JP5211410B2 - Porous multilayer filter - Google Patents
Porous multilayer filter Download PDFInfo
- Publication number
- JP5211410B2 JP5211410B2 JP2010272978A JP2010272978A JP5211410B2 JP 5211410 B2 JP5211410 B2 JP 5211410B2 JP 2010272978 A JP2010272978 A JP 2010272978A JP 2010272978 A JP2010272978 A JP 2010272978A JP 5211410 B2 JP5211410 B2 JP 5211410B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- porous
- filtration
- fluororesin
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 claims description 279
- 238000001914 filtration Methods 0.000 claims description 136
- 239000011148 porous material Substances 0.000 claims description 72
- 238000012432 intermediate storage Methods 0.000 claims description 46
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 42
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 42
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 13
- 239000013305 flexible fiber Substances 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 3
- 239000010409 thin film Substances 0.000 description 42
- 239000010410 layer Substances 0.000 description 40
- 239000010408 film Substances 0.000 description 33
- 239000006185 dispersion Substances 0.000 description 29
- 239000011888 foil Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- 230000007547 defect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- -1 trifluoroethylene, tetrafluoroethylene Chemical group 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- 229920001169 thermoplastic Polymers 0.000 description 9
- 239000004416 thermosoftening plastic Substances 0.000 description 9
- 229920003169 water-soluble polymer Polymers 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000002612 dispersion medium Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000003945 anionic surfactant Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- RZRILSWMGXWSJY-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;sulfuric acid Chemical compound OS(O)(=O)=O.OCCN(CCO)CCO RZRILSWMGXWSJY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- DTPCFIHYWYONMD-UHFFFAOYSA-N decaethylene glycol Polymers OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO DTPCFIHYWYONMD-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は多孔質複層フィルターに関し、特に、超微粒子を高流量で濾過できる微小孔径フィルターに関するものである。 The present invention relates to a porous multilayer filter, and more particularly to a micropore filter capable of filtering ultrafine particles at a high flow rate.
近年、半導体関連分野、液晶関連分野、食品分野、医療分野等の多種の分野で、高性能な精密濾過フィルターが要望されている。具体的には、半導体製造においては年々集積度が高まり、0.1μm以下の領域まで回路間隔が微細化されている。また、液晶製造においても同様に感光性材料による微細加工が施される。以上からより小さな領域の微細粒子を確実に捕捉できる精密濾過フィルターが必要となってきている。これらの精密濾過フィルターは主にクリーンルームの外気処理用フィルター、薬液の濾過フィルターとして使用され、その濾過性能は製品の歩留まりにも影響する。
また、食品・医療関連分野においては、近年の安全意識の高まりから、微小異物に対する濾過の完全性(絶対除去性)が強く要望されている。
In recent years, high-performance microfiltration filters have been demanded in various fields such as semiconductor-related fields, liquid crystal-related fields, food fields, and medical fields. Specifically, in semiconductor manufacturing, the degree of integration increases year by year, and the circuit interval is miniaturized to a region of 0.1 μm or less. Similarly, in the liquid crystal production, fine processing using a photosensitive material is performed. From the above, there is a need for a microfiltration filter that can reliably capture fine particles in a smaller region. These precision filtration filters are mainly used as clean room outdoor air treatment filters and chemical filtration filters, and the filtration performance also affects the product yield.
Further, in the food / medical field, due to the recent increase in safety awareness, there is a strong demand for the completeness of filtration (absolute removability) for minute foreign substances.
捕集する粒子の微細化に伴い濾過層の孔径を小さくする必要がある。濾過層の孔径を小さくすると当然のことながら流量は低下する。具体的には、濾過層を透過する処理液の流量は「(孔径の2乗×気孔率)/膜厚」となり、孔径が小さくなると著しく流量が低下する。よって、処理液の流量低下を抑制するために、濾過膜を薄くすることが有効である。 It is necessary to reduce the pore size of the filtration layer as the particles to be collected become finer. When the pore diameter of the filtration layer is reduced, the flow rate is naturally reduced. Specifically, the flow rate of the treatment liquid that passes through the filtration layer is “(pore diameter squared × porosity) / film thickness”, and the flow rate decreases significantly as the pore size decreases. Therefore, it is effective to make the filtration membrane thin in order to suppress a decrease in the flow rate of the processing liquid.
そのため、本出願人は、特許第4371176号公報で、平滑な箔(あるいは板やフィルム)上に、フッ素樹脂粉末を分散媒中に分散したフッ素樹脂ディスパージョンを塗布した後、前記分散媒の乾燥及びフッ素樹脂粉末の融点以上に加熱して形成される、膜厚20μm以下でガーレー秒が300秒以上である実質的に欠陥の無いフッ素樹脂膜を延伸して得られる微小孔径膜を提供している。 Therefore, in the Japanese Patent No. 4371176, the present applicant applied a fluororesin dispersion in which a fluororesin powder is dispersed in a dispersion medium on a smooth foil (or plate or film), and then dried the dispersion medium. And a microporous film obtained by stretching a fluororesin film having a film thickness of 20 μm or less and a Gurley second of 300 seconds or more, which is formed by heating substantially above the melting point of the fluororesin powder, and having substantially no defects. Yes.
前記特許文献1で提供した多孔質のフッ素樹脂膜は、その膜厚を20μm以下、さらには10μm以下と薄くでき、該フッ素樹脂膜の孔径をナノ単位の微粒子捕集用の濾過膜として用いると、薄膜化により処理液の流量低下を抑制できる。
しかしながら、微粒子の捕集率を高めて処理時間の短縮化を図るためには、濾過膜を薄膜化することだけで対応するには限界がある。
The porous fluororesin membrane provided in
However, in order to increase the collection rate of fine particles and shorten the processing time, there is a limit to responding only by reducing the thickness of the filtration membrane.
よって、本発明は、ナノ単位の微粒子を捕集できる濾過膜として薄膜化した濾過膜を用いて処理流量の低下を抑制しながら、捕集率を飛躍的に高め、濾過処理効率(濾過性)が優れたフィルターを提供することを課題としている。 Therefore, the present invention drastically increases the collection rate while suppressing a decrease in the treatment flow rate by using a filtration membrane that is thinned as a filtration membrane capable of collecting nano-sized fine particles, and the filtration efficiency (filterability). The challenge is to provide an excellent filter.
前記課題を解決するため、本発明は、複数の濾過膜と、該濾過膜の間に介在させる多孔質膜からなる中間貯溜膜と、少なくとも一方の外面に積層する支持膜を備え、
前記複数の濾過膜の平均孔径は同等とすると共に、該平均孔径は0.1nm〜0.1μm以下、各濾過膜の厚さは0.25μm〜15μmとし、
前記中間貯溜膜の平均孔径は前記濾過膜の平均孔径の1.2倍以上0.1μmを越えて5μm以下、
前記支持膜の平均孔径は前記濾過膜の平均孔径の5〜1000倍で前記中間貯溜膜の平均孔径より大であり、かつ、
前記中間貯溜膜および前記支持膜の厚さは2〜100μmで、前記中間貯溜膜の厚さは前記濾過膜の厚さと支持膜の厚さの中間の厚さとし、
前記中間貯溜膜は、結節部により柔軟な繊維が網目状に連結されてなる繊維状骨格を備え、該繊維状骨格で略スリット形状の孔を囲んだ多孔質膜からなることを特徴とする多孔質複層フィルターを提供している。
In order to solve the above problems, the present invention comprises a plurality of filtration membranes, an intermediate storage membrane composed of a porous membrane interposed between the filtration membranes, and a support membrane laminated on at least one outer surface,
The average pore diameter of the plurality of filtration membranes is the same, the average pore diameter is 0.1 nm to 0.1 μm or less, and the thickness of each filtration membrane is 0.25 μm to 15 μm,
The average pore size of the intermediate storage membrane is 1.2 times or more of the average pore size of the filtration membrane and more than 0.1 μm and 5 μm or less ,
The average pore size of the support membrane is 5 to 1000 times the average pore size of the filtration membrane and larger than the average pore size of the intermediate storage membrane, and
The thickness of the intermediate reservoir membrane and the support membrane is 2 to 100 μm, and the thickness of the intermediate reservoir membrane is an intermediate thickness between the thickness of the filtration membrane and the thickness of the support membrane,
The intermediate storage membrane is a porous membrane comprising a fibrous skeleton formed by connecting flexible fibers in a mesh shape by a knot, and having a substantially slit-shaped hole surrounded by the fibrous skeleton. We provide quality multi-layer filters.
本発明の前記中間貯溜膜は、結節部により柔軟な繊維が網目状に連結されてなる繊維状骨格を備え、該繊維状骨格で略スリット形状の孔を囲んだ多孔質膜からなる。
前記各濾過膜の厚さは0.25〜15μm、平均孔径は0.1μm以下としている。特に、該濾過膜は、フッ素樹脂を融点以上に加熱して得られた膜厚が10μm未満のフッ素樹脂膜を延伸して製造した微小孔径膜からなることが好ましい。
前記濾過膜の平均孔径の下限は0.1nm以上としている。また、前記中間貯溜膜の平均孔径は濾過膜の平均孔径の2倍以上とすることがより好ましい。
The intermediate storage membrane of the present invention comprises a porous membrane comprising a fibrous skeleton formed by connecting flexible fibers in a mesh shape by knots, and surrounding the substantially slit-shaped hole by the fibrous skeleton.
Each of the filtration membranes has a thickness of 0.25 to 15 μm and an average pore diameter of 0.1 μm or less. In particular, the filtration membrane is preferably composed of a microporous membrane produced by stretching a fluororesin membrane having a thickness of less than 10 μm obtained by heating the fluororesin to a melting point or higher.
The lower limit of the average pore diameter of the filtration membrane is 0 . 1 nm or more . The average pore diameter of the intermediate reservoir layer is more preferably not less than 2 times the average pore diameter of the filtration membrane.
[平均孔径の測定方法]
前記平均孔径(平均流量孔径とも称す)は細孔分布測定器(パームポロメータ:CFP−1500A:Porous Materials,Inc製)により、液体として、GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸(Porous Materials,Inc製)を用いて測定した。
具体的には、次のようにして求めた。
先ず、膜に加えられる差圧と膜を透過する空気流量との関係を、膜が乾燥している場合と膜が液体で濡れている場合について測定し、得られたグラフをそれぞれ、乾き曲線及び濡れ曲線とする。乾き曲線の流量を1/2とした曲線と、濡れ曲線との交点における差圧をP(Pa)とする。次の式により、平均流量孔径を求める。
平均孔径d(μm)=cγ/P
ここで、cは定数で2860であり、γは液体の表面張力(dynes/cm)である。
[Measurement method of average pore size]
The average pore size (also referred to as average flow rate pore size) was measured as GALWICK (propylene, 1, 1, 2, 3, 3, 3) by using a pore distribution measuring device (palm porometer: CFP-1500A: manufactured by Porous Materials, Inc.) as a liquid. Measurement was performed using trioxide hexahydrofluoric acid (manufactured by Porous Materials, Inc.).
Specifically, it was determined as follows.
First, the relationship between the differential pressure applied to the membrane and the flow rate of air passing through the membrane was measured when the membrane was dry and when the membrane was wet with liquid. Let it be a wetting curve. Let P (Pa) be the differential pressure at the intersection of the curve with the dry curve flow rate halved and the wetting curve. The average flow pore size is determined by the following formula.
Average pore diameter d (μm) = cγ / P
Here, c is a constant of 2860, and γ is the surface tension (dynes / cm) of the liquid.
前記のように、濾過膜を薄膜としているため、平均孔径を0.1μm以下としてナノ単位の微粒子の捕集用としても流量低下を発生させず、特に、多段で配置する濾過膜の孔径を同一範囲としているため、濾過膜を多段に積層配置した複層フィルターとしても流量低下を発生させない。
また、濾過膜を複数段で配置することで、流入側に配置する濾過膜で捕集できなかった微粒子を流出側の後段に配置する濾過膜で捕集できるため、捕集率を高めることができる。単純には、1つの濾過膜で捕集率が20%であれば、2つの濾過膜を備えた複層フィルターとすることで、捕集率を20%×濾過膜数として、処理時間当たりの捕集率を飛躍的に高めることができる。なお、捕集率は正確には、捕集率=(1−0.8膜数)×100%となる。
As described above, since the filtration membrane is a thin film, the average pore size is set to 0.1 μm or less so that the flow rate does not decrease even when collecting nano-sized fine particles. Particularly, the pore size of the filtration membranes arranged in multiple stages is the same. Therefore, the flow rate does not decrease even as a multilayer filter in which filtration membranes are arranged in multiple stages.
In addition, by arranging the filtration membrane in multiple stages, the particulates that could not be collected by the filtration membrane arranged on the inflow side can be collected by the filtration membrane arranged on the subsequent stage of the outflow side, thereby increasing the collection rate. it can. Simply, if the collection rate is 20% with one filtration membrane, a multilayer filter with two filtration membranes is used, and the collection rate is 20% x the number of filtration membranes. The collection rate can be dramatically increased. In addition, the collection rate is precisely the collection rate = (1−0.8 number of films ) × 100%.
特に、本発明では、濾過膜の間に中間貯溜膜を介在させ、該中間貯溜膜の孔径を濾過膜の孔径の1.2倍以上、好ましくは2倍以上で5μm以下としている。これにより、流入側の濾過膜を透過した処理液を次ぎの濾過膜に流入する前に流速を低下させずに一旦集めるように機能させ、ここで濾過膜の捕集できなかった捕集目標より大きな粒子を予め捕集して流出側の濾過膜の目詰まりを低減して透過速度を高めると共に微粒子の捕集率も高めている。
かつ、濾過膜を該中間貯溜膜を介して連続させることで全体を薄くでき、複層フィルターの処理液の透過時間の短縮化と捕集率向上を図ることができる。
In particular, in the present invention, an intermediate storage membrane is interposed between the filtration membranes, and the pore diameter of the intermediate storage membrane is 1.2 times or more, preferably 2 times or more and 5 μm or less of the filtration membrane. This allows the treatment liquid that has permeated the filtration membrane on the inflow side to function to be collected once without lowering the flow rate before flowing into the next filtration membrane, and from the collection target that the filtration membrane could not be collected here. Large particles are collected in advance to reduce clogging of the filtration membrane on the outflow side, thereby increasing the permeation rate and increasing the collection rate of the fine particles.
Further, the entire filtration membrane can be made continuous through the intermediate storage membrane, so that the whole can be thinned, and the permeation time of the treatment liquid of the multilayer filter can be shortened and the collection rate can be improved.
平均孔径を小さくした濾過膜は流量低下を抑制するため薄くしている。しかしながら、薄膜化すると濾過膜の強度が低下し取り扱いにくいものとなる。よって、厚さを大とした支持膜とペアで組み立てて製造上で取り扱いやすいものとしていることが好ましい。かつ、該支持膜で流量低下を発生しないように濾過膜の孔径より支持膜の孔径を大きくしている。 The filtration membrane with a reduced average pore size is made thinner to suppress a decrease in flow rate. However, when the film thickness is reduced, the strength of the filtration membrane is lowered and the handling becomes difficult. Therefore, it is preferable to make it easy to handle in manufacturing by assembling a pair with a support film having a large thickness. In addition, the pore size of the support membrane is made larger than the pore size of the filtration membrane so that the flow rate does not decrease in the support membrane.
前記支持膜および前記中間貯溜膜を構成する多孔質膜の厚さは2〜100μmとしている。前記支持膜は前記中間貯溜膜と別体で、支持膜の厚さは中間貯溜膜の厚さ以上で且つ平均孔径は大とし、10μm以下とすることが好ましい。 The thickness of the porous membrane which comprises the said support membrane and the said intermediate | middle storage membrane is 2-100 micrometers . Prior Symbol supporting film in the intermediate reservoir layer and another member, the thickness of the supporting Jimaku is and average pore size of the large cities on the thickness than the intermediate reservoir layer, it is preferable to 10μm or less.
前記濾過膜の層をA層、支持膜の層をB層、中間貯溜膜の層をC層とすると、積層構成は以下のように構成できる。
B層/A層/C層/A層/B層、B層/A層/C層/A層/C層/A層/B層等。
濾過膜のA層の間に中間貯溜膜のC層を介在させ、両外側層は支持膜とすると濾過膜を保護できるため好ましい。一方、露出面をA層とするとバクテリアの層間での繁殖等を防止できる。
When the filtration membrane layer is the A layer, the support membrane layer is the B layer, and the intermediate storage membrane layer is the C layer, the laminated structure can be configured as follows.
B layer / A layer / C layer / A layer / B layer, B layer / A layer / C layer / A layer / C layer / A layer / B layer, etc.
It is preferable to interpose the C layer of the intermediate storage membrane between the A layers of the filtration membrane and use both outer layers as support membranes because the filtration membrane can be protected. On the other hand, if the exposed surface is the A layer, propagation of bacteria between layers can be prevented.
前記濾過膜の気孔率は30〜90%、前記支持膜および中間貯溜膜の気孔率は前記濾過膜の気孔率より多いことが好ましく、50〜90%である。
濾過膜の気孔率が30%未満であると流量が低下しすぎ、90%を超えると強度が低下しすぎる恐れがあることに因る。
気孔率はガーレー秒からも推定できる。ASTM−D−792に記載の方法や、膜の体積と真比重より計算して算出してもよい。この数値が高い程透過性に優れていることを示す。
The porosity of the filtration membrane is preferably 30 to 90%, and the porosity of the support membrane and the intermediate storage membrane is preferably larger than the porosity of the filtration membrane, and is 50 to 90%.
When the porosity of the filtration membrane is less than 30%, the flow rate is too low, and when it exceeds 90%, the strength may be too low.
The porosity can also be estimated from Gurley seconds. You may calculate and calculate from the method of ASTM-D-792, and the volume and true specific gravity of a film | membrane. It shows that it is excellent in the permeability, so that this figure is high.
[透気度(ガーレー秒)の測定方法]
JIS P 8117(紙及び板紙の透気度試験方法)に規定のガーレー透気度試験機と同一構造の王研式透気度測定装置(旭精工(株)製)を用いて測定した。測定結果はガーレー秒で表す。
[Measurement method of air permeability (Gurley second)]
It was measured using a Wangken type air permeability measuring device (manufactured by Asahi Seiko Co., Ltd.) having the same structure as the Gurley air permeability tester specified in JIS P 8117 (Paper and paperboard air permeability test method). The measurement result is expressed in Gurley seconds.
前記積層する濾過膜、支持膜および中間貯溜膜は、隣接する多孔質膜の界面を溶着または接着して密接一体化することが好ましい。
加熱により溶着する場合は溶融温度以上に加熱して界面を接触固着している。なお、濾過膜の厚さを1μm以下等と薄くすると加熱溶融により変形して空孔が閉鎖する恐れがあるため、溶剤可溶性の樹脂の接着剤を部分的あるいは全面に塗布して接着して一体化することが好ましい。
なお、積層する多孔質膜の界面は接着せず、積層体の外周をフレームで挟持して一体化してもよい。この場合、多孔質膜の界面に隙間が生じる場合があるが、該隙間は捕集する微粒子の溜まり部分として機能させることができる。
Filter membranes the laminated support film Contact and intermediate reservoir film is preferably closely integrated with the interface welded or bonded to the adjacent porous membrane.
In the case of welding by heating, the interface is contact-fixed by heating above the melting temperature. If the thickness of the filter membrane is reduced to 1 μm or less, the pores may be closed due to deformation by heating and melting. Therefore, a solvent-soluble resin adhesive may be applied partially or entirely and bonded together. Is preferable.
It should be noted that the interfaces of the porous films to be laminated may not be bonded, and the outer periphery of the laminated body may be sandwiched and integrated with a frame. In this case, a gap may be generated at the interface of the porous film, but the gap can function as a reservoir for collecting fine particles.
本発明の多孔質複層フィルターは、その全体厚みを1.6μm〜300μmとし、1つのフィルターカートリッジに収容することが好ましい。
これは、1枚の中間貯溜膜の両面に濾過膜を積層した構成とした場合の最小厚みが、現在の製造条件上で1.6μmであり、濾過膜を3〜7枚等と多数積層すると100μm〜300μmと厚さが大となることによる。なお、300μmを越えると、フィルターカートリッジに収容する際にかさばり、膜面積を得られないことによる。
The porous multilayer filter of the present invention preferably has an overall thickness of 1.6 μm to 300 μm and is accommodated in one filter cartridge.
This is because the minimum thickness when the filtration membrane is laminated on both surfaces of one intermediate storage membrane is 1.6 μm under the current manufacturing conditions, and a large number of filtration membranes such as 3 to 7 are laminated. This is because the thickness is increased to 100 μm to 300 μm. If it exceeds 300 μm, it is bulky when accommodated in a filter cartridge, and the membrane area cannot be obtained.
前記積層する濾過膜、中間貯溜膜、支持膜を構成する多孔質膜はフッ素樹脂膜からなることが好ましい。フッ素樹脂薄膜は耐薬品性、耐熱性が優れる等の特徴を有していることに因る。
フッ素樹脂としては、PTFE、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、ポリクロロ・トリフルオロエチレン、テトラフルオロエチレン・エチレン共重合体、クロロトリフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、及びポリビニルフルオライドからなる群から選択される1種類、又は2種類以上の混合物が挙げられる。
The porous membrane constituting the filtration membrane, the intermediate storage membrane, and the support membrane to be laminated is preferably made of a fluororesin membrane. This is because the fluororesin thin film has characteristics such as excellent chemical resistance and heat resistance.
Fluororesin includes PTFE, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer, polychloro / trifluoroethylene, tetrafluoroethylene / ethylene copolymer, chlorotri One type selected from the group consisting of fluoroethylene / ethylene copolymer, polyvinylidene fluoride, and polyvinyl fluoride, or a mixture of two or more types.
前記フッ素樹脂薄膜の中でも、PTFEを主体とする多孔質PTFEシートを前記濾過膜、中間貯溜膜あるいは/および支持膜として用いることが好ましい。
ここで、主体とするとは、少なくとも50体積%以上含まれることを意味する。又、PTFEを主体とするフッ素樹脂の中には、全てPTFEからなる樹脂も含まれる。
前記多孔質PTFE(ポリテトラフルオロエチレン)シートは、PTFE自体のもつ高い耐熱性、化学安定性、耐候性、不燃性、高強度、非粘着性、低摩擦係数等の特性に加えて、多孔質体のもつ可撓性、液体透過性、粒子捕捉性、低誘電率等の特性を有する。
該PTFE多孔質フィルターはその高い化学安定性等の優れた特性により、特に半導体関連分野、液晶関連分野、及び食品・医療関連分野における液体・気体の精密濾過フィルター(メンブランフィルター)として好適に用いられる。
Among the fluororesin thin films, it is preferable to use a porous PTFE sheet mainly composed of PTFE as the filtration membrane, the intermediate storage membrane and / or the support membrane.
Here, “mainly” means containing at least 50% by volume or more. In addition, the fluororesin mainly composed of PTFE includes a resin composed entirely of PTFE.
The porous PTFE (polytetrafluoroethylene) sheet is porous in addition to the properties of PTFE itself such as high heat resistance, chemical stability, weather resistance, nonflammability, high strength, non-adhesiveness, and low coefficient of friction. It has characteristics such as flexibility, liquid permeability, particle trapping, and low dielectric constant of the body.
The PTFE porous filter is suitably used as a liquid / gas microfiltration filter (membrane filter), particularly in semiconductor-related fields, liquid crystal-related fields, and food / medical fields, due to its excellent chemical stability and other characteristics. .
本発明で用いる多孔質PTFEシートからなる濾過膜は、平滑な箔またはフィルム上に、PTFEを主体とするフッ素樹脂粉末を分散媒中に分散したフッ素樹脂ディスパージョンを塗布して膜状に成形した後、該分散媒を乾燥し、フッ素樹脂を融点以上で加熱して焼結したフッ素樹脂膜を、延伸して多孔質化として形成されたものであることが好ましい。 The filtration membrane comprising the porous PTFE sheet used in the present invention was formed into a film by applying a fluororesin dispersion in which a fluororesin powder mainly composed of PTFE was dispersed in a dispersion medium on a smooth foil or film. Thereafter, the dispersion medium is dried, and a fluororesin film obtained by heating and sintering the fluororesin at a temperature equal to or higher than the melting point is preferably stretched to be made porous.
即ち、前記多孔質PTFEシートからなる濾過膜は本出願人の出願に係わる前記特許文献1に開示されているフッ素樹脂膜である。該フッ素樹脂膜を用いると、濾過膜の微細孔径と薄膜を両立することができる。つまり、フッ素樹脂薄膜を形成する工程、及び、前記フッ素樹脂薄膜を形成した後、前記フッ素樹脂薄膜と前記支持膜あるいは/および前記中間貯溜膜とする多孔質基体の片面、或いは両面に前記濾過膜を接着させることが容易にできる。
前記フッ素樹脂薄膜からなる濾過膜と多孔質基体からなる中間貯溜膜あるいは/および支持膜との接着は、前記のように接着剤を用いることが好ましい。該接着剤としては、溶剤可溶性あるいは熱可塑性のフッ素樹脂、フッ素ゴムを使用すれば、フッ素樹脂薄膜の素材そのものの耐熱性や耐薬品性を生かせる用途に使用することができるのでより好ましい。
That is, the filtration membrane made of the porous PTFE sheet is a fluororesin membrane disclosed in
As described above, it is preferable to use an adhesive for adhesion between the filtration membrane made of the fluororesin thin film and the intermediate storage membrane or / and the support membrane made of the porous substrate. As the adhesive, use of a solvent-soluble or thermoplastic fluororesin or fluororubber is more preferable because it can be used for applications that make use of the heat resistance and chemical resistance of the fluororesin thin film itself.
PTFEを主体とするフッ素樹脂の中でも、さらに好ましくは、熱可塑性フッ素樹脂を含む場合、又は/及び、ポリエチレンオキサイド、ポリビニルアルコール等のノニオン性で分子量1万以上の水溶性ポリマーを含む場合である。これらは前記フッ素樹脂ディスパージョンの分散に影響しないとともに水分乾燥時にゲル化して膜を形成するので、欠陥がさらに少なく、ガーレー秒がより大きいフッ素樹脂薄膜が得られる。 Among the fluororesins mainly composed of PTFE, it is more preferable to include a thermoplastic fluororesin or / and to include a nonionic water-soluble polymer having a molecular weight of 10,000 or more such as polyethylene oxide and polyvinyl alcohol. Since these do not affect the dispersion of the fluororesin dispersion, and gelate when dried with water to form a film, a fluororesin thin film with fewer defects and a longer Gurley second can be obtained.
熱可塑性フッ素樹脂としては、溶融時の表面張力が低く、又溶融粘度の低い樹脂が、前記欠陥を抑制する効果が大きいので好ましい。具体的には、メルトフローレートが5g/10分以上のものが好ましく、10g/10分以上であればより好ましく、20g/10分以上であればさらに好ましい。 As the thermoplastic fluororesin, a resin having a low surface tension at the time of melting and a low melt viscosity is preferable because it has a large effect of suppressing the defects. Specifically, the melt flow rate is preferably 5 g / 10 min or more, more preferably 10 g / 10 min or more, and further preferably 20 g / 10 min or more.
PTFEと併用される熱可塑性フッ素樹脂として、より具体的には、PFA、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロアルキルビニルエーテル共重合体(EPA)、テトラフルオロエチレン・エチレン共重合体(ETFE)等が挙げられ、これらの複数種類を混合して用いることもできる。中でもPFAは、PTFEの融点(327℃)以上で、熱分解が最も進みにくいので好ましい。特に、前記熱可塑性フッ素樹脂が、PFAであり、PFAの体積比率(固形分)が、PTFEとPFAの混合物の体積に対し20%未満である場合、欠陥が特に少なくなるので好ましい。 More specifically, as thermoplastic fluororesin used in combination with PTFE, PFA, tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer (EPA) ), Tetrafluoroethylene / ethylene copolymer (ETFE), and the like, and a plurality of these may be used in combination. Among them, PFA is preferable because it has a melting point (327 ° C.) or higher of PTFE and the thermal decomposition hardly proceeds. In particular, it is preferable that the thermoplastic fluororesin is PFA and the volume ratio (solid content) of PFA is less than 20% with respect to the volume of the mixture of PTFE and PFA because defects are particularly reduced.
フッ素樹脂ディスパージョンに用いるPTFEの分子量としては100万〜500万であることが好ましく、100万〜350万であればより好ましく、120万〜180万であればさらに好ましい。分子量が高すぎると気孔率が低下する傾向があり、分子量が低すぎると、ピンホールを生じる、延伸時に破れ易くなる等の傾向がある。PTFEの分子量の調整はPTFEの重合時に行っても良いし、高い分子量のPTFEを原料として用い、その原料に対して又はその原料から得られた成形品に対して電離放射線照射や加熱等を行い、高分子鎖を分解する方法で調整してもよい。 The molecular weight of PTFE used for the fluororesin dispersion is preferably 1 million to 5 million, more preferably 1 million to 3.5 million, and even more preferably 1.2 million to 1.8 million. When the molecular weight is too high, the porosity tends to decrease, and when the molecular weight is too low, there is a tendency that pinholes are generated or the film is easily broken during stretching. The molecular weight of PTFE may be adjusted during the polymerization of PTFE, or high molecular weight PTFE is used as a raw material, and ionizing radiation irradiation or heating is performed on the raw material or a molded product obtained from the raw material. Alternatively, the polymer chain may be adjusted by a method of decomposing.
また、フッ素樹脂の融解熱量は、32J/g以上が好ましい。ここで、融解熱量の測定は、熱流束示差走査熱量計(島津製作所製熱流束示差走査熱量計DSC−50)を用いて行われる。 Further, the heat of fusion of the fluororesin is preferably 32 J / g or more. Here, the measurement of the heat of fusion is performed using a heat flux differential scanning calorimeter (Heat flux differential scanning calorimeter DSC-50 manufactured by Shimadzu Corporation).
本発明は前記多孔質複層フィルターを分離膜として使用することを特徴とする分離膜エレメントを提供している。
本発明の中間貯溜膜を濾過膜の間に含む積層フィルターは、非常に柔軟性に富み、多孔質体の基体により機械的強度等にも優れるので、ハンドリングが容易である。従って、公知の各種の分離膜エレメントの製造に用いることができる。例えば、平膜をそのまま加工した、プリーツモジュール型分離膜エレメント、スパイラルモジュール型分離膜エレメント、又、多孔質フッ素樹脂複合体薄膜を多孔質支持体に巻き付けて管状に成形した後複数束ねた管状モジュール型分離膜エレメント等、大きな膜面積をコンパクトな容器に装填して分離膜エレメント(モジュール)を製造することができる。
この本発明の多孔質複層フィルターを、分離膜エレメントのフィルターとして使用すれば、濾過効率や保全性が高く、且つ目詰まりによる濾過効率の低下が少ない分離膜エレメントを提供することができる。そして、この分離膜エレメントで構成されたろ過システムは、半導体、食品、その他の分野等で、気液吸収、脱気、濾過用として好適に用いられる。
The present invention provides a separation membrane element characterized by using the porous multilayer filter as a separation membrane.
The laminated filter including the intermediate storage membrane of the present invention between the filtration membranes is very flexible and is easy to handle because it is excellent in mechanical strength and the like due to the porous substrate. Therefore, it can be used for production of various known separation membrane elements. For example, a pleated module type separation membrane element, a spiral module type separation membrane element, or a tubular module in which a porous fluororesin composite thin film is wound around a porous support and formed into a tubular shape after being processed into a flat membrane. A separation membrane element (module) can be manufactured by loading a large membrane area such as a mold separation membrane element into a compact container.
If the porous multilayer filter of the present invention is used as a filter for a separation membrane element, it is possible to provide a separation membrane element that has high filtration efficiency and maintainability and little reduction in filtration efficiency due to clogging. And the filtration system comprised with this separation membrane element is used suitably for gas-liquid absorption, deaeration, and filtration in a semiconductor, a foodstuff, another field | area, etc.
以上の説明から明らかなように、本発明は、孔径を同等とした複数の濾過膜を中間貯溜膜を介在させて積層し、多段ふるいのメカニズムを利用して粒子を捕集する構成とするため、微粒子の捕集率を飛躍的に高めることができる。かつ、各濾過膜および中間貯溜膜は薄膜としているため透過する流量、流速が低下することなく複数の濾過膜に処理液を透過させて微粒子の捕集率を飛躍的に高めることができる。 As is clear from the above description, the present invention has a configuration in which a plurality of filtration membranes having the same pore diameter are stacked with an intermediate storage membrane interposed, and particles are collected using a multistage sieving mechanism. In addition, the collection rate of fine particles can be dramatically increased. In addition, since each filtration membrane and the intermediate storage membrane are thin, the treatment liquid can permeate through a plurality of filtration membranes without lowering the permeate flow rate and flow velocity, and the particulate collection rate can be dramatically increased.
以下、本発明の多孔質複層フィルターの実施形態を図面を参照して説明する。
図1および図2に第1実施形態の多孔質複層フィルター1(以下、フィルター1と略す)を示す。
第1実施形態のフィルター1は、濾過膜2と支持膜3とを一体化した組を2組(第1組Iと第2組II)設け、第1組Iと第2組IIとを中間貯溜膜4を介して積層している。即ち、図1に示すように、処理液流入側Aから流出側Bにかけて、第1組Iの支持膜3A、濾過膜2A、中間貯溜膜4、第2組IIの濾過膜2B、支持膜3Bを積層し、両側外面に支持膜3A、3Bを配置し、濾過膜2Aと2Bの間に中間貯溜膜4を介在させている。
Hereinafter, embodiments of the porous multilayer filter of the present invention will be described with reference to the drawings.
1 and 2 show a porous multilayer filter 1 (hereinafter abbreviated as filter 1) of the first embodiment.
In the
前記濾過膜2、支持膜3、中間貯溜膜4はいずれも多孔質延伸PTFEシートからなり、結節部により柔軟な繊維が網目状に連結されてなる繊維状骨格を備え、該繊維状骨格で略スリット形状の孔2h、3h、4hを囲んだ多孔質膜からなり、平均孔径および厚さは下記の設定としている。
The
前記濾過膜2(2A、2B)は同一の微小孔径膜からなる。該濾過膜2は平均孔径は0.1nm〜0.1μm、好ましくは1nm〜70nm、より好ましくは10nm〜50nmとしている。厚さは0.25μm〜3μm、好ましくは1.6〜2.0μmとし、気孔率は20〜90%、好ましくは50〜80%としている。
The filtration membrane 2 (2A, 2B) is made of the same microporous membrane. The
前記支持膜3(3A、3B)も同一の多孔質膜で形成し、平均孔径を濾過膜2の平均孔径の5〜1000倍とし、0.1μm〜10μm程度とすることが好ましい。厚さは3μm〜100μm、気孔率は20〜90%、好ましくは50〜80%としている。
The support membrane 3 (3A, 3B) is also formed of the same porous membrane, and the average pore diameter is preferably 5 to 1000 times the average pore diameter of the
前記中間貯溜膜4は、平均孔径を濾過膜2の平均孔径の1.2倍以上5μm以下、好ましくは2倍以上とし、具体的には平均孔径を0.1μm〜5μm、好ましくは0.1〜1μmとしている。厚さは濾過膜2と支持膜3の略中間の大きさとし、具体的な厚さは3μm〜100μmとしている
The
前記濾過膜2、支持膜3および中間貯溜膜4の平均孔径は前述した細孔分布測定器(パームポロメータ:CFP−1500A)で測定している。
The average pore diameters of the
前記のように、本発明のフィルター1では、処理液の流入側に配置する第1組Iの濾過膜2Aと流出側に配置する第2組IIの濾過膜2Bとは、それらの孔径を同等とし、流出側の濾過膜2Bの孔径を流入側の濾過膜2Aの孔径より実質的に小さくしていない点と、この濾過膜2Aと2Bの間に平均孔径を濾過膜2A、2Bより大きくした中間貯溜膜4を介在させている点が重要である。
As described above, in the
前記濾過膜2Aと2Bの間に中間貯溜膜4を介在させると、濾過膜2Aで捕集できなかった目標サイズの微粒子より大きい微粒子を該中間貯溜膜4で捕集して濾過膜2Bでの目詰まり発生を抑制できる。かつ、フィルター全体の捕集率を多段ふるいのメカニズムを利用して、各濾過膜における微粒子の捕集率に濾過膜の枚数(本実施形態では2枚)を乗じた捕集率(捕集率=1ー(1−1枚の濾過膜の捕集率)濾過膜数とすることができる。
When the
本実施形態の濾過膜と支持膜の組が2組と中間貯溜膜から5層構造のフィルター1は、全体厚さを100〜250μmとしている。
なお、中間貯溜膜4の両面に濾過膜2A、2Bを積層した3層構造とした場合は1.6μmまで薄くでき、濾過膜を3枚とする7層構造では300μm程度まで厚くなる。
The
In the case of a three-layer structure in which the
前記第1組と第2組の濾過膜2と支持膜3は、それぞれ後述する工程で説明するように、前記予め一体化して形成し、その後、第1組の濾過膜2Aと第2組の濾過膜2Bの間に中間貯溜膜4を挟み接着剤を用いて接着してフィルター1としている。
The first set and the second set of
以下に、製造工程を図2を参照して説明する。
第1工程で、フッ素樹脂ディスパージョンを調整し、図2(A)に示す平滑な箔10上に調整したフッ素樹脂ディスパージョンを滴下し、箔10上に均一になるように伸ばす。その後、乾燥した後に焼結して、箔10上に固定されたフッ素樹脂薄膜20を形成する。 第2工程で、接着剤とするPFAディスパージョンを調整し、該接着剤23を前記箔10に固定されたフッ素樹脂薄膜20の表面に滴下し、均一に伸ばし、水分が乾燥しない間に前記支持膜とする延伸PTFE多孔質体30(住友電工ファインポリマー社製、商品名:ポアフロン)を被せる。
この状態で、所要時間、所要温度で加熱し、その後、自然冷却する。これにより延伸PTFE多孔質体30にPFAからなる接着剤23でフッ素樹脂薄膜20が接着され、さらに該フッ素樹脂薄膜20に箔10が固定された複合体を得る。
第3工程で、箔10を塩酸により溶解除去して、無孔質のフッ素樹脂薄膜20と延伸PTFE多孔質体30がPFAの接着剤23で一体に接着されたフッ素樹脂複合体25を取得する。
第4工程で、前記フッ素樹脂複合体25を延伸機にて所要倍率(本実施形態では3倍)で延伸を行い、図2(D)に示すように、無孔質のフッ素樹脂薄膜20に孔をあけて多孔質とした濾過膜2とすると共に、前記延伸PTFE多孔質体30の孔を広げて支持膜3とし、濾過膜2と支持膜3とが一体した一組の複合体5を得る。
第5工程で、図2(E)に示すように、前記取得した濾過膜2(2B)と支持膜3(3B)とからなる第2組の複合体5Bを濾過膜2Bを上層とし、その上面に前記中間貯溜膜4となる延伸PTFE多孔質膜(商品名:ポアフロン)を1枚積層し、さらにその表面に、濾過膜2(2A)と支持膜3(3A)とからなる第1組の複合体5Aを積層する。
第6工程で、積層体全体をIPAでぬらして半透明化し、肉眼で界面に空隙がないことを確認した後、乾燥させ、前記実施形態の濾過膜の間に中間貯溜膜を有する多孔質複層フィルター1を取得する。
Below, a manufacturing process is demonstrated with reference to FIG.
In the first step, the fluororesin dispersion is adjusted, and the prepared fluororesin dispersion is dropped on the
In this state, heating is performed at a required temperature for a required time, and then natural cooling is performed. As a result, the fluororesin
In the third step, the
In the fourth step, the
In the fifth step, as shown in FIG. 2 (E), the second set of composite 5B composed of the obtained filtration membrane 2 (2B) and the support membrane 3 (3B) is the
In the sixth step, the entire laminate is made translucent by wetting with IPA, and after confirming that there are no voids at the interface with the naked eye, it is dried, and the porous composite having an intermediate storage membrane between the filtration membranes of the above embodiment is used. The
前記第1工程で用いるフッ素樹脂ディスパージョンを構成する分散媒としては、通常、水等の水性媒体が用いられる。フッ素樹脂ディスパージョン中のフッ素樹脂粉末の含有量は、20重量%〜70重量%の範囲が好ましい。
前記平滑な箔へのフッ素樹脂ディスパージョンの塗布は、キャピラリー方式、グラビア方式、ロール方式、ダイ(リップ)方式、スリット方式やバー方式等の塗工機を塗布装置として利用できる。特に薄膜を形成するためには、キャピラリー方式、ダイ方式、スリット方式とバー方式が好ましい。
As the dispersion medium constituting the fluororesin dispersion used in the first step, an aqueous medium such as water is usually used. The content of the fluororesin powder in the fluororesin dispersion is preferably in the range of 20% by weight to 70% by weight.
For the application of the fluororesin dispersion to the smooth foil, a coater such as a capillary method, a gravure method, a roll method, a die (lip) method, a slit method or a bar method can be used as a coating device. In particular, for forming a thin film, a capillary method, a die method, a slit method and a bar method are preferable.
フッ素樹脂を塗布する方法や平滑な箔の膜厚のバラツキや撓みによっては、塗布装置の塗工治具が箔の表面に直接接触して箔表面を傷つけ、結果的にフッ素樹脂薄膜に傷が転写されて表面凹凸の発生や、酷いときはピンホールなどの欠陥が発生することがある。そこで、潤滑剤として陰イオン性界面活性剤を0.5mg/ml以上、より好ましく2.5mg/ml以上加えると摩擦係数を低くできるので、表面凹凸やピンホールなどの欠陥の発生を抑制することができる。又、陰イオン性界面活性剤の添加は、30mg/ml以下が好ましく、より好ましくは10mg/ml以下である。陰イオン性界面活性剤の量がこの上限を超えると、粘度が高くなりすぎる、樹脂の凝集が生じやすくなる等の問題が生じる傾向がある。又分解残渣が残って変色も起きやすくなる。よって、陰イオン性の界面活性剤を0.5〜30mg/ml含有するフッ素樹脂ディスパージョンを利用するのが好適である。
前記陰イオン性の界面活性剤としては、ポリオキシエチレンアルキルエーテルカルボン酸エステル塩などのカルボン酸型、ポリオキシエチレンアルキルエーテルスルホン酸エステル塩などの硫酸エステル型、ポリオキシエチレンアルキルエーテルリン酸エステル塩などのリン酸エステル型等の界面活性剤を挙げることができる。ただ、陰イオン性の界面活性剤の添加によりフッ素樹脂粉末の分散性が落ちるので、界面活性剤を配合した場合は配合後、沈降、分離等が生じない時間内に生産を完了させるか、常に超音波などの撹拌を加え続けながら生産する方法が好ましい。
塗布の後、分散媒の乾燥が行われる。乾燥は、分散媒の沸点に近い温度又は沸点以上に加熱することにより行うことができる。乾燥によりフッ素樹脂粉末からなる皮膜が形成されるが、この皮膜を、フッ素樹脂の融点以上に加熱して焼結することにより、フッ素樹脂の薄膜を得ることができる。
Depending on the method of applying the fluororesin and the variation or deflection of the smooth foil film thickness, the coating jig of the applicator directly touches the surface of the foil and damages the foil surface, resulting in damage to the fluororesin thin film. When transferred, surface irregularities may be generated, and when severe, defects such as pinholes may occur. Therefore, if an anionic surfactant is added as a lubricant at 0.5 mg / ml or more, more preferably 2.5 mg / ml or more, the friction coefficient can be lowered, thereby suppressing the occurrence of defects such as surface irregularities and pinholes. Can do. Further, the addition of the anionic surfactant is preferably 30 mg / ml or less, more preferably 10 mg / ml or less. When the amount of the anionic surfactant exceeds this upper limit, problems such as viscosity becoming too high and resin aggregation tend to occur are likely to occur. In addition, decomposition residue remains and discoloration easily occurs. Therefore, it is preferable to use a fluororesin dispersion containing 0.5 to 30 mg / ml of an anionic surfactant.
Examples of the anionic surfactant include carboxylic acid types such as polyoxyethylene alkyl ether carboxylic acid ester salts, sulfuric acid ester types such as polyoxyethylene alkyl ether sulfonic acid ester salts, and polyoxyethylene alkyl ether phosphoric acid ester salts. And surfactants such as phosphate ester type. However, the dispersibility of the fluororesin powder decreases due to the addition of an anionic surfactant, so if you add a surfactant, you can always complete the production within a time that does not cause sedimentation, separation, etc. A production method is preferred while continuing to add stirring such as ultrasonic waves.
After the application, the dispersion medium is dried. Drying can be performed by heating to a temperature close to or higher than the boiling point of the dispersion medium. A film made of fluororesin powder is formed by drying, and a fluororesin thin film can be obtained by heating and sintering the film to a temperature equal to or higher than the melting point of the fluororesin.
前記取得するフッ素樹脂の薄膜にボイドやクラック等の欠陥を低減する効果は、PTFEを主体とするフッ素樹脂粉末に、高濃度条件でゲル化する水溶性ポリマーを添加することによっても得られる。前記熱可塑性フッ素樹脂とこの水溶性ポリマーをともに添加することにより、前記効果はより顕著になる。
この水溶性ポリマーがノニオン性であれば、フッ素樹脂の分散性への影響がないか少ない。従って、水溶性ポリマーとしては、アニオン性、カチオン性よりもノニオン性のものが好ましい。又、このノニオン性の水溶性ポリマーの分子量は1万以上が好ましい。分子量を1万以上とすることにより、乾燥の際、水が完全に除去される前にゲル化して膜を形成するので、水の表面張力に起因するクラックの発生を抑制することができる。
前記水溶性ポリマーとしては、具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、デンプン、アガロース等を挙げることができる。
又、フッ素樹脂ディスパージョン中の水溶性ポリマー含有量は、1mg/ml以上で、34mg/ml以下が好ましい。1mg/ml未満の場合は、水溶性ポリマーを含有させる効果が充分発揮されない場合があり、一方34mg/mlを越えるとフッ素樹脂ディスパージョンの粘度が高くなりすぎ、取り扱いにくくなる場合がある。
The effect of reducing defects such as voids and cracks in the obtained fluororesin thin film can also be obtained by adding a water-soluble polymer that gels under high concentration conditions to a fluororesin powder mainly composed of PTFE. By adding both the thermoplastic fluororesin and the water-soluble polymer, the effect becomes more remarkable.
If this water-soluble polymer is nonionic, there is little or no effect on the dispersibility of the fluororesin. Therefore, the water-soluble polymer is preferably nonionic rather than anionic or cationic. The molecular weight of the nonionic water-soluble polymer is preferably 10,000 or more. By setting the molecular weight to 10,000 or more, during drying, the film is formed by gelation before water is completely removed, so that the generation of cracks due to the surface tension of water can be suppressed.
Specific examples of the water-soluble polymer include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, starch, and agarose.
The water-soluble polymer content in the fluororesin dispersion is preferably 1 mg / ml or more and 34 mg / ml or less. When the amount is less than 1 mg / ml, the effect of containing the water-soluble polymer may not be sufficiently exhibited. On the other hand, when the amount exceeds 34 mg / ml, the viscosity of the fluororesin dispersion may become too high and handling may be difficult.
前記延伸工程前で、フッ素樹脂薄膜20は、ガーレー秒が1000秒以上であるものが好ましい。ガーレー秒が1000秒以上であるものは、ボイドやクラック等の欠陥がより少ないものであり、又膜厚が20μm以下であるので、フィルターとして高い処理速度が得られる。特に、ガーレー秒が5000秒以上であると、欠陥がさらに少ないものとなり、さらに好ましい。
Before the stretching step, the fluororesin
ここでガーレー秒とは、JIS−P8117等に記載されている透気度(空気の透過量)を表す数値で、具体的には、100mlの空気が645cm2の面積を通過する時間(秒)を表す。薄膜が欠陥を有する場合は、その欠陥を通って空気が透過するので、ガーレー秒は小さくなるが、欠陥が少なくなるに従って空気が透過しにくくなり、ガーレー秒は増大する。 Here, the Gurley second is a numerical value representing the air permeability (air permeation amount) described in JIS-P8117, and specifically, the time (second) for 100 ml of air to pass through an area of 645 cm 2. Represents. When the thin film has a defect, since air permeates through the defect, the Gurley second becomes small, but as the defect decreases, the air becomes difficult to permeate and the Gurley second increases.
前記第4工程の延伸工程における延伸条件は、フッ素樹脂複合体25を延伸する温度は、フッ素樹脂の融点よりも低い100℃以下が好ましく、更には50℃以下が好ましい。得られる多孔質フッ素樹脂複合体は、孔径が微小均一で高気孔率であるとともに、欠陥の少ない多孔質フッ素樹脂薄膜により形成される。この膜は、膜厚が薄いので処理速度が高く優れたろ過性を示す。又、多孔質フッ素樹脂薄膜と多孔質体の基体を複合したものであるので、耐薬品性や耐熱性、機械的強度も優れている。従って、本発明の多孔質フッ素樹脂複合体は、優れたろ過性を示すとともに、耐薬品性や耐熱性、機械的強度にも優れ、フィルターとして好適である。
Regarding the stretching conditions in the stretching step of the fourth step, the temperature at which the
以下、本発明の実施例1、2、比較例1、2および参考例1、2の膜を試作し、前記した測定方法で平均孔径、透気度(ガーレー秒)を測定し、30nm粒子の捕集率は以下の方法で測定した。 Hereinafter, the membranes of Examples 1 and 2, Comparative Examples 1 and 2, and Reference Examples 1 and 2 of the present invention were prototyped, and the average pore diameter and air permeability (Gurley second) were measured by the measurement method described above. The collection rate was measured by the following method.
[捕集率の測定方法]
外径0.030μmの真球状ポリスチレン粒子ラテックス(Bangs Laboratories,Inc製カタログコード:DS02R)をポリオキシエチレン(10)オクチルフェニルエーテル0.1%水溶液で50倍に希釈し、この液を試験液とする。試作したサンプルをφ47mmのディスク状に打ち抜いて、イソプロパノールを含浸した後、濾過ホルダー(有効面積9.61cm2)に固定し、差圧0.42kgf/cm2で試験液5mlを濾過した。試験液と濾過液の標準粒子濃度は、分光光度計((株)島津製作所製 UV−160)を用いて300nmの吸光度から粒子濃度を測定し、以下の式より捕集率を求めた。
捕集率=〈1−(濾過液の標準粒子濃度)/(試験液の標準粒子濃度)〉×100[%]
[Measurement method of collection rate]
A spherical polystyrene particle latex (Bangs Laboratories, Inc. catalog code: DS02R) having an outer diameter of 0.030 μm is diluted 50 times with a 0.1% aqueous solution of polyoxyethylene (10) octylphenyl ether, and this solution is used as a test solution. To do. By punching a sample was fabricated into a disk of 47 mm, after impregnated with isopropanol, was fixed to the filtration holder (effective area 9.61cm 2), it was filtered test liquid 5ml differential pressure 0.42kgf / cm 2. The standard particle concentrations of the test solution and the filtrate were determined by measuring the particle concentration from the absorbance at 300 nm using a spectrophotometer (UV-160, manufactured by Shimadzu Corporation), and obtaining the collection rate from the following equation.
Collection rate = <1- (standard particle concentration of filtrate) / (standard particle concentration of test solution)> × 100 [%]
「参考例1」
融解熱量が50J/gのPTFEディスパージョン34JR(三井・デュボンフロロケミカル社製)とMFAラテックスD5010(ソルベイソレクシス社製)、およびPFAディスパージョン920HP(三井・デュボンフロロケミカル社製)とを用い、MFA/(PTFE+MFA+PFA)(体積比)及びPFA/(PTFE+MFA+PFA)(体積比)が各2%であるフッ素樹脂ディスパージョンを調整した。さらに、分子量200万のポリエチレンオキサイドを濃度0.003g/ml、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン(花王社製20T)を10mg/mlとなるように添加してフッ素樹脂ディスパージョンを調整した。
次に、厚さ50nmのアルミ箔をガラス平板の上に雛がないように広げて固定し、前記で調整したフッ素樹脂ディスパージョンを滴下した後、日本ベアリング社製のステンレス製のスライドシャフト(ステンレスファインシャフトSNSF型、外径20mm)を滑らすようにしてフッ素樹脂ディスパージョンをアルミ箔一面に均一になるように伸ばした。この箔を80℃で60分乾燥、250℃で1時間加熱、340℃で1時間加熱の各工程を経た後、自然冷却し、アルミ箔上に国定されたフッ素樹脂薄膜を形成させた。
フッ素樹脂薄膜が形成される前後のアルミ箔の単位面積当たりの重量差とフッ素樹脂の真比重(2.25g/cm3)から算出したフッ素樹脂薄膜の平均厚さは約1.6μmであった。
次に、920HPを蒸留水で4倍の容積に薄めたPFAディスパージョンに、さらに、分子量200万のポリエチレンオキサイドを濃度0.003g/ml、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン(花王社製20T)を10mg/mlとなるように添加した4倍希釈のPFAディスパージョンを調整した。
前記アルミ箔上に固定されたフッ素樹脂薄膜を、ガラス平板の上に、皺がないように広げて固定し、4倍希釈のPFAディスパージョンを滴下した。その後、前記と同じ日本ベアリング社製のステンレス製のスライドシャフトを滑らすようにして4倍希釈のPFAディスパージョンをフッ素樹脂薄膜一面に均一になるように伸ばしながら、水分が乾燥しない間に、公称孔径0.45μm、厚さ80μmの延伸PTFE多孔質体(住友電工ファインポリマー社製、商品名:ポアフロンFP−045−80(平均流量孔径0.173μm、気孔率:74%、がーレー秒=10.7秒)を被せた。
その後、80℃で60分乾燥、250℃で1時間加熱、320℃で1時間加熱、317.5℃で3時間加熱した。この各工程を経た後、自然冷却して、延伸PTFE多孔質体上にPTFEよりも融点の低い熱可塑性のPFAでフッ素樹脂薄膜が接着され、さらにその上にアルミ箔が固定された複合体を得た。
次いで、アルミ箔を塩酸により溶解除去して、試験体を得た。この試験体のガーレー秒は5000秒以上で、フッ素樹脂薄膜側から室温でエタノールを接触させてみたが、浸透するような穴は無かった。エタノールが浸透しない実質的に無孔質のフッ素樹脂薄膜を含むフッ素樹脂複合体であることが示された。
次に、特別製の横軸延伸機にて、入口チャック幅230mm、出口690mm、延伸ゾーンの長さ1m、ライン速度6m/分、25℃で、3倍の延伸を行い、試作膜を得た。
"Reference Example 1"
PTFE dispersion 34JR (Mitsui / Dubon Fluoro Chemical Co.) having a heat of fusion of 50 J / g, MFA Latex D5010 (Solvay Solexis), and PFA Dispersion 920HP (Mitsui / Dubon Fluoro Chemical Co.) were used. A fluororesin dispersion in which MFA / (PTFE + MFA + PFA) (volume ratio) and PFA / (PTFE + MFA + PFA) (volume ratio) were 2% each was prepared. Furthermore, a fluororesin dispersion was prepared by adding polyethylene oxide having a molecular weight of 2 million to a concentration of 0.003 g / ml and polyoxyethylene alkyl ether sulfate triethanolamine (20T manufactured by Kao Corporation) to a concentration of 10 mg / ml. .
Next, an aluminum foil having a thickness of 50 nm is spread and fixed on a glass plate so that there are no chicks. The fluororesin dispersion adjusted as described above is dropped, and then a stainless steel slide shaft (stainless steel by Nippon Bearing Co., Ltd.). A fine shaft SNSF type,
The average thickness of the fluororesin thin film calculated from the weight difference per unit area of the aluminum foil before and after the fluororesin thin film was formed and the true specific gravity (2.25 g / cm 3 ) of the fluororesin was about 1.6 μm. .
Next, 920HP was diluted with distilled water to a
The fluororesin thin film fixed on the aluminum foil was spread and fixed on a glass flat plate so as not to be wrinkled, and a 4-fold diluted PFA dispersion was dropped. After that, while sliding the same stainless steel slide shaft made by Nihon Bearing Co., Ltd. as described above and extending the PFA dispersion diluted 4 times uniformly over the fluororesin thin film, while the moisture did not dry, the nominal pore size Expanded PTFE porous body having a thickness of 0.45 μm and a thickness of 80 μm (manufactured by Sumitomo Electric Fine Polymer Co., Ltd., trade name: Poreflon FP-045-80 (average flow pore size 0.173 μm, porosity: 74%, Gurley seconds = 10. 7 seconds).
Then, it dried at 80 degreeC for 60 minutes, heated at 250 degreeC for 1 hour, heated at 320 degreeC for 1 hour, and heated at 317.5 degreeC for 3 hours. After passing through each of these steps, it was naturally cooled, and a composite in which a fluororesin thin film was bonded to a stretched PTFE porous body with a thermoplastic PFA having a melting point lower than that of PTFE, and an aluminum foil was further fixed thereon. Obtained.
Next, the aluminum foil was dissolved and removed with hydrochloric acid to obtain a test specimen. The Gurley second of this test body was 5000 seconds or more, and ethanol was contacted from the fluororesin thin film side at room temperature, but there was no hole that penetrated. It was shown to be a fluororesin composite containing a substantially nonporous fluororesin thin film that does not penetrate ethanol.
Next, using a specially made horizontal axis stretching machine, stretching was performed 3 times at an inlet chuck width of 230 mm, an outlet of 690 mm, a stretching zone length of 1 m, a line speed of 6 m / min, and a temperature of 25 ° C. to obtain a prototype film. .
前記参考例1の試作膜は、試薬GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸:Porous Materials社製)で測定した平均流量孔径は69nm、ガーレー秒は24秒であった。30nm粒子捕集率は25%であった。 The prototype membrane of Reference Example 1 had an average flow pore size of 69 nm and a Gurley second of 24 seconds as measured with the reagent GALWICK (propylene, 1,1,2,3,3,3 oxide hexafluoric acid: manufactured by Porous Materials). It was. The 30 nm particle collection rate was 25%.
「参考例2」
住友電工ファインポリマー(株)製の公称孔径0.10μmの延伸PTFE多孔質体(商品名:ポアフロンHP−010−30)を参考例2とした。
参考例2の膜の平均流量孔径は0.114μm、厚み30μm、気孔率63%、ガーレー秒は17秒、30nm粒子捕集率は0%だった。
"Reference Example 2"
Reference Example 2 was an expanded PTFE porous material (trade name: Poreflon HP-010-30) manufactured by Sumitomo Electric Fine Polymer Co., Ltd. having a nominal pore size of 0.10 μm.
The membrane of Reference Example 2 had an average flow pore size of 0.114 μm, a thickness of 30 μm, a porosity of 63%, a Gurley second of 17 seconds, and a 30 nm particle collection rate of 0%.
「実施例1」
前記参考例1の濾過膜(1.6μm薄膜)が上になるように結晶化ガラス平板の上に広げ、濾過膜に密着するように、住友電工ファインポリマー(株)製の公称孔径0.10μmの延伸PTFE多孔質膜(商品名:ポアフロンHP−010−30)を一枚積層した。更にその上に参考例1の濾過膜(1.6μm薄膜)側がHP−010−30に接して密着するように積層した。
次に積層体全体をIPAでぬらして半透明化し、肉眼で界面に空隙がないことを確認した後、乾燥させ、中間貯溜膜を濾過膜の間に有する積層膜を得た。
実施例1の膜の平均孔径は69nm、ガーレー秒は55秒、30nm粒子捕集率は40%だった。
"Example 1"
A nominal pore size of 0.10 μm manufactured by Sumitomo Electric Fine Polymer Co., Ltd. was applied so that the filtration membrane (1.6 μm thin film) of Reference Example 1 was spread on a crystallized glass plate so as to be on top and adhered to the filtration membrane. One stretched PTFE porous membrane (trade name: Poreflon HP-010-30) was laminated. Furthermore, it laminated | stacked so that the filtration membrane (1.6 micrometer thin film) side of the reference example 1 may contact | connect HP-010-30, and may contact | adhere on it.
Next, the entire laminate was wetted with IPA to make it translucent, and after confirming that there were no voids at the interface with the naked eye, it was dried to obtain a laminate film having an intermediate storage membrane between the filtration membranes.
The average pore size of the membrane of Example 1 was 69 nm, the Gurley second was 55 seconds, and the 30 nm particle collection rate was 40%.
「実施例2」
前記参考例1の濾過膜(1.6μm薄膜)が上になるように耐熱性の結晶化ガラス平板の上に広げて固定し、前述と同じ4倍希釈のPFAディスパージョンを滴下した。その後、前記と同じ日本ベアリング社製のステンレス製のスライドシャフトを滑らすようにして4倍希釈のPFAディスパージョンを濾過膜表面一面に均一になるように伸ばしながら、水分が乾燥しない間に、濾過膜に密着するように、貯溜膜となる住友電工ファインポリマー(株)製の公称孔径0.10μmの延伸PTFE多孔質膜 商品名:ポアフロンHP−010−30を一枚積層した。更にその上に、4倍希釈のPFAディスパージョンを滴下した後、前記と同じ日本ベアリング社製のステンレス製のスライドシャフトを滑らすようにして4倍希釈のPFAディスパージョンを貯溜膜表面一面に均一になるように伸ばしながら、水分が乾燥しない間に、参考例1の濾過膜(1.6μm薄膜)側を下にしてHP−010−30に接して密着するように積層した。その後80℃で60分乾燥、250℃で1時間加熱、320℃で1時間加熱、317.5℃で3時間加熱の各工程を経た後自然冷却して、延伸PTFE多孔質体上にPTFEよりも融点の低い熱可塑性のPFAでフッ素樹脂薄膜が接着した後、結晶化ガラス板から取り外し、中間貯溜膜を濾過膜の間に有する一体積層品を得た。
実施例2の膜の平均孔径は69nm、でガーレー秒は58秒、30nm粒子捕集率は45%だった。
"Example 2"
It was spread and fixed on a heat-resistant crystallized glass plate so that the filtration membrane (1.6 μm thin film) of Reference Example 1 was on top, and the same 4-fold diluted PFA dispersion was dropped. Then, while sliding the same stainless steel slide shaft made by Nippon Bearing Co., Ltd. as described above, while extending the PFA dispersion diluted 4-fold uniformly over the entire surface of the filtration membrane, while the moisture did not dry, the filtration membrane One piece of expanded PTFE porous membrane having a nominal pore size of 0.10 μm manufactured by Sumitomo Electric Fine Polymer Co., Ltd., which serves as a storage membrane, was laminated. Furthermore, after dropping the 4-fold diluted PFA dispersion on the same, slide the same stainless steel slide shaft made by Nihon Bearing Co., Ltd. to uniformly distribute the 4-fold diluted PFA dispersion over the entire surface of the storage membrane. While stretching so that the moisture did not dry, the layers were laminated so that the filtration membrane (1.6 μm thin film) side of Reference Example 1 was in contact with and in close contact with HP-010-30. Then, after drying at 80 ° C. for 60 minutes, heating at 250 ° C. for 1 hour, heating at 320 ° C. for 1 hour, and heating at 317.5 ° C. for 3 hours, it is naturally cooled, and PTFE is applied onto the expanded PTFE porous body. After the fluororesin thin film was bonded with thermoplastic PFA having a low melting point, it was removed from the crystallized glass plate to obtain an integral laminate having an intermediate storage membrane between the filtration membranes.
The average pore size of the membrane of Example 2 was 69 nm, the Gurley second was 58 seconds, and the 30 nm particle collection rate was 45%.
「比較例1」
前記参考例1の濾過膜(1.6μm薄膜)が上になるように耐熱性の結晶化ガラス平板の上に広げて固定した。その上に参考例1の濾過膜(1.6μm薄膜)側を下にして、濾過膜同士が接して密着するように積層した。次に積層体全体をIPAでぬらして半透明化し、肉眼で界面に空隙がないことを確認した後、乾燥させ、結晶化ガラスから取り外した。
比較例1の膜の平均孔径は69nm、ガーレー秒は50秒、30nm粒子捕集率は23%だった。
“Comparative Example 1”
It was spread and fixed on a heat-resistant crystallized glass plate so that the filtration membrane (1.6 μm thin film) of Reference Example 1 was on top. On top of that, the filtration membrane (1.6 μm thin film) side of Reference Example 1 was turned down and laminated so that the filtration membranes were in contact with each other. Next, the whole laminate was wetted with IPA to make it translucent. After confirming that there was no void at the interface with the naked eye, it was dried and removed from the crystallized glass.
The average pore size of the film of Comparative Example 1 was 69 nm, the Gurley second was 50 seconds, and the 30 nm particle collection rate was 23%.
「比較例2」
参考例1の濾過膜(1.6μm薄膜)が上になるようにガラス平板の上に広げて固定した。この上に前述と同じ4倍希釈のPFAディスパージョンを滴下した後、前記と同じ日本ベアリング社製のステンレス製のスライドシャフトを滑らすようにして4倍希釈のPFAディスパージョンを濾過膜表面一面に均一になるように伸ばしながら、水分が乾燥しない間に、その上に参考例1の濾過膜(1.6μm薄膜)側を下にして、濾過膜同士が接して密着するように積層した。その後80℃で60分乾燥、250℃で1時間加熱、320℃で1時間加熱、317.5℃で3時間加熱の各工程を経た後自然冷却して、延伸PTFE多孔質体上にPTFEよりも融点の低い熱可塑性のPFAでフッ素樹脂薄膜が接着した後、結晶化ガラス平板から取り外し、一体積層品を得た。
比較例2の膜の平均孔径は69nm、ガーレー秒は55秒、30nm粒子捕集率は20%だった。
“Comparative Example 2”
The filter membrane (1.6 μm thin film) of Reference Example 1 was spread and fixed on a glass plate so that it was on top. After dropping the same 4-fold diluted PFA dispersion as above, slide the same stainless steel slide shaft made by Nihon Bearing Co., Ltd. to uniformly distribute the 4-fold diluted PFA dispersion over the entire membrane surface. While the water was not dried, the filter membrane (1.6 μm thin film) side of Reference Example 1 was placed on top of the filter membrane so that the filter membranes were in contact with each other. Then, after drying at 80 ° C. for 60 minutes, heating at 250 ° C. for 1 hour, heating at 320 ° C. for 1 hour, and heating at 317.5 ° C. for 3 hours, it is naturally cooled, and PTFE is applied onto the expanded PTFE porous body. After the fluororesin thin film was bonded with thermoplastic PFA having a low melting point, it was removed from the crystallized glass flat plate to obtain an integrally laminated product.
The average pore size of the film of Comparative Example 2 was 69 nm, the Gurley second was 55 seconds, and the 30 nm particle collection rate was 20%.
表1に示すとおり、中間貯溜膜が存在する場合において多段ふるいの効果が発現した。また透過性をガ−レー秒にみると、重ねた分の圧力損失しか生じないことが確認できた。 As shown in Table 1, the effect of multi-stage sieving was exhibited when the intermediate storage film was present. Moreover, when the permeability was observed in Garley seconds, it was confirmed that only a pressure loss corresponding to the overlap occurred.
本発明の多孔質複層フィルター1は第1実施形態に限定されず、図3(C)に示す積層構造としてもよい。
図3(A)の参考第2実施形態では、中間貯溜膜4の両面に濾過膜2A、2Bを接着剤で接着した3層構造としている。他の構成は第1実施形態と同様であるため同一符号を付して説明を省略する。
図3(B)の参考第3実施形態は、濾過膜2と一体に製造した支持膜3を中間貯溜膜として用いている。即ち、第1組の濾過膜2A、支持膜3A、第2組の濾過膜2B、支持膜3Bを積層し、第1膜の支持膜3Aと第2組の濾過膜2Bとは接着剤で接着している。
図3(C)の第4実施形態では、第1組の支持膜3A、濾過膜2A、中間貯溜膜4、濾過膜2、中間貯溜膜4、第2組の濾過膜2B、支持膜3Bと積層している。
この第4実施形態のように、同等の平均孔径を有する濾過膜を3層配置すると、捕集率は1層の場合の約3倍になり、処理時間の増大を抑制しながら捕集率を飛躍的に高めることができる。
Porous
In the second reference embodiment of FIG. 3A, a three-layer structure in which the
In the reference third embodiment of FIG. 3B, the support membrane 3 manufactured integrally with the
In the fourth embodiment of FIG. 3C, the first set of
When three layers of filtration membranes having the same average pore diameter are arranged as in the fourth embodiment, the collection rate is about three times that of a single layer, and the collection rate is reduced while suppressing an increase in processing time. It can be improved dramatically.
1 多孔質複層フィルター
2(2A、2B) 濾過膜
3(3A、3B) 支持膜
4 中間貯溜膜
DESCRIPTION OF
Claims (8)
前記複数の濾過膜の平均孔径は同等とすると共に、該平均孔径は0.1nm〜0.1μm以下、各濾過膜の厚さは0.25μm〜15μmとし、
前記中間貯溜膜の平均孔径は前記濾過膜の平均孔径の1.2倍以上0.1μmを越えて5μm以下、
前記支持膜の平均孔径は前記濾過膜の平均孔径の5〜1000倍で前記中間貯溜膜の平均孔径より大であり、かつ、
前記中間貯溜膜および前記支持膜の厚さは2〜100μmで、前記中間貯溜膜の厚さは前記濾過膜の厚さと支持膜の厚さの中間の厚さとし、
前記中間貯溜膜は、結節部により柔軟な繊維が網目状に連結されてなる繊維状骨格を備え、該繊維状骨格で略スリット形状の孔を囲んだ多孔質膜からなることを特徴とする多孔質複層フィルター。 A plurality of filtration membranes, an intermediate storage membrane comprising a porous membrane interposed between the filtration membranes, and a support membrane laminated on at least one outer surface,
The average pore diameter of the plurality of filtration membranes is the same, the average pore diameter is 0.1 nm to 0.1 μm or less, and the thickness of each filtration membrane is 0.25 μm to 15 μm,
The average pore size of the intermediate storage membrane is 1.2 times or more of the average pore size of the filtration membrane and more than 0.1 μm and 5 μm or less ,
The average pore size of the support membrane is 5 to 1000 times the average pore size of the filtration membrane and larger than the average pore size of the intermediate storage membrane, and
The thickness of the intermediate reservoir membrane and the support membrane is 2 to 100 μm, and the thickness of the intermediate reservoir membrane is an intermediate thickness between the thickness of the filtration membrane and the thickness of the support membrane,
The intermediate storage membrane is a porous membrane comprising a fibrous skeleton formed by connecting flexible fibers in a mesh shape by a knot, and having a substantially slit-shaped hole surrounded by the fibrous skeleton. Quality multilayer filter.
The porous multilayer filter according to any one of claims 1 to 3 , wherein the total thickness is 1.6 µm to 300 µm .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272978A JP5211410B2 (en) | 2010-12-07 | 2010-12-07 | Porous multilayer filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272978A JP5211410B2 (en) | 2010-12-07 | 2010-12-07 | Porous multilayer filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012120969A JP2012120969A (en) | 2012-06-28 |
JP5211410B2 true JP5211410B2 (en) | 2013-06-12 |
Family
ID=46503015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010272978A Active JP5211410B2 (en) | 2010-12-07 | 2010-12-07 | Porous multilayer filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5211410B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014042869A (en) * | 2012-08-24 | 2014-03-13 | Sumitomo Electric Fine Polymer Inc | Porous multi-layer filter |
JP6013852B2 (en) * | 2012-09-27 | 2016-10-25 | 株式会社ディスコ | Porous material clogging inspection method and porous material clogging inspection device |
US20160016124A1 (en) * | 2014-07-21 | 2016-01-21 | W.L. Gore & Associates, Inc. | Fluoropolymer Article for Mycoplasma Filtration |
KR102576134B1 (en) * | 2016-08-11 | 2023-09-11 | 주식회사 아모그린텍 | Filter media and Filter unit comprising the same |
KR102232212B1 (en) * | 2017-12-26 | 2021-03-24 | 주식회사 엘지화학 | Multi-layer film for air purification filter |
JP7527781B2 (en) * | 2018-12-28 | 2024-08-05 | 日東電工株式会社 | Filter pleat packs and air filter units |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078927B2 (en) * | 1989-12-07 | 1995-02-01 | ダイキン工業株式会社 | Method for producing polytetrafluoroethylene multilayer porous membrane |
JP2932611B2 (en) * | 1990-05-26 | 1999-08-09 | 住友電気工業株式会社 | Polytetrafluoroethylene resin porous tube |
JP2006061808A (en) * | 2004-08-26 | 2006-03-09 | Nitto Denko Corp | Ventilation filter medium for masks |
US20110052900A1 (en) * | 2009-02-16 | 2011-03-03 | Sumitomo Electric Fine Polymer, Inc. | Porous multilayer filter and method for producing same |
JP2010253412A (en) * | 2009-04-27 | 2010-11-11 | Sumitomo Electric Fine Polymer Inc | Method of extracting solute in solution and method of concentrating aqueous solution |
-
2010
- 2010-12-07 JP JP2010272978A patent/JP5211410B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012120969A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9463420B2 (en) | Manufacturing methods for a porous fluororesin composite | |
JP5211410B2 (en) | Porous multilayer filter | |
WO2012114868A1 (en) | Porous multilayered filter | |
JP6069221B2 (en) | Polytetrafluoroethylene porous resin membrane, polytetrafluoroethylene porous resin membrane composite, and separation membrane element | |
JP5364945B2 (en) | Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof | |
JP2014195991A (en) | Composite body including ptfe film | |
JP2016534854A (en) | Filter body for dust collection including triple layers | |
JP6561380B2 (en) | Laminate and method for producing laminate | |
JP2014042869A (en) | Porous multi-layer filter | |
JP5873389B2 (en) | Method for producing modified polytetrafluoroethylene microporous membrane | |
TWI625236B (en) | Polytetrafluoroethylene porous composite and manufacturing method thereof | |
WO2021235118A1 (en) | Porous film laminate, filter element, and production method for porous film laminate | |
EP3363528B1 (en) | Semipermeable membrane and method for producing semipermeable membrane | |
WO2023162368A1 (en) | Porous membrane laminate | |
JP6409488B2 (en) | Porous laminate | |
JP2016077944A (en) | Porous laminate, and manufacturing method of porous laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5211410 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |