JP5211315B2 - Tumor marker, tumor diagnostic kit, and method for measuring tumor marker - Google Patents

Tumor marker, tumor diagnostic kit, and method for measuring tumor marker Download PDF

Info

Publication number
JP5211315B2
JP5211315B2 JP2006202584A JP2006202584A JP5211315B2 JP 5211315 B2 JP5211315 B2 JP 5211315B2 JP 2006202584 A JP2006202584 A JP 2006202584A JP 2006202584 A JP2006202584 A JP 2006202584A JP 5211315 B2 JP5211315 B2 JP 5211315B2
Authority
JP
Japan
Prior art keywords
cancer
human
derived
tumor marker
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006202584A
Other languages
Japanese (ja)
Other versions
JP2008026290A (en
Inventor
康人 阿部
良典 今井
展章 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Priority to JP2006202584A priority Critical patent/JP5211315B2/en
Publication of JP2008026290A publication Critical patent/JP2008026290A/en
Application granted granted Critical
Publication of JP5211315B2 publication Critical patent/JP5211315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、腫瘍マーカ、腫瘍診断キットおよび腫瘍マーカの測定方法に関する。   The present invention relates to a tumor marker, a tumor diagnostic kit, and a method for measuring a tumor marker.

癌の診断においては、X線による画像診断が従来から実施されてきたが、最近では、血清中の腫瘍マーカを利用した診断が多用されるようになってきた。腫瘍マーカとは、癌細胞が産生する物質、または癌細胞と反応して体内の正常細胞が産生する物質のなかで、それを血液、組織、排泄物中から検出することが、癌の診断または治療の目印として役立つものをいう。これまでに、種々の生体物質が腫瘍マーカとして有効であることが報告されている(特許文献1、非特許文献1、非特許文献2、非特許文献3)。例えば、肝臓癌の腫瘍マーカとして、AFPおよびPIVKAII等、膵癌の腫瘍マーカとして、CA19−9等、前立腺癌の腫瘍マーカとして、PSA等、扁平上皮癌の腫瘍マーカとして、SCCおよびCYFRA等が使用されている。これらの腫瘍マーカの測定は、診断対象患者から血清を採取し、前記血清中の前記腫瘍マーカの濃度を測定することにより実施され、その陽性および陰性が判断される。   In the diagnosis of cancer, X-ray image diagnosis has been conventionally performed, but recently, diagnosis using tumor markers in serum has been frequently used. A tumor marker is a substance that cancer cells produce or a substance that reacts with cancer cells and that is produced by normal cells in the body. It is useful as a landmark for treatment. So far, it has been reported that various biological substances are effective as tumor markers (Patent Literature 1, Non-Patent Literature 1, Non-Patent Literature 2, and Non-Patent Literature 3). For example, AFP and PIVKAII are used as tumor markers for liver cancer, CA19-9 is used as a tumor marker for pancreatic cancer, PSA is used as a tumor marker for prostate cancer, and SCC and CYFRA are used as tumor markers for squamous cell carcinoma. ing. Measurement of these tumor markers is performed by collecting serum from a patient to be diagnosed and measuring the concentration of the tumor marker in the serum, and the positive and negative are determined.

特開2003−240774号公報JP 2003-240774 A J.Jpn.Soc.Cancer Ther.22(9):2182〜2190,Oct.,1987J. et al. Jpn. Soc. Cancer Ther. 22 (9): 2182-1190, Oct. , 1987 CANCER March 1,1999/Vol.85/No.5/1018−1025CANCER March 1, 1999 / Vol. 85 / No. 5 / 1018-1025 臨床病理 53:5・2005,437−445Clinical pathology 53: 5, 2005, 437-445

しかしながら、従来の腫瘍マーカは、感度の点で問題があり、良性疾患等で偽陽性を示すことも少なくない。また、従来の腫瘍マーカは、早期癌を検出することが困難なもの(陰性を示すもの)もあった。このため、感度および特異性の高い腫瘍マーカの開発が望まれている。   However, conventional tumor markers are problematic in terms of sensitivity, and often show false positives for benign diseases and the like. In addition, there are some conventional tumor markers that are difficult to detect early cancer (indicating negative). For this reason, development of a tumor marker with high sensitivity and specificity is desired.

そこで、本発明は、感度および特異性の高い新規な腫瘍マーカ、前記腫瘍マーカを利用した腫瘍診断キットおよび前記腫瘍マーカの測定方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel tumor marker with high sensitivity and specificity, a tumor diagnostic kit using the tumor marker, and a method for measuring the tumor marker.

前記目的を達成するために、本発明の腫瘍マーカは、下記(A)の腫瘍マーカおよび下記(B)の腫瘍マーカの両方を含むことを特徴とする。
(A)抗ヒト由来PGAM1抗体を含む腫瘍マーカ。
(B)抗ヒト由来TPI1抗体を含む腫瘍マーカ。
In order to achieve the above object, the tumor marker of the present invention includes both the following tumor marker (A) and the following tumor marker (B).
(A) Tumor markers containing anti-human-derived PGAM1 antibody.
(B) tumor marker containing anti-human-derived TPI1 antibody.

本発明の腫瘍診断キットは、血清ELISA法または血清CLEIA法を用いた腫瘍診断キットであって、ヒト由来PGAM1およびヒト由来TPI1の両方の腫瘍特異的抗原と、前記ヒト由来PGAM1に対する自己抗体を認識する標識二次抗体と、前記ヒト由来TPI1に対する自己抗体を認識する標識二次抗体とを含むことを特徴とする。 The tumor diagnostic kit of the present invention is a tumor diagnostic kit using a serum ELISA method or a serum CLEIA method, which recognizes both human-derived PGAM1 and human-derived TPI1 tumor-specific antigens and autoantibodies against the human-derived PGAM1. And a labeled secondary antibody that recognizes an autoantibody against the human-derived TPI1 .

本発明の腫瘍マーカの測定方法は、前記腫瘍マーカが、ヒト由来PGAM1およびヒト由来TPI1の少なくとも一方のタンパク質に対するヒト血清中の自己抗体であり、前記腫瘍マーカの検出剤が、ヒト由来PGAM1およびヒト由来TPI1であり、前記検出剤に、前記タンパク質に対する前記自己抗体を反応させ、前記ヒト由来PGAM1と前記ヒト由来PGAM1に対する自己抗体とが結合して形成された複合体、および、前記ヒト由来TPI1と前記ヒト由来TPI1に対する自己抗体とが結合して形成された複合体を測定することを特徴とする。 In the method for measuring a tumor marker of the present invention, the tumor marker is an autoantibody in human serum against at least one protein of human-derived PGAM1 and human-derived TPI1, and the tumor marker detection agent is human-derived PGAM1 and human. is derived from TPI1, the detection agent, the reacted autoantibodies to said protein, complex and the autoantibodies formed by binding to the human PGAM1 and the human PGAM1, and, with the human-derived TPI1 A complex formed by binding to an autoantibody against the human-derived TPI1 is measured.

本発明者等は、感度および特異性の高い新規な腫瘍マーカを得るために、一連の研究を重ねたところ、前記(A)の腫瘍マーカおよび前記(B)の腫瘍マーカの両方を含む腫瘍マーカが、感度および特異性の高い腫瘍マーカとなり得ることを見出し、本発明に到達した。本発明の腫瘍マーカは、例えば、後述の実施例等に示すように、感度が高いため偽陽性率が低く、しかも特異性が高いため早期癌を高精度で検出することが可能である。また、本発明の腫瘍診断キットおよび腫瘍マーカの測定方法によれば、癌を高感度で特異的に測定することができ、高精度かつ早期診断が可能となる。 The inventors of the present invention have conducted a series of studies in order to obtain a novel tumor marker having high sensitivity and specificity. As a result, the tumor marker including both the tumor marker (A) and the tumor marker (B). Has been found to be a highly sensitive and specific tumor marker, and the present invention has been achieved. The tumor marker of the present invention can detect early cancer with high accuracy because of its high sensitivity and low false positive rate and high specificity, as shown in, for example, Examples described later. Moreover, according to the tumor diagnostic kit and tumor marker measurement method of the present invention, cancer can be specifically measured with high sensitivity, and high-precision and early diagnosis is possible.

本発明において、前記(A)の腫瘍マーカおよび前記(B)の腫瘍マーカは、二つを併用するIn the present invention, tumor markers Tumor markers and the of the (A) (B) is used together twofold.

PGAMは、正式名称が、ホスホグリセリン酸ムターゼ(phosphoglycerate mutase)であり、解糖系の酵素である。また、TPIは、正式名称が、トリオースリン酸イソメラーゼ(triose−phosphate isomerase)であり、解糖系の酵素である。
PGAMには、下記に示すように3種類のアイソザイムがある。これらの中でも、B型(脳型)のPGAMが好ましく、より好ましくはB型のPGAM1である。
M型(MM homodimer):成人の骨格筋(一般に筋型)
B型(BB homodimer):脳、肝臓、腎臓(一般に脳型)
MB型(MB heterodimer):心筋
TPIは、下記に示すように、2種類のアイソザイムが存在するが、ヒトでの報告はTPI1のみである。
1型(TPI1):解糖系酵素
2型(TPI2):機能不明
PGAM has the official name phosphoglycerate mutase and is a glycolytic enzyme. TPI has a formal name triose-phosphate isomerase, and is a glycolytic enzyme.
PGAM has three types of isozymes as shown below. Among these, B-type (brain-type) PGAM is preferable, and B-type PGAM1 is more preferable.
M type (MM homodimer): adult skeletal muscle (generally muscle type)
B type (BB homodimer): brain, liver, kidney (generally brain type)
MB type (MB heterodimer): Myocardial TPI has two types of isozymes as shown below, but only TPI1 has been reported in humans.
Type 1 (TPI1): glycolytic enzyme type 2 (TPI2): Unknown function

本発明において、ヒト由来PGAM1およびヒト由来TPI1は、天然(ヒト)から分離したタンパク質および遺伝子工学により作製された組換えタンパク質のいずれであってもよい。本発明の腫瘍マーカは、抗ヒト由来PGAM1抗体および抗ヒト由来TPI1抗体を含む腫瘍マーカである。 In the present invention, human-derived PGAM1 and human-derived TPI1 may be either a protein isolated from nature (human) or a recombinant protein prepared by genetic engineering. Tumor marker of the present invention is a tumor marker including the anti-human-derived PGAM1 antibody and anti-human-derived TPI1 antibody.

ヒト由来PGAM1としては、例えば、下記の(A1)若しくは(A2)のタンパク質があげられる。下記(A2)のタンパク質のアミノ酸配列は、下記(A1)のアミノ酸配列との相同性が、例えば、50%以上であり、好ましくは80%以上であり、より好ましくは90%以上である。また、下記(A2)のタンパク質のアミノ酸配列において、置換、付加、挿入もしくは欠失したアミノ酸残基の数は、例えば、1〜127残基、好ましくは、1〜50残基、より好ましくは、1〜25残基である。
(A1)配列番号1に記載のアミノ酸配列からなるタンパク質。
(A2)配列番号1に記載のアミノ酸配列において、1以上のアミノ酸残基が置換、付加、挿入もしくは欠失したアミノ酸配列からなるタンパク質であって、ヒトPGAM1としての機能を有するタンパク質。
Examples of human-derived PGAM1 include the following protein (A1) or (A2). The amino acid sequence of the protein (A2) below has a homology with the amino acid sequence (A1) below of, for example, 50% or more, preferably 80% or more, and more preferably 90% or more. In the amino acid sequence of the protein of the following (A2), the number of substituted, added, inserted or deleted amino acid residues is, for example, 1 to 127 residues, preferably 1 to 50 residues, more preferably 1 to 25 residues.
(A1) A protein comprising the amino acid sequence set forth in SEQ ID NO: 1.
(A2) A protein comprising an amino acid sequence in which one or more amino acid residues are substituted, added, inserted or deleted in the amino acid sequence set forth in SEQ ID NO: 1, and having a function as human PGAM1.

ヒト由来TPI1としては、例えば、下記の(B1)若しくは(B2)のタンパク質があげられる。下記(B2)のタンパク質のアミノ酸配列は、下記(B1)のアミノ酸配列との相同性が、例えば、50%以上であり、好ましくは80%以上であり、より好ましくは90%以上である。また、下記(B2)のタンパク質のアミノ酸配列において、置換、付加、挿入もしくは欠失したアミノ酸残基の数は、例えば、1〜124残基、好ましくは、1〜49残基、より好ましくは、1〜24残基である。
(B1)配列番号2に記載のアミノ酸配列からなるタンパク質。
(B2)配列番号2に記載のアミノ酸配列において、1以上のアミノ酸残基が置換、付加、挿入もしくは欠失したアミノ酸配列からなるタンパク質であって、ヒトTPI1としての機能を有するタンパク質。
Examples of human-derived TPI1 include the following protein (B1) or (B2). The amino acid sequence of the protein (B2) below has a homology with the amino acid sequence (B1) below of, for example, 50% or more, preferably 80% or more, and more preferably 90% or more. In the amino acid sequence of the protein (B2) below, the number of amino acid residues substituted, added, inserted or deleted is, for example, 1 to 124 residues, preferably 1 to 49 residues, more preferably 1 to 24 residues.
(B1) A protein comprising the amino acid sequence set forth in SEQ ID NO: 2.
(B2) A protein comprising an amino acid sequence in which one or more amino acid residues are substituted, added, inserted or deleted in the amino acid sequence shown in SEQ ID NO: 2, and having a function as human TPI1.

本発明の腫瘍マーカにおいて、前記抗ヒト由来PGAM抗体および前記抗ヒト由来TPI抗体、ヒト血清中の自己抗体であることが好ましい。 In tumor markers of the present invention, the anti-human-derived PGAM 1 antibody and said anti-human-derived TPI 1 antibody is preferably an autoantibody in human serum.

腫瘍マーカとしてのヒト由来PGAM遺伝子、ヒト由来PGAMのmRNA、ヒト由来TPI遺伝子およびヒト由来TPIのmRNAは、天然(ヒト)から分離されたものであってもよいし、遺伝子工学により作製された組換え遺伝子ないし組換えRNAであってもよい。前記遺伝子の発現ないしmRNAの転写を指標にしても、腫瘍を検出できるからである前記遺伝子およびmRNAで好ましいのは、ヒト由来PGAM1遺伝子およびそのmRNA,ヒト由来TPI1遺伝子およびそのmRNAである。ヒト由来PGAM1遺伝子およびそのmRNAとしては、例えば、前記(A1)または(A2)のタンパク質をコードする遺伝子およびmRNAがあげられ、前記ヒト由来TPI1遺伝子およびそのmRNAとしては、例えば、前記(B1)または(B2)のタンパク質をコードする遺伝子およびmRNAがあげられる。本発明において、これらの遺伝子およびそれに対応するmRNAは、従来公知の方法で検出可能であり、例えば、検出プローブを用いた方法、特異的プライマーを用いた核酸増幅法(例えば、PCR法)等により検出することができる。 Set human PGAM gene as a tumor marker, mRNA of human-derived PGAM, mRNA of human-derived TPI gene and human TPI is natural may be one which is separated from (human), made by genetic engineering It may be a replacement gene or a recombinant RNA. This is because tumors can be detected using the gene expression or mRNA transcription as an index . Preferred among the gene and mRNA are a human-derived PGAM1 gene and mRNA thereof, and a human-derived TPI1 gene and mRNA thereof. Examples of the human-derived PGAM1 gene and mRNA thereof include the gene and mRNA encoding the protein (A1) or (A2). Examples of the human-derived TPI1 gene and mRNA thereof include the (B1) or Examples thereof include a gene and mRNA encoding the protein (B2). In the present invention, these genes and mRNA corresponding thereto can be detected by a conventionally known method, for example, by a method using a detection probe, a nucleic acid amplification method (for example, PCR method) using a specific primer, or the like. Can be detected.

本発明の腫瘍マーカ、腫瘍診断キットおよび腫瘍マーカの測定方法において、その対象となる腫瘍は、例えば、膵癌、肝臓癌、胆管癌、結腸癌、直腸癌、大腸癌、胃癌、乳癌および口腔癌であるが、これら以外の癌も対象となる。前記口腔癌は、口腔扁平上皮癌であることが好ましい。   In the tumor marker, tumor diagnostic kit and tumor marker measurement method of the present invention, the target tumor is, for example, pancreatic cancer, liver cancer, bile duct cancer, colon cancer, rectal cancer, colon cancer, gastric cancer, breast cancer and oral cancer. There are other cancers, though. The oral cancer is preferably oral squamous cell carcinoma.

本発明の腫瘍診断キットおよび腫瘍マーカの測定方法において、対象となるのは、ヒト血清中の自己抗体である。前記自己抗体は、例えば、血清ELISA法または血清CLEIA法により測定する。また、本発明の腫瘍診断キットは、前記抗原タンパク質および前記二次抗体に加え、ELISA法またはCLEIA法に必要な各種試薬や器具を含んでいても良い。   In the tumor diagnostic kit and tumor marker measurement method of the present invention, the subject is an autoantibody in human serum. The autoantibodies are measured by, for example, serum ELISA method or serum CLEIA method. In addition to the antigen protein and the secondary antibody, the tumor diagnostic kit of the present invention may contain various reagents and instruments necessary for the ELISA method or the CLEIA method.

本発明の腫瘍診断キットおよび腫瘍マーカの測定方法において、前記標識二次抗体は、例えば、酵素標識抗体、蛍光標識抗体、放射能標識抗体があるが、酵素標識抗体が好ましい。前記酵素標識抗体としては、例えば、パーオキシダーゼ標識ヒト由来抗体、アルカリフォスファターゼ(ALP)標識ヒト由来抗体がある。前記ヒト由来抗体の種類は、特に制限されず、例えば、IgG,IgA,IgM等がある。   In the tumor diagnostic kit and tumor marker measurement method of the present invention, examples of the labeled secondary antibody include an enzyme-labeled antibody, a fluorescent-labeled antibody, and a radiolabeled antibody, and an enzyme-labeled antibody is preferable. Examples of the enzyme-labeled antibody include peroxidase-labeled human-derived antibody and alkaline phosphatase (ALP) -labeled human-derived antibody. The kind of the human-derived antibody is not particularly limited, and examples thereof include IgG, IgA, IgM and the like.

本発明の腫瘍マーカの測定方法において、前記複合体の測定方法は、例えば、前記複合体の前記自己抗体に標識二次抗体を結合させ、前記標識二次抗体の標識を測定する方法である。   In the tumor marker measurement method of the present invention, the complex measurement method is, for example, a method in which a labeled secondary antibody is bound to the autoantibody of the complex, and the label of the labeled secondary antibody is measured.

つぎに、本発明の実施例について説明する。ただし、本発明は、下記の実施例によってなんら制限されない。   Next, examples of the present invention will be described. However, this invention is not restrict | limited at all by the following Example.

本実施例は、癌患者の血清中にヒト由来PGAM1およびヒト由来TPI1のそれぞれに対する自己抗体が存在することを確認した。前記ヒト由来PGAM1、前記ヒト由来TPI1およびそれらの自己抗体は、腫瘍マーカとして利用可能である。さらに、本実施例では、組換えタンパク質であるヒト由来PGAM1およびヒト由来TPI1を用いて、被験者の血清中の前記自己抗体を腫瘍マーカとして検出し、癌の判定を行ったなお、本実施例において、被険者の血清の採取は、本人の同意を得た上で行った。 In this embodiment, the sera of cancer patients, it was confirmed that autoantibodies are present for each of the human PGAM1 and human TPI1. The human-derived PGAM1, the human-derived TPI1, and their autoantibodies can be used as tumor markers. Furthermore, in this example, the autoantibodies in the serum of subjects were detected as tumor markers using human-derived PGAM1 and human-derived TPI1 which are recombinant proteins, and cancer was determined . In this example, the serum of the injured person was collected with the consent of the individual.

(血清の調製)
血清は、57例の悪性疾患患者(癌患者)、14例の良性疾患患者、17例の健常者より、全て同意を得た上で採血し、至適条件にて遠心分離した後、血清のみを採取し解析に用いた。癌患者(malignant)の内訳は、胃癌(Gastric ca.):7例、大腸癌(Colo−rectal ca.):17例(結腸癌:9例、直腸癌:8例)、乳癌(Breast ca.):7例、膵癌(Pancreas ca.):13例、肝・胆道系癌(Bile duct ca. & HCC):3例(肝細胞癌:1例、胆管癌:2例)、口腔扁平上皮癌(OC.SCC):10例であり、男女比29(男):28(女)、平均年齢68.5歳(38〜85歳)である。良性疾患患者(benign)の内訳は、慢性膵炎:1例、胆石症:4例、口腔良性疾患:9例であり、男女比6(男):8(女)、平均年齢54.4歳(24〜70歳)である。健常者(control)は、男女比11(男):6(女)、平均年齢46.9歳(23〜80歳)である。なお、自己抗体の存在を確認するために用いたのは、前記悪性疾患患者(癌患者:57例)である。また、癌患者は、初発または再発を問わない。
(Preparation of serum)
Serum was collected after obtaining consent from 57 patients with malignant diseases (cancer patients), 14 patients with benign diseases, and 17 healthy subjects, and after centrifugation under optimal conditions, only the serum was collected. Were collected and used for analysis. The breakdown of cancer patients is as follows: gastric cancer: 7 cases, colon cancer (Colo-rectal ca.): 17 cases (colon cancer: 9 cases, rectal cancer: 8 cases), breast cancer (Breast ca. ): 7 cases, pancreatic cancer (Pancreas ca.): 13 cases, liver / biliary cancer (Bile duct ca. & HCC): 3 cases (hepatocellular carcinoma: 1 case, bile duct cancer: 2 cases), oral squamous cell carcinoma (OC.SCC): 10 cases, male / female ratio 29 (male): 28 (female), average age 68.5 years old (38-85 years old). Benign patients are divided into: chronic pancreatitis: 1 case, cholelithiasis: 4 cases, oral benign disease: 9 cases, male / female ratio 6 (male): 8 (female), average age 54.4 years old ( 24 to 70 years old). A healthy person (control) has a male-female ratio of 11 (male): 6 (female) and an average age of 46.9 years (23-80 years). In addition, it was the said malignant disease patient (cancer patient: 57 cases) used in order to confirm presence of an autoantibody. In addition, cancer patients may be initially or recurrent.

(細胞株)
細胞株として、ヒト膵臓癌細胞株MIAPaCa IIを用いた。ヒト膵癌細胞株MIAPaCa IIを、10%牛胎児血清含有RPMI medium 1640(Invitrogen社)を用いて、5%COインキュベータにて培養した。
(Cell line)
The human pancreatic cancer cell line MIAPaCa II was used as the cell line. Human pancreatic cancer cell line MIAPaCa II was cultured in a 5% CO 2 incubator using RPMI medium 1640 (Invitrogen) containing 10% fetal bovine serum.

(1) 癌患者血清中の癌特異的自己抗体の存在の確認 (1) Confirmation of the presence of cancer-specific autoantibodies in the serum of cancer patients

(電気泳動用サンプル調製)
培養したヒトMIAPaCa II細胞を回収し、可溶化バッファー(8M Urea、4%CHAPS、60mM DTT、2%IPG Buffer(pI:3−10)、0.002%Bromophenol blue)と混和し、超音波破砕処理をした後、遠心分離(12000rpm/4℃/12min)し、上清を泳動用サンプルとした。また、リン酸化を促進させタンパク質の抗原性を高めたモデルでは、培養液中にPMA(Phorbol 12−myristate13−acetate)を加え一晩培養し、その後同様の条件でサンプル調製した。
(Sample preparation for electrophoresis)
Cultured human MIAPaCa II cells were collected and mixed with solubilization buffer (8M Urea, 4% CHAPS, 60 mM DTT, 2% IPG Buffer (pI: 3-10), 0.002% Bromophenol blue), and sonicated. After the treatment, centrifugation (12000 rpm / 4 ° C./12 min) was performed, and the supernatant was used as a sample for electrophoresis. In the model in which phosphorylation was promoted and the antigenicity of the protein was increased, PMA (Phorbol 12-myristate 13-acetate) was added to the culture medium and cultured overnight, and then samples were prepared under the same conditions.

(2次元電気泳動およびゲルの染色)
まず、固定化pH勾配ゲル(商品名:Immobiline Drystrip,7cm,pH3−10/Amersham biosciences社)を使用し、等電点電気泳動を行った(商品名:Ettan IPGphor II/Amersham biosciences社)。次に、2次元目にポリアクリルアミドゲル(10% Real Gel plate / BIO CRAFT社)を使用しSDS−PAGEを行った。泳動後のゲルはCBB(Coomassie Brilliant Blue)にて染色した。
(Two-dimensional electrophoresis and gel staining)
First, isoelectric focusing was performed using an immobilized pH gradient gel (trade name: Immobiline Drystrip, 7 cm, pH 3-10 / Amersham biosciences) (trade name: Etern IPGphor II / Amersham biosciences). Next, SDS-PAGE was performed in the second dimension using a polyacrylamide gel (10% Real Gel plate / BIO CRAFT). The gel after electrophoresis was stained with CBB (Coomassie Brilliant Blue).

(Western blotting)
2次元電気泳動後のゲル上のタンパク質をSemi−dry blotterを用いて電気的にPVDF(poly vinilidene difluoride)膜(MILLIPORE社)に転写した。転写したPVDF膜をブロッキングバッファー(5% nonfat milk−PBS−0.1%Tween)を用いて室温1時間インキュベートした後、1次抗体として癌患者のヒト血清(1000倍希釈/5%BSA−PBS−0.1%Tween)を室温1時間反応させ、その後洗浄した。次に2次抗体として5%BSA−PBS−0.1%Tweenにて10000倍希釈したパーオキシダーゼ標識anti−Human IgG antibody(Santacruz社)を室温1時間反応させ、その後洗浄し、ECL(Amersham biosciences社)にて化学発光させ、X線フィルムに露光させた。
(Western blotting)
The protein on the gel after the two-dimensional electrophoresis was electrically transferred to a PVDF (poly vinylidene fluoride) membrane (MILLIPORE) using a Semi-dry blotter. The transferred PVDF membrane was incubated with a blocking buffer (5% nonfat milk-PBS-0.1% Tween) for 1 hour at room temperature, and then human serum of cancer patients (1000-fold diluted / 5% BSA-PBS) as a primary antibody. -0.1% Tween) was allowed to react for 1 hour at room temperature and then washed. Next, peroxidase-labeled anti-Human IgG antibody (Santacruz) diluted 10,000 times with 5% BSA-PBS-0.1% Tween as a secondary antibody was allowed to react at room temperature for 1 hour, then washed, and then ECL (Amersham biosciences). Chemiluminescence and exposure to X-ray film.

(2) 癌特異的自己抗体認識抗原タンパク質の同定 (2) Identification of cancer-specific autoantibody recognition antigen protein

(抗原タンパク質(PGAM)の決定)
Western blottingにて観察される癌患者血清と反応を示すバンドと、CBB染色した2次元電気泳動ゲルを比較し、一致するタンパク質スポットをゲルより切り出した。そして、下記の条件により、ゲルの染色液の脱色、ゲルの脱水、ゲル内消化およびペプチド抽出の一連の操作を行い、ペプチドの質量解析を行った。その結果、前記癌患者血清と特異的に反応したタンパク質として、PGAM(PGAM1)が同定された。この質量解析の結果を図13に示す。
(Determination of antigen protein (PGAM))
A band showing a reaction with cancer patient serum observed by Western blotting was compared with a CBB-stained two-dimensional electrophoresis gel, and a matching protein spot was cut out from the gel. Then, a series of operations of decolorization of the gel staining solution, gel dehydration, in-gel digestion and peptide extraction were performed under the following conditions, and mass analysis of the peptide was performed. As a result, PGAM (PGAM1) was identified as a protein that specifically reacted with the cancer patient serum. The result of this mass analysis is shown in FIG.

染色液の脱色:50%ACN/25mM NH Bicarbonate溶液100μLを使用し、15分間適宜震盪した。この操作を3回繰り返し施行した。 Decolorization of staining solution: 100 μL of 50% ACN / 25 mM NH 4 Bicarbonate solution was used and shaken appropriately for 15 minutes. This operation was repeated three times.

ゲルの脱水:ゲルを100%ACN溶液30μLに5分間浸し、溶液を除去した後、Speed Vacにて約15分間乾燥させ完全脱水を行った。 Gel dehydration: The gel was immersed in 30 μL of a 100% ACN solution for 5 minutes to remove the solution, and then dried in a Speed Vac for about 15 minutes for complete dehydration.

ゲル内消化:脱水乾燥したゲルに、凍結保存してあるトリプシン溶液(10μg/mL Trypsin/50mM NH Bicarbonate,Promega社)20μLを入れ、37℃にて一晩インキュベートして酵素処理を行った。 In-gel digestion: A freeze-preserved trypsin solution (10 μg / mL Trypsin / 50 mM NH 4 Bicarbonate, Promega) 20 μL was added to the dehydrated and dried gel, and incubated at 37 ° C. overnight for enzyme treatment.

ペプチド抽出:酵素処理後のゲルに75μLの抽出液(50%ACN/5%TFA)を添加し、ゲル内のペプチドを抽出した(1時間震盪)。抽出液をSpeed Vacで5〜10μLまで濃縮し、商品名ZipTip C18(Millipore社)を用いて濃縮抽出液の脱塩と同時にペプチドを回収し、質量解析用マトリックス溶液に溶出して解析用試料とした。   Peptide extraction: 75 μL of an extract (50% ACN / 5% TFA) was added to the gel after the enzyme treatment, and the peptide in the gel was extracted (shaking for 1 hour). Concentrate the extract to 5-10 μL with Speed Vac, collect the peptide simultaneously with desalting the concentrated extract using the trade name ZipTip C18 (Millipore), elute it into the matrix solution for mass analysis, did.

解析:MALDI−TOF型質量解析装置(商品名Voyager DE Pro,Applied Biosystems社)を使用し質量解析をし、そのデータを元にPeptide mass fingerprinting法(検索サイト:MS Fit(http://prospector.ucsf.edu/)、検索date base : NCBI)にてタンパク質を同定した。   Analysis: Mass analysis was performed using a MALDI-TOF mass spectrometer (trade name: Voyager DE Pro, Applied Biosystems), and Peptide mass finger printing method (search site: MS Fit (http: // prospector. The protein was identified by ucsf.edu/), search date base: NCBI).

(3) 癌の判定 (3) Determination of cancer

(遺伝子クローニングおよび組換えタンパク質の作製)
ヒトMIAPaCa II培養細胞株よりRNAを抽出し、商品名RevertAid First Strand cDNA Synthesis Kit(Fermentas社)を用いてcDNAを合成した。特異的プライマーを用いRT−nested PCR法にて目的DNAを増幅して回収した。このDNAをタンパク発現用ベクター(pGEX 6p2 vectorあるいはpMAL c2 vector)に組み込み、大腸菌発現系(competent cell:BL21)を用いて融合タンパク質を発現させた。組換えPGAM1はアフィニティーゲル(Amylose Resin)にて精製し、融合タンパク質MBP−PGAM1として溶出し回収した。組換えTPI1はアフィニティーゲル(Glutathione Sepharose 4B gel)にて精製し融合タンパク質GST−TPI1として回収した後、2%Prescision protease(Amersham biosciences社)にてGST部を切断分離し、遠心分離(2500rpm/room temp./5min)後の上清をTPI1として回収した。前記両組換えタンパク質は、いずれも10%PBSに対して透析をした後、組換えタンパク質溶液として回収した。得られた抗原タンパク質は、MBP−PGAM1およびTPI1である。なお、前記RT−nested PCR法の操作および条件は、下記のとおりである。
(Gene cloning and production of recombinant protein)
RNA was extracted from a human MIAPaCa II cultured cell line, and cDNA was synthesized using the product name RevertAid First Strand cDNA Synthesis Kit (Fermentas). The target DNA was amplified and recovered by RT-nested PCR using specific primers. This DNA was incorporated into a protein expression vector (pGEX 6p2 vector or pMAL c2 vector), and a fusion protein was expressed using an E. coli expression system (competent cell: BL21). Recombinant PGAM1 was purified by affinity gel (Amyrose Resin) and eluted and recovered as fusion protein MBP-PGAM1. Recombinant TPI1 was purified with an affinity gel (Glutathione Sepharose 4B gel) and recovered as fusion protein GST-TPI1, and then the GST part was cleaved and separated with 2% Prescience protease (Amersham biosciences) and centrifuged (2500 rpm / room). The supernatant after temp./5 min) was recovered as TPI1. Both the recombinant proteins were dialyzed against 10% PBS and then recovered as a recombinant protein solution. The resulting antigenic proteins are MBP-PGAM1 and TPI1. The operation and conditions of the RT-nested PCR method are as follows.

(RT−nested PCR法の操作および条件)
PGAM1およびTPI1のクローニングは、データベースよりそれぞれのタンパク質の全長cDNA配列を検索し、coding sequenceを基に配列を設計し、これに基づきカスタムプライマーを購入(Sigma Genosys社)し、使用した。プライマーの配列を下記に示す。括弧内はアニーリング温度を示す。反応液のDNAポリメラーゼは、商品名TaKaRa LA Taq(Takara bio 社)を使用し、下記に示すWF/WB primerを使用して1回目のPCRを行った後、そのPCR産物をテンプレートとし、下記に示すアダプターをつけたnested primerを用いて2回目のPCRを行い、全長のPGAM1およびTPI1をクローニングした。PCRのプログラムは、94℃×10sec、アニーリング(下記の括弧内の温度)×15secおよび72℃×120secの一連のサイクルを35サイクル行い、反応後は、4℃で保存した。
(Operation and conditions of RT-nested PCR method)
For cloning of PGAM1 and TPI1, the full-length cDNA sequence of each protein was searched from the database, the sequence was designed based on the coding sequence, and a custom primer was purchased (Sigma Genosys) and used. The primer sequences are shown below. The annealing temperature is shown in parentheses. As the DNA polymerase in the reaction solution, the product name TaKaRa LA Taq (Takara bio) was used, and after performing the first PCR using the following WF / WB primer, the PCR product was used as a template, A second PCR was performed using a nested primer with the indicated adapter, and full-length PGAM1 and TPI1 were cloned. The PCR program was a series of 35 cycles of 94 ° C. × 10 sec, annealing (temperature in parentheses below) × 15 sec and 72 ° C. × 120 sec, and stored at 4 ° C. after the reaction.

(PGAM1:1回目PCRプライマー)
WF:5’−aatctgctaatcccagtcggtgcc−3’(配列番号3)
WB:5’−actcgcaaaaacccaagtcactac−3’(配列番号4)
(57℃)
(PGAM1: First PCR primer)
WF: 5'-aatctgctaatcccagtcggtgcc-3 '(SEQ ID NO: 3)
WB: 5′-actcgcaaaaacccaagtcactac-3 ′ (SEQ ID NO: 4)
(57 ° C)

(PGAM1:2回目PCRプライマー)
F−BamH1:5’−cgcggatccatggccgcctacaaactg−3’(配列番号5)
B−EcoR1:5’−ccggaattctcacttcttggccttgcc−3’(配列番号6)
(65℃)
(PGAM1: 2nd PCR primer)
F-BamH1: 5′-cgcggatccatggccgcctacaaactg-3 ′ (SEQ ID NO: 5)
B-EcoR1: 5′-ccggaattctcacttcttggccttgcc-3 ′ (SEQ ID NO: 6)
(65 ° C)

(TPI1:1回目PCRプライマー)
WF:5’−caagaagggggaacgtcgg−3’(配列番号7)
WB:5’−atatgcagggaaagggcagttac−3’(配列番号8)
(57℃)
(TPI1: First PCR primer)
WF: 5′-caagaagggggaacgtcgg-3 ′ (SEQ ID NO: 7)
WB: 5′-atatgcagggaaagggcagttac-3 ′ (SEQ ID NO: 8)
(57 ° C)

(TPI1:2回目PCRプライマー)
F−BamH1:5’−cgcggatccatggcgccctccagg−3’(配列番号9)
B−Xho1:5’−ccctcgagtcattgtttggcattg−3’(配列番号10)
(57℃)
(TPI1: 2nd PCR primer)
F-BamH1: 5′-cgcggatccatggcgccctccagg-3 ′ (SEQ ID NO: 9)
B-Xho1: 5′-ccctcgagtcattgtttggcattg-3 ′ (SEQ ID NO: 10)
(57 ° C)

(患者血清中の癌特異的自己抗体のスクリーニング)
精製組換えタンパク質をCarbonate buffer(0.2M , pH:9.5)を用いて濃度調整し、96穴プレートに100ng/100μl/wellにて固相化(4℃ , over night)した。
(Screening of cancer-specific autoantibodies in patient serum)
The concentration of the purified recombinant protein was adjusted using Carbonate buffer (0.2 M, pH: 9.5), and immobilized on a 96-well plate at 100 ng / 100 μl / well (4 ° C., over night).

ヒト抗TPI1抗体の測定は、ELISA(Enzyme−linked immunosorbent assay)法にて行った。サンプル血清は、0.5%BSA−PBS−0.01%Tweenにて1000倍に希釈し、50μl/wellずつ加え、1時間室温で静置し、その後洗浄した。検出抗体は、anti−human IgG(HRP)を用い0.5%BSA−PBS−0.01%Tweenにて4000倍希釈液をつくり、この希釈液を50μL/wellずつ加え、1時間室温静置し、その後洗浄した。TMB(3,3’5,5’−Tetramethyl Benzidin liquid/SIGMA社)を100μL/well加え、30分室温静置の後、10%HSOを50μL/well加え反応を停止させた。そして、各wellについて、450nm/620nmにて吸光度を測定した。 The human anti-TPI1 antibody was measured by ELISA (Enzyme-linked immunosorbent assay). The sample serum was diluted 1000 times with 0.5% BSA-PBS-0.01% Tween, added 50 μl / well, allowed to stand at room temperature for 1 hour, and then washed. Anti-human IgG (HRP) is used as a detection antibody, and a 4000-fold diluted solution is prepared with 0.5% BSA-PBS-0.01% Tween, and this diluted solution is added by 50 μL / well and allowed to stand at room temperature for 1 hour. And then washed. 100 μL / well of TMB (3,3′5,5′-tetramethyl benzidin liquid / SIGMA) was added, and after standing at room temperature for 30 minutes, 50 μL / well of 10% H 2 SO 4 was added to stop the reaction. And about each well, the light absorbency was measured at 450 nm / 620 nm.

ヒト抗PGAM1抗体の測定は、CLEIA(Chemiluminescent enzyme immunoassay)法にて行った。サンプル血清は、0.5%BSA−PBS−0.01%Tweenにて1000倍に希釈し、50μl/wellずつ加え、1時間室温静置し、その後洗浄した。検出抗体は、anti−human IgA (HRP)を用い0.5%BSA−PBS−0.01%Tweenにて1000倍希釈液をつくり、50μL/wellずつ加え、1時間室温静置し、その後洗浄した。ついで、発光基質(ECL)を、50μl/well加え、15分室温静置の後、ルミノメーターにて化学発光を測定した。   The measurement of the human anti-PGAM1 antibody was carried out by the CLEIA (Chemiluminescent enzyme immunoassay) method. The sample serum was diluted 1000 times with 0.5% BSA-PBS-0.01% Tween, added 50 μl / well, allowed to stand at room temperature for 1 hour, and then washed. For detection antibody, use anti-human IgA (HRP) to make a 1000-fold diluted solution with 0.5% BSA-PBS-0.01% Tween, add 50 μL / well, and let stand at room temperature for 1 hour, then wash did. Next, 50 μl / well of luminescent substrate (ECL) was added, and after standing at room temperature for 15 minutes, chemiluminescence was measured with a luminometer.

(結果1)
MBP−PGAM1を用いたCLEIAの結果を、図1から図5に示す。
(Result 1)
The results of CLEIA using MBP-PGAM1 are shown in FIGS.

図1は、全癌患者(malignant)、全良性疾患者(benign)および健常者(control)の結果を示すグラフと表である。図2は、癌の種類別にCLEIAの結果を示したグラフである。図3は、癌の種類別に陽性(positive)、陰性(negative)および陽性率(positive rate(%))を示す表である。図1から図3では、陽性(positive)の判断の閾値(Cut off)を、健常者の平均値に標準偏差の2倍の値を足した値(cont.mean+2SD)にしたものである。この閾値を「第1の閾値」という。図1のグラフと表に示すように、全ての癌と、良性疾患および健常者とを高い確率で判別することができた。また、図2および図3に示すように、6種類の癌において、各癌と、良性疾患および健常者を高い確率で区別することができた。また、図3の表に示すように、膵臓癌、大腸癌、胃癌および肝・胆道系癌を合わせると、さらに陽性率が70%に上昇した。図4は、癌の種類別にCLEIAの結果を示したグラフである。図5は、癌の種類別に陽性(positive)、陰性(negative)および陽性率(positive rate(%))を示す表である。図4および図5では、陽性(positive)の判断の閾値(Cut off)を、健常者の平均値に標準偏差値を足した値(cont.mean+SD)にしたものである。この閾値を「第2の閾値」という。図4および図5に示すように、6種類の癌において、癌と、良性疾患および健常者を高い確率で区別することができた。また、図5の表に示すように、膵臓癌、大腸癌、胃癌および肝・胆道系癌を合わせると、さらに陽性率が75%に上昇した。なお、図1、図2および図4のグラフの縦軸の「A.U」.は、「arbitrary unit」を意味する。   FIG. 1 is a graph and a table showing the results of all cancer patients (malignants), all benign patients (benigns), and healthy persons (controls). FIG. 2 is a graph showing the results of CLEIA for each type of cancer. FIG. 3 is a table showing positive, negative, and positive rate (positive rate (%)) for each type of cancer. In FIG. 1 to FIG. 3, the positive determination threshold (Cut off) is a value obtained by adding a value twice as large as the standard deviation to the average value of healthy subjects (cont.mean + 2SD). This threshold is referred to as a “first threshold”. As shown in the graph and table of FIG. 1, all cancers, benign diseases and normal subjects could be distinguished with high probability. Moreover, as shown in FIG. 2 and FIG. 3, in 6 types of cancer, each cancer, benign disease, and a healthy person were able to be distinguished with high probability. Further, as shown in the table of FIG. 3, when pancreatic cancer, colon cancer, gastric cancer, and liver / biliary tract cancer were combined, the positive rate further increased to 70%. FIG. 4 is a graph showing the results of CLEIA for each type of cancer. FIG. 5 is a table showing positive, negative, and positive rate (positive rate (%)) for each type of cancer. 4 and 5, the positive judgment threshold (Cut off) is a value obtained by adding the standard deviation value to the average value of healthy subjects (cont.mean + SD). This threshold is referred to as a “second threshold”. As shown in FIG. 4 and FIG. 5, in 6 types of cancer, it was possible to distinguish cancer from benign diseases and healthy subjects with high probability. Further, as shown in the table of FIG. 5, when pancreatic cancer, colon cancer, gastric cancer and liver / biliary tract cancer were combined, the positive rate further increased to 75%. 1, 2, and 4, “AU”. Means “arbitrary unit”.

(結果2)
TPI1を用いたCLEIAの結果を、図6から図10に示す。
(Result 2)
The results of CLEIA using TPI1 are shown in FIGS.

図6は、全癌患者(malignant)、全良性疾患者(benign)および健常者(control)の結果を示すグラフと表である。図7は、癌の種類別にCLEIAの結果を示したグラフである。図8は、癌の種類別に陽性(positive)、陰性(negative)および陽性率(positive rate(%))を示す表である。図6から図8では、陽性(positive)の判断の閾値(Cut off)を、前記第1の閾値(cont.mean+2SD)にしたものである。図6のグラフと表に示すように、全ての癌と、良性疾患および健常者とを、高い確率で判別することができた。また、図7および図8に示すように、6種類の癌において、各癌と、良性疾患および健常者を高い確率で区別することができた。図9は、癌の種類別にCLEIAの結果を示したグラフである。図10は、癌の種類別に陽性(positive)、陰性(negative)および陽性率(positive rate(%))を示す表である。図9および図10では、陽性(positive)の判断の閾値(Cut off)を、前記第2の閾値(cont.mean+SD)にしたものである。図9および図10に示すように、6種類の癌において、各癌と、良性疾患および健常者を高い確率で区別することができた。   FIG. 6 is a graph and a table showing the results of all cancer patients (malignants), all benign patients (benign), and healthy persons (control). FIG. 7 is a graph showing the results of CLEIA for each type of cancer. FIG. 8 is a table showing the positive, negative, and positive rate (positive rate (%)) for each type of cancer. 6 to 8, the threshold value (Cut off) for positive determination is the first threshold value (cont.mean + 2SD). As shown in the graph and table of FIG. 6, all cancers, benign diseases and normal subjects could be discriminated with high probability. Moreover, as shown in FIG. 7 and FIG. 8, in 6 types of cancer, each cancer, benign disease, and healthy person could be distinguished with high probability. FIG. 9 is a graph showing the results of CLEIA for each type of cancer. FIG. 10 is a table showing positive, negative, and positive rate (positive rate (%)) for each type of cancer. 9 and 10, the positive determination threshold (Cut off) is the second threshold (cont.mean + SD). As shown in FIG. 9 and FIG. 10, in 6 types of cancer, it was possible to distinguish each cancer from a benign disease and a healthy person with a high probability.

(従来の腫瘍マーカとの比較)
図11および図12に従来の腫瘍マーカ(CA19−9、CEA)による癌の判別と本実施例による癌の判別を示す。CA19−9は、膵癌、胆道癌等の各種消化器癌で上昇する腫瘍マーカであり、単位は、「U/ml」であり、閾値(cut off 値)は37U/mlである。CEAは、消化器癌、乳癌、肺癌等で上昇する腫瘍マーカであり、単位は、「ng/ml」であり、閾値(cut off 値)は5.0ng/mlである。これら従来の腫瘍マーカでは、いずれも、血清中の前記マーカのタンパク質濃度が測定される。図11は、腫瘍マーカ「CA19−9」の病期別の判別の表と、本実施例のPGAM1およびTPI1の癌の判別の表とを示す。同図において、閾値は、前記第1の閾値および第2の閾値の双方を示す。同図に示すように、本実施例の前記二つ腫瘍マーカは、従来の腫瘍マーカ「CA19−9」と同等以上の確率で各種癌を判別できたことが分かる。図12は、膵臓癌の13例において、従来の腫瘍マーカである「CA19−9」と「CEA」と、本実施例のPGAM1とTPI1との癌の判別を示す表である。同図において、「patien」は癌患者を示し、癌患者13名ごとに、前記各種マーカのスコアを示している。同図に示すように、「CA19−9」の陽性率は、92.3%であり、「CEA」の陽性率は33.3%であった。これに対し、本実施例の2つの腫瘍マーカであるPGAM1とTPI1を合わせた陽性率は、100%であり、癌を完全に判別できた。なお、図11および図12の従来の腫瘍マーカの判別データは、「臨床検査ガイドライン 2005/2006」(日本臨床検査医学会)による。
(Comparison with conventional tumor markers)
FIG. 11 and FIG. 12 show cancer discrimination using a conventional tumor marker (CA19-9, CEA) and cancer discrimination according to this embodiment. CA19-9 is a tumor marker that rises in various digestive organ cancers such as pancreatic cancer and biliary tract cancer. The unit is “U / ml”, and the threshold (cut off value) is 37 U / ml. CEA is a tumor marker that increases in digestive organ cancer, breast cancer, lung cancer, etc., the unit is “ng / ml”, and the threshold value (cut off value) is 5.0 ng / ml. In any of these conventional tumor markers, the protein concentration of the marker in serum is measured. FIG. 11 shows a table for distinguishing the tumor marker “CA19-9” by stage and a table for distinguishing cancers of PGAM1 and TPI1 in this example. In the figure, the threshold value indicates both the first threshold value and the second threshold value. As shown in the figure, it can be seen that the two tumor markers of the present example were able to distinguish various cancers with a probability equal to or higher than that of the conventional tumor marker “CA19-9”. FIG. 12 is a table showing discrimination of cancers between “CA19-9” and “CEA”, which are conventional tumor markers, and PGAM1 and TPI1 of this example in 13 cases of pancreatic cancer. In the figure, “patien” indicates a cancer patient, and the scores of the various markers are shown for each of 13 cancer patients. As shown in the figure, the positive rate of “CA19-9” was 92.3%, and the positive rate of “CEA” was 33.3%. In contrast, the positive rate of PGAM1 and TPI1, which are the two tumor markers of this example, was 100%, and cancer was completely discriminated. The conventional tumor marker discrimination data shown in FIGS. 11 and 12 are based on “Clinical Laboratory Guidelines 2005/2006” (Japan Society for Clinical Laboratory Medicine).

本発明の腫瘍マーカは、感度および特異性の双方が高く、早期癌であっても高精度に検出できる。したがって、本発明の腫瘍マーカは、癌の診断、評価等に好ましく使用することができ、臨床分野、学術研究分野および治療薬や治療方法の研究開発の分野の全ての分野に広く用いることができ、その用途は制限されない。   The tumor marker of the present invention has both high sensitivity and specificity, and can be detected with high accuracy even for early cancer. Therefore, the tumor marker of the present invention can be preferably used for diagnosis, evaluation, etc. of cancer, and can be widely used in all fields of clinical fields, academic research fields, and research and development fields of therapeutic drugs and treatment methods. The use is not limited.

図1は、本発明の一実施例における癌の判定結果を示すグラフである。FIG. 1 is a graph showing cancer determination results in an example of the present invention. 図2は、前記実施例における各癌の判定結果を示すグラフである。FIG. 2 is a graph showing the determination results for each cancer in the Example. 図3は、前記実施例における各癌の判定結果を示す表である。FIG. 3 is a table showing the determination results for each cancer in the Example. 図4は、前記実施例における各癌のその他の判定結果を示すグラフである。FIG. 4 is a graph showing other determination results for each cancer in the Example. 図5は、前記実施例における各癌のその他の判定結果を示す表である。FIG. 5 is a table showing other determination results for each cancer in the Example. 図6は、本発明のその他の実施例における癌の判定結果を示すグラフである。FIG. 6 is a graph showing cancer determination results in other examples of the present invention. 図7は、前記実施例における各癌の判定結果を示すグラフである。FIG. 7 is a graph showing the determination results for each cancer in the Example. 図8は、前記実施例における各癌の判定結果を示す表である。FIG. 8 is a table showing the determination results for each cancer in the Example. 図9は、前記実施例における各癌のその他の判定結果を示すグラフである。FIG. 9 is a graph showing other determination results for each cancer in the Example. 図10は、前記実施例における各癌のその他の判定結果を示す表である。FIG. 10 is a table showing other determination results for each cancer in the Example. 図11は、本発明の腫瘍マーカと従来のマーカの癌の判定の比較の一例を示す表である。FIG. 11 is a table showing an example of comparison of cancer determination between the tumor marker of the present invention and the conventional marker. 図12は、本発明の腫瘍マーカと従来のマーカの癌の判定の比較のその他の例を示す表である。FIG. 12 is a table showing another example of comparison of cancer determination between the tumor marker of the present invention and the conventional marker. 図13は、本発明のさらにその他の実施例における質量解析の結果を示す表である。FIG. 13 is a table showing the results of mass analysis in still another example of the present invention.

Claims (10)

下記(A)の腫瘍マーカおよび下記(B)の腫瘍マーカの両方を含む腫瘍マーカ。
(A)抗ヒト由来PGAM1抗体を含む腫瘍マーカ。
(B)抗ヒト由来TPI1抗体を含む腫瘍マーカ。
A tumor marker comprising both the tumor marker of the following (A) and the tumor marker of the following (B).
(A) Tumor markers containing anti-human-derived PGAM1 antibody.
(B) tumor marker containing anti-human-derived TPI1 antibody.
前記抗ヒト由来PGAM1抗体および前記抗ヒト由来TPI1抗体が、ヒト血清中の自己抗体である請求項1記載の腫瘍マーカ。 The tumor marker according to claim 1, wherein the anti-human-derived PGAM1 antibody and the anti-human-derived TPI1 antibody are autoantibodies in human serum. 膵癌、肝臓癌、胆管癌、結腸癌、直腸癌、大腸癌、胃癌、乳癌および口腔癌からなる群から選択される少なくとも一つの癌の診断のための腫瘍マーカである請求項1または2記載の腫瘍マーカ。 The tumor marker for diagnosis of at least one cancer selected from the group consisting of pancreatic cancer, liver cancer, bile duct cancer, colon cancer, rectal cancer, colon cancer, stomach cancer, breast cancer and oral cancer. Tumor marker. 血清ELISA法または血清CLEIA法を用いた腫瘍診断キットであって、ヒト由来PGAM1およびヒト由来TPI1の両方の腫瘍特異的抗原と、前記ヒト由来PGAM1に対する自己抗体を認識する標識二次抗体と、前記ヒト由来TPI1に対する自己抗体を認識する標識二次抗体とを含む腫瘍診断キット。 A tumor diagnostic kit using a serum ELISA method or a serum CLEIA method, comprising a tumor-specific antigen of both human-derived PGAM1 and human-derived TPI1, a labeled secondary antibody that recognizes an autoantibody against the human-derived PGAM1 , A tumor diagnostic kit comprising a labeled secondary antibody that recognizes an autoantibody against human-derived TPI1 . 前記ヒト由来PGAM1および前記ヒト由来TPI1が、組換タンパク質である請求項4記載の腫瘍診断キット。 The tumor diagnostic kit according to claim 4, wherein the human-derived PGAM1 and the human-derived TPI1 are recombinant proteins. 膵癌、肝臓癌、胆管癌、結腸癌、直腸癌、大腸癌、胃癌、乳癌および口腔癌からなる群から選択される少なくとも一つの癌の診断のためのキットである請求項4または5記載の腫瘍診断キット。 The tumor according to claim 4 or 5, which is a kit for diagnosing at least one cancer selected from the group consisting of pancreatic cancer, liver cancer, bile duct cancer, colon cancer, rectal cancer, colon cancer, gastric cancer, breast cancer and oral cancer. Diagnostic kit. 腫瘍マーカの測定方法であって、前記腫瘍マーカが、ヒト由来PGAM1およびヒト由来TPI1の少なくとも一方のタンパク質に対するヒト血清中の自己抗体であり、前記腫瘍マーカの検出剤が、ヒト由来PGAM1およびヒト由来TPI1であり、前記検出剤に、前記タンパク質に対する前記自己抗体を反応させ、前記ヒト由来PGAM1と前記ヒト由来PGAM1に対する自己抗体とが結合して形成された複合体、および、前記ヒト由来TPI1と前記ヒト由来TPI1に対する自己抗体とが結合して形成された複合体を測定する腫瘍マーカの測定方法。 A method for measuring a tumor marker, wherein the tumor marker is an autoantibody in human serum against at least one protein of human-derived PGAM1 and human-derived TPI1, and the detection agent for the tumor marker is human-derived PGAM1 and human-derived PGAM1 a TPI1, wherein the detection agent is reacted with the autoantibody against the proteins, complexes in which the autoantibodies formed in conjunction with the human PGAM1 to said human PGAM1, and, the said human TPI1 A method for measuring a tumor marker, which measures a complex formed by binding to an autoantibody against human-derived TPI1 . 前記複合体の測定が、前記複合体の前記自己抗体に標識二次抗体を結合させ、前記二次抗体の前記標識を測定する方法である請求項7記載の腫瘍マーカの測定方法。 The method of measuring a tumor marker according to claim 7, wherein the measurement of the complex is a method in which a labeled secondary antibody is bound to the autoantibody of the complex and the label of the secondary antibody is measured. 前記ヒト由来PGAM1および前記ヒト由来TPI1が、組換えタンパク質である請求項7または8記載の腫瘍マーカの測定方法。 The method for measuring a tumor marker according to claim 7 or 8, wherein the human-derived PGAM1 and the human-derived TPI1 are recombinant proteins. 前記腫瘍マーカが、膵癌、肝臓癌、胆管癌、結腸癌、直腸癌、大腸癌、胃癌、乳癌および口腔癌からなる群から選択される少なくとも一つの癌の診断のための腫瘍マーカである請求項7から9のいずれか一項に記載の腫瘍マーカの測定方法。 The tumor marker is a tumor marker for diagnosing at least one cancer selected from the group consisting of pancreatic cancer, liver cancer, bile duct cancer, colon cancer, rectal cancer, colon cancer, stomach cancer, breast cancer and oral cancer. The method for measuring a tumor marker according to any one of 7 to 9.
JP2006202584A 2006-07-25 2006-07-25 Tumor marker, tumor diagnostic kit, and method for measuring tumor marker Active JP5211315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202584A JP5211315B2 (en) 2006-07-25 2006-07-25 Tumor marker, tumor diagnostic kit, and method for measuring tumor marker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202584A JP5211315B2 (en) 2006-07-25 2006-07-25 Tumor marker, tumor diagnostic kit, and method for measuring tumor marker

Publications (2)

Publication Number Publication Date
JP2008026290A JP2008026290A (en) 2008-02-07
JP5211315B2 true JP5211315B2 (en) 2013-06-12

Family

ID=39117055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202584A Active JP5211315B2 (en) 2006-07-25 2006-07-25 Tumor marker, tumor diagnostic kit, and method for measuring tumor marker

Country Status (1)

Country Link
JP (1) JP5211315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086788B1 (en) * 2014-07-02 2020-03-09 드래곤 빅토리 디벨롭먼트 리미티드 Specific biomarker set for non-invasive diagnosis of liver cancer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258299A (en) * 1994-03-25 1995-10-09 Oriental Yeast Co Ltd Antibody against pgam isozyme
JPH11225795A (en) * 1998-02-13 1999-08-24 Oriental Yeast Co Ltd Cell injury marker
CN1630819A (en) * 2001-04-03 2005-06-22 默克专利有限公司 Renal cell carcinoma markers
GB2424273B (en) * 2002-11-14 2007-06-27 Univ Nottingham Method for preparing tumour marker protein
JP2007507204A (en) * 2003-07-29 2007-03-29 ブリストル−マイヤーズ スクイブ カンパニー Biomarkers of cyclin-dependent kinase modulation

Also Published As

Publication number Publication date
JP2008026290A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
He et al. Proteomics‐based identification of HSP60 as a tumor‐associated antigen in colorectal cancer
WO2007142347A1 (en) Tumor marker and method for determination of the occurrence of cancerous disease
JP2007333744A (en) Method for identifying existence of antibody against intracellular protein antigen, and specific intracellular protein antigen within serum
CN112345755A (en) Biomarker of breast cancer and application thereof
EP2525227B1 (en) A method for detecting pancreatic cancer using the serological marker ULBP2
WO2009113674A1 (en) Diagnosis of bladder carcinoma
JP6361943B2 (en) Pancreatic cancer diagnostic kit comprising an antibody that specifically binds to complement factor B protein and an antibody that specifically binds to sugar chain antigen 19-9 protein
EP2620772A1 (en) Gastric cancer biomarkers and methods of use thereof
JP6276992B2 (en) Molecular markers for early detection of pleural mesothelioma patients and their expression analysis methods
JP5211315B2 (en) Tumor marker, tumor diagnostic kit, and method for measuring tumor marker
JP6122779B2 (en) Method for measuring anti-WT1 antibody
JP6639408B2 (en) Method for detecting arteriosclerosis and cancer using deoxyhypusine synthase gene as an index
JP5358808B2 (en) Tumor marker, tumor diagnostic kit, method for measuring tumor marker and tumor diagnostic method
EP1796723B1 (en) Method of diagnosing cancer by detecting the expression of spag9 or the presence of anti-spag9 antibodies
US20220317121A1 (en) Method and means for detecting an autoantibody
KR102307043B1 (en) Composition for early diagnosing hepatocellular carcinoma using WASF2 autoantibody
KR101636821B1 (en) Composition for diagnosing lung cancer comprising AIMP2-DX2 protein or fragment thereof
JP5605375B2 (en) Method for immunoassay of autoantibodies to Ku86, kit used therefor, and method for determining primary hepatocellular carcinoma using the same
JP2018155506A (en) Detection of colorectal cancer using chemokine in blood as marker
Hong Identification of CLP36 as a tumor antigen that induces an antibody response in pancreatic cancer
JP5283085B2 (en) Cancer diagnosis kit and cancer diagnosis method
Nikitina et al. Secretion of enteric α-defensin 5 into bloodstream by colon tumors
JP5562738B2 (en) Prognostic method for endometrial endometrioid adenocarcinoma
JP2008275413A (en) Kit for diagnosing squamous cell carcinoma, and determination method therefor
Keller Proteomics-driven approach for the detection of breast cancer biomarkers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150