 271a and the convex portion 271b. It is shorter than the distance D4c in the Z direction (heave height of the surface 271 of the second support plate 270: height of the second bump). That is, in this example, the unevenness height (the height of the first unevenness) of the surface 211 of the first support plate 210 is the unevenness height (the height of the second unevenness) of the surface 271 of the second support plate 270. Lower).
  • the unevenness height D4c of the surface 271 of the second support plate 270 is approximately the same as the thickness of the heater element 230, and is, for example, 0.8 times or more and 1.2 times or less the thickness of the heater element 230.
  • the uneven height D 3 c of the surface 211 of the first support substrate 210 is lower than the thickness of the heater element 230.
  • the second unevenness height (distance D4c) is higher than the first unevenness height (distance D3c), which is similar to the case of FIG. 16B.
  • the bonding area between the heater plate 200 and the base plate can be increased. Thereby, the adhesive strength between the heater plate 200 and the base plate 300 can be improved.
  • the temperature difference (relative displacement) between the heater plate 200 and the base plate 300 is likely to increase due to heat generated by the heater element 230 or the like.
  • the reliability can be greatly improved by improving the adhesive strength between the heater plate 200 and the base plate 300 as shown in FIG.
  • the heights of the first and second irregularities can be controlled, for example, depending on the processing conditions of hot pressing.
  • the first and second uneven heights can be controlled by the material and hardness of a member that presses the laminate from above and a member that presses the laminate from below.
  • FIG. 18 is a schematic cross-sectional view showing an electrostatic chuck according to a modification of the present embodiment.
  • FIG. 18A is a schematic cross-sectional view showing an electrostatic chuck according to a modification of the present embodiment.
  • FIG. 18B is a schematic cross-sectional view showing the heater plate of this modification.
  • FIGS. 18A and 18B correspond to, for example, schematic cross-sectional views taken along section A1-A1 shown in FIG.
  • the electrostatic chuck 10a shown in FIG. 18A includes a ceramic dielectric substrate 100, a heater plate 200a, and a base plate 300.
  • the ceramic dielectric substrate 100 and the base plate 300 are as described above with reference to FIGS.
  • the heater plate 200a of this example has a plurality of heater elements.
  • the heater plate 200a shown in FIG. 18B includes a first resin layer 220, a first heater element (heat generation layer) 230a, a second resin layer 240, and a second heater element (heat generation layer).
  • 230 b a third resin layer 260, a bypass layer 250, a fourth resin layer 290, and a second support plate 270.
  • the first resin layer 220 is provided between the first support plate 210 and the second support plate 270.
  • the first heater element 230 a is provided between the first resin layer 220 and the second support plate 270.
  • the second resin layer 240 is provided between the first heater element 230 a and the second support plate 270.
  • the second heater element 230 b is provided between the second resin layer 240 and the second support plate 270.
  • the third resin layer 260 is provided between the second heater element 230 b and the second support plate 270.
  • the bypass layer 250 is provided between the third resin layer 260 and the second support plate 270.
  • the fourth resin layer 290 is provided between the bypass layer 250 and the second support plate 270. That is, in this specific example, the first heater element 230a is provided in a state independent of the second heater element 230b in a different layer.
  • the materials, thicknesses, and functions of the first heater element 230a and the second heater element 230b are the same as those of the heater element 230 described above with reference to FIGS.
  • the fourth resin layer 290 is the same as the first resin layer 220 described above with reference to FIGS.
  • the temperature in the surface of the processing object W is independent for each predetermined region. Can be controlled.
  • FIGS. 19 and 20 are schematic plan views showing modifications of the first support plate of the present embodiment.
  • FIG. 21 is a schematic cross-sectional view showing a heater plate according to this modification.
  • FIG. 19A shows an example in which the first support plate is divided into a plurality of support portions.
  • FIG. 19B and FIG. 20 show another example in which the first support plate is divided into a plurality of support portions.
  • FIG. 21 for convenience of explanation, the heater plate shown in FIG. 19A and the graph of the temperature of the upper surface of the first support plate are shown together.
  • the graph shown in FIG. 21 is an example of the temperature of the upper surface of the first support plate.
  • the horizontal axis of the graph shown in FIG. 21 represents the position of the upper surface of the first support plate 210a.
  • the vertical axis of the graph shown in FIG. 21 represents the temperature of the upper surface of the first support plate 210a.
  • the bypass layer 250 and the third resin layer 260 are omitted.
  • the first support plate 210a is divided into a plurality of support portions. More specifically, in the modification shown in FIG. 19A, the first support plate 210a is concentrically divided into a plurality of support portions, and includes a first support portion 216 and a second support portion. 217, a third support portion 218, and a fourth support portion 219. In the modification shown in FIG. 19A, the first support plate 210a is concentrically divided into a plurality of support portions, and includes a first support portion 216 and a second support portion. 217, a third support portion 218, and a fourth support portion 219. In the modification shown in FIG.
  • the first support plate 210b is concentrically and radially divided into a plurality of support portions, and includes a first support portion 216a, a second support portion 216b, 3 support part 216c, 4th support part 216d, 5th support part 216e, 6th support part 216f, 7th support part 217a, 8th support part 217b, and 9th It has a support part 217c, a tenth support part 217d, an eleventh support part 217e, and a twelfth support part 217f.
  • the first support plate 210c has more support portions.
  • the first support portion 216 shown in FIG. 19A is further divided into four support portions 216a to 216d.
  • the second support portion 217 shown in FIG. 19A is further divided into eight support portions 217a to 217h.
  • the third support portion 218 shown in FIG. 19A is further divided into eight regions 218a to 218h.
  • the fourth support portion 219 shown in FIG. 19A is further divided into 16 support portions 219a to 219p.
  • the number and shape of the support portions provided on the first support plate 210 may be arbitrary.
  • the first resin layer 220, the heater element 230, the second resin layer 240, the bypass layer 250, the third resin layer 260, the second support plate 270, and the power supply terminal 280 are respectively As described above with reference to FIGS.
  • the first support plate 210a shown in FIG. 19A is taken as an example.
  • the first support portion 216 is provided on the first region 231 of the heater element 230 and corresponds to the first region 231 of the heater element 230.
  • the second support portion 217 is provided on the second region 232 of the heater element 230 and corresponds to the second region 232 of the heater element 230.
  • the third support portion 218 is provided on the third region 233 of the heater element 230 and corresponds to the third region 233 of the heater element 230.
  • the fourth support portion 219 is provided on the fourth region 234 of the heater element 230 and corresponds to the fourth region 234 of the heater element 230.
  • the first support part 216 is not electrically joined to the second support part 217.
  • the second support part 217 is not electrically joined to the third support part 218.
  • the third support part 218 is not electrically joined to the fourth support part 219.
  • a temperature difference in the radial direction can be intentionally provided in the plane of the first support plates 210a, 210b, 210c (temperature controllability).
  • a temperature difference can be provided stepwise from the first support portion 216 to the fourth support portion 219.
  • a temperature difference can be intentionally provided in the surface of the processing object W (temperature controllability).
  • FIG. 22 is a schematic plan view illustrating a specific example of the power feeding terminal of the present embodiment.
  • FIG. 22A is a schematic plan view showing a power supply terminal of this example.
  • FIG. 22B is a schematic plan view illustrating the power feeding terminal joining method according to this example.
  • the power supply terminal 280 shown in FIGS. 22A and 22B includes a pin portion 281, a conductive wire portion 283, a support portion 285, and a joint portion 287.
  • the pin portion 281 is connected to a member called a socket or the like.
  • the socket supplies power from the outside of the electrostatic chuck 10.
  • the conducting wire part 283 is connected to the pin part 281 and the support part 285.
  • the support portion 285 is connected to the conductor portion 283 and the joint portion 287.
  • the joining portion 287 is joined to the heater element 230 or the bypass layer 250 as indicated by an arrow C14 shown in FIG.
  • the conducting wire portion 283 relieves stress applied to the power supply terminal 280. That is, the pin portion 281 is fixed to the base plate 300.
  • the joint portion 287 is joined to the heater element 230 or the bypass layer 250.
  • a temperature difference is generated between the base plate 300 and the heater element 230 or the bypass layer 250. Therefore, a difference in thermal expansion occurs between the base plate 300 and the heater element 230 or the bypass layer 250. Therefore, stress due to a difference in thermal expansion may be applied to the power supply terminal 280.
  • the stress resulting from the difference in thermal expansion is applied in the radial direction of the base plate 300, for example.
  • the conductor portion 283 can relieve this stress.
  • the joining portion 287 and the heater element 230 or the bypass layer 250 are joined by welding, joining using laser light, soldering, brazing, or the like.
  • the material of the pin portion 281 includes, for example, molybdenum.
  • Examples of the material of the conductive wire portion 283 include copper.
  • the diameter D5 of the conducting wire part 283 is smaller than the diameter D8 of the pin part 281.
  • the diameter D5 of the conducting wire part 283 is, for example, about 0.3 mm or more and 2.0 mm or less.
  • Examples of the material of the support portion 285 include stainless steel.
  • the thickness D6 (length in the Z direction) of the support portion 285 is, for example, about 0.5 mm or more and 2.0 mm or less.
  • Examples of the material of the bonding portion 287 include stainless steel.
  • a thickness D7 (length in the Z direction) of the joint portion 287 is, for example, about 0.05 mm or more and 0.50 mm or less.
  • the pin portion 281 can supply a relatively large current to the heater element 230. Moreover, since the diameter D5 of the conducting wire part 283 is smaller than the diameter D8 of the pin part 281, the conducting wire part 283 is easier to deform than the pin part 281, and the position of the pin part 281 can be shifted from the center of the joint part 287. . Thereby, the power supply terminal 280 can be fixed to a member (for example, the base plate 300) different from the heater plate 200.
  • the support portion 285 is joined to the conductor portion 283 and the joint portion 287 by, for example, welding, joining using laser light, soldering, brazing, or the like. Thereby, a wider contact area with respect to the heater element 230 or the bypass layer 250 can be ensured while relaxing the stress applied to the power supply terminal 280.
  • FIG. 23 is a schematic exploded view showing a modification of the heater plate of the present embodiment.
  • the bypass layer 250 is provided between the first support plate 210 and the heater element 230. More specifically, the bypass layer 250 is provided between the first support plate 210 and the first resin layer 220, and the third resin layer 260 is provided between the first support plate 210 and the bypass layer 250. Provided.
  • the bypass layer 250 may be provided between the first support plate 210 and the heater element 230. That is, the bypass layer 250 may be provided between the heater element 230 and the ceramic dielectric substrate 100.
  • the diffusibility of the heat supplied from the heater element 230 can be improved by the bypass layer 250.
  • the thermal diffusibility in the in-plane direction (horizontal direction) of the processing object W can be improved.
  • the uniformity of the temperature distribution in the surface of the process target W can be improved, for example.
  • bypass layer 250 may be provided, for example, both between the first support plate 210 and the heater element 230 and between the heater element 230 and the second support plate 270. That is, the heater plate 200 includes two bypass layers 250 provided between the first support plate 210 and the heater element 230 and between the heater element 230 and the second support plate 270, respectively. May be.
  • FIG. 24 is a schematic sectional view showing a wafer processing apparatus according to another embodiment of the present invention.
  • the wafer processing apparatus 500 includes a processing container 501, an upper electrode 510, and the electrostatic chuck (for example, the electrostatic chuck 10) described above with reference to FIGS.
  • a processing gas inlet 502 for introducing processing gas into the inside is provided on the ceiling of the processing container 501.
  • the bottom plate of the processing vessel 501 is provided with an exhaust port 503 for exhausting the inside under reduced pressure.
  • a high frequency power source 504 is connected to the upper electrode 510 and the electrostatic chuck 10 so that a pair of electrodes having the upper electrode 510 and the electrostatic chuck 10 face each other in parallel at a predetermined interval. Yes.
  • the processing object W is a semiconductor substrate (wafer).
  • the processing object W is not limited to a semiconductor substrate (wafer), and may be, for example, a glass substrate used in a liquid crystal display device.
  • the high frequency power source 504 is electrically connected to the base plate 300 of the electrostatic chuck 10.
  • a metal material such as aluminum is used for the base plate 300. That is, the base plate 300 has conductivity. As a result, the high frequency voltage is applied between the upper electrode 410 and the base plate 300.
  • the base plate 300 is electrically connected to the first support plate 210 and the second support plate 270.
  • a high frequency voltage is also applied between the first support plate 210 and the upper electrode 510 and between the second support plate 270 and the upper electrode 510.
  • a high-frequency voltage is applied between the support plates 210 and 270 and the upper electrode 510.
  • the place where the high frequency voltage is applied can be brought closer to the processing object W.
  • plasma can be generated more efficiently and at a low potential.
  • An apparatus having a configuration such as the wafer processing apparatus 500 is generally called a parallel plate type RIE (Reactive / Ion / Etching) apparatus, but the electrostatic chuck 10 according to the present embodiment is not limited to application to this apparatus.
  • ECR Electro Cyclotron Resonance
  • etching apparatus dielectric coupled plasma processing apparatus, helicon wave plasma processing apparatus, plasma separation type plasma processing apparatus, surface wave plasma processing apparatus, so-called decompression processing apparatus such as plasma CVD (Chemical Vapor Deposition)
  • plasma CVD Chemical Vapor Deposition
  • the electrostatic chuck 10 according to the present embodiment can be widely applied to a substrate processing apparatus that performs processing and inspection under atmospheric pressure, such as an exposure apparatus and an inspection apparatus.
  • the electrostatic chuck 10 considering the high plasma resistance of the electrostatic chuck 10 according to the present embodiment, it is preferable to apply the electrostatic chuck 10 to the plasma processing apparatus.
  • the description is abbreviate
  • FIG. 25 is a schematic cross-sectional view showing a modification of the wafer processing apparatus according to another embodiment of the present invention.
  • the high frequency power source 504 is electrically connected only between the first support plate 210 and the upper electrode 510 and between the second support plate 270 and the upper electrode 510. Also good. Also in this case, the place where the high frequency voltage is applied can be brought close to the processing object W, and plasma can be generated efficiently.
  • FIG. 26 is a schematic sectional view showing a modification of the wafer processing apparatus according to another embodiment of the present invention.
  • the high frequency power source 504 is electrically connected to the heater element 230.
  • the high frequency voltage may be applied between the heater element 230 and the upper electrode 510. Also in this case, the place where the high frequency voltage is applied can be brought close to the processing object W, and plasma can be generated efficiently.
  • the high frequency power supply 504 is electrically connected to the heater element 230 via each power supply terminal 280, for example.
  • the high frequency voltage is selectively applied to a plurality of regions (for example, the first region 231 to the fourth region 234 shown in FIG. 12A) of the heater element 230. Thereby, the distribution of the high frequency voltage can be controlled.
  • the high frequency power source 504 may be electrically connected to the first support plate 210, the second support plate 270, and the heater element 230, for example.
  • the high frequency voltage is applied between the first support plate 210 and the upper electrode 510, between the second support plate 270 and the upper electrode 510, and between the heater element 230 and the upper electrode 510. Also good.
  • an electrostatic chuck that can satisfy temperature uniformity and temperature controllability is provided.
  • second support plate 271 ... surface, 271a ... recess, 271b ... convex portion, 273 ... hole, 275 ... surface, 280 ... power supply terminal, 281: Pin part, 283: Conductor part, 285 ... the support, 287 ... Junction part, 290 ... fourth resin layer, 300 ... Base plate, 301 ... Communication passage, 303 ... bottom surface, 321 ... Introduction path, 403 ... adhesive, 500 ... Wafer processing apparatus, 501 ... Processing container, 502 ... Processing gas inlet, 503 ... exhaust port, 504 ... high frequency power supply, 510 ... Upper electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided is an electrostatic chuck having a first main surface on which an object to be processed is mounted, and a second main surface opposite to the first main surface, the electrostatic chuck being characterized by being provided with: a ceramic dielectric substrate; a base plate which is disposed apart from the ceramic dielectric substrate and supports the ceramic dielectric substrate; and a heater plate disposed between the ceramic dielectric substrate and the base plate, wherein the heater plate has: a first support plate including a metal; a second support plate including a metal; a heater element which is disposed between the first support plate and the second support plate and generates heat by electric current flow; a first resin layer disposed between the first support plate and the heater element; and a second resin layer disposed between the second support plate and the heater element.

Description

静電チャックElectrostatic chuck
 本発明の態様は、一般的に、静電チャックに関する。 An aspect of the present invention generally relates to an electrostatic chuck.
 エッチング、CVD(Chemical Vapor Deposition)、スパッタリング、イオン注入、アッシングなどを行うプラズマ処理チャンバ内では、半導体ウェーハやガラス基板などの処理対象物を吸着保持する手段として、静電チャックが用いられている。静電チャックは、内蔵する電極に静電吸着用電力を印加し、シリコンウェーハ等の基板を静電力によって吸着するものである。 In a plasma processing chamber that performs etching, CVD (Chemical Vapor Deposition), sputtering, ion implantation, ashing, and the like, an electrostatic chuck is used as means for adsorbing and holding a processing object such as a semiconductor wafer or a glass substrate. The electrostatic chuck applies electrostatic attraction power to a built-in electrode and attracts a substrate such as a silicon wafer by electrostatic force.
 このような静電チャックを有する基板処理装置においては、歩留まりの向上および品質の向上のために、ウェーハの温度制御が求められている。ウェーハの温度制御には、2種類の性能が求められる。1つの性能は、ウェーハの面内の温度分布を均一にする温度均一性である。もう1つの性能は、ウェーハの面内の温度に意図的に差をつける温度制御性である。ウェーハの温度制御においては、静電チャックに内蔵されるヒータの性能が重要な要素の1つである。一般的に、温度均一性は、温度制御性とトレードオフの関係にある。 In such a substrate processing apparatus having an electrostatic chuck, temperature control of the wafer is required in order to improve yield and quality. Two types of performance are required for temperature control of the wafer. One performance is temperature uniformity that makes the temperature distribution in the plane of the wafer uniform. Another performance is temperature controllability that intentionally makes a difference in the in-plane temperature of the wafer. In controlling the temperature of the wafer, the performance of the heater built in the electrostatic chuck is one of the important factors. In general, temperature uniformity is in a trade-off relationship with temperature controllability.
 基板処理装置においては、高スループット化がさらに求められている。基板処理装置の高スループット化を実現するためには、静電チャックに内蔵されるヒータの熱容量は、比較的小さいことが好ましい。 In the substrate processing apparatus, higher throughput is further demanded. In order to achieve high throughput of the substrate processing apparatus, it is preferable that the heat capacity of the heater built in the electrostatic chuck is relatively small.
 ウェーハ加工のプロセスでは、RF(Radio Frequency)電圧(高周波電圧)が印加される。RF電圧が印加されると、一般的なヒータは、高周波の影響を受けて発熱する。すると、温度制御性が低下する。また、RF電圧が印加されると、漏れ電流が設備側に流れる。そのため、フィルタなどの機構が設備側に必要となる。 
 ヒータが静電チャックに内蔵される場合には、ヒータの内蔵方法(例えば接着方法)の信頼性が重要な要素の1つである。
In the wafer processing process, an RF (Radio Frequency) voltage (high frequency voltage) is applied. When an RF voltage is applied, a general heater generates heat under the influence of a high frequency. Then, the temperature controllability decreases. Moreover, when the RF voltage is applied, a leakage current flows to the equipment side. Therefore, a mechanism such as a filter is required on the equipment side.
When the heater is built in the electrostatic chuck, the reliability of the heater built-in method (for example, bonding method) is one of the important factors.
 プラズマエッチング装置などにおけるプロセスでは、様々な強度および様々な分布のプラズマがウェーハに照射される。プラズマがウェーハに照射される場合には、ウェーハの温度をプロセスに適した温度に制御することが求められる。また、プラズマがウェーハに照射される場合には、温度均一性および温度制御性が求められる。さらに、生産性を向上させるためには、ウェーハの温度を所定の温度に比較的短い時間で到達させることが求められる。急激な温度変化や、熱の供給や、高周波電圧の印加がある場合でも、静電チャックおよびウェーハには高い信頼性が求められる。このような要求を同時に満足することは、困難である。 In a process in a plasma etching apparatus or the like, plasmas with various intensities and various distributions are irradiated onto the wafer. When the wafer is irradiated with plasma, it is required to control the temperature of the wafer to a temperature suitable for the process. In addition, when the wafer is irradiated with plasma, temperature uniformity and temperature controllability are required. Furthermore, in order to improve productivity, it is required to reach the wafer temperature to a predetermined temperature in a relatively short time. Even when there is a rapid temperature change, heat supply, or application of a high-frequency voltage, high reliability is required for the electrostatic chuck and the wafer. It is difficult to satisfy such requirements at the same time.
特開2010-40644号公報JP 2010-40644 A
 本発明は、かかる課題の認識に基づいてなされたものであり、温度均一性および温度制御性を満足することができる静電チャックを提供することを目的とする。 The present invention has been made based on recognition of such problems, and an object thereof is to provide an electrostatic chuck that can satisfy temperature uniformity and temperature controllability.
 本発明の一態様によれば、処理対象物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有し、セラミック誘電体基板と、前記セラミック誘電体基板とは離れた位置に設けられ前記セラミック誘電体基板を支持するベースプレートと、前記セラミック誘電体基板と前記ベースプレートとの間に設けられたヒータプレートと、を備え、前記ヒータプレートは、金属を含む第1の支持板と、金属を含む第2の支持板と、前記第1の支持板と前記第2の支持板との間に設けられ電流が流れることにより発熱するヒータエレメントと、前記第1の支持板と前記ヒータエレメントとの間に設けられた第1の樹脂層と、前記第2の支持板と前記ヒータエレメントとの間に設けられた第2の樹脂層と、を有することを特徴とする静電チャックが提供される。 According to one aspect of the present invention, a ceramic dielectric substrate having the first main surface on which the processing object is placed and the second main surface opposite to the first main surface, and the ceramic A base plate provided at a position away from the dielectric substrate and supporting the ceramic dielectric substrate; and a heater plate provided between the ceramic dielectric substrate and the base plate, wherein the heater plate is a metal A first support plate containing metal, a second support plate containing metal, a heater element that is provided between the first support plate and the second support plate and generates heat when an electric current flows, A first resin layer provided between the first support plate and the heater element; and a second resin layer provided between the second support plate and the heater element. Electrostatic chatter There is provided.
本実施形態にかかる静電チャックを表す模式的斜視図である。It is a typical perspective view showing the electrostatic chuck concerning this embodiment. 本実施形態にかかる静電チャックを表す模式的断面図である。It is a typical sectional view showing the electrostatic chuck concerning this embodiment. 本実施形態のヒータプレートを表す模式的斜視図である。It is a typical perspective view showing the heater plate of this embodiment. 本実施形態のヒータプレートを表す模式的斜視図である。It is a typical perspective view showing the heater plate of this embodiment. 本実施形態のヒータプレートを表す模式的分解図である。It is a typical exploded view showing the heater plate of this embodiment. 本実施形態のヒータプレートの変形例を表す模式的分解図である。It is a typical exploded view showing the modification of the heater plate of this embodiment. 本実施形態の製造方法の一例を例示する模式的断面図である。It is typical sectional drawing which illustrates an example of the manufacturing method of this embodiment. 本実施形態の製造方法の他の一例を例示する模式的断面図である。It is typical sectional drawing which illustrates another example of the manufacturing method of this embodiment. 本実施形態にかかる静電チャックを表す模式的分解図である。It is a typical exploded view showing the electrostatic chuck concerning this embodiment. 本実施形態にかかる静電チャックを表す電気回路図である。It is an electric circuit diagram showing the electrostatic chuck concerning this embodiment. 本実施形態のヒータプレートの具体例を例示する模式的平面図である。It is a typical top view which illustrates the example of the heater plate of this embodiment. 本具体例のヒータエレメントを例示する模式的平面図である。It is a typical top view which illustrates the heater element of this example. 本具体例のヒータエレメントを例示する模式的平面図である。It is a typical top view which illustrates the heater element of this example. 本具体例のバイパス層を例示する模式的平面図である。It is a schematic plan view which illustrates the bypass layer of this example. 本具体例のヒータプレートの一部を模式的に表す拡大図である。It is an enlarged view which represents typically a part of heater plate of this example. 本実施形態のヒータプレートの表面の形状を説明する模式図である。It is a schematic diagram explaining the shape of the surface of the heater plate of this embodiment. 本実施形態の変形例に係るヒータプレートの表面の形状を説明する模式的断面図である。It is a typical sectional view explaining the shape of the surface of the heater plate concerning the modification of this embodiment. 本実施形態の変形例にかかる静電チャックを表す模式的断面図である。It is typical sectional drawing showing the electrostatic chuck concerning the modification of this embodiment. 本実施形態の第1の支持板の変形例を表す模式的平面図である。It is a typical top view showing the modification of the 1st support plate of this embodiment. 本実施形態の第1の支持板の変形例を表す模式的平面図である。It is a typical top view showing the modification of the 1st support plate of this embodiment. 本変形例のヒータプレートを表す模式的断面図である。It is typical sectional drawing showing the heater plate of this modification. 本実施形態の給電端子の具体例を表す模式的平面図である。It is a typical top view showing the specific example of the electric power feeding terminal of this embodiment. 本実施形態のヒータプレートの変形例を表す模式的分解図である。It is a typical exploded view showing the modification of the heater plate of this embodiment. 本発明の他の実施の形態にかかるウェーハ処理装置を表す模式的断面図である。It is typical sectional drawing showing the wafer processing apparatus concerning other embodiment of this invention. 本発明の他の実施の形態にかかるウェーハ処理装置の変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the wafer processing apparatus concerning other embodiment of this invention. 本発明の他の実施の形態にかかるウェーハ処理装置の変形例を表す模式的断面図である。It is typical sectional drawing showing the modification of the wafer processing apparatus concerning other embodiment of this invention.
 第1の発明は、処理対象物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有し、セラミック誘電体基板と、前記セラミック誘電体基板とは離れた位置に設けられ前記セラミック誘電体基板を支持するベースプレートと、前記セラミック誘電体基板と前記ベースプレートとの間に設けられたヒータプレートと、を備え、前記ヒータプレートは、金属を含む第1の支持板と、金属を含む第2の支持板と、前記第1の支持板と前記第2の支持板との間に設けられ電流が流れることにより発熱するヒータエレメントと、前記第1の支持板と前記ヒータエレメントとの間に設けられた第1の樹脂層と、前記第2の支持板と前記ヒータエレメントとの間に設けられた第2の樹脂層と、を有することを特徴とする静電チャックである。 1st invention has the 1st main surface in which a process target object is mounted, and the 2nd main surface on the opposite side to the 1st main surface, a ceramic dielectric substrate, and the ceramic dielectric substrate And a heater plate provided between the ceramic dielectric substrate and the base plate, the heater plate including a metal. A first support plate, a second support plate containing metal, a heater element provided between the first support plate and the second support plate and generating heat when an electric current flows; A first resin layer provided between a support plate and the heater element; and a second resin layer provided between the second support plate and the heater element. Electrostatic chuck.
 この静電チャックによれば、ヒータエレメントは、第1の支持板と、第2の支持板と、の間に設けられている。これにより、ヒータプレートの面内の温度分布の均一化を向上させ、処理対象物の面内の温度分布の均一性を向上させることができる。また、第1の支持板および第2の支持板は、ヒータエレメントを高周波から遮断し、ヒータエレメントが異常温度に発熱することを抑制することができる。 According to this electrostatic chuck, the heater element is provided between the first support plate and the second support plate. Thereby, the uniformity of the temperature distribution in the surface of a heater plate can be improved, and the uniformity of the temperature distribution in the surface of a process target object can be improved. Further, the first support plate and the second support plate can block the heater element from high frequency and suppress the heater element from generating heat to an abnormal temperature.
 第2の発明は、第1の発明において、前記第1の支持板は、前記第2の支持板と電気的に接合されたことを特徴とする静電チャックである。 The second invention is the electrostatic chuck according to the first invention, wherein the first support plate is electrically joined to the second support plate.
 この静電チャックによれば、ヒータエレメントを高周波から遮断することができる。これにより、ヒータエレメントが異常温度に発熱することを抑制することができる。また、ヒータプレートのインピーダンスを抑えることができる。 This electrostatic chuck can shield the heater element from high frequency. Thereby, it can suppress that a heater element generates heat to abnormal temperature. Moreover, the impedance of the heater plate can be suppressed.
 第3の発明は、第2の発明において、前記第1の支持板が前記第2の支持板と接合された領域の面積は、前記第1の支持板の上面の面積よりも狭く、前記第2の支持板の下面の面積よりも狭いことを特徴とする静電チャックである。 According to a third invention, in the second invention, the area of the region where the first support plate is joined to the second support plate is smaller than the area of the upper surface of the first support plate. The electrostatic chuck is smaller than the area of the lower surface of the support plate.
 この静電チャックによれば、ヒータエレメントを高周波から遮断することができる。これにより、ヒータエレメントが異常温度に発熱することを抑制することができる。また、ヒータプレートのインピーダンスを抑えることができる。 This electrostatic chuck can shield the heater element from high frequency. Thereby, it can suppress that a heater element generates heat to abnormal temperature. Moreover, the impedance of the heater plate can be suppressed.
 第4の発明は、第3の発明において、前記第1の支持板が前記第2の支持板と接合された領域の面積は、前記第1の支持板の上面の面積から前記ヒータエレメントの面積を引いた差分の面積よりも狭く、前記第2の支持板の下面の面積から前記ヒータエレメントの面積を引いた差分の面積よりも狭いことを特徴とする静電チャックである。 In a fourth aspect based on the third aspect, the area of the region where the first support plate is joined to the second support plate is the area of the heater element from the area of the upper surface of the first support plate. The electrostatic chuck is narrower than an area of the difference obtained by subtracting, and smaller than an area of the difference obtained by subtracting the area of the heater element from the area of the lower surface of the second support plate.
 この静電チャックによれば、例えば、ヒータエレメントから供給された熱が接合部分を介して第2の支持板へ伝わることを抑制することができる。例えば、処理対象物の面内の温度分布の均一性を向上させることができる。 According to this electrostatic chuck, for example, it is possible to suppress the heat supplied from the heater element from being transmitted to the second support plate via the joint portion. For example, the uniformity of the temperature distribution in the surface of the processing object can be improved.
 第5の発明は、第1~4のいずれか1つの発明において、前記第1の支持板の上面は、第1の凹凸を有し、前記第2の支持板の下面は、第2の凹凸を有することを特徴とする静電チャックである。 According to a fifth invention, in any one of the first to fourth inventions, the upper surface of the first support plate has first irregularities, and the lower surface of the second support plate has second irregularities. It is an electrostatic chuck characterized by having.
 この静電チャックによれば、第1の支持板の上面が第1の凹凸を有するため、第1の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第1の支持板とヒータエレメントとの間の接着強度を向上させることができる。また、第2の支持板の下面が第2の凹凸を有するため、第2の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第2の支持板とヒータエレメントとの間の接着強度を向上させることができる。さらに、第1の支持板の上面が第1の凹凸を有するため、ヒータエレメントと処理対象物との間の距離をより短くすることができる。これにより、処理対象物の温度を上昇させる速度を向上させることができる。 According to this electrostatic chuck, since the upper surface of the first support plate has the first unevenness, the bonding area between the first support plate and the heater element can be increased, and the first support The adhesive strength between the plate and the heater element can be improved. Further, since the lower surface of the second support plate has the second unevenness, the bonding area between the second support plate and the heater element can be increased, and the second support plate and the heater element The adhesive strength between them can be improved. Furthermore, since the upper surface of the first support plate has the first unevenness, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
 第6の発明は、第5の発明において、第1の凹凸は、前記ヒータエレメントの形状にならい、第2の凹凸は、前記ヒータエレメントの形状にならったことを特徴とする静電チャックである。 A sixth invention is the electrostatic chuck according to the fifth invention, wherein the first unevenness follows the shape of the heater element, and the second unevenness follows the shape of the heater element. .
 この静電チャックによれば、第1の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第1の支持板とヒータエレメントとの間の接着強度を向上させることができる。また、第2の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第2の支持板とヒータエレメントとの間の接着強度を向上させることができる。さらに、ヒータエレメントと処理対象物との間の距離をより短くすることができる。これにより、処理対象物の温度を上昇させる速度を向上させることができる。 According to this electrostatic chuck, the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
 第7の発明は、第6の発明において、前記第1の凹凸の凹部と、前記第2の凹凸の凹部と、の間の距離は、前記第1の凹凸の凸部と、前記第2の凹凸の凸部と、の間の距離よりも短いことを特徴とする静電チャックである。 In a sixth aspect based on the sixth aspect, the distance between the first concave-convex concave portion and the second concave-convex concave portion is the distance between the first concave-convex convex portion and the second concave-convex convex portion. An electrostatic chuck characterized by being shorter than the distance between the convex and concave portions.
 この静電チャックによれば、第1の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第1の支持板とヒータエレメントとの間の接着強度を向上させることができる。また、第2の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第2の支持板とヒータエレメントとの間の接着強度を向上させることができる。さらに、ヒータエレメントと処理対象物との間の距離をより短くすることができる。これにより、処理対象物の温度を上昇させる速度を向上させることができる。 According to this electrostatic chuck, the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
 第8の発明は、第5~7のいずれか1つの発明において、前記第1の凹凸の高さは、前記第2の凹凸の高さとは異なることを特徴とする静電チャックである。 The eighth invention is the electrostatic chuck according to any one of the fifth to seventh inventions, wherein the height of the first unevenness is different from the height of the second unevenness.
 この静電チャックによれば、第1の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第1の支持板とヒータエレメントとの間の接着強度を向上させることができる。また、第2の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第2の支持板とヒータエレメントとの間の接着強度を向上させることができる。さらに、ヒータエレメントと処理対象物との間の距離をより短くすることができる。これにより、処理対象物の温度を上昇させる速度を向上させることができる。 According to this electrostatic chuck, the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
 第9の発明は、第8の発明において、前記第1の凹凸の高さは、前記第2の凹凸の高さよりも低いことを特徴とする静電チャックである。 A ninth invention is the electrostatic chuck according to the eighth invention, wherein the height of the first unevenness is lower than the height of the second unevenness.
 この静電チャックによれば、第1の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第1の支持板とヒータエレメントとの間の接着強度を向上させることができる。また、第2の支持板とヒータエレメントとの間の接着面積をより広くすることができ、第2の支持板とヒータエレメントとの間の接着強度を向上させることができる。さらに、ヒータエレメントと処理対象物との間の距離をより短くすることができる。これにより、処理対象物の温度を上昇させる速度を向上させることができる。 According to this electrostatic chuck, the adhesion area between the first support plate and the heater element can be increased, and the adhesion strength between the first support plate and the heater element can be improved. . Further, the adhesion area between the second support plate and the heater element can be increased, and the adhesion strength between the second support plate and the heater element can be improved. Furthermore, the distance between the heater element and the object to be processed can be further shortened. Thereby, the speed which raises the temperature of a process target object can be improved.
 第10の発明は、第8の発明において、前記第1の凹凸の高さは、前記第2の凹凸の高さよりも高いことを特徴とする静電チャックである。 A tenth aspect of the invention is the electrostatic chuck according to the eighth aspect of the invention, wherein the height of the first unevenness is higher than the height of the second unevenness.
 この静電チャックによれば、ヒータプレートとセラミック誘電体基板との接着面積を広くすることができ、ヒータプレートとセラミック誘電体基板との接着強度を向上させることができる。 According to this electrostatic chuck, the bonding area between the heater plate and the ceramic dielectric substrate can be widened, and the bonding strength between the heater plate and the ceramic dielectric substrate can be improved.
 第11の発明は、第1~10のいずれか1つの発明において、前記ヒータエレメントは、帯状のヒータ電極を有し、前記ヒータ電極は、複数の領域において互いに独立した状態で設けられたことを特徴とする静電チャックである。 According to an eleventh aspect of the invention, in any one of the first to tenth aspects, the heater element has a belt-like heater electrode, and the heater electrode is provided in a plurality of regions independently of each other. This is an electrostatic chuck.
 この静電チャックによれば、ヒータ電極が複数の領域において互いに独立した状態で設けられているため、処理対象物の面内の温度を各領域ごとに独立して制御することができる。これにより、処理対象物の面内の温度に意図的に差をつけることができる(温度制御性)。 According to this electrostatic chuck, since the heater electrodes are provided in a plurality of regions independently of each other, the temperature in the surface of the processing object can be controlled independently for each region. Thereby, it is possible to intentionally make a difference in the in-plane temperature of the processing object (temperature controllability).
 第12の発明は、第1~11のいずれか1つの発明において、前記ヒータエレメントは、複数設けられ、前記複数の前記ヒータエレメントは、互いに異なる層に独立した状態で設けられたことを特徴とする静電チャックである。 A twelfth aspect of the invention is characterized in that, in any one of the first to eleventh aspects, a plurality of the heater elements are provided, and the plurality of heater elements are provided independently in different layers. Electrostatic chuck.
 この静電チャックによれば、ヒータエレメントが互いに異なる層に独立した状態で設けられているため、処理対象物の面内の温度を各領域ごとに独立して制御することができる。これにより、処理対象物の面内の温度に意図的に差をつけることができる(温度制御性)。 According to this electrostatic chuck, since the heater elements are provided independently in different layers, the in-plane temperature of the processing object can be controlled independently for each region. Thereby, it is possible to intentionally make a difference in the in-plane temperature of the processing object (temperature controllability).
 第13の発明は、第1~11のいずれか1つの発明において、前記ヒータエレメントと、前記第2の支持板と、の間に設けられ導電性を有するバイパス層をさらに備えたことを特徴とする静電チャックである。 A thirteenth invention is characterized in that, in any one of the first to eleventh inventions, further comprising a conductive bypass layer provided between the heater element and the second support plate. Electrostatic chuck.
 この静電チャックによれば、ヒータエレメントに電力を供給する端子の配置に対してより大きい自由度を持たせることができる。バイパス層が設けられることで、バイパス層が設けられていない場合と比較して熱容量が大きい端子をヒータエレメントに直接接合させなくともよい。これにより、処理対象物の面内の温度分布の均一性を向上させることができる。また、バイパス層が設けられていない場合と比較して薄いヒータエレメントに端子を接合させなくともよい。これにより、ヒータプレートの信頼性を向上させることができる。 According to this electrostatic chuck, a greater degree of freedom can be given to the arrangement of terminals for supplying power to the heater element. By providing the bypass layer, it is not necessary to directly join the terminal having a large heat capacity to the heater element as compared with the case where the bypass layer is not provided. Thereby, the uniformity of the temperature distribution in the surface of a process target object can be improved. Moreover, it is not necessary to join a terminal to a thin heater element compared with the case where a bypass layer is not provided. Thereby, the reliability of a heater plate can be improved.
 第14の発明は、第13の発明において、前記ヒータエレメントは、前記バイパス層と電気的に接合され、前記第1の支持板および前記第2の支持板とは電気的に絶縁されたことを特徴とする静電チャックである。 In a fourteenth aspect based on the thirteenth aspect, the heater element is electrically joined to the bypass layer, and is electrically insulated from the first support plate and the second support plate. This is an electrostatic chuck.
 この静電チャックによれば、バイパス層を介してヒータエレメントに外部から電力を供給することができる。 According to this electrostatic chuck, electric power can be supplied from the outside to the heater element via the bypass layer.
 第15の発明は、第13または14の発明において、前記バイパス層の厚さは、前記第1の樹脂層の厚さよりも厚いことを特徴とする静電チャックである。 The fifteenth invention is the electrostatic chuck according to the thirteenth or fourteenth invention, wherein the thickness of the bypass layer is thicker than the thickness of the first resin layer.
 この静電チャックによれば、ヒータエレメントに電力を供給する端子の配置に対してより大きい自由度を持たせることができる。また、バイパス層の電気抵抗を抑え、バイパス層の発熱量を抑えることができる。 According to this electrostatic chuck, a greater degree of freedom can be given to the arrangement of terminals for supplying power to the heater element. In addition, the electrical resistance of the bypass layer can be suppressed, and the heat generation amount of the bypass layer can be suppressed.
 第16の発明は、第13~15のいずれか1つの発明において、前記バイパス層の厚さは、前記ヒータエレメントの厚さよりも厚いことを特徴とする静電チャックである。 The sixteenth invention is the electrostatic chuck according to any one of the thirteenth to fifteenth inventions, wherein the thickness of the bypass layer is larger than the thickness of the heater element.
 この静電チャックによれば、ヒータエレメントに電力を供給する端子の配置に対してより大きい自由度を持たせることができる。また、バイパス層の電気抵抗を抑え、バイパス層の発熱量を抑えることができる。 According to this electrostatic chuck, a greater degree of freedom can be given to the arrangement of terminals for supplying power to the heater element. In addition, the electrical resistance of the bypass layer can be suppressed, and the heat generation amount of the bypass layer can be suppressed.
 第17の発明は、第13~16のいずれか1つの発明において、前記バイパス層は、前記ヒータエレメントと、前記ベースプレートと、の間に設けられたことを特徴とする静電チャックである。 The seventeenth invention is the electrostatic chuck according to any one of the thirteenth to sixteenth inventions, wherein the bypass layer is provided between the heater element and the base plate.
 この静電チャックによれば、バイパス層は、ヒータエレメントから供給された熱がベースプレートへ伝わることを抑制する。つまり、バイパス層は、バイパス層からみてベースプレートの側に対する断熱効果を有し、処理対象物の面内の温度分布の均一性を向上させることができる。 According to this electrostatic chuck, the bypass layer suppresses the heat supplied from the heater element from being transmitted to the base plate. That is, the bypass layer has a heat insulating effect on the base plate side as viewed from the bypass layer, and can improve the uniformity of the temperature distribution in the surface of the processing object.
 第18の発明は、第1~17のいずれか1つの発明において、前記ヒータエレメントと、前記セラミック誘電体基板と、の間に設けられた導電性を有するバイパス層をさらに備えたことを特徴とする静電チャックである。 An eighteenth aspect of the invention is characterized in that, in any one of the first to seventeenth aspects of the invention, a conductive bypass layer is further provided between the heater element and the ceramic dielectric substrate. Electrostatic chuck.
 この静電チャックによれば、バイパス層により、ヒータエレメントから供給された熱の拡散性を向上させることができる。すなわち、バイパス層は、処理対称物の面内方向における熱拡散性を向上させる。これにより、例えば、処理対象物の面内の温度分布の均一性を向上させることができる。 According to this electrostatic chuck, the diffusibility of the heat supplied from the heater element can be improved by the bypass layer. That is, the bypass layer improves the thermal diffusivity in the in-plane direction of the process symmetrical object. Thereby, for example, the uniformity of the temperature distribution in the surface of the processing object can be improved.
 第19の発明は、第1~18のいずれか1つの発明において、前記第1の支持板の上面の面積は、前記第2の支持板の下面の面積よりも広いことを特徴とする静電チャックである。 According to a nineteenth aspect of the invention, in any one of the first to eighteenth aspects, the area of the upper surface of the first support plate is larger than the area of the lower surface of the second support plate. It is a chuck.
 この静電チャックによれば、ヒータエレメントからみて第2の支持板の側において、ヒータエレメントに電力を供給する端子をより容易に接続することができる。 According to this electrostatic chuck, a terminal for supplying power to the heater element can be more easily connected on the second support plate side as viewed from the heater element.
 第20の発明は、第1~19のいずれか1つの発明において、前記第1の支持板は、複数の支持部を有し、前記複数の支持部は、互いに独立した状態で設けられたことを特徴とする静電チャックである。 In a twentieth aspect according to any one of the first to nineteenth aspects, the first support plate has a plurality of support portions, and the plurality of support portions are provided independently of each other. An electrostatic chuck characterized by the following.
 この静電チャックによれば、第1の支持板の面内において意図的に径方向の温度差を設けることができる(温度制御性)。例えば、第1の支持板の面内において中央部から外周部にわたってステップ状に温度差を設けることができる。これにより、処理対象物の面内において意図的に温度差を設けることができる(温度制御性)。 This electrostatic chuck can intentionally provide a temperature difference in the radial direction within the surface of the first support plate (temperature controllability). For example, a temperature difference can be provided in a step shape from the center to the outer periphery within the plane of the first support plate. Thereby, a temperature difference can be intentionally provided within the surface of the processing object (temperature controllability).
 第21の発明は、第1~20のいずれか1つの発明において、前記ヒータプレートから前記ベースプレートに向かって設けられ、前記ヒータプレートに電力を供給する給電端子をさらに備えたことを特徴とする静電チャックである。 A twenty-first aspect of the present invention is the static electricity system according to any one of the first to twentieth aspects, further comprising a power supply terminal that is provided from the heater plate toward the base plate and supplies electric power to the heater plate. It is an electric chuck.
 この静電チャックによれば、給電端子がヒータプレートからベースプレートへ向かって設けられているため、ベースプレートの下面の側からソケットなどと呼ばれる部材を介して給電端子に電力を供給することができる。これにより、静電チャックが設置されるチャンバ内に給電端子が露出することを抑えつつ、ヒータの配線が実現される。 According to this electrostatic chuck, since the power supply terminal is provided from the heater plate toward the base plate, power can be supplied to the power supply terminal from a lower surface side of the base plate through a member called a socket. Thereby, the wiring of the heater is realized while suppressing the supply terminal from being exposed in the chamber in which the electrostatic chuck is installed.
 第22の発明は、第21の発明において、前記給電端子は、外部から電力を供給するソケットと接続されるピン部と、前記ピン部よりも細い導線部と、前記導線部と接続された支持部と、前記支持部と接続され前記ヒータエレメントと接合された接合部と、を有することを特徴とする静電チャックである。 In a twenty-second aspect based on the twenty-first aspect, the power supply terminal includes a pin portion connected to a socket for supplying electric power from the outside, a conductive wire portion thinner than the pin portion, and a support connected to the conductive wire portion. An electrostatic chuck comprising: a portion; and a joint portion connected to the support portion and joined to the heater element.
 この静電チャックによれば、ピン部が導線部よりも太いため、ピン部は、比較的大きい電流をヒータエレメントに供給することができる。また、導線部がピン部よりも細いため、導線部は、ピン部よりも変形しやすく、ピン部の位置を接合部の中心からずらすことができる。これにより、ヒータプレートとは異なる部材(例えばベースプレート)に給電端子を固定することができる。支持部が、例えば、溶接、レーザ光を利用した接合、半田付け、ロウ付けなどにより導線部および接合部と接合される場合には、給電端子にかかる応力を緩和しつつ、ヒータエレメントに対してより広い接触面積を確保することができる。 According to this electrostatic chuck, since the pin portion is thicker than the conducting wire portion, the pin portion can supply a relatively large current to the heater element. Moreover, since the conducting wire portion is thinner than the pin portion, the conducting wire portion is more easily deformed than the pin portion, and the position of the pin portion can be shifted from the center of the joint portion. Thereby, a power feeding terminal can be fixed to a member (for example, a base plate) different from the heater plate. For example, when the support portion is joined to the lead wire portion and the joint portion by welding, joining using laser light, soldering, brazing, etc., the stress applied to the power supply terminal is reduced while the heater element is relaxed. A wider contact area can be ensured.
 第23の発明は、第13~17のいずれか1つの発明において、前記ヒータプレートから前記ベースプレートに向かって設けられ、前記ヒータプレートに電力を供給する給電端子をさらに備え、前記給電端子は、外部から電力を供給するソケットと接続されるピン部と、前記ピン部よりも細い導線部と、前記導線部と接続された支持部と、前記支持部と接続され前記バイパス層と接合された接合部と、を有し、前記バイパス層を介して前記電力を前記ヒータエレメントに供給することを特徴とする静電チャックである。 According to a twenty-third aspect, in any one of the thirteenth to seventeenth aspects, the power supply terminal further includes a power supply terminal that is provided from the heater plate toward the base plate and supplies power to the heater plate. A pin portion connected to a socket for supplying power from, a conductive wire portion thinner than the pin portion, a support portion connected to the conductive wire portion, and a joint portion connected to the support portion and bonded to the bypass layer The electrostatic chuck is configured to supply the electric power to the heater element through the bypass layer.
 この静電チャックによれば、ピン部が導線部よりも太いため、ピン部は、比較的大きい電流をヒータエレメントに供給することができる。また、導線部がピン部よりも細いため、導線部は、ピン部よりも変形しやすく、ピン部の位置を接合部の中心からずらすことができる。これにより、ヒータプレートとは異なる部材(例えばベースプレート)に給電端子を固定することができる。支持部が、例えば、溶接、レーザ光を利用した接合、半田付け、ロウ付けなどにより導線部および接合部と接合される場合には、給電端子にかかる応力を緩和しつつ、バイパス層に対してより広い接触面積を確保することができる。また、支持部が、例えば、溶接、レーザ光を利用した接合、半田付け、ロウ付けなどにより導線部および接合部と接合される場合には、ヒータプレートおよびバイパス層と略同じ厚さの接合部を設けることができる。 According to this electrostatic chuck, since the pin portion is thicker than the conducting wire portion, the pin portion can supply a relatively large current to the heater element. Moreover, since the conducting wire portion is thinner than the pin portion, the conducting wire portion is more easily deformed than the pin portion, and the position of the pin portion can be shifted from the center of the joint portion. Thereby, a power feeding terminal can be fixed to a member (for example, a base plate) different from the heater plate. For example, when the support portion is joined to the lead wire portion and the joint portion by welding, joining using laser light, soldering, brazing, or the like, the stress applied to the power supply terminal is reduced while the stress is applied to the bypass layer. A wider contact area can be ensured. In addition, when the support portion is joined to the lead wire portion and the joint portion by, for example, welding, joining using laser light, soldering, brazing, etc., the joint portion having substantially the same thickness as the heater plate and the bypass layer Can be provided.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 図1は、本実施形態にかかる静電チャックを表す模式的斜視図である。 
 図2は、本実施形態にかかる静電チャックを表す模式的断面図である。 
 図1では、説明の便宜上、静電チャックの一部において断面図を表している。図2(a)は、例えば図1に表した切断面A1-A1における模式的断面図である。図2(b)は、図2(a)に表した領域B1の模式的拡大図である。
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
FIG. 1 is a schematic perspective view showing an electrostatic chuck according to the present embodiment.
FIG. 2 is a schematic cross-sectional view showing the electrostatic chuck according to the present embodiment.
For convenience of explanation, FIG. 1 shows a cross-sectional view of a part of the electrostatic chuck. FIG. 2A is a schematic cross-sectional view taken along the cut plane A1-A1 shown in FIG. 1, for example. FIG. 2B is a schematic enlarged view of the region B1 shown in FIG.
 本実施形態にかかる静電チャック10は、セラミック誘電体基板100と、ヒータプレート200と、べースプレート300と、を備える。 
 セラミック誘電体基板100は、ベースプレート300と離れた位置に設けられている。ヒータプレート200は、ベースプレート300と、セラミック誘電体基板100と、の間に設けられている。
The electrostatic chuck 10 according to the present embodiment includes a ceramic dielectric substrate 100, a heater plate 200, and a base plate 300.
The ceramic dielectric substrate 100 is provided at a position away from the base plate 300. The heater plate 200 is provided between the base plate 300 and the ceramic dielectric substrate 100.
 ベースプレート300とヒータプレート200との間には、接着剤403が設けられている。ヒータプレート200とセラミック誘電体基板100との間には、接着剤403が設けられている。接着剤403の材料としては、比較的高い熱伝導性を有するシリコーン等の耐熱性樹脂が挙げられる。接着剤403の厚さは、例えば約0.1ミリメートル(mm)以上、1.0mm以下程度である。接着剤403の厚さは、ベースプレート300とヒータプレート200との間の距離、あるいはヒータプレート200とセラミック誘電体基板100との間の距離と同じである。 The adhesive 403 is provided between the base plate 300 and the heater plate 200. An adhesive 403 is provided between the heater plate 200 and the ceramic dielectric substrate 100. Examples of the material of the adhesive 403 include heat-resistant resins such as silicone having relatively high thermal conductivity. The thickness of the adhesive 403 is, for example, about 0.1 millimeter (mm) or more and 1.0 mm or less. The thickness of the adhesive 403 is the same as the distance between the base plate 300 and the heater plate 200 or the distance between the heater plate 200 and the ceramic dielectric substrate 100.
 セラミック誘電体基板100は、例えば多結晶セラミック焼結体による平板状の基材であり、半導体ウェーハ等の処理対象物Wを載置する第1主面101と、第1主面101とは反対側の第2主面102と、を有する。 The ceramic dielectric substrate 100 is a flat base material made of, for example, a polycrystalline ceramic sintered body, and is opposite to the first main surface 101 on which the processing object W such as a semiconductor wafer is placed, and the first main surface 101. Second main surface 102 on the side.
 ここで、本実施形態の説明においては、第1主面101と第2主面102とを結ぶ方向をZ方向、Z方向と直交する方向の1つをX方向、Z方向及びX方向に直交する方向をY方向ということにする。 Here, in the description of the present embodiment, the direction connecting the first main surface 101 and the second main surface 102 is the Z direction, and one of the directions orthogonal to the Z direction is orthogonal to the X direction, the Z direction, and the X direction. The direction to do is referred to as the Y direction.
 セラミック誘電体基板100に含まれる結晶の材料としては、例えばAl、Y及びYAGなどが挙げられる。このような材料を用いることで、セラミック誘電体基板100における赤外線透過性、絶縁耐性及びプラズマ耐久性を高めることができる。 Examples of the crystal material included in the ceramic dielectric substrate 100 include Al 2 O 3 , Y 2 O 3, and YAG. By using such a material, infrared transmittance, insulation resistance, and plasma durability in the ceramic dielectric substrate 100 can be enhanced.
 セラミック誘電体基板100の内部には、電極層111が設けられている。電極層111は、第1主面101と、第2主面102と、の間に介設されている。すなわち、電極層111は、セラミック誘電体基板100の中に挿入されるように形成されている。電極層111は、セラミック誘電体基板100に一体焼結されている。 An electrode layer 111 is provided inside the ceramic dielectric substrate 100. The electrode layer 111 is interposed between the first main surface 101 and the second main surface 102. That is, the electrode layer 111 is formed so as to be inserted into the ceramic dielectric substrate 100. The electrode layer 111 is integrally sintered with the ceramic dielectric substrate 100.
 なお、電極層111は、第1主面101と、第2主面102と、の間に介設されていることに限定されず、第2主面102に付設されていてもよい。 The electrode layer 111 is not limited to be interposed between the first main surface 101 and the second main surface 102, and may be attached to the second main surface 102.
 静電チャック10は、電極層111に吸着保持用電圧を印加することによって、電極層111の第1主面101側に電荷を発生させ、静電力によって処理対象物Wを吸着保持する。 The electrostatic chuck 10 generates a charge on the first main surface 101 side of the electrode layer 111 by applying a suction holding voltage to the electrode layer 111, and holds the processing target W by electrostatic force.
 ヒータプレート200は、ヒータ用電流が流れることによって発熱し、ヒータプレート200が発熱しない場合と比較して処理対象物Wの温度を上げることができる。 The heater plate 200 generates heat when the heater current flows, and the temperature of the processing object W can be increased as compared with the case where the heater plate 200 does not generate heat.
 電極層111は、第1主面101及び第2主面102に沿って設けられている。電極層111は、処理対象物Wを吸着保持するための吸着電極である。電極層111は、単極型でも双極型でもよい。また、電極層111は、三極型やその他の多極型であってもよい。電極層111の数や電極層111の配置は、適宜選択される。 The electrode layer 111 is provided along the first main surface 101 and the second main surface 102. The electrode layer 111 is an adsorption electrode for adsorbing and holding the processing object W. The electrode layer 111 may be monopolar or bipolar. The electrode layer 111 may be a tripolar type or other multipolar type. The number of the electrode layers 111 and the arrangement of the electrode layers 111 are appropriately selected.
 セラミック誘電体基板100は、電極層111と第1主面101との間の第1誘電層107と、電極層111と第2主面102との間の第2誘電層109と、を有する。セラミック誘電体基板100のうち少なくとも第1誘電層107における赤外線分光透過率は、20%以上であることが好ましい。本実施形態において、赤外線分光透過率は、厚さ1mm換算での値である。 The ceramic dielectric substrate 100 includes a first dielectric layer 107 between the electrode layer 111 and the first main surface 101, and a second dielectric layer 109 between the electrode layer 111 and the second main surface 102. The infrared spectral transmittance of at least the first dielectric layer 107 of the ceramic dielectric substrate 100 is preferably 20% or more. In the present embodiment, the infrared spectral transmittance is a value in terms of a thickness of 1 mm.
 セラミック誘電体基板100のうち少なくとも第1誘電層107における赤外線分光透過率が20%以上あることで、第1主面101に処理対象物Wを載置した状態でヒータプレート200から放出される赤外線がセラミック誘電体基板100を効率良く透過することができる。したがって、処理対象物Wに熱が蓄積し難くなり、処理対象物Wの温度の制御性が高まる。 Since the infrared spectral transmittance of at least the first dielectric layer 107 of the ceramic dielectric substrate 100 is 20% or more, infrared rays emitted from the heater plate 200 in a state where the processing object W is placed on the first main surface 101. Can efficiently pass through the ceramic dielectric substrate 100. Therefore, it becomes difficult for heat to accumulate in the processing object W, and the controllability of the temperature of the processing object W is improved.
 例えば、プラズマ処理を行うチャンバ内で静電チャック10が使用される場合、プラズマパワーの増加に伴い処理対象物Wの温度は上昇しやすくなる。本実施形態の静電チャック10では、プラズマパワーによって処理対象物Wに伝わった熱がセラミック誘電体基板100に効率良く伝わる。さらに、ヒータプレート200によってセラミック誘電体基板100に伝わった熱が処理対象物Wに効率よく伝わる。したがって、処理対象物Wを効率良く伝熱して所望の温度に維持しやすくなる。 For example, when the electrostatic chuck 10 is used in a chamber in which plasma processing is performed, the temperature of the processing object W is likely to increase as the plasma power increases. In the electrostatic chuck 10 of the present embodiment, the heat transmitted to the processing object W by the plasma power is efficiently transmitted to the ceramic dielectric substrate 100. Further, the heat transmitted to the ceramic dielectric substrate 100 by the heater plate 200 is efficiently transmitted to the processing object W. Therefore, it becomes easy to efficiently transfer the processing object W and maintain it at a desired temperature.
 本実施形態に係る静電チャック10では、第1誘電層107に加え、第2誘電層109における赤外線分光透過率も20%以上あることが望ましい。第1誘電層107及び第2誘電層109の赤外線分光透過率が20%以上あることで、ヒータプレート200から放出される赤外線がさらに効率良くセラミック誘電体基板100を透過することになり、処理対象物Wの温度制御性を高めることができる。 In the electrostatic chuck 10 according to the present embodiment, in addition to the first dielectric layer 107, the infrared spectral transmittance of the second dielectric layer 109 is desirably 20% or more. Since the infrared spectral transmittance of the first dielectric layer 107 and the second dielectric layer 109 is 20% or more, the infrared rays emitted from the heater plate 200 are more efficiently transmitted through the ceramic dielectric substrate 100, and are to be processed. The temperature controllability of the object W can be improved.
 ベースプレート300は、セラミック誘電体基板100の第2主面102側に設けられ、ヒータプレート200を介してセラミック誘電体基板100を支持する。ベースプレート300には、連通路301が設けられている。つまり、連通路301は、ベースプレート300の内部に設けられている。ベースプレート300の材料としては、例えばアルミニウムが挙げられる。 The base plate 300 is provided on the second main surface 102 side of the ceramic dielectric substrate 100 and supports the ceramic dielectric substrate 100 via the heater plate 200. A communication path 301 is provided in the base plate 300. That is, the communication path 301 is provided inside the base plate 300. An example of the material of the base plate 300 is aluminum.
 ベースプレート300は、セラミック誘電体基板100の温度調整を行う役目を果たす。例えば、セラミック誘電体基板100を冷却する場合には、連通路301へ冷却媒体を流入し、連通路301を通過させ、連通路301から冷却媒体を流出させる。これにより、冷却媒体によってベースプレート300の熱を吸収し、その上に取り付けられたセラミック誘電体基板100を冷却することができる。 The base plate 300 serves to adjust the temperature of the ceramic dielectric substrate 100. For example, when cooling the ceramic dielectric substrate 100, the cooling medium is introduced into the communication path 301, passed through the communication path 301, and the cooling medium is flowed out from the communication path 301. Thereby, the heat of the base plate 300 can be absorbed by the cooling medium, and the ceramic dielectric substrate 100 mounted thereon can be cooled.
 一方、セラミック誘電体基板100を加熱する場合には、連通路301内に加熱媒体を入れることも可能である。または、ベースプレート300に図示しないヒータを内蔵させることも可能である。このように、ベースプレート300によりセラミック誘電体基板100の温度が調整されると、静電チャック10で吸着保持される処理対象物Wの温度を容易に調整することができる。 On the other hand, when the ceramic dielectric substrate 100 is heated, it is possible to put a heating medium in the communication path 301. Alternatively, a heater (not shown) can be built in the base plate 300. As described above, when the temperature of the ceramic dielectric substrate 100 is adjusted by the base plate 300, the temperature of the processing object W attracted and held by the electrostatic chuck 10 can be easily adjusted.
 また、セラミック誘電体基板100の第1主面101側には、必要に応じて凸部113が設けられている。互いに隣り合う凸部113の間には、溝115が設けられている。溝115は、互いに連通している。静電チャック10に搭載された処理対象物Wの裏面と、溝115と、の間には、空間が形成される。 Further, a convex portion 113 is provided on the first main surface 101 side of the ceramic dielectric substrate 100 as necessary. A groove 115 is provided between the convex portions 113 adjacent to each other. The grooves 115 communicate with each other. A space is formed between the back surface of the processing object W mounted on the electrostatic chuck 10 and the groove 115.
 溝115には、ベースプレート300及びセラミック誘電体基板100を貫通する導入路321が接続されている。処理対象物Wを吸着保持した状態で導入路321からヘリウム(He)等の伝達ガスを導入すると、処理対象物Wと溝115との間に設けられた空間に伝達ガスが流れ、処理対象物Wを伝達ガスによって直接加熱もしくは冷却することができるようになる。 The introduction path 321 that penetrates the base plate 300 and the ceramic dielectric substrate 100 is connected to the groove 115. When a transmission gas such as helium (He) is introduced from the introduction path 321 with the processing object W adsorbed and held, the transmission gas flows into a space provided between the processing object W and the groove 115, and the processing object W can be directly heated or cooled by the transfer gas.
 図3は、本実施形態のヒータプレートを表す模式的斜視図である。 
 図4は、本実施形態のヒータプレートを表す模式的斜視図である。 
 図5は、本実施形態のヒータプレートを表す模式的分解図である。 
 図6は、本実施形態のヒータプレートの変形例を表す模式的分解図である。 
 図3は、本実施形態のヒータプレートを上面(セラミック誘電体基板100の側の面)から眺めた模式的斜視図である。図4(a)は、本実施形態のヒータプレートを下面(ベースプレート300の側の面)から眺めた模式的斜視図である。図4(b)は、図4(a)に表した領域B2における模式的拡大図である。
FIG. 3 is a schematic perspective view showing the heater plate of the present embodiment.
FIG. 4 is a schematic perspective view showing the heater plate of the present embodiment.
FIG. 5 is a schematic exploded view showing the heater plate of the present embodiment.
FIG. 6 is a schematic exploded view showing a modification of the heater plate of the present embodiment.
FIG. 3 is a schematic perspective view of the heater plate according to the present embodiment as viewed from the upper surface (the surface on the ceramic dielectric substrate 100 side). FIG. 4A is a schematic perspective view of the heater plate according to the present embodiment as viewed from the lower surface (the surface on the base plate 300 side). FIG. 4B is a schematic enlarged view of the region B2 shown in FIG.
 図5に表したように、本実施形態のヒータプレート200は、第1の支持板210と、第1の樹脂層220と、ヒータエレメント(発熱層)230と、第2の樹脂層240と、バイパス層250と、第3の樹脂層260と、第2の支持板270と、給電端子280と、を有する。図3に表したように、第1の支持板210の面211(上面)は、ヒータプレート200の上面を形成する。図4に表したように、第2の支持板270の面271(下面)は、ヒータプレート200の下面を形成する。第1の支持板210及び第2の支持板270は、ヒータエレメント230などを支持する支持板である。この例において、第1支持板210及び第2支持板270は、第1の樹脂層220と、ヒータエレメント230と、第2の樹脂層240と、バイパス層250と、第3の樹脂層260と、を挟み、これらを支持する。 As shown in FIG. 5, the heater plate 200 of the present embodiment includes a first support plate 210, a first resin layer 220, a heater element (heat generation layer) 230, a second resin layer 240, A bypass layer 250, a third resin layer 260, a second support plate 270, and a power supply terminal 280 are included. As shown in FIG. 3, the surface 211 (upper surface) of the first support plate 210 forms the upper surface of the heater plate 200. As shown in FIG. 4, the surface 271 (lower surface) of the second support plate 270 forms the lower surface of the heater plate 200. The first support plate 210 and the second support plate 270 are support plates that support the heater element 230 and the like. In this example, the first support plate 210 and the second support plate 270 include a first resin layer 220, a heater element 230, a second resin layer 240, a bypass layer 250, and a third resin layer 260. , And support these.
 第1の樹脂層220は、第1の支持板210と、第2の支持板270と、の間に設けられている。ヒータエレメント230は、第1の樹脂層220と、第2の支持板270と、の間に設けられている。第2の樹脂層240は、ヒータエレメント230と、第2の支持板270と、の間に設けられている。バイパス層250は、第2の樹脂層240と、第2の支持板270と、の間に設けられている。第3の樹脂層260は、バイパス層250と、第2の支持板270と、の間に設けられている。 The first resin layer 220 is provided between the first support plate 210 and the second support plate 270. The heater element 230 is provided between the first resin layer 220 and the second support plate 270. The second resin layer 240 is provided between the heater element 230 and the second support plate 270. The bypass layer 250 is provided between the second resin layer 240 and the second support plate 270. The third resin layer 260 is provided between the bypass layer 250 and the second support plate 270.
 図6に表したように、バイパス層250および第3の樹脂層260は、必ずしも設けられていなくともよい。バイパス層250および第3の樹脂層260が設けられていない場合には、第2の樹脂層240は、ヒータエレメント230と、第2支持板270と、の間に設けられる。以下の説明では、ヒータプレート200がバイパス層250および第3の樹脂層260を有する場合を例に挙げる。 As shown in FIG. 6, the bypass layer 250 and the third resin layer 260 are not necessarily provided. When the bypass layer 250 and the third resin layer 260 are not provided, the second resin layer 240 is provided between the heater element 230 and the second support plate 270. In the following description, a case where the heater plate 200 includes the bypass layer 250 and the third resin layer 260 is taken as an example.
 第1の支持板210は、比較的高い熱伝導率を有する。第1の支持板210の材料としては、例えばアルミニウム、銅、およびニッケルの少なくともいずれかを含む金属や、多層構造のグラファイトなどが挙げられる。第1の支持板210の材料としては、一般に二律背反の関係にある「処理対象物の面内温度均一性」と「高スループット」とを両立させる観点、及びチャンバへの汚染や磁性の観点から、アルミニウム又はアルミニウム合金が適している。第1の支持板210の厚さ(Z方向の長さ)は、例えば約0.1mm以上、3.0mm以下程度である。より好ましくは、第1の支持板210の厚さは、例えば0.3mm以上、1.0mm以下程度である。第1の支持板210は、ヒータプレート200の面内の温度分布の均一化を向上させる。第1の支持板210は、ヒータプレート200の反りを抑制する。第1の支持板210は、ヒータプレート200とセラミック誘電体基板100との間の接着の強度を向上させる。 The first support plate 210 has a relatively high thermal conductivity. Examples of the material of the first support plate 210 include a metal containing at least one of aluminum, copper, and nickel, and graphite having a multilayer structure. As the material of the first support plate 210, from the viewpoint of achieving both “in-plane temperature uniformity of the object to be processed” and “high throughput”, which are generally in a trade-off relationship, and from the viewpoint of contamination and magnetism of the chamber, Aluminum or aluminum alloy is suitable. The thickness (length in the Z direction) of the first support plate 210 is, for example, about 0.1 mm or more and 3.0 mm or less. More preferably, the thickness of the first support plate 210 is, for example, about 0.3 mm or more and 1.0 mm or less. The first support plate 210 improves the uniformity of the temperature distribution in the surface of the heater plate 200. The first support plate 210 suppresses the warp of the heater plate 200. The first support plate 210 improves the strength of adhesion between the heater plate 200 and the ceramic dielectric substrate 100.
 処理対象物Wの処理プロセスでは、RF(Radio Frequency)電圧(高周波電圧)が印加される。高周波電圧が印加されると、ヒータエレメント230は、高周波の影響を受けて発熱することがある。すると、ヒータエレメント230の温度制御性が低下する。 
 これに対して、本実施形態では、第1の支持板210は、ヒータエレメント230およびバイパス層250を高周波から遮断する。これにより、第1の支持板210は、ヒータエレメント230が異常温度に発熱することを抑制することができる。
In the processing process of the processing object W, RF (Radio Frequency) voltage (high frequency voltage) is applied. When the high frequency voltage is applied, the heater element 230 may generate heat under the influence of the high frequency. As a result, the temperature controllability of the heater element 230 decreases.
In contrast, in the present embodiment, the first support plate 210 blocks the heater element 230 and the bypass layer 250 from high frequencies. Thereby, the first support plate 210 can suppress the heater element 230 from generating heat to an abnormal temperature.
 第2の支持板270の材料、厚さ、および機能は、求められる性能、寸法などに応じて自由に設定することができる。例えば、第2の支持板270の材料、厚さ、および機能は、第1の支持板210の材料、厚さ、および機能とそれぞれ同じとすることができる。第1の支持板210は、第2の支持板270と電気的に接合されている。ここで、本願明細書において「接合」という範囲には、接触が含まれる。第2の支持板270と、第1の支持板210と、の間の電気的な接合の詳細については、後述する。 The material, thickness, and function of the second support plate 270 can be freely set according to required performance, dimensions, and the like. For example, the material, thickness, and function of the second support plate 270 may be the same as the material, thickness, and function of the first support plate 210, respectively. The first support plate 210 is electrically joined to the second support plate 270. Here, contact is included in the range of “joining” in the present specification. The details of the electrical connection between the second support plate 270 and the first support plate 210 will be described later.
 このように、第1の支持板210及び第2の支持板270は、比較的高い熱伝導率を有する。これにより、第1の支持板210及び第2の支持板270は、ヒータエレメント230から供給される熱の熱拡散性を向上させる。また、第1の支持体210及び第2の支持体270は、適度な厚さ及び剛性を有することにより、例えば、ヒータプレート200の反りを抑制する。さらに、第1の支持体210及び第2の支持体270は、例えば、ウェーハ処理装置の電極などに印加されるRF電圧に対するシールド性を向上させる。例えば、ヒータエレメント230に対するRF電圧の影響を抑制する。このように、第1の支持体210及び第2の支持体270は、熱拡散の機能と、反り抑制の機能と、RF電圧に対するシールドの機能と、を有する。 Thus, the first support plate 210 and the second support plate 270 have a relatively high thermal conductivity. Thereby, the first support plate 210 and the second support plate 270 improve the thermal diffusibility of the heat supplied from the heater element 230. Moreover, the 1st support body 210 and the 2nd support body 270 have the moderate thickness and rigidity, and suppress the curvature of the heater plate 200, for example. Furthermore, the first support 210 and the second support 270 improve the shielding performance against an RF voltage applied to, for example, an electrode of a wafer processing apparatus. For example, the influence of the RF voltage on the heater element 230 is suppressed. As described above, the first support 210 and the second support 270 have a function of thermal diffusion, a function of suppressing warpage, and a function of shielding against an RF voltage.
 第1の樹脂層220の材料としては、例えばポリイミドやポリアミドイミドなどが挙げられる。第1の樹脂層220の厚さ(Z方向の長さ)は、例えば約0.01mm以上、0.20mm以下程度である。第1の樹脂層220は、第1の支持板210とヒータエレメント230とを互いに接合する。第1の樹脂層220は、第1の支持板210とヒータエレメント230との間を電気的に絶縁する。このように、第1の樹脂層220は、電気絶縁の機能と、面接合の機能と、を有する。 Examples of the material of the first resin layer 220 include polyimide and polyamideimide. The thickness (length in the Z direction) of the first resin layer 220 is, for example, about 0.01 mm or more and 0.20 mm or less. The first resin layer 220 joins the first support plate 210 and the heater element 230 to each other. The first resin layer 220 electrically insulates between the first support plate 210 and the heater element 230. As described above, the first resin layer 220 has a function of electrical insulation and a function of surface bonding.
 第2の樹脂層240の材料および厚さは、第1の樹脂層220の材料および厚さとそれぞれ同程度である。第3の樹脂層260の材料および厚さは、第1の樹脂層220の材料および厚さとそれぞれ同程度である。 The material and thickness of the second resin layer 240 are approximately the same as the material and thickness of the first resin layer 220, respectively. The material and thickness of the third resin layer 260 are approximately the same as the material and thickness of the first resin layer 220, respectively.
 第2の樹脂層240は、ヒータエレメント230とバイパス層250とを互いに接合する。第2の樹脂層240は、ヒータエレメント230とバイパス層250との間を電気的に絶縁する。このように、第2の樹脂層240は、電気絶縁の機能と、面接合の機能と、を有する。 The second resin layer 240 joins the heater element 230 and the bypass layer 250 to each other. The second resin layer 240 electrically insulates between the heater element 230 and the bypass layer 250. As described above, the second resin layer 240 has a function of electrical insulation and a function of surface bonding.
 第3の樹脂層260は、バイパス層250と第2の支持板270とを互いに接合する。第3の樹脂層260は、バイパス層250と第2の支持板270との間を電気的に絶縁する。このように、第3の樹脂層260は、電気絶縁の機能と、面接合の機能と、を有する。 The third resin layer 260 joins the bypass layer 250 and the second support plate 270 to each other. The third resin layer 260 electrically insulates between the bypass layer 250 and the second support plate 270. Thus, the third resin layer 260 has a function of electrical insulation and a function of surface bonding.
 ヒータエレメント230の材料としては、例えばステンレス、チタン、クロム、ニッケル、銅、およびアルミニウムの少なくともいずれかを含む金属などが挙げられる。ヒータエレメント230の厚さ(Z方向の長さ)は、例えば約0.01mm以上、0.20mm以下程度である。ヒータエレメント230は、バイパス層250と電気的に接合されている。一方で、ヒータエレメント230は、第1の支持板210および第2の支持板270とは電気的に絶縁されている。ヒータエレメント230と、バイパス層250と、の間の電気的な接合の詳細については、後述する。 Examples of the material of the heater element 230 include metals including at least one of stainless steel, titanium, chromium, nickel, copper, and aluminum. The thickness (length in the Z direction) of the heater element 230 is, for example, about 0.01 mm or more and 0.20 mm or less. The heater element 230 is electrically joined to the bypass layer 250. On the other hand, the heater element 230 is electrically insulated from the first support plate 210 and the second support plate 270. The details of the electrical connection between the heater element 230 and the bypass layer 250 will be described later.
 ヒータエレメント230は、電流が流れると発熱し、処理対象物Wの温度を制御する。例えば、ヒータエレメント230は、処理対象物Wを所定の温度に加熱する。例えば、ヒータエレメント230は、処理対象物Wの面内の温度分布を均一にする。例えば、ヒータエレメント230は、処理対象物Wの面内の温度に意図的に差をつける。 The heater element 230 generates heat when current flows, and controls the temperature of the processing target W. For example, the heater element 230 heats the processing object W to a predetermined temperature. For example, the heater element 230 makes the temperature distribution in the surface of the processing object W uniform. For example, the heater element 230 intentionally makes a difference in the in-plane temperature of the processing object W.
 バイパス層250は、第1の支持板210と略平行に配置され、第2の支持板270と略平行に配置されている。バイパス層250は、複数のバイパス部251を有する。バイパス層250は、例えば8つのバイパス部251を有する。バイパス部251の数は、「8」には限定されない。バイパス層250は、板状を呈する。これに対して、ヒータエレメント230は、帯状のヒータ電極239を有する。バイパス層250の面(バイパス部251の面251a)に対して垂直にみたときに、バイパス層250の面積は、ヒータエレメント230の面積(ヒータ電極239の面積)よりも広い。この詳細については、後述する。 The bypass layer 250 is disposed substantially parallel to the first support plate 210 and is disposed substantially parallel to the second support plate 270. The bypass layer 250 has a plurality of bypass portions 251. The bypass layer 250 has, for example, eight bypass parts 251. The number of bypass units 251 is not limited to “8”. The bypass layer 250 has a plate shape. On the other hand, the heater element 230 has a belt-like heater electrode 239. When viewed perpendicular to the surface of the bypass layer 250 (surface 251a of the bypass portion 251), the area of the bypass layer 250 is larger than the area of the heater element 230 (area of the heater electrode 239). Details of this will be described later.
 バイパス層250は、導電性を有する。バイパス層250は、第1の支持板210および第2の支持板270とは電気的に絶縁されている。バイパス層250の材料としては、例えばステンレスを含む金属などが挙げられる。バイパス層250の厚さ(Z方向の長さ)は、例えば約0.03mm以上、0.30mm以下程度である。バイパス層250の厚さは、第1の樹脂層220の厚さよりも厚い。バイパス層250の厚さは、第2の樹脂層240の厚さよりも厚い。バイパス層250の厚さは、第3の樹脂層260の厚さよりも厚い。 The bypass layer 250 has conductivity. The bypass layer 250 is electrically insulated from the first support plate 210 and the second support plate 270. Examples of the material of the bypass layer 250 include metals including stainless steel. The thickness of the bypass layer 250 (the length in the Z direction) is, for example, about 0.03 mm or more and 0.30 mm or less. The bypass layer 250 is thicker than the first resin layer 220. The bypass layer 250 is thicker than the second resin layer 240. The bypass layer 250 is thicker than the third resin layer 260.
 例えば、バイパス層250の材料は、ヒータエレメント230の材料と同じである。一方で、バイパス層250の厚さは、ヒータエレメント230の厚さよりも厚い。そのため、バイパス層250の電気抵抗は、ヒータエレメント230の電気抵抗よりも低い。これにより、バイパス層250の材料がヒータエレメント230の材料と同じ場合でも、バイパス層250がヒータエレメント230のように発熱することを抑えることができる。つまり、バイパス層250の電気抵抗を抑え、バイパス層250の発熱量を抑えることができる。なお、バイパス層250の電気抵抗を抑え、バイパス層250の発熱量を抑える手段は、バイパス層250の厚さではなく、体積抵抗率が比較的低い材料を用いることで実現されてもよい。すなわち、バイパス層250の材料は、ヒータエレメント230の材料と異なってもよい。バイパス層250の材料としては、例えばステンレス、チタン、クロム、ニッケル、銅、およびアルミニウムの少なくともいずれかを含む金属などが挙げられる。 For example, the material of the bypass layer 250 is the same as the material of the heater element 230. On the other hand, the bypass layer 250 is thicker than the heater element 230. Therefore, the electrical resistance of the bypass layer 250 is lower than the electrical resistance of the heater element 230. Thereby, even when the material of the bypass layer 250 is the same as the material of the heater element 230, the heat generation of the bypass layer 250 like the heater element 230 can be suppressed. That is, the electrical resistance of the bypass layer 250 can be suppressed, and the heat generation amount of the bypass layer 250 can be suppressed. The means for suppressing the electrical resistance of the bypass layer 250 and suppressing the heat generation amount of the bypass layer 250 may be realized by using a material having a relatively low volume resistivity instead of the thickness of the bypass layer 250. That is, the material of the bypass layer 250 may be different from the material of the heater element 230. Examples of the material of the bypass layer 250 include metals including at least one of stainless steel, titanium, chromium, nickel, copper, and aluminum.
 給電端子280は、バイパス層250と電気的に接合されている。ヒータプレート200がベースプレート300とセラミック誘電体基板100との間に設けられた状態において、給電端子280は、ヒータプレート200からベースプレート300へ向かって設けられている。給電端子280は、静電チャック10の外部から供給された電力をバイパス層250を介してヒータエレメント230に供給する。給電端子280は、例えば、ヒータエレメント230に直接的に接続してもよい。これにより、バイパス層250が省略可能となる。 The power supply terminal 280 is electrically joined to the bypass layer 250. In a state where the heater plate 200 is provided between the base plate 300 and the ceramic dielectric substrate 100, the power supply terminal 280 is provided from the heater plate 200 toward the base plate 300. The power supply terminal 280 supplies power supplied from the outside of the electrostatic chuck 10 to the heater element 230 via the bypass layer 250. The power supply terminal 280 may be directly connected to the heater element 230, for example. Thereby, the bypass layer 250 can be omitted.
 ヒータプレート200は、複数の給電端子280を有する。図3~図5に表したヒータプレート200は、8つの給電端子280を有する。給電端子280の数は、「8」には限定されない。1つの給電端子280は、1つのバイパス部251と電気的に接合されている。孔273は、第2の支持板270を貫通している。給電端子280は、孔273を通してバイパス部251と電気的に接合されている。 The heater plate 200 has a plurality of power supply terminals 280. The heater plate 200 shown in FIGS. 3 to 5 has eight power supply terminals 280. The number of power supply terminals 280 is not limited to “8”. One power supply terminal 280 is electrically joined to one bypass unit 251. The hole 273 passes through the second support plate 270. The power feeding terminal 280 is electrically joined to the bypass unit 251 through the hole 273.
 図5に表した矢印C1および矢印C2のように、電力が静電チャック10の外部から給電端子280に供給されると、電流は、給電端子280からバイパス層250へ流れる。図5に表した矢印C3および矢印C4のように、バイパス層250へ流れた電流は、バイパス層250からヒータエレメント230へ流れる。図5に表した矢印C5および矢印C6のように、ヒータエレメント230へ流れた電流は、ヒータエレメント230の所定のゾーン(領域)を流れ、ヒータエレメント230からバイパス層250へ流れる。ヒータエレメント230のゾーンの詳細については、後述する。図5に表した矢印C7および矢印C8のように、バイパス層250へ流れた電流は、バイパス層250から給電端子280へ流れる。図5に表した矢印C9のように、給電端子280へ流れた電流は、静電チャック10の外部へ流れる。 As shown by arrows C1 and C2 shown in FIG. 5, when electric power is supplied from the outside of the electrostatic chuck 10 to the power supply terminal 280, current flows from the power supply terminal 280 to the bypass layer 250. As indicated by arrows C <b> 3 and C <b> 4 illustrated in FIG. 5, the current that flows to the bypass layer 250 flows from the bypass layer 250 to the heater element 230. As indicated by arrows C5 and C6 shown in FIG. 5, the current that flows to the heater element 230 flows through a predetermined zone (region) of the heater element 230 and flows from the heater element 230 to the bypass layer 250. Details of the zone of the heater element 230 will be described later. As indicated by arrows C7 and C8 illustrated in FIG. 5, the current that has flowed to the bypass layer 250 flows from the bypass layer 250 to the power supply terminal 280. As indicated by an arrow C9 shown in FIG.
 このように、ヒータエレメント230とバイパス層250との接合部には、電流がヒータエレメント230に入る部分と、電流がヒータエレメント230から出る部分と、が存在する。つまり、ヒータエレメント230とバイパス層250との接合部には、ペアが存在する。図3~図5に表したヒータプレート200は8つの給電端子280を有するため、ヒータエレメント230とバイパス層250との接合部には、4つのペアが存在する。 As described above, the junction between the heater element 230 and the bypass layer 250 includes a portion where the current enters the heater element 230 and a portion where the current exits from the heater element 230. That is, a pair exists at the joint between the heater element 230 and the bypass layer 250. Since the heater plate 200 shown in FIGS. 3 to 5 has eight power supply terminals 280, there are four pairs at the junction between the heater element 230 and the bypass layer 250.
 本実施形態によれば、ヒータエレメント230は、第1の支持板210と、第2の支持板270と、の間に設けられている。これにより、ヒータプレート200の面内の温度分布の均一化を向上させ、処理対象物Wの面内の温度分布の均一性を向上させることができる。また、第1の支持板210および第2の支持板270は、ヒータエレメント230およびバイパス層250を高周波から遮断し、ヒータエレメント230が異常温度に発熱することを抑制することができる。 According to the present embodiment, the heater element 230 is provided between the first support plate 210 and the second support plate 270. Thereby, the uniformity of the temperature distribution in the surface of the heater plate 200 can be improved, and the uniformity of the temperature distribution in the surface of the processing object W can be improved. Further, the first support plate 210 and the second support plate 270 can block the heater element 230 and the bypass layer 250 from high frequency, and suppress the heater element 230 from generating heat to an abnormal temperature.
 前述したように、バイパス層250は、ヒータエレメント230と、第2の支持板270と、の間に設けられている。つまり、バイパス層250は、ヒータエレメント230と、ベースプレート300と、の間に設けられている。ステンレスの熱伝導率は、アルミニウムの熱伝導率および銅の熱伝導率よりも低い。そのため、バイパス層250は、ヒータエレメント230から供給された熱が第2の支持板270へ伝わることを抑制する。つまり、バイパス層250は、バイパス層250からみて第2の支持板270の側に対する断熱効果を有し、処理対象物Wの面内の温度分布の均一性を向上させることができる。 As described above, the bypass layer 250 is provided between the heater element 230 and the second support plate 270. That is, the bypass layer 250 is provided between the heater element 230 and the base plate 300. The thermal conductivity of stainless steel is lower than that of aluminum and copper. Therefore, the bypass layer 250 suppresses the heat supplied from the heater element 230 from being transmitted to the second support plate 270. That is, the bypass layer 250 has a heat insulating effect on the second support plate 270 side when viewed from the bypass layer 250, and can improve the uniformity of the temperature distribution in the surface of the processing object W.
 バイパス層250は、給電端子280の配置に対してより大きい自由度を持たせることができる。バイパス層250が設けられることで、バイパス層250が設けられていない場合と比較して熱容量が大きい給電端子をヒータエレメント230に直接接合させなくともよい。これにより、処理対象物Wの面内の温度分布の均一性を向上させることができる。また、バイパス層250が設けられていない場合と比較して薄いヒータエレメント230に給電端子280を接合させなくともよい。これにより、ヒータプレート200の信頼性を向上させることができる。 The bypass layer 250 can have a greater degree of freedom with respect to the arrangement of the power supply terminals 280. By providing the bypass layer 250, it is not necessary to directly join the power supply terminal having a large heat capacity to the heater element 230 as compared to the case where the bypass layer 250 is not provided. Thereby, the uniformity of the temperature distribution in the surface of the processing target W can be improved. Further, it is not necessary to join the power supply terminal 280 to the thin heater element 230 as compared with the case where the bypass layer 250 is not provided. Thereby, the reliability of the heater plate 200 can be improved.
 前述したように、給電端子280は、ヒータプレート200からベースプレート300へ向かって設けられている。そのため、ベースプレート300の下面303(図2(a)および図2(b)参照)の側からソケットなどと呼ばれる部材を介して給電端子280に電力を供給することができる。これにより、静電チャック10が設置されるチャンバ内に給電端子280が露出することを抑えつつ、ヒータの配線が実現される。 As described above, the power supply terminal 280 is provided from the heater plate 200 toward the base plate 300. Therefore, electric power can be supplied to the power supply terminal 280 from the side of the lower surface 303 (see FIGS. 2A and 2B) of the base plate 300 through a member called a socket. Thus, the heater wiring is realized while suppressing the power supply terminal 280 from being exposed in the chamber in which the electrostatic chuck 10 is installed.
 次に、本実施形態のヒータプレート200の製造方法について、図面を参照しつつ説明する。 
 図7は、本実施形態の製造方法の一例を例示する模式的断面図である。 
 図8は、本実施形態の製造方法の他の一例を例示する模式的断面図である。 
 図7(a)は、バイパス層とヒータエレメントとを接合する前の状態を表す模式的断面図である。図7(b)は、バイパス層とヒータエレメントとを接合した後の状態を表す模式的断面図である。図8は、バイパス層と給電端子との接合工程の一例を例示する模式的断面図である。
Next, the manufacturing method of the heater plate 200 of this embodiment is demonstrated, referring drawings.
FIG. 7 is a schematic cross-sectional view illustrating an example of the manufacturing method according to this embodiment.
FIG. 8 is a schematic cross-sectional view illustrating another example of the manufacturing method of this embodiment.
Fig.7 (a) is typical sectional drawing showing the state before joining a bypass layer and a heater element. FIG.7 (b) is typical sectional drawing showing the state after joining a bypass layer and a heater element. FIG. 8 is a schematic cross-sectional view illustrating an example of a joining process between the bypass layer and the power feeding terminal.
 本実施形態にかかる静電チャック10の製造方法では、例えば、まずアルミニウムの機械加工を行うことで、第1の支持板210および第2の支持板270を製造する。第1の支持板210および第2の支持板270の検査は、例えば三次元測定器などを用いて行われる。 In the manufacturing method of the electrostatic chuck 10 according to the present embodiment, for example, the first support plate 210 and the second support plate 270 are manufactured by first machining aluminum. The inspection of the first support plate 210 and the second support plate 270 is performed using, for example, a three-dimensional measuring instrument.
 次に、例えば、ポリイミドフィルムをレーザ、機械加工、型抜き、あるいは溶解などによりカットすることで、第1の樹脂層220、第2の樹脂層240、および第3の樹脂層260を製造する。第1の樹脂層220、第2の樹脂層240、および第3の樹脂層260の検査は、例えば目視などを用いて行われる。 Next, for example, the first resin layer 220, the second resin layer 240, and the third resin layer 260 are manufactured by cutting the polyimide film by laser, machining, die cutting, or melting. The inspection of the first resin layer 220, the second resin layer 240, and the third resin layer 260 is performed using, for example, visual observation.
 次に、ステンレスをフォトリソグラフィ技術や印刷技術を利用しエッチング、機械加工、型抜きなどによりカットすることで、ヒータパターンを形成する。これにより、ヒータエレメント230を製造する。また、ヒータエレメント230の抵抗値の測定などが行われる。 Next, a heater pattern is formed by cutting stainless steel by etching, machining, die cutting, etc. using photolithography technology or printing technology. Thereby, the heater element 230 is manufactured. Further, the resistance value of the heater element 230 is measured.
 続いて、図7(a)および図7(b)に表したように、ヒータエレメント230とバイパス層250との接合を行う。ヒータエレメント230とバイパス層250との接合は、はんだ付け、ろう付け、溶接、あるいは接触などにより行われる。図7(a)に表したように、第2の樹脂層240には、孔241が設けられている。孔241は、第2の樹脂層240を貫通している。例えば、図7(a)に表した矢印C11のように、バイパス層250の側からスポット溶接を行うことで、ヒータエレメント230とバイパス層250とを接合する。 Subsequently, as shown in FIGS. 7A and 7B, the heater element 230 and the bypass layer 250 are joined. The heater element 230 and the bypass layer 250 are joined by soldering, brazing, welding, or contact. As shown in FIG. 7A, the second resin layer 240 is provided with a hole 241. The hole 241 passes through the second resin layer 240. For example, the heater element 230 and the bypass layer 250 are joined by performing spot welding from the side of the bypass layer 250 as indicated by an arrow C11 illustrated in FIG.
 なお、ヒータエレメント230とバイパス層250との接合は、溶接には限定されない。例えば、ヒータエレメント230とバイパス層250との接合は、レーザ光を利用した接合、半田付け、ろう付け、あるいは接触などにより行われてもよい。 In addition, joining of the heater element 230 and the bypass layer 250 is not limited to welding. For example, the heater element 230 and the bypass layer 250 may be joined by joining using laser light, soldering, brazing, or contact.
 続いて、ヒータプレート200の各部材を積層し、ホットプレス機によりプレスする。 Subsequently, each member of the heater plate 200 is laminated and pressed by a hot press machine.
 続いて、図8に表したように、給電端子280とバイパス層250との接合を行う。給電端子280とバイパス層250との接合は、溶接、レーザ、はんだ付け、あるいはろう付けなどにより行われる。図8に表したように、第2の支持板270には、孔273が設けられている。孔273は、第2の支持板270を貫通している。これは、図4(b)に関して前述した通りである。第3の樹脂層260には、孔261が設けられている。孔261は、第3の樹脂層260を貫通している。図8に表した矢印C13のように、第2の支持板270から第1の支持板210へ向かって溶接、レーザ、はんだ付け、あるいはろう付けなどを行うことで、給電端子280とバイパス層250とを接合する。 Subsequently, as shown in FIG. 8, the power feeding terminal 280 and the bypass layer 250 are joined. The power supply terminal 280 and the bypass layer 250 are joined by welding, laser, soldering, brazing, or the like. As shown in FIG. 8, the second support plate 270 is provided with a hole 273. The hole 273 passes through the second support plate 270. This is as described above with reference to FIG. A hole 261 is provided in the third resin layer 260. The hole 261 passes through the third resin layer 260. By performing welding, laser, soldering, brazing, or the like from the second support plate 270 toward the first support plate 210 as indicated by an arrow C <b> 13 illustrated in FIG. 8, the power supply terminal 280 and the bypass layer 250 are performed. And join.
 このようにして、本実施形態のヒータプレート200が製造される。 
 なお、製造後のヒータプレート200に対しては、検査などが適宜行われる。
Thus, the heater plate 200 of this embodiment is manufactured.
In addition, inspection etc. are suitably performed with respect to the heater plate 200 after manufacture.
 図9は、本実施形態にかかる静電チャックを表す模式的分解図である。 
 図10は、本実施形態にかかる静電チャックを表す電気回路図である。 
 図10(a)は、第1の支持板と第2の支持板とが電気的に接合された例を表す電気回路図である。図10(b)は、第1の支持板と第2の支持板とが電気的に接合されていない例を表す電気回路図である。
FIG. 9 is a schematic exploded view showing the electrostatic chuck according to the present embodiment.
FIG. 10 is an electric circuit diagram showing the electrostatic chuck according to the present embodiment.
FIG. 10A is an electric circuit diagram illustrating an example in which the first support plate and the second support plate are electrically joined. FIG. 10B is an electric circuit diagram illustrating an example in which the first support plate and the second support plate are not electrically joined.
 図9および図10(a)に表したように、第1の支持板210は、第2の支持板270と電気的に接合されている。第1の支持板210と第2の支持板270との接合は、例えば、溶接、レーザ光を利用した接合、半田付け、あるいは接触などにより行われる。 9 and 10A, the first support plate 210 is electrically joined to the second support plate 270. The first support plate 210 and the second support plate 270 are joined by, for example, welding, joining using laser light, soldering, or contact.
 例えば、図10(b)に表したように、第1の支持板210が第2の支持板270と電気的に確実に接合されていないと、第1の支持板210が第2の支持板270と電気的に接合されたり、あるいは電気的に接合されなかったりすることがある。すると、プラズマを発生させたときのエッチングレートにばらつきが生ずることがある。また、第1の支持板210が第2の支持板270と電気的に接合されていなくとも、プラズマを発生させると電流がヒータエレメント230に流れ、ヒータエレメント230が発熱することがある。言い換えれば、第1の支持板210が第2の支持板270と電気的に確実に接合されていないと、ヒータエレメント230がヒータ用電流以外の電流により発熱することがある。 For example, as shown in FIG. 10B, if the first support plate 210 is not electrically and reliably joined to the second support plate 270, the first support plate 210 is the second support plate. 270 may be electrically joined or not electrically joined. Then, the etching rate when plasma is generated may vary. Even if the first support plate 210 is not electrically joined to the second support plate 270, current may flow to the heater element 230 when the plasma is generated, and the heater element 230 may generate heat. In other words, if the first support plate 210 is not securely joined to the second support plate 270, the heater element 230 may generate heat due to a current other than the heater current.
 これに対して、本実施形態にかかる静電チャック10では、図10(a)に表したように、第1の支持板210は、第2の支持板270と電気的に接合されている。これにより、電流が第1の支持板210から第2の支持板270へ流れ、あるいは電流が第2の支持板270から第1の支持板210へ流れ、プラズマを発生させたときのエッチングレートにばらつきが生ずることを抑えることができる。また、ヒータエレメント230がヒータ用電流以外の電流により発熱することを抑えることができる。 On the other hand, in the electrostatic chuck 10 according to the present embodiment, the first support plate 210 is electrically joined to the second support plate 270 as shown in FIG. As a result, the current flows from the first support plate 210 to the second support plate 270, or the current flows from the second support plate 270 to the first support plate 210, resulting in an etching rate when plasma is generated. The occurrence of variations can be suppressed. Further, the heater element 230 can be prevented from generating heat due to a current other than the heater current.
 さらに、ヒータエレメント230およびバイパス層250を高周波から遮断することができる。これにより、ヒータエレメント230が異常温度に発熱することを抑制することができる。また、ヒータプレート200のインピーダンスを抑えることができる。 Furthermore, the heater element 230 and the bypass layer 250 can be shielded from high frequencies. Thereby, it is possible to suppress the heater element 230 from generating heat to an abnormal temperature. Moreover, the impedance of the heater plate 200 can be suppressed.
 次に、本実施形態のヒータプレート200の具体例について、図面を参照しつつ説明する。 
 図11は、本実施形態のヒータプレートの具体例を例示する模式的平面図である。 
 図12及び13は、本具体例のヒータエレメントを例示する模式的平面図である。 
 図14は、本具体例のバイパス層を例示する模式的平面図である。 
 図15は、本具体例のヒータプレートの一部を模式的に表す拡大図である。 
 図11(a)は、本具体例のヒータプレートを上面から眺めた模式的平面図である。図11(b)は、本具体例のヒータプレートを下面から眺めた模式的平面図である。図12(a)は、ヒータエレメントの領域の一例を例示する模式的平面図である。図12(b)及び図13は、ヒータエレメントの領域の他の一例を例示する模式的平面図である。
Next, a specific example of the heater plate 200 of the present embodiment will be described with reference to the drawings.
FIG. 11 is a schematic plan view illustrating a specific example of the heater plate of the present embodiment.
12 and 13 are schematic plan views illustrating the heater element of this example.
FIG. 14 is a schematic plan view illustrating the bypass layer of this example.
FIG. 15 is an enlarged view schematically showing a part of the heater plate of this example.
FIG. 11A is a schematic plan view of the heater plate of this example viewed from above. FIG. 11B is a schematic plan view of the heater plate of this specific example viewed from the lower surface. FIG. 12A is a schematic plan view illustrating an example of a heater element region. FIGS. 12B and 13 are schematic plan views illustrating another example of the heater element region.
 図14に表したように、バイパス層250の複数のバイパス部251のうちの少なくともいずれかは、縁部に切り欠き部253を有する。図13に表したバイパス層250では、4個の切り欠き部253が設けられている。切り欠き部253の数は、「4」には限定されない。 
 複数のバイパス層250のうちの少なくともいずれかが切り欠き部253を有するため、第2の支持板270は、第1の支持板210と接触可能である。
As shown in FIG. 14, at least one of the plurality of bypass portions 251 of the bypass layer 250 has a notch 253 at the edge. In the bypass layer 250 shown in FIG. 13, four notches 253 are provided. The number of notches 253 is not limited to “4”.
Since at least one of the plurality of bypass layers 250 has the cutout portion 253, the second support plate 270 can contact the first support plate 210.
 図11(a)および図11(b)に表したように、第1の支持板210は、領域B11~領域B14および領域B31~領域B34において第2の支持板270と電気的に接合されている。なお、領域B11~領域B14のそれぞれは、領域B31~領域B34のそれぞれと対応している。つまり、図11(a)~図13に表した具体例では、第1の支持板210は、4つの領域で第2の支持板270と電気的に接合されており、8つの領域で第2の支持板270と電気的に接合されているわけではない。 As shown in FIGS. 11A and 11B, the first support plate 210 is electrically joined to the second support plate 270 in the regions B11 to B14 and the regions B31 to B34. Yes. Each of the regions B11 to B14 corresponds to each of the regions B31 to B34. That is, in the specific examples shown in FIG. 11A to FIG. 13, the first support plate 210 is electrically joined to the second support plate 270 in four regions, and the second support plate 210 in the eight regions. The support plate 270 is not electrically joined.
 図15(a)及び図15(b)は、領域B31(領域B11)の一例を表す拡大図である。図14(a)は、領域B31の模式的平面図であり、図15(b)は、領域B31の模式的断面図である。図15(b)は、図15(a)の切断面A2-A2を模式的に表す。なお、他の領域B12~領域B14および領域B32~領域B34は、領域B11、B31と同様であるから、詳細な説明は省略する。 FIGS. 15A and 15B are enlarged views showing an example of the region B31 (region B11). FIG. 14A is a schematic plan view of the region B31, and FIG. 15B is a schematic cross-sectional view of the region B31. FIG. 15B schematically shows a cut surface A2-A2 of FIG. Since the other regions B12 to B14 and the regions B32 to B34 are the same as the regions B11 and B31, detailed description thereof is omitted.
 図15(a)及び図15(b)に表したように、領域B31には、接合領域JAが設けられている。接合領域JAは、第1の支持板210と第2の支持板270とを互いに接合する。接合領域JAは、バイパス層250の切り欠き部253に対応して第1の支持板210及び第2の支持板270の外縁に設けられる。接合領域JAは、例えば、第2の支持板270側からレーザ溶接することによって形成される。これにより、接合領域JAは、スポット状に形成される。接合領域JAは、第1の支持板210側から形成してもよい。なお、接合領域JAの形成方法は、レーザ溶接に限ることなく、他の方法でもよい。接合領域JAの形状は、スポット状に限ることなく、楕円状、半円状、または角形状などでもよい。 As shown in FIGS. 15A and 15B, the region B31 is provided with a bonding region JA. The joint area JA joins the first support plate 210 and the second support plate 270 to each other. The joining area JA is provided on the outer edge of the first support plate 210 and the second support plate 270 corresponding to the notch 253 of the bypass layer 250. The joining area JA is formed by, for example, laser welding from the second support plate 270 side. Thereby, the joining area JA is formed in a spot shape. The bonding area JA may be formed from the first support plate 210 side. In addition, the formation method of joining area | region JA is not restricted to laser welding, Another method may be sufficient. The shape of the bonding area JA is not limited to a spot shape, and may be an elliptical shape, a semicircular shape, a square shape, or the like.
 第1の支持板210が第2の支持板270と接合された接合領域JAの面積は、第1の支持板210の面211(図3参照)の面積よりも狭い。接合領域JAの面積は、面211の面積からヒータエレメント230の面積を引いた差分の面積よりも狭い。換言すれば、接合領域JAの面積は、第1の支持板210のうちの面211と平行な平面に投影した時にヒータエレメント230と重ならない領域の面積よりも狭い。第1の支持板210が第2の支持板270と接合された接合領域JAの面積は、第2の支持板270の面271(図4(a)参照)の面積よりも狭い。接合領域JAの面積は、面271の面積からヒータエレメント230の面積を引いた差分の面積よりも狭い。換言すれば、接合領域JAの面積は、第2の支持板270のうちの面271と平行な平面に投影した時にヒータエレメント230と重ならない領域の面積よりも狭い。 The area of the joint area JA where the first support plate 210 is joined to the second support plate 270 is smaller than the area of the surface 211 (see FIG. 3) of the first support plate 210. The area of the bonding area JA is smaller than the area of the difference obtained by subtracting the area of the heater element 230 from the area of the surface 211. In other words, the area of the bonding area JA is smaller than the area of the area that does not overlap the heater element 230 when projected onto a plane parallel to the surface 211 of the first support plate 210. The area of the joint area JA where the first support plate 210 is joined to the second support plate 270 is smaller than the area of the surface 271 of the second support plate 270 (see FIG. 4A). The area of the bonding area JA is smaller than the area of the difference obtained by subtracting the area of the heater element 230 from the area of the surface 271. In other words, the area of the bonding area JA is smaller than the area of the area that does not overlap the heater element 230 when projected onto a plane parallel to the surface 271 of the second support plate 270.
 スポット状に形成された接合領域JAの直径は、例えば、1mm(0.5mm以上3mm以下)である。一方、第1の支持板210及び第2の支持板270の直径は、例えば、300mmである。第1の支持板210及び第2の支持板270の直径は、保持する処理対象物Wに応じて設定される。このように、接合領域JAの面積は、第1の支持板210の面211の面積及び第2の支持板270の面271の面積に比べて十分に小さい。接合領域JAの面積は、例えば、面211の面積(面271の面積)の1/5000以下である。ここで、接合領域JAの面積とは、より詳しくは、第1の支持板210の面211と平行な平面に投影した時の面積である。換言すれば、接合領域JAの面積は、上面視における面積である。 The diameter of the joining area JA formed in a spot shape is, for example, 1 mm (0.5 mm or more and 3 mm or less). On the other hand, the diameters of the first support plate 210 and the second support plate 270 are, for example, 300 mm. The diameters of the first support plate 210 and the second support plate 270 are set according to the processing object W to be held. Thus, the area of the bonding area JA is sufficiently smaller than the area of the surface 211 of the first support plate 210 and the area of the surface 271 of the second support plate 270. The area of the bonding region JA is, for example, 1/5000 or less of the area of the surface 211 (area of the surface 271). Here, the area of the bonding area JA is more specifically the area when projected onto a plane parallel to the surface 211 of the first support plate 210. In other words, the area of the bonding area JA is an area in a top view.
 この例では、領域B11~領域B14および領域B31~領域B34に対応した4つの接合領域JAが設けられる。接合領域JAの数は、4つに限らない。接合領域JAの数は、任意の数でよい。例えば、30°おきに12個の接合領域JAを第1の支持板210及び第2の支持板270に設けてもよい。また、接合領域JAの形状は、スポット状に限らない。接合領域JAの形状は、楕円状、角状、または線状などでもよい。接合領域JAは、例えば、第1の支持板210及び第2の支持板270の外縁に沿う環状に形成してもよい。 In this example, four joint areas JA corresponding to the areas B11 to B14 and the areas B31 to B34 are provided. The number of joining areas JA is not limited to four. The number of the joining areas JA may be an arbitrary number. For example, twelve bonding areas JA may be provided on the first support plate 210 and the second support plate 270 every 30 °. Further, the shape of the bonding area JA is not limited to a spot shape. The shape of the bonding area JA may be elliptical, square, linear, or the like. For example, the joining area JA may be formed in an annular shape along the outer edges of the first support plate 210 and the second support plate 270.
 第2の支持板270は、孔273(図4(b)および図8参照)を有する。一方で、第1の支持板210は、給電端子280を通す孔を有していない。そのため、第1の支持板210の面211の面積は、第2の支持板270の面271の面積よりも広い。 The second support plate 270 has a hole 273 (see FIG. 4B and FIG. 8). On the other hand, the first support plate 210 does not have a hole through which the power supply terminal 280 passes. Therefore, the area of the surface 211 of the first support plate 210 is larger than the area of the surface 271 of the second support plate 270.
 ヒータエレメント230は、例えば帯状のヒータ電極239を有する。図12(a)に表した具体例では、ヒータ電極239は、略円を描くように配置されている。ヒータ電極239は、第1の領域231と、第2の領域232と、第3の領域233と、第4の領域234と、に配置されている。第1の領域231は、ヒータエレメント230の中央部に位置する。第2の領域232は、第1の領域231の外側に位置する。第3の領域233は、第2の領域232の外側に位置する。第4の領域234は、第3の領域233の外側に位置する。 The heater element 230 has, for example, a belt-like heater electrode 239. In the specific example shown in FIG. 12A, the heater electrode 239 is arranged to draw a substantially circle. The heater electrode 239 is disposed in the first region 231, the second region 232, the third region 233, and the fourth region 234. The first region 231 is located at the center of the heater element 230. The second region 232 is located outside the first region 231. The third region 233 is located outside the second region 232. The fourth region 234 is located outside the third region 233.
 第1の領域231に配置されたヒータ電極239は、第2の領域232に配置されたヒータ電極239とは電気的に接合されていない。第2の領域232に配置されたヒータ電極239は、第3の領域233に配置されたヒータ電極239とは電気的に接合されていない。第3の領域233に配置されたヒータ電極239は、第4の領域234に配置されたヒータ電極239とは電気的に接合されていない。つまり、ヒータ電極239は、複数の領域において互いに独立した状態で設けられている。 The heater electrode 239 disposed in the first region 231 is not electrically joined to the heater electrode 239 disposed in the second region 232. The heater electrode 239 disposed in the second region 232 is not electrically joined to the heater electrode 239 disposed in the third region 233. The heater electrode 239 disposed in the third region 233 is not electrically joined to the heater electrode 239 disposed in the fourth region 234. That is, the heater electrode 239 is provided in a plurality of regions in an independent state.
 図12(b)に表した具体例では、ヒータ電極239は、略扇形の少なくとも一部を描くように配置されている。ヒータ電極239は、第1の領域231aと、第2の領域231bと、第3の領域231cと、第4の領域231dと、第5の領域231eと、第6の領域231fと、第7の領域232aと、第8の領域232bと、第9の領域232cと、第10の領域232dと、第11の領域232eと、第12の領域232fと、に配置されている。任意の領域に配置されたヒータ電極239は、他の領域に配置されたヒータ電極239とは電気的に接合されていない。つまり、ヒータ電極239は、複数の領域において互いに独立した状態で設けられている。図12(a)および図12(b)に表したように、ヒータ電極239が配置される領域は、特には限定されない。 In the specific example shown in FIG. 12B, the heater electrode 239 is arranged so as to draw at least a part of a substantially fan shape. The heater electrode 239 includes a first region 231a, a second region 231b, a third region 231c, a fourth region 231d, a fifth region 231e, a sixth region 231f, and a seventh region. The region 232a, the eighth region 232b, the ninth region 232c, the tenth region 232d, the eleventh region 232e, and the twelfth region 232f are arranged. The heater electrode 239 arranged in an arbitrary region is not electrically joined to the heater electrode 239 arranged in another region. That is, the heater electrode 239 is provided in a plurality of regions in an independent state. As shown in FIGS. 12A and 12B, the region where the heater electrode 239 is disposed is not particularly limited.
 図13に表した具体例では、ヒータエレメント230がさらに多くの領域を有する。図13のヒータエレメント230では、図12(a)で示した第1の領域231が、さらに4つの領域231a~231dに分割されている。また、図12(a)で示した第2の領域232が、さらに8つの領域232a~232hに分割されている。また、図12(a)で示した第3の領域233が、さらに8つの領域233a~233hに分割されている。そして、図12(a)で示した第4の領域234が、さらに16の領域234a~234pに分割されている。このように、ヒータ電極239が配置されるヒータエレメント230の領域の数及び形状は、任意でよい。 In the specific example shown in FIG. 13, the heater element 230 has more areas. In the heater element 230 of FIG. 13, the first region 231 shown in FIG. 12A is further divided into four regions 231a to 231d. Further, the second area 232 shown in FIG. 12A is further divided into eight areas 232a to 232h. Further, the third area 233 shown in FIG. 12A is further divided into eight areas 233a to 233h. The fourth area 234 shown in FIG. 12A is further divided into 16 areas 234a to 234p. As described above, the number and shape of the regions of the heater element 230 in which the heater electrode 239 is disposed may be arbitrary.
 図14(a)に表したように、バイパス層250のバイパス部251は、扇形を呈する。複数の扇形のバイパス部251が互いに離間して並べられ、バイパス層250は、全体として略円形を呈する。図14(a)に表したように、隣り合うバイパス部251の間の離間部分257は、バイパス層250の中心259から径方向に延在している。言い換えれば、隣り合うバイパス部251の間の離間部分257は、バイパス層250の中心259から放射状に延在している。バイパス部251の面251aの面積は、離間部分257の面積よりも広い。バイパス層250の面積(バイパス部251の面251aの面積)は、ヒータエレメント230の面積(ヒータ電極239の面積)よりも広い。 As shown in FIG. 14A, the bypass portion 251 of the bypass layer 250 has a fan shape. A plurality of fan-shaped bypass portions 251 are arranged apart from each other, and the bypass layer 250 has a substantially circular shape as a whole. As shown in FIG. 14A, the separation portion 257 between the adjacent bypass portions 251 extends in the radial direction from the center 259 of the bypass layer 250. In other words, the separation portion 257 between the adjacent bypass portions 251 extends radially from the center 259 of the bypass layer 250. The area of the surface 251 a of the bypass part 251 is larger than the area of the separation part 257. The area of the bypass layer 250 (area of the surface 251a of the bypass portion 251) is larger than the area of the heater element 230 (area of the heater electrode 239).
 図14(b)に表したように、バイパス層250の複数のバイパス部251の形状は、例えば、湾曲した扇形状でもよい。このように、バイパス層250に設けられる複数のバイパス部251の数及び形状は、任意でよい。 14B, the shape of the plurality of bypass portions 251 of the bypass layer 250 may be, for example, a curved fan shape. Thus, the number and shape of the plurality of bypass portions 251 provided in the bypass layer 250 may be arbitrary.
 図11~図14に関する以下の説明では、図12(a)に表したヒータエレメント230の領域を例に挙げる。ヒータ電極239が略円を描くように配置され、複数の扇形のバイパス部251が互いに離間して並べられている。そのため、バイパス部251の面251aに対して垂直にみたときに、ヒータ電極239は、隣り合うバイパス部251の間の離間部分257と交差する。また、バイパス部251の面251aに対して垂直にみたときに、隣り合うヒータエレメント230の各領域(第1の領域231、第2の領域232、第3の領域233、および第4の領域234)の間の離間部分235は、隣り合うバイパス部251の間の離間部分257と交差する。 In the following description regarding FIG. 11 to FIG. 14, the region of the heater element 230 shown in FIG. The heater electrode 239 is disposed so as to draw a substantially circle, and a plurality of fan-shaped bypass portions 251 are arranged apart from each other. Therefore, when viewed perpendicular to the surface 251 a of the bypass portion 251, the heater electrode 239 intersects with the separation portion 257 between the adjacent bypass portions 251. Further, when viewed perpendicular to the surface 251 a of the bypass portion 251, each region of the adjacent heater element 230 (the first region 231, the second region 232, the third region 233, and the fourth region 234). ) Between the adjacent bypass portions 251 intersects with the separation portion 257 between the adjacent bypass portions 251.
 図11(a)および図11(b)に表したように、ヒータエレメント230とバイパス層250との接合部255a~255hのそれぞれと、ヒータプレート200の中心203と、を結ぶ複数の仮想線は、互いに重ならない。言い換えれば、ヒータエレメント230とバイパス層250との接合部255a~255hは、ヒータプレート200の中心203からみて互いに異なる方向に配置されている。図11(b)に表したように、給電端子280は、接合部255a~255hのそれぞれと、ヒータプレート200の中心203と、を結ぶ仮想線の上に存在する。 As shown in FIGS. 11A and 11B, a plurality of imaginary lines connecting each of the joint portions 255a to 255h between the heater element 230 and the bypass layer 250 and the center 203 of the heater plate 200 are , Do not overlap each other. In other words, the joint portions 255 a to 255 h between the heater element 230 and the bypass layer 250 are arranged in different directions as viewed from the center 203 of the heater plate 200. As shown in FIG. 11B, the power supply terminal 280 exists on an imaginary line that connects each of the joint portions 255a to 255h and the center 203 of the heater plate 200.
 接合部255a、255bは、第1の領域231に配置されたヒータ電極239とバイパス層250とを接合する部分である。接合部255a、255bは、第1の領域231に対応している。接合部255aおよび接合部255bのいずれか一方は、電流がヒータエレメント230に入る部分である。接合部255aおよび接合部255bのいずれか他方は、電流がヒータエレメント230から出る部分である。 The joint portions 255 a and 255 b are portions that join the heater electrode 239 and the bypass layer 250 disposed in the first region 231. The joint portions 255a and 255b correspond to the first region 231. One of the joint portion 255a and the joint portion 255b is a portion where current enters the heater element 230. The other of the joining portion 255a and the joining portion 255b is a portion where current flows out of the heater element 230.
 接合部255c、255dは、第2の領域232に配置されたヒータ電極239とバイパス層250とを接合する部分である。接合部255c、255dは、第2の領域232に対応している。接合部255cおよび接合部255dのいずれか一方は、電流がヒータエレメント230に入る部分である。接合部255cおよび接合部255dのいずれか他方は、電流がヒータエレメント230から出る部分である。 The joint portions 255 c and 255 d are portions that join the heater electrode 239 and the bypass layer 250 disposed in the second region 232. The joint portions 255 c and 255 d correspond to the second region 232. One of the joint portion 255c and the joint portion 255d is a portion where current enters the heater element 230. The other of the joining portion 255c and the joining portion 255d is a portion where current flows out of the heater element 230.
 接合部255e、255fは、第3の領域233に配置されたヒータ電極239とバイパス層250とを接合する部分である。接合部255e、255fは、第3の領域233に対応している。接合部255eおよび接合部255fのいずれか一方は、電流がヒータエレメント230に入る部分である。接合部255eおよび接合部255fのいずれか他方は、電流がヒータエレメント230から出る部分である。 The joint portions 255e and 255f are portions that join the heater electrode 239 and the bypass layer 250 disposed in the third region 233. The joint portions 255e and 255f correspond to the third region 233. One of the joint portion 255e and the joint portion 255f is a portion where current enters the heater element 230. The other of the joining portion 255e and the joining portion 255f is a portion where the current exits from the heater element 230.
 接合部255g、255hは、第4の領域234に配置されたヒータ電極239とバイパス層250とを接合する部分である。接合部255g、255hは、第4の領域234に対応している。接合部255gおよび接合部255hのいずれか一方は、電流がヒータエレメント230に入る部分である。接合部255gおよび接合部25hのいずれか他方は、電流がヒータエレメント230から出る部分である。 The joint portions 255g and 255h are portions that join the heater electrode 239 and the bypass layer 250 disposed in the fourth region 234. The joint portions 255g and 255h correspond to the fourth region 234. One of the junction 255g and the junction 255h is a portion where current enters the heater element 230. The other of the joining portion 255g and the joining portion 25h is a portion where current flows out of the heater element 230.
 接合部255a、255bは、ヒータプレート200の中心203を中心とし接合部255c、255dを通る円とは異なる円の上に存在する。接合部255a、255bは、ヒータプレート200の中心203を中心とし接合部255e、255fを通る円とは異なる円の上に存在する。接合部255a、255bは、ヒータプレート200の中心203を中心とし接合部255g、255hを通る円とは異なる円の上に存在する。 
 接合部255c、255dは、ヒータプレート200の中心203を中心とし接合部255e、255fを通る円とは異なる円の上に存在する。接合部255c、255dは、ヒータプレート200の中心203を中心とし接合部255g、255hを通る円とは異なる円の上に存在する。 
 接合部255e、255fは、ヒータプレート200の中心203を中心とし接合部255g、255hを通る円とは異なる円の上に存在する。
The joint portions 255a and 255b exist on a circle different from the circle passing through the joint portions 255c and 255d with the center 203 of the heater plate 200 as the center. The joint portions 255a and 255b exist on a circle different from the circle passing through the joint portions 255e and 255f with the center 203 of the heater plate 200 as the center. The joints 255a and 255b exist on a circle different from the circle passing through the joints 255g and 255h with the center 203 of the heater plate 200 as the center.
The joint portions 255c and 255d exist on a circle different from the circle passing through the joint portions 255e and 255f with the center 203 of the heater plate 200 as the center. The joint portions 255c and 255d exist on a circle different from the circle passing through the joint portions 255g and 255h with the center 203 of the heater plate 200 as the center.
The joint portions 255e and 255f exist on a circle different from the circle passing through the joint portions 255g and 255h with the center 203 of the heater plate 200 as the center.
 図11(a)および図11(b)に表したように、ヒータプレート200は、リフトピン孔201を有する。図11(a)および図11(b)に表した具体例では、ヒータプレート200は、3つのリフトピン孔201を有する。リフトピン孔201の数は、「3」には限定されない。給電端子280は、リフトピン孔201からみてヒータプレート200の中心203の側の領域に設けられている。 11A and 11B, the heater plate 200 has a lift pin hole 201. As shown in FIG. In the specific examples shown in FIGS. 11A and 11B, the heater plate 200 has three lift pin holes 201. The number of lift pin holes 201 is not limited to “3”. The power supply terminal 280 is provided in a region on the side of the center 203 of the heater plate 200 when viewed from the lift pin hole 201.
 本具体例によれば、ヒータ電極239が、複数の領域に配置されているため、処理対象物Wの面内の温度を各領域ごとに独立して制御することができる。これにより、処理対象物Wの面内の温度に意図的に差をつけることができる(温度制御性)。 According to this specific example, since the heater electrode 239 is arranged in a plurality of regions, the temperature in the surface of the processing object W can be controlled independently for each region. Thereby, it is possible to intentionally make a difference in the in-plane temperature of the processing object W (temperature controllability).
 図16は、本実施形態のヒータプレートの表面の形状を説明する模式図である。 
 図16(a)は、本発明者が第2の支持板270の面271の形状を測定した結果の一例を例示するグラフ図である。図16(b)は、本実施形態のヒータプレート200の表面の形状を説明する模式的断面図である。
FIG. 16 is a schematic diagram for explaining the shape of the surface of the heater plate of the present embodiment.
FIG. 16A is a graph illustrating an example of a result of measurement of the shape of the surface 271 of the second support plate 270 by the inventor. FIG. 16B is a schematic cross-sectional view illustrating the shape of the surface of the heater plate 200 of the present embodiment.
 図8に関して前述したように、ヒータプレート200の各部材は、積層された状態でホットプレス機によりプレスされる。このとき、図16(b)に表したように、第1の支持板210の面211(上面)には、第1の凹凸が生ずる。および第2の支持板270の面271(下面)には、第2の凹凸が生ずる。また、第1の支持板210の面213(下面)には、第3の凹凸が生ずる。第2の支持板270の面275(上面)には、第4の凹凸が生ずる。 As described above with reference to FIG. 8, each member of the heater plate 200 is pressed by a hot press machine in a stacked state. At this time, as shown in FIG. 16B, the first unevenness is generated on the surface 211 (upper surface) of the first support plate 210. The second unevenness is generated on the surface 271 (lower surface) of the second support plate 270. In addition, a third unevenness is generated on the surface 213 (lower surface) of the first support plate 210. A fourth unevenness is generated on the surface 275 (upper surface) of the second support plate 270.
 本発明者は、第2の支持板270の面271の形状を測定した。測定結果の一例は、図16(a)に表した通りである。図16(a)および図16(b)に表したように、第1の支持板210の面211(上面)の形状および第2の支持板270の面271の形状は、ヒータエレメント230の形状あるいはヒータエレメント230の配置にならっている。ヒータエレメント230の形状とは、ヒータエレメント230の厚さおよびヒータエレメント230の幅(ヒータ電極239の幅)をいう。 The inventor measured the shape of the surface 271 of the second support plate 270. An example of the measurement result is as shown in FIG. As shown in FIGS. 16A and 16B, the shape of the surface 211 (upper surface) of the first support plate 210 and the shape of the surface 271 of the second support plate 270 are the shapes of the heater element 230. Alternatively, the heater element 230 is arranged. The shape of the heater element 230 refers to the thickness of the heater element 230 and the width of the heater element 230 (the width of the heater electrode 239).
 第1の支持板210の面211の凹部211a(第1の凹凸の凹部211a)と、第2の支持板270の面271の凹部271a(第2の凹凸の凹部271a)と、の間のZ方向の距離D1は、第1の支持板210の面211の凸部211b(第1の凹凸の凸部211b)と、第2の支持板270の面271の凸部271b(第2の凹凸の凸部271b)と、の間のZ方向の距離D2よりも短い。 Z between the concave portion 211a (first concave / convex concave portion 211a) of the surface 211 of the first support plate 210 and the concave portion 271a (second concave / convex concave portion 271a) of the surface 271 of the second support plate 270. The distance D1 in the direction is such that the convex portion 211b (first concave / convex convex portion 211b) of the surface 211 of the first support plate 210 and the convex portion 271b (second concave / convex portion of the surface 271 of the second supporting plate 270). It is shorter than the distance D2 in the Z direction between the convex portion 271b).
 第1の支持板210の面211の凹部211aと、第1の支持板210の面211の凸部211bと、の間のZ方向の距離D3(第1の支持板210の面211の凹凸高さ:第1の凹凸の高さ)は、第2の支持板270の面271の凹部271aと、第2の支持板270の面271の凸部271bと、の間のZ方向の距離D4(第2の支持板270の面271の凹凸高さ:第2の凹凸の高さ)よりも短い。つまり、第1の支持板210の面211の凹凸高さ(第1の凹凸の高さ)は、第2の支持板270の面271の凹凸高さ(第2の凹凸の高さ)よりも低い。 The distance D3 in the Z direction between the concave portion 211a of the surface 211 of the first support plate 210 and the convex portion 211b of the surface 211 of the first support plate 210 (the uneven height of the surface 211 of the first support plate 210) (The height of the first unevenness) is a distance D4 (Z4) between the concave portion 271a of the surface 271 of the second support plate 270 and the convex portion 271b of the surface 271 of the second support plate 270. The unevenness height of the surface 271 of the second support plate 270 is shorter than the height of the second unevenness. That is, the unevenness height (first unevenness height) of the surface 211 of the first support plate 210 is higher than the unevenness height (second unevenness height) of the surface 271 of the second support plate 270. Low.
 第2の支持板270の面271の凹部271aの幅は、隣り合う2つのヒータ電極239の間の領域(ヒータエレメント230のスリット部)の幅と同程度である。第2の支持板270の面271の凹部271aの幅は、例えば、隣り合う2つのヒータ電極239の間の領域の幅の0.25倍以上2.5倍以下である。 The width of the concave portion 271a of the surface 271 of the second support plate 270 is approximately the same as the width of the region between the two adjacent heater electrodes 239 (the slit portion of the heater element 230). The width of the concave portion 271a of the surface 271 of the second support plate 270 is, for example, not less than 0.25 times and not more than 2.5 times the width of the region between two adjacent heater electrodes 239.
 第2の支持板270の面271の凸部271bの幅は、ヒータ電極239の幅と同程度である。第2の支持板270の面271の凸部271bの幅は、例えば、ヒータ電極230の幅の0.8倍以上1.2倍以下である。 The width of the convex portion 271b of the surface 271 of the second support plate 270 is approximately the same as the width of the heater electrode 239. The width of the convex portion 271b of the surface 271 of the second support plate 270 is, for example, not less than 0.8 times and not more than 1.2 times the width of the heater electrode 230.
 また、第2の支持板270の面271の凹凸高さD4は、ヒータエレメント230の厚さ(ヒータ電極239の厚さ)と同程度である。第2の支持板270の凹凸高さD4は、ヒータエレメント230の厚さの0.8倍以上1.2倍以下である。 Also, the uneven height D4 of the surface 271 of the second support plate 270 is approximately the same as the thickness of the heater element 230 (the thickness of the heater electrode 239). The uneven height D4 of the second support plate 270 is not less than 0.8 times and not more than 1.2 times the thickness of the heater element 230.
 同様に、第1の支持板210の面211の凹部211aの幅は、隣り合う2つのヒータ電極239の間の領域の幅と同程度である。第1の支持板210の面211の凸部211bの幅は、ヒータ電極239の幅と同程度である。一方、第1の支持板210の面211の凹凸高さD3は、ヒータエレメント230の厚さよりも低い。 Similarly, the width of the recess 211a of the surface 211 of the first support plate 210 is approximately the same as the width of the region between the two adjacent heater electrodes 239. The width of the convex portion 211 b of the surface 211 of the first support plate 210 is approximately the same as the width of the heater electrode 239. On the other hand, the uneven height D 3 of the surface 211 of the first support plate 210 is lower than the thickness of the heater element 230.
 第2の支持板270の面271の高さは、凸部271bから隣接する凹部271aに向かって、なだらかに変化する。第2の支持板270の面271の高さは、例えば、凸部271bの幅方向の中心から、隣接する凹部271aの幅方向の中心に向かって連続的に減少する。凸部271bの幅方向の中心とは、より詳しくは、面271のうちのヒータ電極239の幅方向の中心とZ方向において重なる位置である。凹部271aの幅方向の中心とは、より詳しくは、面271のうちの隣り合う2つのヒータ電極239の間の領域の幅方向の中心とZ方向において重なる位置である。 The height of the surface 271 of the second support plate 270 changes gradually from the convex portion 271b toward the adjacent concave portion 271a. For example, the height of the surface 271 of the second support plate 270 continuously decreases from the center in the width direction of the convex portion 271b toward the center in the width direction of the adjacent concave portion 271a. More specifically, the center in the width direction of the convex portion 271b is a position overlapping with the center in the width direction of the heater electrode 239 in the surface 271 in the Z direction. More specifically, the center in the width direction of the concave portion 271a is a position overlapping in the Z direction with the center in the width direction of the region between the two adjacent heater electrodes 239 in the surface 271.
 このように、第2の支持板270の面271の高さは、ヒータ電極239と重なる部分を頂点とし、ヒータ電極239と重ならない部分を最下点とする波状に変化する。同様に、第1の支持板210の面211の高さは、ヒータ電極239と重なる部分を頂点とし、ヒータ電極239と重ならない部分を最下点とする波状に変化する。 Thus, the height of the surface 271 of the second support plate 270 changes in a wave shape with the portion overlapping with the heater electrode 239 as the apex and the portion not overlapping with the heater electrode 239 as the lowest point. Similarly, the height of the surface 211 of the first support plate 210 changes in a wave shape with the portion overlapping the heater electrode 239 as the apex and the portion not overlapping with the heater electrode 239 as the lowest point.
 本実施形態によれば、第1の支持板210の面211が第1の凹凸を有するため、第1の支持板210とヒータエレメント230との間の接着面積をより広くすることができ、第1の支持板210とヒータエレメント230との間の接着強度を向上させることができる。また、その第1の凹凸によって、第1の支持板210と接着剤403との接着面積もより広くすることができる。これにより、第1の支持板210と接着剤403との接合強度も向上させることができる。また、第1の支持板210が凹凸を有することにより、第1の支持板210の剛性が高くなる。このため、第1の支持板210が薄くてもヒータプレート200の反りや変形を低減することができる。これにより、例えば一般に背反の関係にある、「ヒータプレートの反りの低減」と、高スループットに影響する「熱容量の低減」と、を両立することができる。また、第2の支持板270の面271が第2の凹凸を有するため、第2の支持板270とバイパス層250との間の接着面積をより広くすることができ、第2の支持板270とバイパス層250との間の接着強度を向上させることができる。また、その第2の凹凸によって、第2の支持板270と接着剤403との接着面積もより広くすることができる。これにより、第2の支持板270と接着剤403との接合強度も向上させることができる。また、第2の支持板270が凹凸を有することにより、第2の支持板270の剛性が高くなる。このため、第2の支持板270が薄くてもヒータプレート200の反りや変形を低減することができる。これにより、例えば一般に背反の関係にある、「ヒータプレートの反りの低減」と、高スループットに影響する「熱容量の低減」と、を両立することができる。さらに、第1の支持板210の面211が第1の凹凸を有するため、ヒータエレメント230と処理対象物Wとの間の距離をより短くすることができる。これにより、処理対象物Wの温度を上昇させる速度を向上させることができる。 According to this embodiment, since the surface 211 of the first support plate 210 has the first unevenness, the bonding area between the first support plate 210 and the heater element 230 can be further increased, and the first The adhesive strength between the one support plate 210 and the heater element 230 can be improved. Moreover, the adhesion area of the 1st support plate 210 and the adhesive agent 403 can be made wider according to the 1st unevenness | corrugation. Thereby, the joint strength between the first support plate 210 and the adhesive 403 can also be improved. Further, since the first support plate 210 has irregularities, the rigidity of the first support plate 210 is increased. For this reason, even if the 1st support plate 210 is thin, the curvature and deformation | transformation of the heater plate 200 can be reduced. Thereby, for example, it is possible to achieve both “reduction of the warpage of the heater plate” and “reduction of heat capacity” that affect high throughput, which are generally in a trade-off relationship. In addition, since the surface 271 of the second support plate 270 has the second unevenness, the adhesion area between the second support plate 270 and the bypass layer 250 can be increased, and the second support plate 270 can be increased. And the adhesive strength between the bypass layer 250 can be improved. Moreover, the adhesion area of the 2nd support plate 270 and the adhesive agent 403 can be made wider according to the 2nd unevenness | corrugation. Thereby, the joint strength between the second support plate 270 and the adhesive 403 can also be improved. In addition, since the second support plate 270 has irregularities, the rigidity of the second support plate 270 increases. For this reason, even if the 2nd support plate 270 is thin, the curvature and deformation | transformation of the heater plate 200 can be reduced. Thereby, for example, it is possible to achieve both “reduction of the warpage of the heater plate” and “reduction of heat capacity” that affect high throughput, which are generally in a trade-off relationship. Furthermore, since the surface 211 of the first support plate 210 has the first unevenness, the distance between the heater element 230 and the processing object W can be further shortened. Thereby, the speed which raises the temperature of the processing target object W can be improved.
 図17(a)~図17(c)は、本実施形態の変形例に係るヒータプレートの表面の形状を説明する模式的断面図である。 
 図17(a)~図17(c)に示すヒータプレート200においても、図16(b)に関する説明と同様に、第1~第4の凹凸が生ずる。 
 図17(a)に示したように、凹部211aと、凹部271aと、の間のZ方向の距離D1aは、凸部211bと、凸部271bと、の間のZ方向の距離D2aよりも短い。
FIG. 17A to FIG. 17C are schematic cross-sectional views illustrating the shape of the surface of the heater plate according to the modification of the present embodiment.
Also in the heater plate 200 shown in FIGS. 17A to 17C, the first to fourth irregularities are generated in the same manner as described with reference to FIG.
As shown in FIG. 17A, the distance D1a in the Z direction between the concave portion 211a and the concave portion 271a is shorter than the distance D2a in the Z direction between the convex portion 211b and the convex portion 271b. .
 図17(a)に示した例では、図16(b)に示した例とは異なり、凹部211aと凸部211bとの間のZ方向の距離D3a(第1の支持板210の面211の凹凸高さ:第1の凹凸の高さ)は、凹部271aと凸部271bとの間のZ方向の距離D4a(第2の支持板270の面271の凹凸高さ:第2の凹凸の高さ)よりも長い。つまり、この例では、第1の支持板210の面211の凹凸高さ(第1の凹凸の高さ)は、第2の支持板270の面271の凹凸高さ(第2の凹凸の高さ)よりも高い。 In the example shown in FIG. 17A, unlike the example shown in FIG. 16B, the distance D3a in the Z direction between the concave portion 211a and the convex portion 211b (of the surface 211 of the first support plate 210). Unevenness height: the height of the first unevenness is the distance D4a in the Z direction between the recesses 271a and 271b (the unevenness height of the surface 271 of the second support plate 270: the height of the second unevenness). Longer than). That is, in this example, the unevenness height (the height of the first unevenness) of the surface 211 of the first support plate 210 is the unevenness height (the height of the second unevenness) of the surface 271 of the second support plate 270. Is higher than
 また、第1の支持板210の面211の凹凸高さD3aは、ヒータエレメント230の厚さと同程度であり、例えば、ヒータエレメント230の厚さの0.8倍以上1.2倍以下である。一方、第2の支持基板270の面271の凹凸高さD4aは、ヒータエレメント230の厚さよりも低い。 Further, the uneven height D3a of the surface 211 of the first support plate 210 is approximately the same as the thickness of the heater element 230, for example, 0.8 times or more and 1.2 times or less of the thickness of the heater element 230. . On the other hand, the uneven height D4a of the surface 271 of the second support substrate 270 is lower than the thickness of the heater element 230.
 なお、凹部211aの幅、及び、凹部271aの幅は、それぞれ、隣合う2つのヒータ電極239の間の領域の幅と同程度である。凸部211bの幅、及び、凸部271bの幅は、それぞれ、ヒータ電極239の幅と同程度である。 Note that the width of the recess 211a and the width of the recess 271a are approximately the same as the width of the region between two adjacent heater electrodes 239, respectively. The width of the convex portion 211b and the width of the convex portion 271b are approximately the same as the width of the heater electrode 239, respectively.
 図17(a)に示した例においても、図16(b)に関する説明と同様に、第2の支持板270の面271の高さ、及び、第1の支持基板210の面211の高さは、それぞれ、波状に変化している。このような第1の凹凸及び第2の凹凸が設けられていることによって、接着面積が広くなり、接着強度が向上する。 Also in the example shown in FIG. 17A, the height of the surface 271 of the second support plate 270 and the height of the surface 211 of the first support substrate 210 are the same as in the description related to FIG. Each of them changes in a wave shape. By providing the first unevenness and the second unevenness as described above, the bonding area is increased and the bonding strength is improved.
 図16(b)に示した例のように、第2の凹凸の高さ(距離D4)が第1の凹凸の高さ(距離D3)よりも高い場合には、ヒータプレート200とベースプレート300との接着面積を広くすることができる。これにより、ヒータプレート200とベースプレート300との接着強度を向上させることができる。 As in the example shown in FIG. 16B, when the height of the second unevenness (distance D4) is higher than the height of the first unevenness (distance D3), the heater plate 200, the base plate 300, The bonding area can be increased. Thereby, the adhesive strength between the heater plate 200 and the base plate 300 can be improved.
 一方、図17(a)に示した例のように、第1の凹凸高さ(距離D3a)が第2の凹凸高さ(距離D4a)よりも高い場合には、特に、ヒータプレート200とセラミック誘電体基板100との接着面積を広くすることができる。これにより、ヒータプレート200とセラミック誘電体基板100との接着強度を向上させることができる。 On the other hand, when the first unevenness height (distance D3a) is higher than the second unevenness height (distance D4a) as in the example shown in FIG. The bonding area with the dielectric substrate 100 can be increased. Thereby, the adhesive strength between the heater plate 200 and the ceramic dielectric substrate 100 can be improved.
 図17(a)に示した例では、ヒータエレメント230が、第1の支持板210とバイパス層250との間に設けられている。この場合には、ヒータエレメント230からベースプレート300側に供給される熱の拡散性を向上させることができる。具体的には、処理対象物Wの面内方向(水平方向)における熱拡散性を向上させることができる。例えば、ベースプレート300内を流れる冷媒に供給される熱が、面内方向において、より均一となる。これにより、ベースプレート300(冷媒)に起因して生じる面内の温度差を低減することができる。 In the example illustrated in FIG. 17A, the heater element 230 is provided between the first support plate 210 and the bypass layer 250. In this case, the diffusibility of heat supplied from the heater element 230 to the base plate 300 can be improved. Specifically, the thermal diffusibility in the in-plane direction (horizontal direction) of the processing target W can be improved. For example, the heat supplied to the refrigerant flowing in the base plate 300 becomes more uniform in the in-plane direction. Thereby, an in-plane temperature difference caused by the base plate 300 (refrigerant) can be reduced.
 図17(b)及び図17(c)に示したヒータプレート200においても、第1の支持板210、第1の樹脂層220、第2の樹脂層240、第3の樹脂層260、ヒータエレメント230、バイパス層250、及び第2の支持板270が設けられる。但し、図17(b)及び図17(c)に示した例は、積層順において、図17(a)に示したヒータプレート200と異なる。 Also in the heater plate 200 shown in FIGS. 17B and 17C, the first support plate 210, the first resin layer 220, the second resin layer 240, the third resin layer 260, and the heater element are also provided. 230, a bypass layer 250, and a second support plate 270 are provided. However, the example shown in FIGS. 17B and 17C is different from the heater plate 200 shown in FIG. 17A in the stacking order.
 図17(b)及び図17(c)に示した例においては、バイパス層250が、第1の支持板210とヒータエレメント230との間に設けられている。これにより、ヒータエレメント230から処理対処物W側へ供給される熱の拡散性を向上させることができる。具体的には、処理対象物Wの面内方向(水平方向)における熱拡散性を向上させることができる。例えば、ヒータエレメント230が発する熱に起因して生じる面内の温度差を低減することができる。なお、この構造の詳細については、図23に関して後述する。 In the example shown in FIGS. 17B and 17C, the bypass layer 250 is provided between the first support plate 210 and the heater element 230. Thereby, the diffusibility of the heat supplied from the heater element 230 to the processing object W side can be improved. Specifically, the thermal diffusibility in the in-plane direction (horizontal direction) of the processing target W can be improved. For example, the in-plane temperature difference caused by the heat generated by the heater element 230 can be reduced. Details of this structure will be described later with reference to FIG.
 図17(b)に示した例においても、凹部211aと凹部271aとの間のZ方向の距離D1bは、凸部211bと凸部271bとの間のZ方向の距離D2bよりも短い。 Also in the example shown in FIG. 17B, the distance D1b in the Z direction between the recess 211a and the recess 271a is shorter than the distance D2b in the Z direction between the protrusion 211b and the protrusion 271b.
 また、凹部211aと凸部211bとの間のZ方向の距離D3b(第1の支持板210の面211の凹凸高さ:第1の凹凸の高さ)は、凹部271aと凸部271bとの間のZ方向の距離D4b(第2の支持板270の面271の凹凸高さ:第2の凹凸の高さ)よりも長い。つまり、この例では、第1の支持板210の面211の凹凸高さ(第1の凹凸の高さ)は、第2の支持板270の面271の凹凸高さ(第2の凹凸の高さ)よりも高い。 Further, the distance D3b in the Z direction between the concave portion 211a and the convex portion 211b (the unevenness height of the surface 211 of the first support plate 210: the height of the first unevenness) is the distance between the concave portion 271a and the convex portion 271b. It is longer than the distance D4b in the Z direction (the height of the unevenness of the surface 271 of the second support plate 270: the height of the second unevenness). That is, in this example, the unevenness height (the height of the first unevenness) of the surface 211 of the first support plate 210 is the unevenness height (the height of the second unevenness) of the surface 271 of the second support plate 270. Is higher than
 第1の支持板210の面211の凹凸高さD3bは、ヒータエレメント230の厚さと同程度であり、例えば、ヒータエレメント230の厚さの0.8倍以上1.2倍以下である。一方、第2の支持基板270の面271の凹凸高さD4bは、ヒータエレメント230の厚さよりも低い。 The unevenness height D3b of the surface 211 of the first support plate 210 is approximately the same as the thickness of the heater element 230, and is, for example, 0.8 times or more and 1.2 times or less the thickness of the heater element 230. On the other hand, the uneven height D4b of the surface 271 of the second support substrate 270 is lower than the thickness of the heater element 230.
 なお、凹部211a、凹部271a、凸部211b、凸部271bのそれぞれの幅については、図17(a)に関する説明と同様である。 In addition, about the width | variety of the recessed part 211a, the recessed part 271a, the convex part 211b, and the convex part 271b, it is the same as that of the description regarding Fig.17 (a).
 図17(b)に示したヒータプレート200においては、第1の凹凸高さ(距離D3b)が第2の凹凸高さ(距離D4b)よりも高いことにより、図17(a)の場合と同様に、ヒータプレート200とセラミック誘電体基板100との接着強度を向上させることができる。 In the heater plate 200 shown in FIG. 17B, the first unevenness height (distance D3b) is higher than the second unevenness height (distance D4b), which is the same as in the case of FIG. Further, the adhesive strength between the heater plate 200 and the ceramic dielectric substrate 100 can be improved.
 例えば、プラズマ処理に伴って処理対象物Wから静電チャックに伝わる熱などによって、ヒータプレート200とセラミック誘電体基板100との間の温度差(相対変位)が大きくなりやすい場合がある。このような場合に、図17(a)及び図17(b)に示したヒータプレートのようにして、ヒータプレート200とセラミック誘電体基板100との接着強度を向上させることにより、信頼性を大きく向上させることができる。 For example, the temperature difference (relative displacement) between the heater plate 200 and the ceramic dielectric substrate 100 may easily increase due to heat transferred from the processing object W to the electrostatic chuck along with the plasma processing. In such a case, the reliability is increased by improving the adhesive strength between the heater plate 200 and the ceramic dielectric substrate 100 as in the case of the heater plate shown in FIGS. 17 (a) and 17 (b). Can be improved.
 図17(c)に示した例においても、凹部211aと凹部271aとの間のZ方向の距離D1cは、凸部211bと凸部271bとの間のZ方向の距離D2cよりも短い。 Also in the example shown in FIG. 17C, the distance D1c in the Z direction between the recess 211a and the recess 271a is shorter than the distance D2c in the Z direction between the protrusion 211b and the protrusion 271b.
 また、凹部211aと凸部211bとの間のZ方向の距離D3c(第1の支持板210の面211の凹凸高さ:第1の凹凸の高さ)は、凹部271aと凸部271bとの間のZ方向の距離D4c(第2の支持板270の面271の凹凸高さ:第2の凹凸の高さ)よりも短い。つまり、この例では、第1の支持板210の面211の凹凸高さ(第1の凹凸の高さ)は、第2の支持板270の面271の凹凸高さ(第2の凹凸の高さ)よりも低い。 Further, the distance D3c in the Z direction between the concave portion 211a and the convex portion 211b (the unevenness height of the surface 211 of the first support plate 210: the height of the first unevenness) is the distance between the concave portion 271a and the convex portion 271b. It is shorter than the distance D4c in the Z direction (heave height of the surface 271 of the second support plate 270: height of the second bump). That is, in this example, the unevenness height (the height of the first unevenness) of the surface 211 of the first support plate 210 is the unevenness height (the height of the second unevenness) of the surface 271 of the second support plate 270. Lower).
 第2の支持板270の面271の凹凸高さD4cは、ヒータエレメント230の厚さと同程度であり、例えば、ヒータエレメント230の厚さの0.8倍以上1.2倍以下である。一方、第1の支持基板210の面211の凹凸高さD3cは、ヒータエレメント230の厚さよりも低い。 The unevenness height D4c of the surface 271 of the second support plate 270 is approximately the same as the thickness of the heater element 230, and is, for example, 0.8 times or more and 1.2 times or less the thickness of the heater element 230. On the other hand, the uneven height D 3 c of the surface 211 of the first support substrate 210 is lower than the thickness of the heater element 230.
 なお、凹部211a、凹部271a、凸部211b、凸部271bのそれぞれの幅については、図17(a)に関する説明と同様である。 In addition, about the width | variety of the recessed part 211a, the recessed part 271a, the convex part 211b, and the convex part 271b, it is the same as that of the description regarding Fig.17 (a).
 図17(c)に示したヒータプレート200においては、第2の凹凸高さ(距離D4c)が第1の凹凸高さ(距離D3c)よりも高いことにより、図16(b)の場合と同様に、ヒータプレート200とベースプレートとの接着面積を広くすることができる。これにより、ヒータプレート200とベースプレート300との接着強度を向上させることができる。 In the heater plate 200 shown in FIG. 17C, the second unevenness height (distance D4c) is higher than the first unevenness height (distance D3c), which is similar to the case of FIG. 16B. In addition, the bonding area between the heater plate 200 and the base plate can be increased. Thereby, the adhesive strength between the heater plate 200 and the base plate 300 can be improved.
 例えば、ヒータエレメント230の発する熱などによって、ヒータプレート200とベースプレート300との間の温度差(相対変位)が大きくなりやすい場合がある。このような場合に、図16(b)または図17(c)に示したようにして、ヒータプレート200とベースプレート300との接着強度を向上させることにより、信頼性を大きく向上させることができる。 For example, the temperature difference (relative displacement) between the heater plate 200 and the base plate 300 is likely to increase due to heat generated by the heater element 230 or the like. In such a case, the reliability can be greatly improved by improving the adhesive strength between the heater plate 200 and the base plate 300 as shown in FIG.
 なお、例えばホットプレスの処理条件によって、第1、2の凹凸高さを制御することができる。一例としては、積層体を上側からプレスする部材および積層体を下側からプレスする部材の材料や硬さによって、第1、2の凹凸高さを制御することができる。 Note that the heights of the first and second irregularities can be controlled, for example, depending on the processing conditions of hot pressing. As an example, the first and second uneven heights can be controlled by the material and hardness of a member that presses the laminate from above and a member that presses the laminate from below.
 図18は、本実施形態の変形例にかかる静電チャックを表す模式的断面図である。 
 図18(a)は、本実施形態の変形例にかかる静電チャックを表す模式的断面図である。図18(b)は、本変形例のヒータプレートを表す模式的断面図である。図18(a)および図18(b)は、例えば図1に表した切断面A1-A1における模式的断面図に相当する。
FIG. 18 is a schematic cross-sectional view showing an electrostatic chuck according to a modification of the present embodiment.
FIG. 18A is a schematic cross-sectional view showing an electrostatic chuck according to a modification of the present embodiment. FIG. 18B is a schematic cross-sectional view showing the heater plate of this modification. FIGS. 18A and 18B correspond to, for example, schematic cross-sectional views taken along section A1-A1 shown in FIG.
 図18(a)に表した静電チャック10aは、セラミック誘電体基板100と、ヒータプレート200aと、べースプレート300と、を備える。セラミック誘電体基板100およびべースプレート300は、図1および図2に関して前述した通りである。 The electrostatic chuck 10a shown in FIG. 18A includes a ceramic dielectric substrate 100, a heater plate 200a, and a base plate 300. The ceramic dielectric substrate 100 and the base plate 300 are as described above with reference to FIGS.
 図18(b)に表したように、本具体例のヒータプレート200aは、複数のヒータエレメントを有する。図18(b)に表したヒータプレート200aは、第1の樹脂層220と、第1のヒータエレメント(発熱層)230aと、第2の樹脂層240と、第2のヒータエレメント(発熱層)230bと、第3の樹脂層260と、バイパス層250と、第4の樹脂層290と、第2の支持板270と、を有する。 As shown in FIG. 18B, the heater plate 200a of this example has a plurality of heater elements. The heater plate 200a shown in FIG. 18B includes a first resin layer 220, a first heater element (heat generation layer) 230a, a second resin layer 240, and a second heater element (heat generation layer). 230 b, a third resin layer 260, a bypass layer 250, a fourth resin layer 290, and a second support plate 270.
 第1の樹脂層220は、第1の支持板210と、第2の支持板270と、の間に設けられている。第1のヒータエレメント230aは、第1の樹脂層220と、第2の支持板270と、の間に設けられている。第2の樹脂層240は、第1のヒータエレメント230aと、第2の支持板270と、の間に設けられている。第2のヒータエレメント230bは、第2の樹脂層240と、第2の支持板270と、の間に設けられている。第3の樹脂層260は、第2のヒータエレメント230bと、第2の支持板270と、の間に設けられている。バイパス層250は、第3の樹脂層260と、第2の支持板270と、の間に設けられている。第4の樹脂層290は、バイパス層250と、第2の支持板270と、の間に設けられている。つまり、本具体例では、第1のヒータエレメント230aは、第2のヒータエレメント230bとは異なる層に独立した状態で設けられている。 The first resin layer 220 is provided between the first support plate 210 and the second support plate 270. The first heater element 230 a is provided between the first resin layer 220 and the second support plate 270. The second resin layer 240 is provided between the first heater element 230 a and the second support plate 270. The second heater element 230 b is provided between the second resin layer 240 and the second support plate 270. The third resin layer 260 is provided between the second heater element 230 b and the second support plate 270. The bypass layer 250 is provided between the third resin layer 260 and the second support plate 270. The fourth resin layer 290 is provided between the bypass layer 250 and the second support plate 270. That is, in this specific example, the first heater element 230a is provided in a state independent of the second heater element 230b in a different layer.
 第1の支持板210と、第1の樹脂層220と、第2の樹脂層240と、第3の樹脂層260と、バイパス層250と、第2の支持板270と、のそれぞれの材料、厚さ、および機能は、図3~図5に関して前述した通りである。第1のヒータエレメント230aおよび第2のヒータエレメント230bのそれぞれの材料、厚さ、および機能は、図3~図5に関して前述したヒータエレメント230と同じである。第4の樹脂層290は、図3~図5に関して前述した第1の樹脂層220と同じである。 The respective materials of the first support plate 210, the first resin layer 220, the second resin layer 240, the third resin layer 260, the bypass layer 250, and the second support plate 270, The thickness and function are as described above with respect to FIGS. The materials, thicknesses, and functions of the first heater element 230a and the second heater element 230b are the same as those of the heater element 230 described above with reference to FIGS. The fourth resin layer 290 is the same as the first resin layer 220 described above with reference to FIGS.
 本変形例によれば、第1のヒータエレメント230aが第2のヒータエレメント230bとは異なる層において独立して配置されているため、処理対象物Wの面内の温度を所定の領域ごとに独立して制御することができる。 According to this modification, since the first heater element 230a is independently arranged in a layer different from the second heater element 230b, the temperature in the surface of the processing object W is independent for each predetermined region. Can be controlled.
 図19及び図20は、本実施形態の第1の支持板の変形例を表す模式的平面図である。 FIGS. 19 and 20 are schematic plan views showing modifications of the first support plate of the present embodiment.
 図21は、本変形例のヒータプレートを表す模式的断面図である。 
 図19(a)は、第1の支持板が複数の支持部に分割された一例を表す。図19(b)及び図20は、第1の支持板が複数の支持部に分割された他の一例を表す。
FIG. 21 is a schematic cross-sectional view showing a heater plate according to this modification.
FIG. 19A shows an example in which the first support plate is divided into a plurality of support portions. FIG. 19B and FIG. 20 show another example in which the first support plate is divided into a plurality of support portions.
 図21では、説明の便宜上、図19(a)に表したヒータプレートと、第1の支持板の上面の温度のグラフ図と、を併せて表している。図21に表したグラフ図は、第1の支持板の上面の温度の一例である。図21に表したグラフ図の横軸は、第1の支持板210aの上面の位置を表している。図21に表したグラフ図の縦軸は、第1の支持板210aの上面の温度を表している。なお、図21では、説明の便宜上、バイパス層250および第3の樹脂層260を省略している。 In FIG. 21, for convenience of explanation, the heater plate shown in FIG. 19A and the graph of the temperature of the upper surface of the first support plate are shown together. The graph shown in FIG. 21 is an example of the temperature of the upper surface of the first support plate. The horizontal axis of the graph shown in FIG. 21 represents the position of the upper surface of the first support plate 210a. The vertical axis of the graph shown in FIG. 21 represents the temperature of the upper surface of the first support plate 210a. In FIG. 21, for convenience of explanation, the bypass layer 250 and the third resin layer 260 are omitted.
 図19(a)および図19(b)に表した変形例では、第1の支持板210aは、複数の支持部に分割されている。より具体的には、図19(a)に表した変形例では、第1の支持板210aは、同心円状に複数の支持部に分割され、第1の支持部216と、第2の支持部217と、第3の支持部218と、第4の支持部219と、を有する。図19(b)に表した変形例では、第1の支持板210bは、同心円状かつ放射状に複数の支持部に分割され、第1の支持部216aと、第2の支持部216bと、第3の支持部216cと、第4の支持部216dと、第5の支持部216eと、第6の支持部216fと、第7の支持部217aと、第8の支持部217bと、第9の支持部217cと、第10の支持部217dと、第11の支持部217eと、第12の支持部217fと、を有する。 In the modification shown in FIGS. 19A and 19B, the first support plate 210a is divided into a plurality of support portions. More specifically, in the modification shown in FIG. 19A, the first support plate 210a is concentrically divided into a plurality of support portions, and includes a first support portion 216 and a second support portion. 217, a third support portion 218, and a fourth support portion 219. In the modification shown in FIG. 19B, the first support plate 210b is concentrically and radially divided into a plurality of support portions, and includes a first support portion 216a, a second support portion 216b, 3 support part 216c, 4th support part 216d, 5th support part 216e, 6th support part 216f, 7th support part 217a, 8th support part 217b, and 9th It has a support part 217c, a tenth support part 217d, an eleventh support part 217e, and a twelfth support part 217f.
 図20に表した変形例において、第1の支持板210cは、さらに多くの支持部を有する。図20の第1の支持板210cでは、図19(a)で示した第1の支持部216が、さらに4つの支持部216a~216dに分割されている。また、図19(a)で示した第2の支持部217が、さらに8つの支持部217a~217hに分割されている。また、図19(a)で示した第3の支持部218が、さらに8つの領域218a~218hに分割されている。そして、図19(a)で示した第4の支持部219が、さらに16の支持部219a~219pに分割されている。このように、第1の支持板210に設けられる支持部の数及び形状は、任意でよい。 In the modification shown in FIG. 20, the first support plate 210c has more support portions. In the first support plate 210c of FIG. 20, the first support portion 216 shown in FIG. 19A is further divided into four support portions 216a to 216d. Further, the second support portion 217 shown in FIG. 19A is further divided into eight support portions 217a to 217h. Further, the third support portion 218 shown in FIG. 19A is further divided into eight regions 218a to 218h. The fourth support portion 219 shown in FIG. 19A is further divided into 16 support portions 219a to 219p. Thus, the number and shape of the support portions provided on the first support plate 210 may be arbitrary.
 第1の樹脂層220と、ヒータエレメント230と、第2の樹脂層240と、バイパス層250と、第3の樹脂層260と、第2の支持板270と、給電端子280と、のそれぞれは、図3~図5に関して前述した通りである。 The first resin layer 220, the heater element 230, the second resin layer 240, the bypass layer 250, the third resin layer 260, the second support plate 270, and the power supply terminal 280 are respectively As described above with reference to FIGS.
 図19(a)~図21に関する以下の説明では、図19(a)に表した第1の支持板210aを例に挙げる。図21に表したように、第1の支持部216は、ヒータエレメント230の第1の領域231の上に設けられ、ヒータエレメント230の第1の領域231に対応している。第2の支持部217は、ヒータエレメント230の第2の領域232の上に設けられ、ヒータエレメント230の第2の領域232に対応している。第3の支持部218は、ヒータエレメント230の第3の領域233の上に設けられ、ヒータエレメント230の第3の領域233に対応している。第4の支持部219は、ヒータエレメント230の第4の領域234の上に設けられ、ヒータエレメント230の第4の領域234に対応している。 In the following description regarding FIGS. 19A to 21, the first support plate 210a shown in FIG. 19A is taken as an example. As shown in FIG. 21, the first support portion 216 is provided on the first region 231 of the heater element 230 and corresponds to the first region 231 of the heater element 230. The second support portion 217 is provided on the second region 232 of the heater element 230 and corresponds to the second region 232 of the heater element 230. The third support portion 218 is provided on the third region 233 of the heater element 230 and corresponds to the third region 233 of the heater element 230. The fourth support portion 219 is provided on the fourth region 234 of the heater element 230 and corresponds to the fourth region 234 of the heater element 230.
 第1の支持部216は、第2の支持部217とは電気的に接合されていない。第2の支持部217は、第3の支持部218とは電気的に接合されていない。第3の支持部218は、第4の支持部219とは電気的に接合されていない。 The first support part 216 is not electrically joined to the second support part 217. The second support part 217 is not electrically joined to the third support part 218. The third support part 218 is not electrically joined to the fourth support part 219.
 本変形例によれば、第1の支持板210a、210b、210cの面内において意図的に径方向の温度差を設けることができる(温度制御性)。例えば図21に表したグラフ図のように、第1の支持部216から第4の支持部219にわたってステップ状に温度差を設けることができる。これにより、処理対象物Wの面内において意図的に温度差を設けることができる(温度制御性)。 According to this modification, a temperature difference in the radial direction can be intentionally provided in the plane of the first support plates 210a, 210b, 210c (temperature controllability). For example, as shown in the graph diagram of FIG. 21, a temperature difference can be provided stepwise from the first support portion 216 to the fourth support portion 219. Thereby, a temperature difference can be intentionally provided in the surface of the processing object W (temperature controllability).
 図22は、本実施形態の給電端子の具体例を表す模式的平面図である。 
 図22(a)は、本具体例の給電端子を表す模式的平面図である。図22(b)は、本具体例の給電端子の接合方法を例示する模式的平面図である。
FIG. 22 is a schematic plan view illustrating a specific example of the power feeding terminal of the present embodiment.
FIG. 22A is a schematic plan view showing a power supply terminal of this example. FIG. 22B is a schematic plan view illustrating the power feeding terminal joining method according to this example.
 図22(a)および図22(b)に表した給電端子280は、ピン部281と、導線部283と、支持部285と、接合部287と、を有する。ピン部281は、ソケットなどと呼ばれる部材と接続される。ソケットは、静電チャック10の外部から電力を供給する。導線部283は、ピン部281と支持部285とに接続されている。支持部285は、導線部283と接合部287とに接続されている。図22(b)に表した矢印C14のように、接合部287は、ヒータエレメント230またはバイパス層250と接合される。 The power supply terminal 280 shown in FIGS. 22A and 22B includes a pin portion 281, a conductive wire portion 283, a support portion 285, and a joint portion 287. The pin portion 281 is connected to a member called a socket or the like. The socket supplies power from the outside of the electrostatic chuck 10. The conducting wire part 283 is connected to the pin part 281 and the support part 285. The support portion 285 is connected to the conductor portion 283 and the joint portion 287. The joining portion 287 is joined to the heater element 230 or the bypass layer 250 as indicated by an arrow C14 shown in FIG.
 導線部283は、給電端子280にかかる応力を緩和する。すなわち、ピン部281は、ベースプレート300に固定される。一方で、接合部287は、ヒータエレメント230またはバイパス層250と接合される。ベースプレート300と、ヒータエレメント230またはバイパス層250と、の間には、温度差が生ずる。そのため、ベースプレート300と、ヒータエレメント230またはバイパス層250と、の間には、熱膨張の差が生ずる。そのため、熱膨張の差に起因する応力が給電端子280にかかることがある。熱膨張の差に起因する応力は、例えばベースプレート300の径方向にかかる。導線部283は、この応力を緩和することができる。なお、接合部287と、ヒータエレメント230またはバイパス層250と、の接合は、溶接、レーザ光を利用した接合、半田付け、あるいはろう付けなどにより行われる。 The conducting wire portion 283 relieves stress applied to the power supply terminal 280. That is, the pin portion 281 is fixed to the base plate 300. On the other hand, the joint portion 287 is joined to the heater element 230 or the bypass layer 250. A temperature difference is generated between the base plate 300 and the heater element 230 or the bypass layer 250. Therefore, a difference in thermal expansion occurs between the base plate 300 and the heater element 230 or the bypass layer 250. Therefore, stress due to a difference in thermal expansion may be applied to the power supply terminal 280. The stress resulting from the difference in thermal expansion is applied in the radial direction of the base plate 300, for example. The conductor portion 283 can relieve this stress. The joining portion 287 and the heater element 230 or the bypass layer 250 are joined by welding, joining using laser light, soldering, brazing, or the like.
 ピン部281の材料としては、例えばモリブデンなどが挙げられる。導線部283の材料としては、例えば銅などが挙げられる。導線部283の径D5は、ピン部281の径D8よりも小さい。導線部283の径D5は、例えば約0.3mm以上、2.0mm以下程度である。支持部285の材料としては、例えばステンレスなどが挙げられる。支持部285の厚さD6(Z方向の長さ)は、例えば約0.5mm以上、2.0mm以下程度である。接合部287の材料としては、例えばステンレスなどが挙げられる。接合部287の厚さD7(Z方向の長さ)は、例えば約0.05mm以上、0.50mm以下程度である。 The material of the pin portion 281 includes, for example, molybdenum. Examples of the material of the conductive wire portion 283 include copper. The diameter D5 of the conducting wire part 283 is smaller than the diameter D8 of the pin part 281. The diameter D5 of the conducting wire part 283 is, for example, about 0.3 mm or more and 2.0 mm or less. Examples of the material of the support portion 285 include stainless steel. The thickness D6 (length in the Z direction) of the support portion 285 is, for example, about 0.5 mm or more and 2.0 mm or less. Examples of the material of the bonding portion 287 include stainless steel. A thickness D7 (length in the Z direction) of the joint portion 287 is, for example, about 0.05 mm or more and 0.50 mm or less.
 本具体例によれば、ピン部281の径D8が導線部283の径D5よりも大きいため、ピン部281は、比較的大きい電流をヒータエレメント230に供給することができる。また、導線部283の径D5がピン部281の径D8よりも小さいため、導線部283は、ピン部281よりも変形しやすく、ピン部281の位置を接合部287の中心からずらすことができる。これにより、ヒータプレート200とは異なる部材(例えばベースプレート300)に給電端子280を固定することができる。 According to this specific example, since the diameter D8 of the pin portion 281 is larger than the diameter D5 of the conducting wire portion 283, the pin portion 281 can supply a relatively large current to the heater element 230. Moreover, since the diameter D5 of the conducting wire part 283 is smaller than the diameter D8 of the pin part 281, the conducting wire part 283 is easier to deform than the pin part 281, and the position of the pin part 281 can be shifted from the center of the joint part 287. . Thereby, the power supply terminal 280 can be fixed to a member (for example, the base plate 300) different from the heater plate 200.
 支持部285は、例えば、溶接、レーザ光を利用した接合、半田付け、ロウ付けなどにより導線部283および接合部287と接合されている。これにより、給電端子280にかかる応力を緩和しつつ、ヒータエレメント230またはバイパス層250に対してより広い接触面積を確保することができる。 The support portion 285 is joined to the conductor portion 283 and the joint portion 287 by, for example, welding, joining using laser light, soldering, brazing, or the like. Thereby, a wider contact area with respect to the heater element 230 or the bypass layer 250 can be ensured while relaxing the stress applied to the power supply terminal 280.
 図23は、本実施形態のヒータプレートの変形例を表す模式的分解図である。 
 図23に表したように、この例では、バイパス層250が、第1の支持板210とヒータエレメント230との間に設けられる。より詳しくは、バイパス層250が、第1の支持板210と第1の樹脂層220との間に設けられ、第3の樹脂層260が、第1の支持板210とバイパス層250との間に設けられる。
FIG. 23 is a schematic exploded view showing a modification of the heater plate of the present embodiment.
As shown in FIG. 23, in this example, the bypass layer 250 is provided between the first support plate 210 and the heater element 230. More specifically, the bypass layer 250 is provided between the first support plate 210 and the first resin layer 220, and the third resin layer 260 is provided between the first support plate 210 and the bypass layer 250. Provided.
 このように、バイパス層250は、第1の支持板210とヒータエレメント230との間に設けてもよい。すなわち、バイパス層250は、ヒータエレメント230とセラミック誘電体基板100との間に設けてもよい。 Thus, the bypass layer 250 may be provided between the first support plate 210 and the heater element 230. That is, the bypass layer 250 may be provided between the heater element 230 and the ceramic dielectric substrate 100.
 この場合においても、バイパス層250により、ヒータエレメント230から供給された熱の拡散性を向上させることができる。例えば、処理対称物Wの面内方向(水平方向)における熱拡散性を向上させることができる。これにより、例えば、処理対象物Wの面内の温度分布の均一性を向上させることができる。 Also in this case, the diffusibility of the heat supplied from the heater element 230 can be improved by the bypass layer 250. For example, the thermal diffusibility in the in-plane direction (horizontal direction) of the processing object W can be improved. Thereby, the uniformity of the temperature distribution in the surface of the process target W can be improved, for example.
 なお、バイパス層250は、例えば、第1の支持板210とヒータエレメント230との間、及び、ヒータエレメント230と第2の支持板270との間の双方に設けてもよい。すなわち、ヒータプレート200は、第1の支持板210とヒータエレメント230との間、及び、ヒータエレメント230と第2の支持板270との間のそれぞれに設けられた2つのバイパス層250を有してもよい。 Note that the bypass layer 250 may be provided, for example, both between the first support plate 210 and the heater element 230 and between the heater element 230 and the second support plate 270. That is, the heater plate 200 includes two bypass layers 250 provided between the first support plate 210 and the heater element 230 and between the heater element 230 and the second support plate 270, respectively. May be.
 図24は、本発明の他の実施の形態にかかるウェーハ処理装置を表す模式的断面図である。 
 本実施形態にかかるウェーハ処理装置500は、処理容器501と、上部電極510と、図1~図23に関して前述した静電チャック(例えば、静電チャック10)と、を備えている。処理容器501の天井には、処理ガスを内部に導入するための処理ガス導入口502が設けられている。処理容器501の底板には、内部を減圧排気するための排気口503が設けられている。また、上部電極510および静電チャック10には高周波電源504が接続され、上部電極510と静電チャック10とを有する一対の電極が、互いに所定の間隔を隔てて平行に対峙するようになっている。
FIG. 24 is a schematic sectional view showing a wafer processing apparatus according to another embodiment of the present invention.
The wafer processing apparatus 500 according to the present embodiment includes a processing container 501, an upper electrode 510, and the electrostatic chuck (for example, the electrostatic chuck 10) described above with reference to FIGS. A processing gas inlet 502 for introducing processing gas into the inside is provided on the ceiling of the processing container 501. The bottom plate of the processing vessel 501 is provided with an exhaust port 503 for exhausting the inside under reduced pressure. Further, a high frequency power source 504 is connected to the upper electrode 510 and the electrostatic chuck 10 so that a pair of electrodes having the upper electrode 510 and the electrostatic chuck 10 face each other in parallel at a predetermined interval. Yes.
 本実施形態にかかるウェーハ処理装置500において、上部電極510と静電チャック10との間に高周波電圧が印加されると、高周波放電が起こり処理容器501内に導入された処理ガスがプラズマにより励起、活性化されて、処理対象物Wが処理されることになる。尚、処理対象物Wとしては、半導体基板(ウェーハ)を例示することができる。但し、処理対象物Wは、半導体基板(ウェーハ)には限定されず、例えば、液晶表示装置に用いられるガラス基板等であってもよい。 In the wafer processing apparatus 500 according to the present embodiment, when a high frequency voltage is applied between the upper electrode 510 and the electrostatic chuck 10, a high frequency discharge occurs and the processing gas introduced into the processing container 501 is excited by plasma, It is activated and the processing object W is processed. An example of the processing object W is a semiconductor substrate (wafer). However, the processing object W is not limited to a semiconductor substrate (wafer), and may be, for example, a glass substrate used in a liquid crystal display device.
 高周波電源504は、静電チャック10のベースプレート300と電気的に接続される。ベースプレート300には、前述のように、アルミニウムなどの金属材料が用いられる。すなわち、ベースプレート300は、導電性を有する。これにより、高周波電圧は、上部電極410とベースプレート300との間に印加される。 The high frequency power source 504 is electrically connected to the base plate 300 of the electrostatic chuck 10. As described above, a metal material such as aluminum is used for the base plate 300. That is, the base plate 300 has conductivity. As a result, the high frequency voltage is applied between the upper electrode 410 and the base plate 300.
 また、この例のウェーハ処理装置500では、ベースプレート300が、第1の支持板210及び第2の支持板270と電気的に接続されている。これにより、ウェーハ処理装置500では、第1の支持板210と上部電極510との間、及び、第2の支持板270と上部電極510との間にも高周波電圧が印加される。 In the wafer processing apparatus 500 of this example, the base plate 300 is electrically connected to the first support plate 210 and the second support plate 270. As a result, in the wafer processing apparatus 500, a high frequency voltage is also applied between the first support plate 210 and the upper electrode 510 and between the second support plate 270 and the upper electrode 510.
 このように、各支持板210、270と上部電極510との間に高周波電圧を印加する。これにより、ベースプレート300と上部電極510との間のみに高周波電圧を印加する場合に比べて、高周波電圧を印加する場所を処理対象物Wにより近付けることができる。これにより、例えば、より効率的かつ低電位でプラズマを発生させることができる。 Thus, a high-frequency voltage is applied between the support plates 210 and 270 and the upper electrode 510. Thereby, compared with the case where a high frequency voltage is applied only between the base plate 300 and the upper electrode 510, the place where the high frequency voltage is applied can be brought closer to the processing object W. Thereby, for example, plasma can be generated more efficiently and at a low potential.
 ウェーハ処理装置500のような構成の装置は、一般に平行平板型RIE(Reactive Ion Etching)装置と呼ばれるが、本実施形態にかかる静電チャック10は、この装置への適用に限定されるわけではない。例えば、ECR(Electron Cyclotron Resonance) エッチング装置、誘電結合プラズマ処理装置、ヘリコン波プラズマ処理装置、プラズマ分離型プラズマ処理装置、表面波プラズマ処理装置、プラズマCVD(Chemical Vapor Deposition )装置などのいわゆる減圧処理装置に広く適応することができる。また、本実施形態にかかる静電チャック10は、露光装置や検査装置のように大気圧下で処理や検査が行われる基板処理装置に広く適用することもできる。ただし、本実施形態にかかる静電チャック10の有する高い耐プラズマ性を考慮すると、静電チャック10をプラズマ処理装置に適用させることが好ましい。尚、これらの装置の構成の内、本実施形態にかかる静電チャック10以外の部分には公知の構成を適用することができるので、その説明は省略する。 An apparatus having a configuration such as the wafer processing apparatus 500 is generally called a parallel plate type RIE (Reactive / Ion / Etching) apparatus, but the electrostatic chuck 10 according to the present embodiment is not limited to application to this apparatus. . For example, ECR (Electron Cyclotron Resonance) etching apparatus, dielectric coupled plasma processing apparatus, helicon wave plasma processing apparatus, plasma separation type plasma processing apparatus, surface wave plasma processing apparatus, so-called decompression processing apparatus such as plasma CVD (Chemical Vapor Deposition) Can be widely applied to. Further, the electrostatic chuck 10 according to the present embodiment can be widely applied to a substrate processing apparatus that performs processing and inspection under atmospheric pressure, such as an exposure apparatus and an inspection apparatus. However, considering the high plasma resistance of the electrostatic chuck 10 according to the present embodiment, it is preferable to apply the electrostatic chuck 10 to the plasma processing apparatus. In addition, since a well-known structure is applicable to parts other than the electrostatic chuck 10 concerning this embodiment among the structures of these apparatuses, the description is abbreviate | omitted.
 図25は、本発明の他の実施の形態にかかるウェーハ処理装置の変形例を表す模式的断面図である。 
 図25に表したように、高周波電源504は、第1の支持板210と上部電極510との間、及び、第2の支持板270と上部電極510との間のみに電気的に接続してもよい。この場合にも、高周波電圧を印加する場所を処理対象物Wに近付け、効率的にプラズマを発生させることができる。
FIG. 25 is a schematic cross-sectional view showing a modification of the wafer processing apparatus according to another embodiment of the present invention.
As shown in FIG. 25, the high frequency power source 504 is electrically connected only between the first support plate 210 and the upper electrode 510 and between the second support plate 270 and the upper electrode 510. Also good. Also in this case, the place where the high frequency voltage is applied can be brought close to the processing object W, and plasma can be generated efficiently.
 図26は、本発明の他の実施の形態にかかるウェーハ処理装置の変形例を表す模式的断面図である。 
 図26に表したように、この例では、高周波電源504が、ヒータエレメント230と電気的に接続されている。このように、高周波電圧は、ヒータエレメント230と上部電極510との間に印加してもよい。この場合にも、高周波電圧を印加する場所を処理対象物Wに近付け、効率的にプラズマを発生させることができる。
FIG. 26 is a schematic sectional view showing a modification of the wafer processing apparatus according to another embodiment of the present invention.
As shown in FIG. 26, in this example, the high frequency power source 504 is electrically connected to the heater element 230. As described above, the high frequency voltage may be applied between the heater element 230 and the upper electrode 510. Also in this case, the place where the high frequency voltage is applied can be brought close to the processing object W, and plasma can be generated efficiently.
 高周波電源504は、例えば、各給電端子280を介してヒータエレメント230と電気的に接続する。例えば、高周波電圧をヒータエレメント230の複数の領域(例えば、図12(a)に表した第1の領域231~第4の領域234)に選択的に印加する。これにより、高周波電圧の分布を制御することができる。 The high frequency power supply 504 is electrically connected to the heater element 230 via each power supply terminal 280, for example. For example, the high frequency voltage is selectively applied to a plurality of regions (for example, the first region 231 to the fourth region 234 shown in FIG. 12A) of the heater element 230. Thereby, the distribution of the high frequency voltage can be controlled.
 高周波電源504は、例えば、第1の支持板210と第2の支持板270とヒータエレメント230とに電気的に接続してもよい。高周波電圧は、第1の支持板210と上部電極510との間、第2の支持板270と上部電極510との間、及び、ヒータエレメント230と上部電極510との間のそれぞれに印加してもよい。 The high frequency power source 504 may be electrically connected to the first support plate 210, the second support plate 270, and the heater element 230, for example. The high frequency voltage is applied between the first support plate 210 and the upper electrode 510, between the second support plate 270 and the upper electrode 510, and between the heater element 230 and the upper electrode 510. Also good.
 以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、ヒータプレート200、200a、200bなどが備える各要素の形状、寸法、材質、配置などやヒータエレメント230、第1のヒータエレメント230a、第2のヒータエレメント230b、およびバイパス層250の設置形態などは、例示したものに限定されるわけではなく適宜変更することができる。 
 また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
The embodiment of the present invention has been described above. However, the present invention is not limited to these descriptions. As long as the features of the present invention are provided, those skilled in the art appropriately modified the design of the above-described embodiments are also included in the scope of the present invention. For example, the shape, size, material, arrangement, etc. of each element provided in the heater plates 200, 200a, 200b, etc., the installation form of the heater element 230, the first heater element 230a, the second heater element 230b, and the bypass layer 250, etc. Are not limited to those illustrated, but can be changed as appropriate.
Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.
 本発明の態様によれば、温度均一性および温度制御性を満足することができる静電チャックが提供される。 According to an aspect of the present invention, an electrostatic chuck that can satisfy temperature uniformity and temperature controllability is provided.
 10、10a…静電チャック、
 100…セラミック誘電体基板、
 101…第1主面、
 102…第2主面、
 107…第1誘電層、
 109…第2誘電層、
 111…電極層、
 113…凸部、
 115…溝、
 200、200a、200b…ヒータプレート、
 201…リフトピン孔、
 203…中心、
 210、210a…第1の支持板、
 211…面、
 211a…凹部、
 211b…凸部、
 213…面、
 216…第1の支持部、
 216a…第1の支持部、
 216b…第2の支持部、
 216c…第3の支持部、
 216d…第4の支持部、
 216e…第5の支持部、
 216f…第6の支持部、
 217a…第7の支持部、
 217b…第8の支持部、
 217c…第9の支持部、
 217d…第10の支持部、
 217e…第11の支持部、
 217f…第12の支持部、
 217…第2の支持部、
 218…第3の支持部、
 219…第4の支持部、
 220…第1の樹脂層、
 230、230a、230b…ヒータエレメント、
 231…第1の領域、
 231a…第1の領域、
 231b…第2の領域、
 231c…第3の領域、
 231d…第4の領域、
 231e…第5の領域、
 231f…第6の領域、
 232…第2の領域、
 232a…第7の領域、
 232b…第8の領域、
 232c…第9の領域、
 232d…第10の領域、
 232e…第11の領域、
 232f…第12の領域、
 233…第3の領域、
 234…第4の領域、
 235…離間部分、
 239…ヒータ電極、
 240…第2の樹脂層、
 241…孔、
 250…バイパス層、
 251…バイパス部、
 251a…面、
 253…切り欠き部、
 255a、255b、255c、255d、255e、255f、255g、255h…接合部、
 257…離間部分、
 259…中心、
 260…第3の樹脂層、
 261…孔、
 270…第2の支持板、
 271…面、
 271a…凹部、
 271b…凸部、
 273…孔、
 275…面、
 280…給電端子、
 281…ピン部、
 283…導線部、
 285…支持部、
 287…接合部、
 290…第4の樹脂層、
 300…ベースプレート、
 301…連通路、
 303…下面、
 321…導入路、
 403…接着剤、
 500…ウェーハ処理装置、
 501…処理容器、
 502…処理ガス導入口、
 503…排気口、
 504…高周波電源、
 510…上部電極
10, 10a ... electrostatic chuck,
100: Ceramic dielectric substrate,
101 ... 1st main surface,
102 ... the second main surface,
107 ... 1st dielectric layer,
109 ... the second dielectric layer,
111 ... electrode layer,
113 ... convex part,
115 ... groove,
200, 200a, 200b ... heater plate,
201 ... lift pin hole,
203 ... Center,
210, 210a ... first support plate,
211 ... surface,
211a ... concave portion,
211b ... convex portion,
213 ... surface,
216 ... the first support,
216a ... first support,
216b ... the second support,
216c ... third support,
216d ... fourth support,
216e ... fifth support,
216f ... sixth support part,
217a ... seventh support part,
217b ... eighth support,
217c ... ninth support part,
217d ... Tenth support part,
217e ... eleventh support,
217f ... Twelfth support part,
217 ... second support,
218 ... third support,
219 ... the fourth support,
220 ... 1st resin layer,
230, 230a, 230b ... heater elements,
231 ... first region,
231a ... first region,
231b ... second region,
231c ... third region,
231d ... fourth region,
231e ... fifth region,
231f ... sixth region,
232 ... the second region,
232a ... seventh region,
232b ... eighth region,
232c ... ninth region,
232d-tenth region,
232e ... eleventh region,
232f ... 12th area,
233 ... a third region,
234 ... fourth region,
235 ... spaced apart part,
239 ... heater electrode,
240 ... second resin layer,
241 ... hole,
250 ... bypass layer,
251 ... Bypass section,
251a ... surface,
253 ... notch,
255a, 255b, 255c, 255d, 255e, 255f, 255g, 255h ... junctions,
257 ... spaced apart part,
259 ... the center,
260 ... third resin layer,
261 ... hole,
270 ... second support plate,
271 ... surface,
271a ... recess,
271b ... convex portion,
273 ... hole,
275 ... surface,
280 ... power supply terminal,
281: Pin part,
283: Conductor part,
285 ... the support,
287 ... Junction part,
290 ... fourth resin layer,
300 ... Base plate,
301 ... Communication passage,
303 ... bottom surface,
321 ... Introduction path,
403 ... adhesive,
500 ... Wafer processing apparatus,
501 ... Processing container,
502 ... Processing gas inlet,
503 ... exhaust port,
504 ... high frequency power supply,
510 ... Upper electrode

Claims (23)

  1.  処理対象物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有し、セラミック誘電体基板と、
     前記セラミック誘電体基板とは離れた位置に設けられ前記セラミック誘電体基板を支持するベースプレートと、
     前記セラミック誘電体基板と前記ベースプレートとの間に設けられたヒータプレートと、
     を備え、
     前記ヒータプレートは、
      金属を含む第1の支持板と、
      金属を含む第2の支持板と、
      前記第1の支持板と前記第2の支持板との間に設けられ電流が流れることにより発熱するヒータエレメントと、
      前記第1の支持板と前記ヒータエレメントとの間に設けられた第1の樹脂層と、
      前記第2の支持板と前記ヒータエレメントとの間に設けられた第2の樹脂層と、
     を有することを特徴とする静電チャック。
    A first dielectric surface on which an object to be treated is placed and a second principal surface opposite to the first principal surface; a ceramic dielectric substrate;
    A base plate provided at a position away from the ceramic dielectric substrate and supporting the ceramic dielectric substrate;
    A heater plate provided between the ceramic dielectric substrate and the base plate;
    With
    The heater plate is
    A first support plate comprising a metal;
    A second support plate comprising a metal;
    A heater element that is provided between the first support plate and the second support plate and generates heat when a current flows;
    A first resin layer provided between the first support plate and the heater element;
    A second resin layer provided between the second support plate and the heater element;
    An electrostatic chuck comprising:
  2.  前記第1の支持板は、前記第2の支持板と電気的に接合されたことを特徴とする請求項1記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the first support plate is electrically joined to the second support plate.
  3.  前記第1の支持板が前記第2の支持板と接合された領域の面積は、前記第1の支持板の上面の面積よりも狭く、前記第2の支持板の下面の面積よりも狭いことを特徴とする請求項2記載の静電チャック。 The area of the region where the first support plate is joined to the second support plate is narrower than the area of the upper surface of the first support plate and smaller than the area of the lower surface of the second support plate. The electrostatic chuck according to claim 2.
  4.  前記第1の支持板が前記第2の支持板と接合された領域の面積は、前記第1の支持板の上面の面積から前記ヒータエレメントの面積を引いた差分の面積よりも狭く、前記第2の支持板の下面の面積から前記ヒータエレメントの面積を引いた差分の面積よりも狭いことを特徴とする請求項3記載の静電チャック。 The area of the region where the first support plate is joined to the second support plate is smaller than the area of the difference obtained by subtracting the area of the heater element from the area of the upper surface of the first support plate. 4. The electrostatic chuck according to claim 3, wherein the electrostatic chuck is smaller than a difference area obtained by subtracting an area of the heater element from an area of a lower surface of the support plate.
  5.  前記第1の支持板の上面は、第1の凹凸を有し、
     前記第2の支持板の下面は、第2の凹凸を有することを特徴とする請求項1~4のいずれか1つに記載の静電チャック。
    The upper surface of the first support plate has first irregularities,
    The electrostatic chuck according to any one of claims 1 to 4, wherein a lower surface of the second support plate has second unevenness.
  6.  第1の凹凸は、前記ヒータエレメントの形状にならい、
     第2の凹凸は、前記ヒータエレメントの形状にならったことを特徴とする請求項5記載の静電チャック。
    The first unevenness follows the shape of the heater element,
    The electrostatic chuck according to claim 5, wherein the second unevenness has a shape of the heater element.
  7.  前記第1の凹凸の凹部と、前記第2の凹凸の凹部と、の間の距離は、前記第1の凹凸の凸部と、前記第2の凹凸の凸部と、の間の距離よりも短いことを特徴とする請求項6記載の静電チャック。 The distance between the first concavo-convex recess and the second concavo-convex recess is greater than the distance between the first concavo-convex protrusion and the second concavo-convex protrusion. The electrostatic chuck according to claim 6, wherein the electrostatic chuck is short.
  8.  前記第1の凹凸の高さは、前記第2の凹凸の高さとは異なることを特徴とする請求項5~7のいずれか1つに記載の静電チャック。 8. The electrostatic chuck according to claim 5, wherein a height of the first unevenness is different from a height of the second unevenness.
  9.  前記第1の凹凸の高さは、前記第2の凹凸の高さよりも低いことを特徴とする請求項8記載の静電チャック。 The electrostatic chuck according to claim 8, wherein the height of the first unevenness is lower than the height of the second unevenness.
  10.  前記第1の凹凸の高さは、前記第2の凹凸の高さよりも高いことを特徴とする請求項8記載の静電チャック。 The electrostatic chuck according to claim 8, wherein the height of the first unevenness is higher than the height of the second unevenness.
  11.  前記ヒータエレメントは、帯状のヒータ電極を有し、
     前記ヒータ電極は、複数の領域において互いに独立した状態で設けられたことを特徴とする請求項1~10のいずれか1つに記載の静電チャック。
    The heater element has a belt-like heater electrode,
    The electrostatic chuck according to any one of claims 1 to 10, wherein the heater electrodes are provided in a plurality of regions in an independent state.
  12.  前記ヒータエレメントは、複数設けられ、
     前記複数の前記ヒータエレメントは、互いに異なる層に独立した状態で設けられたことを特徴とする請求項1~11のいずれか1つに記載の静電チャック。
    A plurality of the heater elements are provided,
    The electrostatic chuck according to any one of claims 1 to 11, wherein the plurality of heater elements are provided independently in different layers.
  13.  前記ヒータエレメントと、前記第2の支持板と、の間に設けられ導電性を有するバイパス層をさらに備えたことを特徴とする請求項1~11のいずれか1つに記載の静電チャック。 12. The electrostatic chuck according to claim 1, further comprising a conductive bypass layer provided between the heater element and the second support plate.
  14.  前記ヒータエレメントは、前記バイパス層と電気的に接合され、前記第1の支持板および前記第2の支持板とは電気的に絶縁されたことを特徴とする請求項13記載の静電チャック。 14. The electrostatic chuck according to claim 13, wherein the heater element is electrically joined to the bypass layer and electrically insulated from the first support plate and the second support plate.
  15.  前記バイパス層の厚さは、前記第1の樹脂層の厚さよりも厚いことを特徴とする請求項13または14に記載の静電チャック。 15. The electrostatic chuck according to claim 13, wherein a thickness of the bypass layer is thicker than a thickness of the first resin layer.
  16.  前記バイパス層の厚さは、前記ヒータエレメントの厚さよりも厚いことを特徴とする請求項13~15のいずれか1つに記載の静電チャック。 The electrostatic chuck according to any one of claims 13 to 15, wherein a thickness of the bypass layer is larger than a thickness of the heater element.
  17.  前記バイパス層は、前記ヒータエレメントと、前記ベースプレートと、の間に設けられたことを特徴とする請求項13~16のいずれか1つに記載の静電チャック。 The electrostatic chuck according to any one of claims 13 to 16, wherein the bypass layer is provided between the heater element and the base plate.
  18.  前記ヒータエレメントと、前記セラミック誘電体基板と、の間に設けられた導電性を有するバイパス層をさらに備えたことを特徴とする請求項1~17のいずれか1つに記載の静電チャック。 The electrostatic chuck according to any one of claims 1 to 17, further comprising a conductive bypass layer provided between the heater element and the ceramic dielectric substrate.
  19.  前記第1の支持板の上面の面積は、前記第2の支持板の下面の面積よりも広いことを特徴とする請求項1~18のいずれか1つに記載の静電チャック。 The electrostatic chuck according to any one of claims 1 to 18, wherein an area of an upper surface of the first support plate is larger than an area of a lower surface of the second support plate.
  20.  前記第1の支持板は、複数の支持部を有し、
     前記複数の支持部は、互いに独立した状態で設けられたことを特徴とする請求項1~19のいずれか1つに記載の静電チャック。
    The first support plate has a plurality of support portions,
    The electrostatic chuck according to any one of claims 1 to 19, wherein the plurality of support portions are provided in an independent state.
  21.  前記ヒータプレートから前記ベースプレートに向かって設けられ、前記ヒータプレートに電力を供給する給電端子をさらに備えたことを特徴とする請求項1~20のいずれか1つに記載の静電チャック。 21. The electrostatic chuck according to claim 1, further comprising a power supply terminal that is provided from the heater plate toward the base plate and supplies electric power to the heater plate.
  22.  前記給電端子は、
      外部から電力を供給するソケットと接続されるピン部と、
      前記ピン部よりも細い導線部と、
      前記導線部と接続された支持部と、
      前記支持部と接続され前記ヒータエレメントと接合された接合部と、
     を有することを特徴とする請求項21記載の静電チャック。
    The power supply terminal is
    A pin connected to a socket for supplying power from the outside;
    A conducting wire part thinner than the pin part;
    A support portion connected to the conductor portion;
    A joint portion connected to the support portion and joined to the heater element;
    The electrostatic chuck according to claim 21, comprising:
  23.  前記ヒータプレートから前記ベースプレートに向かって設けられ、前記ヒータプレートに電力を供給する給電端子をさらに備え、
     前記給電端子は、
      外部から電力を供給するソケットと接続されるピン部と、
      前記ピン部よりも細い導線部と、
      前記導線部と接続された支持部と、
      前記支持部と接続され前記バイパス層と接合された接合部と、
     を有し、前記バイパス層を介して前記電力を前記ヒータエレメントに供給することを特徴とする請求項13~17のいずれか1つに記載の静電チャック。
    A power supply terminal provided from the heater plate toward the base plate and supplying power to the heater plate;
    The power supply terminal is
    A pin connected to a socket for supplying power from the outside;
    A conducting wire part thinner than the pin part;
    A support portion connected to the conductor portion;
    A joint connected to the support and joined to the bypass layer;
    The electrostatic chuck according to any one of claims 13 to 17, wherein the electric power is supplied to the heater element through the bypass layer.
PCT/JP2016/051182 2015-01-16 2016-01-15 Electrostatic chuck WO2016114399A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680005123.1A CN107112274B (en) 2015-01-16 2016-01-15 Electrostatic chuck
KR1020177017977A KR102000004B1 (en) 2015-01-16 2016-01-15 Electrostatic chuck
US15/647,369 US10607874B2 (en) 2015-01-16 2017-07-12 Electrostatic chuck

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015007208 2015-01-16
JP2015-007208 2015-01-16
JP2015190103A JP5962833B2 (en) 2015-01-16 2015-09-28 Electrostatic chuck
JP2015-190103 2015-09-28
JP2016-005348 2016-01-14
JP2016005348A JP6635295B2 (en) 2015-01-16 2016-01-14 Electrostatic chuck

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/647,369 Continuation US10607874B2 (en) 2015-01-16 2017-07-12 Electrostatic chuck

Publications (1)

Publication Number Publication Date
WO2016114399A1 true WO2016114399A1 (en) 2016-07-21

Family

ID=56405939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051182 WO2016114399A1 (en) 2015-01-16 2016-01-15 Electrostatic chuck

Country Status (1)

Country Link
WO (1) WO2016114399A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133721A (en) * 1985-12-05 1987-06-16 Anelva Corp Substrate holder
JPH08125001A (en) * 1994-10-26 1996-05-17 Fuji Electric Co Ltd Electrostatic chuck
JP2000031253A (en) * 1998-07-10 2000-01-28 Komatsu Ltd Substrate processing device and method
JP2001237301A (en) * 2000-02-22 2001-08-31 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing/ inspecting device
JP2007067036A (en) * 2005-08-30 2007-03-15 Hitachi High-Technologies Corp Vacuum processing device
JP2010040644A (en) * 2008-08-01 2010-02-18 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133721A (en) * 1985-12-05 1987-06-16 Anelva Corp Substrate holder
JPH08125001A (en) * 1994-10-26 1996-05-17 Fuji Electric Co Ltd Electrostatic chuck
JP2000031253A (en) * 1998-07-10 2000-01-28 Komatsu Ltd Substrate processing device and method
JP2001237301A (en) * 2000-02-22 2001-08-31 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing/ inspecting device
JP2007067036A (en) * 2005-08-30 2007-03-15 Hitachi High-Technologies Corp Vacuum processing device
JP2010040644A (en) * 2008-08-01 2010-02-18 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device

Similar Documents

Publication Publication Date Title
JP5962833B2 (en) Electrostatic chuck
JP6195029B1 (en) Electrostatic chuck
JP6341457B1 (en) Electrostatic chuck
JP6226092B2 (en) Electrostatic chuck
JP6238098B1 (en) Electrostatic chuck
JP6238097B1 (en) Electrostatic chuck
WO2018016588A1 (en) Electrostatic chuck
WO2016114399A1 (en) Electrostatic chuck
WO2017159590A1 (en) Electrostatic chuck
WO2018016587A1 (en) Electrostatic chuck
US11776836B2 (en) Electrostatic chuck and semiconductor manufacturing apparatus
US11756820B2 (en) Electrostatic chuck and semiconductor manufacturing apparatus
US20220102184A1 (en) Electrostatic chuck and semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177017977

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737470

Country of ref document: EP

Kind code of ref document: A1