JP5209256B2 - Starch with high thickening effect and method for producing the same - Google Patents

Starch with high thickening effect and method for producing the same Download PDF

Info

Publication number
JP5209256B2
JP5209256B2 JP2007241574A JP2007241574A JP5209256B2 JP 5209256 B2 JP5209256 B2 JP 5209256B2 JP 2007241574 A JP2007241574 A JP 2007241574A JP 2007241574 A JP2007241574 A JP 2007241574A JP 5209256 B2 JP5209256 B2 JP 5209256B2
Authority
JP
Japan
Prior art keywords
starch
sodium hypochlorite
reaction
ppm
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007241574A
Other languages
Japanese (ja)
Other versions
JP2009073869A5 (en
JP2009073869A (en
Inventor
竜一 安東
哲哉 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Shokuhin Kako Co Ltd
Original Assignee
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shokuhin Kako Co Ltd filed Critical Nihon Shokuhin Kako Co Ltd
Priority to JP2007241574A priority Critical patent/JP5209256B2/en
Publication of JP2009073869A publication Critical patent/JP2009073869A/en
Publication of JP2009073869A5 publication Critical patent/JP2009073869A5/ja
Application granted granted Critical
Publication of JP5209256B2 publication Critical patent/JP5209256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grain Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、増粘効果の高い澱粉及びその製造方法に関し、特に未処理澱粉よりも増粘効果が高く、且つ塩素臭が低減された漂白澱粉及びその製造方法に関する。 The present invention relates to starch having a high thickening effect and a method for producing the same, and more particularly to a bleached starch having a thickening effect higher than that of untreated starch and having a reduced chlorine odor and a method for producing the same.

一般的に澱粉は、水存在下での加熱時に吸水して粒が膨潤し、その膨潤が物理的限界に達すると粒が崩壊する。崩壊が進むと粒は細分化され、やがて完全に消失する。これら一連の現象において、その粘度は澱粉粒の状態に応じて変化していく。例えば、澱粉を水に懸濁しただけでは粒がほとんど吸水しない為、粘度もほとんど発現しない。これを加熱していくと粒が膨潤し、粘度が発現する。その後加熱温度が上昇すると粒の膨潤が促進され、粘度は増加していく。粒の膨潤が物理的限界の直前に達すると、粘度も最大となる。その後粒の崩壊が起こると粘度は低下し始め、崩壊した粒が一定に細分化されるまで粘度は低下していく。 In general, starch absorbs water when heated in the presence of water and the particles swell, and when the swelling reaches a physical limit, the particles collapse. As the disintegration progresses, the grains become fragmented and eventually disappear completely. In these series of phenomena, the viscosity changes according to the state of starch granules. For example, when the starch is simply suspended in water, the particles hardly absorb water, so that the viscosity is hardly expressed. As this is heated, the grains swell and develop viscosity. Thereafter, when the heating temperature rises, the swelling of the grains is promoted and the viscosity increases. As the grain swells just before the physical limit, the viscosity is also maximized. After that, when the grain collapses, the viscosity starts to decrease, and the viscosity decreases until the disintegrated grains are fragmented to a certain degree.

澱粉は様々な食品に用いられているが、そのほとんどが加熱時の澱粉の増粘によって食感を向上させることを目的としている。代表的な例としては、タレ、ソース、ドレッシング、フィリング類の粘性や保形性の向上及び安定化、水産畜産練り食品、点心類、麺類、和洋菓子類の粘弾性の付与及び安定化などが挙げられる。 Starch is used in various foods, most of which are aimed at improving the texture by thickening the starch during heating. Typical examples include improving and stabilizing the viscosity and shape retention of sauces, sauces, dressings, and fillings, and imparting and stabilizing viscoelasticity of aquatic livestock kneaded foods, dim sums, noodles, Japanese and Western confectionery, etc. Can be mentioned.

しかしながら、前述したように澱粉は一定以上の加熱によって崩壊する性質がある為、加熱・調理条件によっては粘度が低下し、期待する粘度が得られない場合がある。この現象は、機械的シェア、加圧、極端な酸性もしくはアルカリ性によって促進され易い。 However, as described above, starch has the property of being disintegrated by heating above a certain level, so that the viscosity decreases depending on the heating and cooking conditions, and the expected viscosity may not be obtained. This phenomenon is easily promoted by mechanical shear, pressurization, extreme acidity or alkalinity.

この現象は、澱粉が崩壊し難いようにすることによって改善することが可能である。即ち、澱粉の粒構造を強化することによって澱粉の膨潤を抑制し、崩壊し難い性質に変化させることができる。粒構造を強化する方法としては、リン酸架橋、アセチル化アジピン酸架橋などのように澱粉の分子内もしくは分子間に架橋構造を化学修飾的に導入する方法が挙げられる。一方で、湿熱処理、温水処理などの物理的加工によって澱粉粒の結晶構造を変化させる方法が挙げられる。 This phenomenon can be improved by making it difficult for the starch to disintegrate. That is, by strengthening the grain structure of starch, it is possible to suppress the swelling of starch and change it to a property that does not easily collapse. Examples of a method for strengthening the grain structure include a method in which a cross-linked structure is introduced chemically or intermolecularly in starch, such as phosphoric acid cross-linking and acetylated adipic acid cross-linking. On the other hand, a method of changing the crystal structure of starch granules by physical processing such as wet heat treatment or hot water treatment can be mentioned.

しかしながら、リン酸架橋やアセチル化アジピン酸架橋などの化学修飾方法において用いられるオキシ塩化リン、トリメタリン酸ナトリウム、アジピン酸などの架橋剤は高価である為、より安価な粒構造の強化方法が求められている。物理的加工方法においても、湿熱処理は必要とされる設備が非常に高価であり、また温水処理は極めて長い反応時間が必要とされる為、いずれも安価な製造方法であるとは言い難い。 However, since crosslinking agents such as phosphorous oxychloride, sodium trimetaphosphate, and adipic acid used in chemical modification methods such as phosphoric acid crosslinking and acetylated adipic acid crosslinking are expensive, a cheaper method for strengthening the grain structure is required. ing. Also in the physical processing method, the equipment required for the wet heat treatment is very expensive, and the hot water treatment requires an extremely long reaction time, so it is difficult to say that both are inexpensive production methods.

比較的安価に粒構造を強化する方法として、次亜塩素酸ナトリウムを用いる方法が知られている。次亜塩素酸ナトリウムは澱粉の漂白剤もしくは殺菌剤として一般的に用いられている物質であるが、非特許文献1には、コーンスターチにこれを少量添加することで粒構造を強化し、加熱時の増粘性を高められることが示されている。この現象はCHO基による分子間架橋結合の結果であろうと推測されている。特許文献1には、少量の次亜塩素酸ナトリウムの添加によってワキシーコーンスターチの増粘性が向上することが記載されている。特許文献2には次亜塩素酸処理のもち種澱粉の製造方法が記載され、アルカリ側で次亜塩素酸処理を行うことが記載されている。特許文献3には、次亜塩素酸塩などの酸化剤で処理した酸化澱粉の製造方法において、澱粉中に残存する酸化剤を除去する為にL−アスコルビン酸を使用することが記載されている。しかしながら、これらの文献に示された方法で次亜塩素酸ナトリウムを用いた場合、反応終了後に残存塩素除去処理を完全に行なったとしても、強い塩素臭が澱粉に残留してしまう為、食品の香りや風味を著しく低減することが問題となる。
特許文献4には、澱粉に多量の次亜塩素酸ナトリウムを添加して酸化処理を行った後にアルカリ処理を行い、その後少量の次亜塩素酸ナトリウムを添加して澱粉を漂白し、さらに残留塩素を除去することが記載されている。しかしながら、特許文献4記載の方法では、最初の酸化処理において多量の次亜塩素酸ナトリウムを用いる為に強い塩素臭が澱粉に残留する。さらに、最初の酸化処理よって澱粉が著しく低粘度化する為、その後にアルカリ処理や少量の次亜塩素酸ナトリウムの添加及び残留塩素除去処理を行っても、澱粉の増粘効果を得ることができず、むしろ粘度低下が促進される。
澱粉科学 第22巻 第1号 p.12〜13(1975) 特開平10−53601号公報 特開2005−304389号公報 特開2004−123959号公報 特表2002−521530号公報
As a method for strengthening the grain structure relatively inexpensively, a method using sodium hypochlorite is known. Sodium hypochlorite is a substance commonly used as a bleaching or bactericidal agent for starch. However, Non-Patent Document 1 describes that, by adding a small amount of this to corn starch, the grain structure is strengthened and heated. It has been shown that the thickening can be increased. It is speculated that this phenomenon may be a result of intermolecular crosslinking by CHO groups. Patent Document 1 describes that the addition of a small amount of sodium hypochlorite improves the thickening of waxy corn starch. Patent Document 2 describes a method for producing glutinous starch treated with hypochlorous acid, and describes performing hypochlorous acid treatment on the alkali side. Patent Document 3 describes the use of L-ascorbic acid in a method for producing oxidized starch treated with an oxidizing agent such as hypochlorite to remove the oxidizing agent remaining in the starch. . However, when sodium hypochlorite is used in the methods shown in these documents, even if the residual chlorine removal treatment is completely performed after the reaction is completed, a strong chlorine odor remains in the starch. The problem is that the aroma and flavor are significantly reduced.
In Patent Document 4, a large amount of sodium hypochlorite is added to starch and subjected to an oxidation treatment, followed by an alkali treatment, and then a small amount of sodium hypochlorite is added to bleach the starch, and further the residual chlorine. Is described. However, in the method described in Patent Document 4, a strong chlorine odor remains in the starch because a large amount of sodium hypochlorite is used in the initial oxidation treatment. Furthermore, since the starch is remarkably reduced in viscosity by the first oxidation treatment, the thickening effect of starch can be obtained even after subsequent alkali treatment, addition of a small amount of sodium hypochlorite and removal of residual chlorine. Rather, viscosity reduction is promoted.
Starch Science Vol.22 No.1 p. 12-13 (1975) Japanese Patent Laid-Open No. 10-53601 JP 2005-304389 A JP 2004-123959 A Special Table 2002-521530 gazette

液相反応において添加した次亜塩素酸ナトリウムを完全に反応させる為には長時間の反応が必要となるが、長時間反応させると澱粉の低粘度化が起こり、目的とする増粘効果を得ることができない。そこで、目的とする増粘効果が得られるような反応時間で反応を行なった後、残存塩素除去処理を行なって反応を完全に止める必要があるが、非特許文献1及び特許文献1記載の方法では、この残存塩素除去処理がpH6.0で行なわれている。このように次亜塩素酸ナトリウムが反応し続けている、もしくは微量残留している状況下でpHを中性付近以下にすると、残存する次亜塩素酸ナトリウムから塩素ガスが発生し、澱粉に塩素臭が残留してしまう。 In order to completely react with sodium hypochlorite added in the liquid phase reaction, a long reaction time is required. However, if the reaction is performed for a long time, the viscosity of the starch is lowered, and the desired thickening effect is obtained. I can't. Therefore, it is necessary to completely stop the reaction by removing the residual chlorine after performing the reaction for a reaction time such that the intended thickening effect can be obtained. The methods described in Non-Patent Document 1 and Patent Document 1 Then, this residual chlorine removal process is performed at pH 6.0. In this way, when sodium hypochlorite continues to react or remains in a trace amount, if the pH is reduced to below neutral, chlorine gas is generated from the remaining sodium hypochlorite, and chlorine is generated in the starch. Odor remains.

従って本発明は、未処理澱粉よりも増粘効果が高く、且つ塩素臭が低減された漂白澱粉及びその製造方法の提供することを目的とする。 Accordingly, an object of the present invention is to provide a bleached starch having a thickening effect higher than that of untreated starch and having a reduced chlorine odor, and a method for producing the same.

本発明者らは、前記課題を解決するべく鋭意検討を重ねた結果、高アルカリ性下(pH10.5〜11.5、好ましくは10.8〜11.2)で次亜塩素酸
ナトリウムを反応させた後、高アルカリ性(pH10.5〜11.5、好ましくは10.8〜11.2)を維持したまま残存塩素除去処理を行ない、最終的に得られる澱粉中に塩素が残留せず、且つカルボキシル基含量を0.1重量%未満となるようにすることで、未処理澱粉よりも増粘効果が高く、且つ塩素臭が低減された漂白澱粉が得られることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors reacted sodium hypochlorite under high alkalinity (pH 10.5 to 11.5, preferably 10.8 to 11.2). Then, a residual chlorine removal treatment is performed while maintaining high alkalinity (pH 10.5 to 11.5, preferably 10.8 to 11.2), and no chlorine remains in the starch finally obtained, and By making the carboxyl group content less than 0.1% by weight, it has been found that a bleaching starch having a thickening effect higher than that of untreated starch and having a reduced chlorine odor can be obtained, thereby completing the present invention. It came to.

一実施形態に係る本発明の漂白澱粉は、高アルカリ性下(pH10.5〜11.5、好ましくは10.8〜11.2)で次亜塩素酸ナトリウムを反応させた後、高アルカリ性(pH10.5〜11.5、好ましくは10.8〜11.2)を維持したまま残存塩素除去処理を行ない、最終的に得られる澱粉中に塩素が残留せず、且つカルボキシル基含量を0.1重量%未満となるように生成されることを特徴としている。 The bleached starch of the present invention according to an embodiment is reacted with sodium hypochlorite under high alkalinity (pH 10.5 to 11.5, preferably 10.8 to 11.2), and then highly alkaline (pH 10). .5 to 11.5, preferably 10.8 to 11.2), the residual chlorine is removed, and no chlorine remains in the finally obtained starch, and the carboxyl group content is 0.1. It is produced so that it may become less than weight%.

また、一実施形態に係る本発明の漂白澱粉の製造方法は、澱粉懸濁液のpHを10.5〜11.5、好ましくは10.8〜11.2に調整した後、微量の次亜塩素酸ナトリウムを添加し、その後pHを10.5〜11.5、好ましくは10.8〜11.2に維持し続けて反応させ、反応終了後にpHを10.5〜11.5、好ましくは10.8〜11.2に維持し続けて残存塩素除去処理を行ない、その後水洗、脱水、乾燥、粉砕を経て生成されることを特徴としている。 Moreover, the manufacturing method of the bleached starch of this invention which concerns on one Embodiment is, after adjusting the pH of starch suspension to 10.5-11.5, Preferably it is 10.8-11.2, A trace amount of hypochlorous acid. Sodium chlorate is added, and then the reaction is continued while maintaining the pH at 10.5 to 11.5, preferably 10.8 to 11.2. After the reaction is completed, the pH is 10.5 to 11.5, preferably It is characterized by being maintained through 10.8 to 11.2, subjected to residual chlorine removal treatment, and then subjected to water washing, dehydration, drying, and pulverization.

本発明の一実施形態に係る本発明の漂白澱粉によれば、残存する次亜塩素酸ナトリウムから発生する塩素ガスは最低限に抑えられ、結果として澱粉に残留する塩素臭を著しく低減することができる。また、pHが中性付近以下では次亜塩素酸ナトリウムによる澱粉の低粘度化が促進されてしまうが、本発明においては、次亜塩素酸ナトリウムが反応し続けている、もしくは微量残留している状況下でpHを中性付近以下することがない為、従来の方法よりも増粘効果を損なうことがなく、むしろ向上させた漂白澱粉及びその製造方法を提供することができる。 According to the bleached starch of the present invention according to an embodiment of the present invention, chlorine gas generated from the remaining sodium hypochlorite is minimized, and as a result, the chlorine odor remaining in the starch can be significantly reduced. it can. In addition, when the pH is near neutral or lower, the reduction of starch viscosity by sodium hypochlorite is promoted, but in the present invention, sodium hypochlorite continues to react or remains in a trace amount. Under the circumstances, the pH is not reduced to about neutral or lower, so that the effect of thickening is not impaired as compared with the conventional method, and an improved bleached starch and a method for producing the same can be provided.

本発明でいう澱粉とは、コーンスターチ、ハイアミロースコーンスターチ、ワキシーコーンスターチ、サゴ澱粉、緑豆澱粉、小麦澱粉、米澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉などから選ばれた少なくとも一種の澱粉であることを意味する。この中でも、増粘性が高く、且つ市場で大量に流通している安価な澱粉としてタピオカ澱粉、コーンスターチ、ワキシーコーンスターチ、馬鈴薯澱粉が挙げられ、これらが好ましい。 The starch as used in the present invention is at least one kind of starch selected from corn starch, high amylose corn starch, waxy corn starch, sago starch, mung bean starch, wheat starch, rice starch, potato starch, sweet potato starch, tapioca starch and the like. means. Among these, tapioca starch, corn starch, waxy corn starch, and potato starch are preferred as inexpensive starches that have high viscosity and are distributed in large quantities in the market.

一般的に澱粉の漂白は、過酢酸、過酸化水素、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、亜塩素酸ナトリウム、二酸化硫黄、亜硫酸塩類、過マンガン酸カリウム、過硫酸アンモニウムから選ばれた少なくとも一種の漂白剤を用いて行なわれる。ただし、これら漂白剤の中でも次亜塩素酸ナトリウムが最も高い増粘性付与効果を有し、且つ安価であることから、本発明においては次亜塩素酸ナトリウムを用いることを特徴としている。一方で、本発明でいう未処理澱粉とは、上記漂白剤を用いて処理されていない澱粉を意味する。 Generally starch bleaching is at least selected from peracetic acid, hydrogen peroxide, sodium hypochlorite, calcium hypochlorite, sodium chlorite, sulfur dioxide, sulfites, potassium permanganate, ammonium persulfate. This is done using a kind of bleach. However, among these bleaching agents, sodium hypochlorite has the highest thickening effect and is inexpensive, so the present invention is characterized by using sodium hypochlorite. On the other hand, untreated starch as used in the field of this invention means the starch which is not processed using the said bleaching agent.

本発明でいう加工澱粉とは、化学的及び/もしくは物理的加工によって澱粉の物性や性質を改変したものを意味する。化学的加工においては、その代表的な種類として、リン酸架橋、アセチル化アジピン酸架橋、アルデヒド架橋、アクロレイン架橋、エピクロルヒドリン架橋、グラフト重合、アセチル化、リン酸化、ギ酸化、脂肪酸化、硫酸化、ヒドロキシエチル化、ヒドロキシアルキル化、ヒドロキシプロピル化、カルボキシルメチル化、シアノエチル化、メチル化、カチオン化、オクテニルコハク酸化などが挙げられる。物理的加工においては、その代表的な種類として、α化、湿熱処理、油脂加工、酵素処理、酸処理、アルカリ処理、温水処理、ボールミル処理、高圧処理などが挙げられる。本発明においては、上記加工によって得られる澱粉の性質と次亜塩素酸ナトリウムによる澱粉の粒構造の強化を組み合わせることを目的として、これら加工澱粉を原料として用いることが可能である。例えば、アセチル化、ヒドロキシプロピル化、オクテニルコハク酸化のように澱粉の粒構造を強化する効果がない加工方法と次亜塩素酸ナトリウムによる粒構造の強化を組み合わせることは、加工澱粉の物性改良においては有意義である。また、リン酸架橋やアセチル化アジピン酸架橋のように澱粉粒の粒構造を強化することを目的とした加工方法と次亜塩素酸ナトリウムによる粒構造の強化を組み合わせることについても、リン酸架橋やアセチル化アジピン酸架橋に用いる架橋剤の低減や粒構造強化の度合いの微調整において有効である。従って、本発明の製造方法が上記加工澱粉の製造工程に含まれていてもよい。 The processed starch as used in the field of this invention means what changed the physical property and property of starch by chemical and / or physical processing. In chemical processing, as representative types, phosphoric acid crosslinking, acetylated adipic acid crosslinking, aldehyde crosslinking, acrolein crosslinking, epichlorohydrin crosslinking, graft polymerization, acetylation, phosphorylation, formication, fatty acidization, sulfation, Examples include hydroxyethylation, hydroxyalkylation, hydroxypropylation, carboxylmethylation, cyanoethylation, methylation, cationization, octenyl succination and the like. Typical examples of physical processing include pregelatinization, wet heat treatment, fat and oil processing, enzyme treatment, acid treatment, alkali treatment, hot water treatment, ball mill treatment, and high pressure treatment. In the present invention, these modified starches can be used as a raw material for the purpose of combining the properties of the starch obtained by the above-mentioned processing with the strengthening of the grain structure of the starch by sodium hypochlorite. For example, combining processing methods that do not have the effect of strengthening the grain structure of starch, such as acetylation, hydroxypropylation, and octenyl succination, and strengthening the grain structure with sodium hypochlorite is significant in improving the physical properties of processed starch. It is. In addition, combining phosphoric acid crosslinking and acetylated adipic acid crosslinking, such as processing methods aimed at strengthening the grain structure of starch grains, and strengthening of grain structure with sodium hypochlorite, It is effective in reducing the crosslinking agent used for acetylated adipic acid crosslinking and fine-tuning the degree of grain structure strengthening. Therefore, the production method of the present invention may be included in the production process of the modified starch.

本発明でいうカルボキシル基含量とは、次亜塩素酸ナトリウムを用いた反応によって導入された澱粉中のカルボキシル基を示すものであり、この値を用いて次亜塩素酸ナトリウムによる加工の度合いを判定することができる。本発明においては、澱粉中のカルボキシル基含量を0.1重量%未満にすることで、未処理澱粉よりも増粘性を高め、且つ塩素臭の残留を低減させることができる。カルボキシル基含量が0.1%以上であると、次亜塩素酸ナトリウムによる低粘度化が促進される為に増粘性を得ることができず、さらに反応において澱粉懸濁液中の次亜塩素酸ナトリウムの量が過剰となる為、塩素臭が残留し易くなる。 The carboxyl group content in the present invention indicates a carboxyl group in starch introduced by a reaction using sodium hypochlorite, and the degree of processing with sodium hypochlorite is determined using this value. can do. In the present invention, by setting the carboxyl group content in the starch to less than 0.1% by weight, the thickening can be increased and the residual chlorine odor can be reduced as compared with the untreated starch. If the carboxyl group content is 0.1% or more, viscosity reduction by sodium hypochlorite is promoted, so that thickening cannot be obtained, and further hypochlorous acid in the starch suspension in the reaction. Since the amount of sodium becomes excessive, the chlorine odor tends to remain.

上記カルボキシル基含量は、以下の方法によって定量される。乾燥物重量5.0gの澱粉試料に0.1N塩酸50mlを加え、30分間攪拌した後、ガラスフィルター(17G−4)を用いて吸引濾過する。なお、濾液が塩化物の反応を呈さなくなるまで蒸留水で洗浄を続ける。塩化物の反応は、濾液に0.1N硝酸銀溶液を添加することで確認することができ、濾液が白濁すれば塩化物反応が起こっていることとなる。残留物を水300mlに懸濁し、攪拌しながら水浴上で加熱してゲル化させ、さらに15分間加熱した後、フェノールフタレイン指示薬を3滴加え、直ちに0.1N水酸化ナトリウム溶液で呈色するまで滴定する。空試験では、乾燥物重量5.0gの澱粉試料に蒸留水50mlを加え、30分間攪拌した後、ガラスフィルター(17G−4)を用いて吸引濾過し、蒸留水200mlで洗う。残留物を蒸留水300mlに懸濁し、攪拌しながら水浴上で加熱してゲル化させ、さらに15分間加熱した後、フェノールフタレイン指示薬を3滴加え、直ちに0.1N水酸化ナトリウム溶液で呈色するまで滴定する。カルボキシル基含量は以下の計算式を用いて算出する。
カルボキシル基含量(重量%)=(A−B)×F×0.45/5
A:試料滴定量(ml)
B:空試験滴定量(ml)
F:0.1N水酸化ナトリウムの力価
The carboxyl group content is quantified by the following method. After adding 50 ml of 0.1N hydrochloric acid to a starch sample having a dry matter weight of 5.0 g and stirring for 30 minutes, suction filtration is performed using a glass filter (17G-4). Washing with distilled water is continued until the filtrate does not exhibit chloride reaction. Chloride reaction can be confirmed by adding a 0.1N silver nitrate solution to the filtrate. If the filtrate becomes cloudy, a chloride reaction has occurred. The residue is suspended in 300 ml of water, heated on a water bath with stirring to gel, and further heated for 15 minutes, then 3 drops of phenolphthalein indicator are added and immediately colored with 0.1N sodium hydroxide solution. Titrate until. In the blank test, 50 ml of distilled water is added to a starch sample having a dry matter weight of 5.0 g, stirred for 30 minutes, then suction filtered using a glass filter (17G-4), and washed with 200 ml of distilled water. The residue is suspended in 300 ml of distilled water, heated on a water bath with stirring to gel, and further heated for 15 minutes. Then, 3 drops of phenolphthalein indicator is added and immediately colored with 0.1N sodium hydroxide solution. Titrate until The carboxyl group content is calculated using the following formula.
Carboxyl group content (% by weight) = (A−B) × F × 0.45 / 5
A: Sample titration (ml)
B: Blank test titration (ml)
F: 0.1N sodium hydroxide titer

本発明に用いる次亜塩素酸ナトリウムの添加量は、澱粉乾燥物重量に対して有効塩素として50〜4000ppm、好ましくは100〜2000ppmである。ただし、未処理澱粉よりも高い増粘性を得る為に必要とされる次亜塩素酸ナトリウムの最適な添加量は、原料澱粉の種類によって異なる。例えば、原料澱粉がタピオカ澱粉の場合、次亜塩素酸ナトリウムの添加量は200〜1000ppm、好ましくは300〜700ppmが最適である。原料澱粉がコーンスターチの場合、次亜塩素酸ナトリウムの添加量は200〜2000ppm、好ましくは500〜1000ppmが最適である。原料澱粉がワキシーコーンスターチの場合、次亜塩素酸ナトリウムの添加量は200〜4000ppm、好ましくは500〜2000ppmが最適である。原料澱粉が馬鈴薯澱粉の場合、次亜塩素酸ナトリウムの添加量は50〜1000ppm、好ましくは100〜500ppmが最適である。 The amount of sodium hypochlorite used in the present invention is 50 to 4000 ppm, preferably 100 to 2000 ppm as effective chlorine based on the weight of the starch dry product. However, the optimum amount of sodium hypochlorite added to obtain a higher viscosity than that of untreated starch varies depending on the type of raw starch. For example, when the raw starch is tapioca starch, the optimum amount of sodium hypochlorite is 200 to 1000 ppm, preferably 300 to 700 ppm. When the raw starch is corn starch, the optimum amount of sodium hypochlorite added is 200 to 2000 ppm, preferably 500 to 1000 ppm. When the raw starch is waxy corn starch, the optimum amount of sodium hypochlorite added is 200 to 4000 ppm, preferably 500 to 2000 ppm. When the raw material starch is potato starch, the optimum amount of sodium hypochlorite added is 50 to 1000 ppm, preferably 100 to 500 ppm.

次亜塩素酸ナトリウムの有効塩素は、以下の方法によって定量される。約10gの次亜塩素酸ナトリウム試料を精秤し、200mlのメスフラスコに移した後、蒸留水を加えて200mlの試料溶液とする。この試料溶液10mlを200ml共栓付き三角フラスコに採り、10%ヨウ化カリウム溶液20mlと30%硫酸20mlを加え、混合する。これを暗所にて5分間静置した後、0.05Nチオ硫酸ナトリウムで無色化するまで滴定する。空試験では、試料溶液に蒸留水10mlを用いて同様の操作を行なう。有効塩素は以下の計算式を用いて算出する。
有効塩素(重量%)=(A−B)×F×3.55/S
A:試料滴定量(ml)
B:空試験滴定量(ml)
F:0.05Nチオ硫酸ナトリウムの力価
S:試料重量(g)
The effective chlorine of sodium hypochlorite is quantified by the following method. About 10 g of sodium hypochlorite sample is precisely weighed and transferred to a 200 ml volumetric flask, and then distilled water is added to make a 200 ml sample solution. Take 10 ml of this sample solution in an Erlenmeyer flask with a 200 ml stopper, add 20 ml of 10% potassium iodide solution and 20 ml of 30% sulfuric acid, and mix. This is left to stand in the dark for 5 minutes, and then titrated with 0.05N sodium thiosulfate until colorless. In the blank test, the same operation is performed using 10 ml of distilled water as the sample solution. Effective chlorine is calculated using the following formula.
Effective chlorine (% by weight) = (A−B) × F × 3.55 / S
A: Sample titration (ml)
B: Blank test titration (ml)
F: Potency of 0.05N sodium thiosulfate
S: Sample weight (g)

本発明における次亜塩素酸ナトリウム添加後の反応は、pH10.5〜11.5、好ましくはpH10.8〜11.2を維持して行なわれる。pHの維持は、水酸化ナトリウムや炭酸カルシウムなどのアルカリ剤を適宜添加することで達せられ、アルカリ剤は固体もしくは溶液のいずれでも構わない。pH維持を行なわなければ、次亜塩素酸ナトリウムの反応によってpHは徐々に低下していく。pHが中性付近以下に達すると、次亜塩素酸ナトリウムによる澱粉の低粘度化が起こり、さらには塩素ガスの発生が促進される。従って、反応中のpHを高アルカリ性に保つことは、澱粉の物性及び臭いの観点から非常に重要である。ただし、pHを11.5以上に保つと反応中に澱粉の膨潤が起こり、反応中の澱粉懸濁液の粘度が高くなる為、反応の不均一化や工程内での詰まりの原因となり、好ましくない。 The reaction after the addition of sodium hypochlorite in the present invention is carried out while maintaining pH 10.5 to 11.5, preferably pH 10.8 to 11.2. The maintenance of the pH is achieved by appropriately adding an alkali agent such as sodium hydroxide or calcium carbonate, and the alkali agent may be either solid or solution. If the pH is not maintained, the pH gradually decreases due to the reaction of sodium hypochlorite. When the pH reaches near neutral or lower, the viscosity of starch is reduced by sodium hypochlorite, and the generation of chlorine gas is further promoted. Therefore, keeping the pH during the reaction highly alkaline is very important from the viewpoint of the physical properties and odor of starch. However, if the pH is maintained at 11.5 or higher, starch swelling occurs during the reaction, and the viscosity of the starch suspension during the reaction increases, which may cause uneven reaction and clogging in the process. Absent.

本発明における次亜塩素酸ナトリウム添加後の反応温度は、15〜55℃、好ましくは30〜45℃である。反応温度が15℃以下では反応効率が極端に低下し、55℃以上では反応中の澱粉懸濁液の粘度が高くなる為、反応の不均一化や工程内での詰まりの原因となり、好ましくない。 The reaction temperature after addition of sodium hypochlorite in the present invention is 15 to 55 ° C, preferably 30 to 45 ° C. When the reaction temperature is 15 ° C. or lower, the reaction efficiency is extremely lowered, and when the reaction temperature is 55 ° C. or higher, the viscosity of the starch suspension during the reaction becomes high, which may cause uneven reaction and clogging in the process. .

本発明における次亜塩素酸ナトリウム添加後の反応時間は、15〜180分間、好ましくは30〜90分間である。次亜塩素酸ナトリウムによる増粘効果の向上は、比較的短時間の反応によって得ることができるが、15分間以下の反応では反応の不均一化が起こり易く、150分間以上の反応では澱粉の低粘度化が起こる為、好ましくない。 The reaction time after addition of sodium hypochlorite in the present invention is 15 to 180 minutes, preferably 30 to 90 minutes. The improvement in the thickening effect by sodium hypochlorite can be obtained by a relatively short reaction, but the reaction tends to be non-uniform in the reaction for 15 minutes or less, and the starch is low in the reaction for 150 minutes or more. This is not preferable because of viscosity increase.

本発明における残存塩素除去処理とは、次亜塩素酸ナトリウムによる反応を終了させる為に、反応中の澱粉懸濁液に亜硫酸水素ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、アスコルビン酸ナトリウムなどの還元剤を添加することを意味する。還元剤は固体もしくは溶液のいずれでも構わない。また、還元剤の添加量は、次亜塩素酸ナトリウムの添加量や残留している残存塩素量に応じて適宜調整することができる。澱粉懸濁液に残留している残存塩素の有無は、KIチェック法によって定性的に確認することができる。 In the present invention, the residual chlorine removal treatment is performed by adding a reducing agent such as sodium bisulfite, sodium sulfite, sodium pyrosulfite, sodium ascorbate to the starch suspension during the reaction in order to terminate the reaction with sodium hypochlorite. It means adding. The reducing agent may be a solid or a solution. Moreover, the addition amount of a reducing agent can be suitably adjusted according to the addition amount of sodium hypochlorite and the amount of residual chlorine remaining. The presence or absence of residual chlorine remaining in the starch suspension can be qualitatively confirmed by the KI check method.

上記KIチェック法とは、以下の方法である。濾紙に1N硫酸を数滴添加し、その上に澱粉懸濁液を数滴添加して馴染ませる。その上に10%ヨウ化カリウム溶液を数滴添加し、変色が認められた場合は塩素が残留していることを意味する。変色が認められなかった場合は塩素が残留しておらず、残存塩素除去処理が完全に行なわれたことを意味する。 The KI check method is the following method. Add a few drops of 1N sulfuric acid to the filter paper and add a few drops of starch suspension on top of it to acclimate. When a few drops of 10% potassium iodide solution are added to the solution and discoloration is observed, it means that chlorine remains. When no discoloration was observed, chlorine did not remain, meaning that the residual chlorine removal process was completely performed.

還元剤による残存塩素除去処理は非常に短時間で達することができるが、反応時間を延長したとしても澱粉の物性及び臭いに何ら影響を与えない為、残存塩素除去処理時間は特に制限されるものではない。また前述したように、残存塩素除去処理をpH10.5〜11.5、好ましくはpH10.8〜11.2に維持し続けて行なうことによって、澱粉の増粘効果を損なうことなく、且つ澱粉に残留する塩素臭を著しく低減することが可能となる。 Residual chlorine removal treatment with a reducing agent can be achieved in a very short time, but even if the reaction time is extended, the physical properties and odor of starch are not affected at all. is not. Further, as described above, the residual chlorine removal treatment is continuously performed at a pH of 10.5 to 11.5, preferably at a pH of 10.8 to 11.2. It becomes possible to significantly reduce the residual chlorine odor.

本発明によって得られる漂白澱粉を食品に用いることで、加熱・調理後の増粘性、粘弾性、保形性の向上及び安定化を達することができる。その用途例としては、タレ、ソース、ドレッシング、フィリング、水産畜産練り食品、点心類、麺類、和洋菓子類などが挙げられる。 By using the bleached starch obtained by the present invention for foods, it is possible to achieve an increase and stabilization of thickening, viscoelasticity and shape retention after heating and cooking. Examples of its use include sauces, sauces, dressings, fillings, marine products, dim sums, noodles, Japanese and Western confectionery, and the like.

以下に実施例を示すことで本発明の詳細を説明するが、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施例の記載内容に限定して解釈されるものではない。 The details of the present invention will be described below by showing examples. However, the present invention can be implemented in many different modes, and should not be construed as being limited to the description of the examples shown below. Absent.

(実施例1)
未処理のタピオカ澱粉100gに水を加え、固形分38%濃度の澱粉懸濁液を調製した。次いで、3%水酸化ナトリウムを用いてpH11.0に調整し、次亜塩素酸ナトリウムを澱粉乾物重量に対して有効塩素として500ppm添加し、3%水酸化ナトリウムを用いてpH11.0に維持しながら34℃で60分間反応した。その後、ピロ亜硫酸ナトリウムを澱粉乾物重量に対して250ppm添加し、3%水酸化ナトリウムを用いてpH11.0に維持しながら34℃で30分間反応させた後、9%塩酸を用いてpH5.5に調整した。次いで、この澱粉懸濁液を5倍量の水で2回洗浄し、生じた澱粉ケーキを40℃で7時間乾燥して、水分8〜15%に調整した。これをミキサーで粉砕し、80メッシュを通したものを澱粉試料とした。
Example 1
Water was added to 100 g of untreated tapioca starch to prepare a starch suspension having a solid content of 38%. Next, the pH is adjusted to 11.0 using 3% sodium hydroxide, 500 ppm of sodium hypochlorite is added as effective chlorine to the dry starch weight, and the pH is maintained at 11.0 using 3% sodium hydroxide. The reaction was carried out at 34 ° C. for 60 minutes. Thereafter, 250 ppm of sodium pyrosulfite was added with respect to the dry weight of starch, reacted at 34 ° C. for 30 minutes while maintaining the pH at 11.0 using 3% sodium hydroxide, and then at pH 5.5 using 9% hydrochloric acid. Adjusted. Subsequently, this starch suspension was washed twice with 5 times the amount of water, and the resulting starch cake was dried at 40 ° C. for 7 hours to adjust the water content to 8 to 15%. This was pulverized with a mixer and passed through 80 mesh to make a starch sample.

(比較例1)
3%水酸化ナトリウム及び9%塩酸を用い、次亜塩素酸ナトリウム添加後の反応pH及びピロ亜硫酸ナトリウム添加後の反応pHをいずれも5.5に保ったものを比較例1−1、8.0に保ったものを比較例1−2、10.0に保ったものを比較例1−3の澱粉試料とした。その他の操作は実施例1と同様とした。
(Comparative Example 1)
Comparative Examples 1-1 and 8 were prepared using 3% sodium hydroxide and 9% hydrochloric acid and maintaining the reaction pH after addition of sodium hypochlorite and the reaction pH after addition of sodium pyrosulfite at 5.5. What was kept at 0 was used as a starch sample of Comparative Example 1-3. Other operations were the same as in Example 1.

(比較例2)
次亜塩素酸ナトリウム添加後の反応pHを11.0に保った後、ピロ亜硫酸ナトリウム添加後の反応pHを5.5に保ったものを比較例2−1、8.0に保ったものを比較例2−2の澱粉試料とした。その他の操作は実施例1と同様とした。
(Comparative Example 2)
The reaction pH after addition of sodium hypochlorite was maintained at 11.0, and the reaction pH after addition of sodium pyrosulfite was maintained at 5.5, which was maintained at Comparative Example 2-1 and 8.0. The starch sample of Comparative Example 2-2 was used. Other operations were the same as in Example 1.

(比較例3)
次亜塩素酸ナトリウムを添加せず、その他の操作を実施例1と同様に操作して澱粉試料を得た。
(Comparative Example 3)
Without adding sodium hypochlorite, other operations were performed in the same manner as in Example 1 to obtain a starch sample.

(試験例1)
澱粉試料に蒸留水を加え、適宜濃度を調整した澱粉懸濁液30gを調製し、ラピッド・ビスコ・アナライザー−4(NEWPORT SCIENTIFIC PTY LTD社製)を用いて加熱後粘度を測定した。測定条件は以下の通りである。測定によって得られた粘度チャートの最終粘度(50℃)を澱粉試料の糊粘度として、表1〜4に示した。
温度設定:50℃で60秒間保持後、0.2℃/秒で95℃まで昇温し、95℃で150秒間保持する。その後、0.2℃/秒で50℃まで冷却し、50℃で120秒間保持する。
パドル回転数:160rpm
(Test Example 1)
Distilled water was added to the starch sample to prepare 30 g of a starch suspension with an appropriately adjusted concentration, and the viscosity after heating was measured using Rapid Visco Analyzer-4 (manufactured by NEWPORT SCIENTIFIC PTY LTD). The measurement conditions are as follows. The final viscosity (50 ° C.) of the viscosity chart obtained by the measurement is shown in Tables 1 to 4 as the paste viscosity of the starch sample.
Temperature setting: After holding at 50 ° C. for 60 seconds, the temperature is raised to 95 ° C. at 0.2 ° C./second and held at 95 ° C. for 150 seconds. Then, it cools to 50 degreeC at 0.2 degreeC / second, and hold | maintains at 50 degreeC for 120 second.
Paddle rotation speed: 160rpm

(試験例2)
澱粉試料10gを200mlトールビーカーに採り、プラスチック棒で攪拌しながら澱粉の塩素臭の強弱を官能的に評価した。次いで、この澱粉試料に蒸留水15ml加えて十分攪拌し、攪拌しながら澱粉懸濁液の塩素臭の強弱を官能的に評価した。さらに、この澱粉懸濁液試料に沸騰した蒸留水を加えて100mlの澱粉糊を調製し、攪拌しながら塩素臭の強弱を官能的に評価した。臭いの官能評価は0〜5の6段階評価で点数を付け、点数が高いほど塩素臭が強いものとした。得られた結果を表1〜4に示した。
(Test Example 2)
A 10 g starch sample was placed in a 200 ml tall beaker, and the strength of the chlorine odor of starch was sensorially evaluated while stirring with a plastic rod. Next, 15 ml of distilled water was added to this starch sample and stirred sufficiently, and the strength and weakness of the chlorine odor of the starch suspension was sensorially evaluated while stirring. Furthermore, boiling distilled water was added to this starch suspension sample to prepare 100 ml of starch paste, and the intensity of chlorine odor was sensoryly evaluated while stirring. The sensory evaluation of odor was scored by a 6-step evaluation of 0 to 5, and the higher the score, the stronger the chlorine odor. The obtained results are shown in Tables 1 to 4.

Figure 0005209256
Figure 0005209256

表1より、実施例1は比較例1〜3よりも糊粘度が高く、且つ塩素臭が低減されており、本発明の目的とする効果が得られることを確認した。なお、カルボキシル基含量はいずれも0.1%未満であった。 From Table 1, Example 1 confirmed that the paste viscosity was higher than Comparative Examples 1 to 3, and the chlorine odor was reduced, and the intended effect of the present invention was obtained. The carboxyl group content was less than 0.1% in all cases.

(実施例2)
未処理のコーンスターチ100gに水を加え、固形分38%濃度の澱粉懸濁液を調製した。次いで、3%水酸化ナトリウムを用いてpH11.0に調整し、次亜塩素酸ナトリウムを澱粉乾物重量に対して有効塩素として1000ppm添加し、3%水酸化ナトリウムを用いてpH11.0に維持しながら34℃で60分間反応した。その後、ピロ亜硫酸ナトリウムを澱粉乾物重量に対して500ppm添加し、3%水酸化ナトリウムを用いてpH11.0に維持しながら34℃で30分間反応させた後、9%塩酸を用いてpH5.5に調整した。次いで、この澱粉懸濁液を5倍量の水で2回洗浄し、生じた澱粉ケーキを40℃で7時間乾燥して、水分8〜15%に調整した。これをミキサーで粉砕し、80メッシュを通したものを澱粉試料とした。
(Example 2)
Water was added to 100 g of untreated corn starch to prepare a starch suspension having a solid content of 38%. Next, the pH is adjusted to 11.0 using 3% sodium hydroxide, 1000 ppm of sodium hypochlorite is added as effective chlorine to the dry weight of the starch, and the pH is maintained at 11.0 using 3% sodium hydroxide. The reaction was carried out at 34 ° C. for 60 minutes. Thereafter, 500 ppm of sodium pyrosulfite was added to the dry weight of the starch, and the mixture was reacted at 34 ° C. for 30 minutes while maintaining the pH at 11.0 using 3% sodium hydroxide, and then at pH 5.5 using 9% hydrochloric acid. Adjusted. Subsequently, this starch suspension was washed twice with 5 times the amount of water, and the resulting starch cake was dried at 40 ° C. for 7 hours to adjust the water content to 8 to 15%. This was pulverized with a mixer and passed through 80 mesh to make a starch sample.

(比較例4)
次亜塩素酸ナトリウム添加後の反応pHを11.0に保った後、ピロ亜硫酸ナトリウム添加後の反応pHを5.5に保ったものを比較例4−1、8.0に保ったものを比較例4−2の澱粉試料とした。その他の操作は実施例2と同様とした。
(Comparative Example 4)
The reaction pH after addition of sodium hypochlorite was maintained at 11.0, and the reaction pH after addition of sodium pyrosulfite was maintained at 5.5, which was maintained at Comparative Examples 4-1 and 8.0. The starch sample of Comparative Example 4-2 was used. Other operations were the same as in Example 2.

(比較例5)
次亜塩素酸ナトリウムを添加せず、その他の操作を実施例2と同様に操作して澱粉試料を得た。
(Comparative Example 5)
Without adding sodium hypochlorite, other operations were performed in the same manner as in Example 2 to obtain starch samples.

Figure 0005209256
Figure 0005209256

表2より、実施例2は比較例4及び5よりも糊粘度が高く、且つ塩素臭が低減されており、本発明の目的とする効果が得られることを確認した。なお、カルボキシル基含量はいずれも0.1%未満であった。 From Table 2, it was confirmed that Example 2 had a higher paste viscosity than Comparative Examples 4 and 5 and had a reduced chlorine odor, so that the intended effect of the present invention was obtained. The carboxyl group content was less than 0.1% in all cases.

(実施例3)
未処理のワキシーコーンスターチを原料に用い、実施例2と同様に操作して澱粉試料を得た。
(Example 3)
Using an untreated waxy corn starch as a raw material, a starch sample was obtained in the same manner as in Example 2.

(比較例6)
次亜塩素酸ナトリウム添加後の反応pHを11.0に保った後、ピロ亜硫酸ナトリウム添加後の反応pHを5.5に保ったものを比較例6−1、8.0に保ったものを比較例6−2の澱粉試料とした。その他の操作は実施例1と同様とした。
(Comparative Example 6)
The reaction pH after addition of sodium hypochlorite was maintained at 11.0, and the reaction pH after addition of sodium pyrosulfite was maintained at 5.5, which was maintained at Comparative Examples 6-1 and 8.0. The starch sample of Comparative Example 6-2 was used. Other operations were the same as in Example 1.

(比較例7)
次亜塩素酸ナトリウムを添加せず、その他の操作を実施例3と同様に操作して澱粉試料を得た。
(Comparative Example 7)
A starch sample was obtained in the same manner as in Example 3 except that sodium hypochlorite was not added.

Figure 0005209256
Figure 0005209256

表3より、実施例3は比較例6及び7よりも糊粘度が高く、且つ塩素臭が低減されており、本発明の目的とする効果が得られることを確認した。なお、カルボキシル基含量はいずれも0.1%未満であった。 From Table 3, Example 3 confirmed that the paste viscosity was higher than Comparative Examples 6 and 7, and the chlorine odor was reduced, so that the intended effect of the present invention was obtained. The carboxyl group content was less than 0.1% in all cases.

(実施例4)
未処理の馬鈴薯澱粉100gに水を加え、固形分38%濃度の澱粉懸濁液を調製した。次いで、3%水酸化ナトリウムを用いてpH11.0に調整し、次亜塩素酸ナトリウムを澱粉乾物重量に対して有効塩素として250ppm添加し、3%水酸化ナトリウムを用いてpH11.0に維持しながら34℃で60分間反応した。その後、ピロ亜硫酸ナトリウムを澱粉乾物重量に対して125ppm添加し、3%水酸化ナトリウムを用いてpH11.0に維持しながら34℃で30分間反応させた後、9%塩酸を用いてpH5.5に調整した。次いで、この澱粉懸濁液を5倍量の水で2回洗浄し、生じた澱粉ケーキを40℃で7時間乾燥して、水分8〜15%に調整した。これをミキサーで粉砕し、80メッシュを通したものを澱粉試料とした。
Example 4
Water was added to 100 g of untreated potato starch to prepare a starch suspension having a solid content of 38%. Next, the pH is adjusted to 11.0 using 3% sodium hydroxide, 250 ppm of sodium hypochlorite is added as effective chlorine to the dry weight of the starch, and the pH is maintained at 11.0 using 3% sodium hydroxide. The reaction was carried out at 34 ° C. for 60 minutes. Thereafter, 125 ppm of sodium pyrosulfite was added with respect to the dry weight of the starch, reacted at 34 ° C. for 30 minutes while maintaining the pH at 11.0 using 3% sodium hydroxide, and then at pH 5.5 using 9% hydrochloric acid. Adjusted. Subsequently, this starch suspension was washed twice with 5 times the amount of water, and the resulting starch cake was dried at 40 ° C. for 7 hours to adjust the water content to 8 to 15%. This was pulverized with a mixer and passed through 80 mesh to make a starch sample.

(比較例8)
次亜塩素酸ナトリウム添加後の反応pHを11.0に保った後、ピロ亜硫酸ナトリウム添加後の反応pHを5.5に保ったものを比較例8−1、8.0に保ったものを比較例8−2の澱粉試料とした。その他の操作は実施例1と同様とした。
(Comparative Example 8)
The reaction pH after addition of sodium hypochlorite was maintained at 11.0, and the reaction pH after addition of sodium pyrosulfite was maintained at 5.5, which was maintained at Comparative Examples 8-1 and 8.0. The starch sample of Comparative Example 8-2 was used. Other operations were the same as in Example 1.

(比較例9)
次亜塩素酸ナトリウムを添加せず、その他の操作を実施例3と同様に操作して澱粉試料を得た。
(Comparative Example 9)
A starch sample was obtained in the same manner as in Example 3 except that sodium hypochlorite was not added.

Figure 0005209256
Figure 0005209256

表4より、実施例4は比較例8及び9よりも糊粘度が高く、且つ塩素臭が低減されており、本発明の目的とする効果が得られることを確認した。なお、カルボキシル基含量はいずれも0.1%未満であった。 From Table 4, it was confirmed that Example 4 has a higher paste viscosity than Comparative Examples 8 and 9, and has a reduced chlorine odor, so that the intended effect of the present invention can be obtained. The carboxyl group content was less than 0.1% in all cases.

Claims (7)

未処理澱粉に水を加えた澱粉懸濁液に次亜塩素酸ナトリウムを添加してpH10.5〜11.5で反応させた後、前記澱粉懸濁液の残存塩素除去処理がpH10.5〜11.5で行われることにより生成され、前記生成された澱粉中のカルボキシル基含量が0.1重量%未満であり、且つ糊粘度が未処理澱粉よりも高いことを特徴とする澱粉。 After adding sodium hypochlorite to the starch suspension obtained by adding water to untreated starch and reacting at pH 10.5 to 11.5, the residual chlorine removal treatment of the starch suspension is pH 10.5 to A starch produced by performing at 11.5, wherein the starch has a carboxyl group content of less than 0.1% by weight and a paste viscosity higher than that of untreated starch. 前記次亜塩素酸ナトリウムの添加量が澱粉乾燥物重量に対して有効塩素として50〜4000ppmであることを特徴とする請求項1記載の澱粉。 The starch according to claim 1, wherein the amount of sodium hypochlorite added is 50 to 4000 ppm as effective chlorine based on the weight of the dried starch. 前記未処理澱粉がタピオカ澱粉であり、且つ前記次亜塩素酸ナトリウムの添加量が澱粉乾燥物重量に対して有効塩素として200〜1000ppmであることを特徴とする請求項2記載の澱粉。 The starch according to claim 2, wherein the untreated starch is tapioca starch, and the amount of the sodium hypochlorite added is 200 to 1000 ppm as effective chlorine with respect to the weight of the dried starch. 前記未処理澱粉がコーンスターチであり、且つ前記次亜塩素酸ナトリウムの添加量が澱粉乾燥物重量に対して有効塩素として200〜2000ppmであることを特徴とする請求項2記載の澱粉。 The starch according to claim 2, wherein the untreated starch is corn starch, and the amount of the sodium hypochlorite added is 200 to 2000 ppm as effective chlorine with respect to the weight of the dried starch. 前記未処理澱粉がワキシーコーンスターチであり、且つ前記次亜塩素酸ナトリウムの添加量が澱粉乾燥物重量に対して有効塩素として200〜4000ppmであることを特徴とする請求項2記載の澱粉。 The starch according to claim 2, wherein the untreated starch is waxy corn starch, and the amount of the sodium hypochlorite added is 200 to 4000 ppm as effective chlorine with respect to the weight of the dried starch. 前記未処理澱粉が馬鈴薯澱粉であり、且つ前記次亜塩素酸ナトリウムの添加量が澱粉乾燥物重量に対して有効塩素として50〜1000ppmであることを特徴とする請求項2記載の澱粉。 The starch according to claim 2, wherein the untreated starch is potato starch, and the amount of sodium hypochlorite added is 50 to 1000 ppm as effective chlorine with respect to the weight of the dried starch. 請求項1から6のいずれか一項に記載の澱粉を含有することを特徴とする食品。A food comprising the starch according to any one of claims 1 to 6.
JP2007241574A 2007-09-18 2007-09-18 Starch with high thickening effect and method for producing the same Active JP5209256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241574A JP5209256B2 (en) 2007-09-18 2007-09-18 Starch with high thickening effect and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241574A JP5209256B2 (en) 2007-09-18 2007-09-18 Starch with high thickening effect and method for producing the same

Publications (3)

Publication Number Publication Date
JP2009073869A JP2009073869A (en) 2009-04-09
JP2009073869A5 JP2009073869A5 (en) 2010-11-04
JP5209256B2 true JP5209256B2 (en) 2013-06-12

Family

ID=40609174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241574A Active JP5209256B2 (en) 2007-09-18 2007-09-18 Starch with high thickening effect and method for producing the same

Country Status (1)

Country Link
JP (1) JP5209256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999066B2 (en) * 2009-04-17 2015-04-07 Archer Daniels Midland Co. Bleached dextrin and methods of forming same
JP4772912B1 (en) * 2010-06-09 2011-09-14 日本食品化工株式会社 Method for producing bleached processed starch

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9611595D0 (en) * 1996-06-04 1996-08-07 Cerestar Holding Bv Stabilised high viscosity starches
JPH1112301A (en) * 1997-06-20 1999-01-19 Mitsubishi Gas Chem Co Inc Production of tricarboxystarch
JP4459356B2 (en) * 1999-01-25 2010-04-28 日本コーンスターチ株式会社 Modified starch for food
JP4382337B2 (en) * 2002-10-04 2009-12-09 敷島スターチ株式会社 Method for producing oxidized starch

Also Published As

Publication number Publication date
JP2009073869A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
CA2206936C (en) Stabilised high viscosity starches
Sukhija et al. Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch
Vanier et al. Molecular structure, functionality and applications of oxidized starches: A review
EP1969014B1 (en) Process for starch modification
DK2438091T3 (en) PROCEDURE FOR THE PREPARATION OF OXIDATED STARCH, OXIDATED STARCH AND ITS USE
Aini et al. Gelatinization properties of white maize starch from three varieties of corn subject to oxidized and acetylated-oxidized modification.
WO1999012977A1 (en) Modified starch
RU2770030C2 (en) Method for producing cross-linked starch
Trela et al. Synthesis and characterization of acetylated cassava starch with different degrees of substitution
Rahim et al. The influence degree of substitution on the physicochemical properties of acetylated arenga starches
UA122899C2 (en) Method for preparing inhibited starch with improved warehouse storage stability
JP5209256B2 (en) Starch with high thickening effect and method for producing the same
Dimri et al. Oxidation of Starch
Rahim et al. Effect of pH and acetic anhydride concentration on physicochemical characteristics of acetylated sago starch
Sajeev et al. Gelatinisation characteristics of cassava starch settled in the presence of different chemicals
Guerra-DellaValle et al. Effect of chemical modification type on physicochemical and rheological characteristics of banana starch
CN114401644A (en) Highly acetylated pea starch for instant noodles
JP5936880B2 (en) Rice cracker quality improver and rice cracker
JP4772912B1 (en) Method for producing bleached processed starch
Çelik Modification of corn starch by oxidation and acetylation
Sumardiono et al. Effect of single step oxidation-esterification process on the physicochemical properties of modified cassava starch
WO1997035890A1 (en) Catalyst-free ozone oxidation of starch
US8552178B2 (en) Process for modification of biopolymers
Abdrabuo et al. EFFECT OF CROSS-LINKING ON SOME PROPERTIES OF CORN STARCH
Ali et al. Chemical Crosslinking, Acid Hydrolysis, Oxidation, Esterification, and Etherification of Starch

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5209256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250