JP5208980B2 - Wireless communication system, transmission apparatus and transmission method in wireless communication system - Google Patents

Wireless communication system, transmission apparatus and transmission method in wireless communication system Download PDF

Info

Publication number
JP5208980B2
JP5208980B2 JP2010037019A JP2010037019A JP5208980B2 JP 5208980 B2 JP5208980 B2 JP 5208980B2 JP 2010037019 A JP2010037019 A JP 2010037019A JP 2010037019 A JP2010037019 A JP 2010037019A JP 5208980 B2 JP5208980 B2 JP 5208980B2
Authority
JP
Japan
Prior art keywords
frequency
signal
sub
circuit
division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010037019A
Other languages
Japanese (ja)
Other versions
JP2011176406A (en
Inventor
義規 鈴木
史洋 山下
聖 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010037019A priority Critical patent/JP5208980B2/en
Publication of JP2011176406A publication Critical patent/JP2011176406A/en
Application granted granted Critical
Publication of JP5208980B2 publication Critical patent/JP5208980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無線通信において、フェージング、狭帯域干渉、ジャミングの影響などによる伝搬路の通信品質の劣化を補償する為の無線通信システム、並びに無線通信システムにおける送信装置及び送信方法に関するものである。   The present invention relates to a wireless communication system for compensating for deterioration in communication quality of a propagation path due to fading, narrowband interference, jamming, and the like in wireless communication, and a transmission apparatus and transmission method in the wireless communication system.

無線通信においては、送信された無線信号は複数の伝播経路を経ると、受信装置に到達した無線信号は互いに干渉し、受信レベルが大きく変動するフェージングと呼ばれる現象がある。受信レベルの変動は、通信品質に多大の影響を及ぼすため、ダイバーシティ等の様々な対策技術がとられている。   In wireless communication, when a transmitted wireless signal passes through a plurality of propagation paths, there is a phenomenon called fading in which the wireless signals that reach the receiving apparatus interfere with each other and the reception level varies greatly. Since fluctuations in the reception level have a great influence on communication quality, various countermeasure techniques such as diversity have been taken.

フェージングの影響の概念として、周波数に対する損失の影響を図1に示す。このように特定の周波数において利得が異なる現象は特に周波数選択性フェージングと呼ばれ、このような伝搬路においてシングルキャリア信号を伝送すると、受信信号帯域内で信号レベル差が生じ、通信品質が大幅に劣化する課題がある。なお、ジャミング信号等の狭帯域干渉に関しては、受信信号レベルは変わらないものの、干渉の影響により伝送路の通信品質が大幅に劣化する。   As a concept of the influence of fading, the influence of loss on frequency is shown in FIG. Such a phenomenon in which the gain is different at a specific frequency is called frequency selective fading. When a single carrier signal is transmitted in such a propagation path, a signal level difference occurs in the reception signal band, and communication quality is greatly increased. There is a problem that deteriorates. With regard to narrowband interference such as a jamming signal, the received signal level does not change, but the communication quality of the transmission path is greatly degraded due to the influence of interference.

このような通信品質の劣化を生じる周波数選択性フェージング等の伝搬路の通信品質劣化に対する技術の一例は、非特許文献1に記載されている。図2に示すように信号をマルチキャリア信号に分割して伝送し、各サブキャリアの帯域内周波数特性をフラットにすることで、フラットフェージング環境とし、サブキャリア毎の送信電力を適宜調整することにより、通信品質の改善を行っている。   An example of a technique for communication quality degradation of a propagation path such as frequency selective fading that causes such communication quality degradation is described in Non-Patent Document 1. As shown in FIG. 2, the signal is divided into multi-carrier signals and transmitted, and the in-band frequency characteristics of each subcarrier are flattened to create a flat fading environment, and by appropriately adjusting the transmission power for each subcarrier. , Improving communication quality.

中西他、「マルチレベル送信電力制御を用いたOFDM適用変調方式による1セル繰り返しTDMAシステム」、電子情報通信学会論文誌B、Vol.J87-B、No.8、pp.1043-1052Nakanishi et al., “One-Cell Repetitive TDMA System Using OFDM-based Modulation with Multilevel Transmission Power Control”, IEICE Transactions B, Vol. J87-B, No. 8, pp.1043-1052

しかしながら、一般にマルチキャリア信号はPAPR(Peak to Average Power Ratio)が大きく、増幅器のバックオフを大きく取る必要があるため、装置の増幅器が大型化する課題があった。逆にPAPRを下げるために分割キャリヤ数を減じると、周波数選択性フェージングを十分にフラットフェージングと見なすことができず、通信品質の劣化を招く課題があった。   However, in general, a multicarrier signal has a large PAPR (Peak to Average Power Ratio) and requires a large back-off of the amplifier. Conversely, if the number of divided carriers is reduced in order to lower the PAPR, frequency selective fading cannot be regarded as sufficiently flat fading, and there is a problem in that communication quality deteriorates.

フェージングによる電力変動が送受信装置の有する調整可能なレベルに比較して、大きくなる場合、フェージングの影響を受けるサブキャリアでは、所定の回線品質を得られなくなるため、通信は行えなくなる。その場合、図3に示すよう、フェージング等の影響を避けるようにサブキャリアを配置することで対応が可能である。しかしながら、サブキャリアに空きが無い場合は、使用できないサブキャリア分の伝送速度の低下を招く。また、非特許文献1に記載されるように、変調多値数を減じることでの対処も可能であるが、これもまた、伝送速度の低下を招く。   If the power fluctuation due to fading becomes larger than the adjustable level of the transmission / reception apparatus, the subcarriers affected by fading cannot obtain a predetermined channel quality, and communication cannot be performed. In that case, as shown in FIG. 3, it is possible to cope with this by arranging subcarriers so as to avoid the influence of fading and the like. However, when there is no vacant subcarrier, the transmission rate for subcarriers that cannot be used is reduced. Further, as described in Non-Patent Document 1, it is possible to cope with the problem by reducing the number of modulation multi-levels, but this also causes a decrease in transmission speed.

したがって、本発明は、装置の増幅器が大型化する必要なく、さらに通信品質が著しく劣化している帯域が存在しても伝送速度の低下を招くことのない、周波数選択性フェージング等の伝搬路の通信品質劣化に対する影響を回避する無線通信システム、無線通信システムにおける送信装置および送信方法を提供することを目的とする。   Therefore, the present invention does not require an increase in the size of the amplifier of the apparatus, and further does not reduce the transmission speed even if there is a band in which the communication quality is remarkably deteriorated. It is an object of the present invention to provide a radio communication system, a transmission apparatus in the radio communication system, and a transmission method that avoid influence on communication quality degradation.

上記目的を実現するため本発明による無線通信システムは、シングルキャリア変調信号を帯域分割して複数のサブ変調信号を生成する分割回路と、伝送路の通信品質が著しく劣化している周波数領域を回避するように、前記サブ変調信号を周波数配置する周波数シフト回路とを備える送信装置と、受信したサブ変調信号の周波数配置を分割前の周波数位置に再配置して合成する再合成回路を備える受信装置とを備える。   In order to achieve the above object, a wireless communication system according to the present invention avoids a frequency division in which the communication quality of a transmission path is significantly degraded, and a division circuit that generates a plurality of sub-modulation signals by dividing a single carrier modulation signal. And a receiving apparatus including a re-synthesizing circuit that re-arranges and synthesizes the frequency arrangement of the received sub-modulated signal at the frequency position before the division. With.

また、前記分割回路は、分割前のシングルキャリア変調信号の帯域より、分割後の各サブ変調信号の帯域の総和が小さくなるように帯域分割することも好ましい。   Further, it is preferable that the dividing circuit divides the band so that the sum of the bands of the sub-modulated signals after the division is smaller than the band of the single carrier modulated signal before the division.

また、前記送信装置は、生成された前記複数のサブ変調信号の全て、または一部を複製する手段をさらに備え、前記周波数シフト回路は該複製したサブ変調信号を異なる周波数位置に配置し、前記受信装置は、受信した複製されたサブ変調信号を選択、または合成する信号合成選択手段をさらに備えることも好ましい。   The transmitting device further includes means for replicating all or part of the generated sub-modulation signals, and the frequency shift circuit arranges the replicated sub-modulation signals at different frequency positions, and The receiving apparatus preferably further includes signal synthesis selection means for selecting or synthesizing the received duplicated sub-modulation signal.

また、前記送信装置は、トレーニング信号を周波数軸上で挿入し送信する伝搬路検出用信号発生手段をさらに備え、前記受信装置は、受信したトレーニング信号から周波数特性を検出し、該周波数特性を前記送信装置に通知する伝搬路品質検出手段をさらに備えることも好ましい。   The transmission device further includes propagation path detection signal generation means for inserting and transmitting a training signal on the frequency axis, and the reception device detects a frequency characteristic from the received training signal, and the frequency characteristic is It is also preferable to further include propagation path quality detection means for notifying the transmission apparatus.

上記目的を実現するため本発明による送信装置は、シングルキャリア変調信号を帯域分割して複数のサブ変調信号を生成する分割回路と、伝送路の通信品質が著しく劣化している周波数領域を回避するように、前記サブ変調信号を周波数配置する周波数シフト回路とを備える。   In order to achieve the above object, a transmission apparatus according to the present invention avoids a frequency division where a communication quality of a transmission path is significantly deteriorated, and a division circuit that generates a plurality of sub modulation signals by dividing a single carrier modulation signal. As described above, a frequency shift circuit for arranging the sub-modulated signal in frequency is provided.

上記目的を実現するため本発明による送信方法は、シングルキャリア変調信号を帯域分割して複数のサブ変調信号を生成する分割ステップと、伝送路の通信品質が著しく劣化している周波数領域を回避するように、前記サブ変調信号を周波数配置する周波数シフトステップとを含む。   In order to achieve the above object, a transmission method according to the present invention avoids a frequency division where a single carrier modulation signal is band-divided to generate a plurality of sub-modulation signals, and the communication quality of the transmission path is significantly degraded. Thus, a frequency shift step of arranging the sub-modulated signal in frequency is included.

本発明の無線通信システムは、シングルキャリア伝送信号のサブ変調信号分解手法を用いて、周波数選択性フェージング等の伝搬路の通信品質劣化の影響を回避するようにサブ変調信号を周波数配置することで、信号伝送品質の改善が可能となる。また、シングルキャリア伝送信号のサブ変調信号分解手法により、小型増幅器の適用が可能となる。   The wireless communication system of the present invention uses a sub-modulation signal decomposition method for a single carrier transmission signal, and arranges frequencies of the sub-modulation signals so as to avoid the influence of channel quality degradation such as frequency selective fading. The signal transmission quality can be improved. In addition, a small amplifier can be applied by the submodulation signal decomposition method of the single carrier transmission signal.

さらに、信号分解時に分割後のサブ変調信号の帯域総和が、分割前の変調信号帯域よりも狭めるように分解し、ここで得られた余剰帯域に通信品質が著しく劣化している帯域を割当てることで、元の変調信号の占有帯域幅を増加することがない。   Further, the signal is decomposed so that the total sum of the sub-modulated signals after division is narrower than the modulated signal before division, and a band with significantly deteriorated communication quality is assigned to the surplus band obtained here. Thus, the occupied bandwidth of the original modulation signal is not increased.

フェージングの概念図を示す。A conceptual diagram of fading is shown. フェージング対策を行ったマルチキャリア伝送の概念図1を示す。FIG. 1 shows a conceptual diagram 1 of multicarrier transmission in which fading countermeasures are taken. フェージング対策を行ったマルチキャリア伝送の概念図2を示す。FIG. 2 shows a conceptual diagram 2 of multicarrier transmission in which fading countermeasures are taken. 本発明によるフェージング対策の概念を示す。The concept of the fading countermeasure by this invention is shown. 本発明を実現する無線装置の構成例を示す。The structural example of the radio | wireless apparatus which implement | achieves this invention is shown. 複数のサブ変調信号に分割された送信装置の出力を示す。The output of the transmission apparatus divided | segmented into the some submodulation signal is shown. 複数のサブ変調信号に分割された送信装置の出力(余剰帯域発生の例)を示す。The output of the transmission apparatus divided into a plurality of submodulation signals (example of generation of surplus band) is shown. サブ変調信号送信ダイバーシティ機能を備える送信装置構成の一例を示す。An example of a transmission apparatus structure provided with a submodulation signal transmission diversity function is shown. サブ変調信号送信ダイバーシティ機能を備える受信装置構成の一例を示す。An example of a receiver structure provided with a submodulation signal transmission diversity function is shown.

従来の技術の課題を解決して、周波数選択性フェージング等の伝搬路の通信品質劣化に対する影響を回避する方法について述べる。図4は本発明によるフェージング対策の概念を示す。本発明では伝搬路の通信品質劣化に対する影響を回避するために、著しく通信品質が劣化している周波数領域を避けるように、シングルキャリアの伝送信号を分割配置することを特徴とする。   A method for solving the problems of the prior art and avoiding the influence on the communication quality degradation of the propagation path such as frequency selective fading will be described. FIG. 4 shows the concept of countermeasures against fading according to the present invention. In the present invention, in order to avoid the influence on the communication quality degradation of the propagation path, the single carrier transmission signal is divided and arranged so as to avoid the frequency region in which the communication quality is significantly degraded.

本発明を実現する送信装置および受信装置の構成の一例は、「阿部他、高周波数利用効率を実現するスペクトラム編集型帯域分散伝送の提案、電子情報通信学会衛星通信研究会、SAT2009-48、pp.7-12」を基本構成とし、伝搬路の通信品質検出手段からの情報を元に、伝送信号の分割配置制御を行うことを特徴とする。送信装置および受信装置の構成例としては図5に示すように、送信装置は、送信するデータ信号を変調する変調回路1と、変調信号を帯域分割して所望の周波数位置に配置する帯域分割フィルタバンク2と、伝搬路検出用信号発生手段および制御器3とを備えており、受信装置は、分割された変調信号を抽出して、合成する帯域合成フィルタバンク4と、帯域合成フィルタバンク4から出力された変調信号を復調し、送信されたデータ信号を復元する復調回路5と、伝搬路品質検出手段6とを備える。なお、伝搬路の通信品質検出手段は、伝搬路検出用信号発生手段および制御器3と伝搬路品質検出手段6により構成される。   An example of the configuration of a transmitting device and a receiving device that realizes the present invention is as follows: “Abe et al., Proposal of spectrum-editing band-dispersed transmission realizing high frequency utilization efficiency, IEICE satellite communication study group, SAT2009-48, pp .7-12 "as a basic configuration, and transmission signal division arrangement control is performed based on information from the communication quality detection means of the propagation path. As a configuration example of the transmission device and the reception device, as shown in FIG. 5, the transmission device includes a modulation circuit 1 that modulates a data signal to be transmitted, and a band division filter that divides the modulation signal into bands and arranges them at desired frequency positions. Bank 2, propagation path detection signal generation means and controller 3, and the receiving apparatus extracts band-synthesized modulated signals and combines them, and band synthesis filter bank 4. A demodulation circuit 5 that demodulates the output modulation signal and restores the transmitted data signal, and a propagation path quality detection means 6 are provided. Note that the communication quality detection means for the propagation path includes a signal generation means for propagation path detection and a controller 3 and a propagation path quality detection means 6.

このとき、本送信装置における帯域分割フィルタバンク2は、伝搬路の通信品質を検出する伝搬路検出用信号発生手段および制御器3からの情報を元に変調信号を帯域分割して所望の周波数位置に配置するため、変調信号を周波数軸上の信号に変換するフーリエ変換回路21(FFT)と、フーリエ変換回路の出力を複数のサブ変調信号に分割する分割回路22と、サブ変調信号を所定の周波数位置に配置する周波数シフト回路23と、周波数シフト回路の出力を足し合わせる加算回路24と、時間軸上の信号に変換する逆フーリエ変換回路(IFFT)25とを備える。このとき、サブ変調信号が占有する帯域は分割回路22に用いる重み係数に依存し、帯域幅を調整することが可能となる。また、分割回路22は複数の帯域分割重み関数と乗算回路を備える。   At this time, the band division filter bank 2 in this transmission apparatus performs band division on the modulation signal based on information from the propagation path detection signal generating means for detecting the communication quality of the propagation path and the controller 3, and a desired frequency position. Therefore, a Fourier transform circuit 21 (FFT) that converts the modulation signal into a signal on the frequency axis, a dividing circuit 22 that divides the output of the Fourier transform circuit into a plurality of sub-modulation signals, A frequency shift circuit 23 arranged at the frequency position, an adder circuit 24 for adding the outputs of the frequency shift circuit, and an inverse Fourier transform circuit (IFFT) 25 for converting the signal into a signal on the time axis are provided. At this time, the band occupied by the sub-modulation signal depends on the weighting factor used for the dividing circuit 22, and the bandwidth can be adjusted. The dividing circuit 22 includes a plurality of band dividing weight functions and a multiplying circuit.

具体的な動作としては、図6に示すようには変調回路1から出力された変調信号は、帯域分割フィルタバンク2のFFT回路21において高速フーリエ変換処理されることにより、時間軸上の信号が周波数軸上の信号に変換される。同図(A)に示すように、FFT回路21から出力される周波数軸上の信号に対して、帯域分割重み関数と帯域分割重み関数が乗算回路および乗算回路においてそれぞれ独立に乗算され、周波数軸上で帯域分割処理される。その乗算結果が周波数シフト回路23および周波数シフト回路23にそれぞれ入力され、周波数軸上で周波数シフトされることで、等価的に周波数変換が行われる。周波数シフトされた結果が同図(B)に示されている。この図から分かるように、ユーザAの変調信号に対して異なる重み関数が乗算されてシフトされることにより、周波数軸上では1つの変調信号が2つのサブ変調信号(A1及びA2)に帯域分割される。これら分割された2つのサブ変調信号が加算回路24で再び合成され、IFFT回路25で高速フーリエ逆変換処理されることによって、周波数軸上の信号から時間軸上の信号に戻される。その後、RF回路を経て実際に信号が伝送される。 Specifically, as shown in FIG. 6, the modulation signal output from the modulation circuit 1 is subjected to fast Fourier transform processing in the FFT circuit 21 of the band division filter bank 2, whereby a signal on the time axis is converted. It is converted into a signal on the frequency axis. As shown in FIG. 4A, the frequency division weight function 1 and the frequency division weight function 2 are independently multiplied in the multiplication circuit 1 and the multiplication circuit 2 with respect to the signal on the frequency axis output from the FFT circuit 21, respectively. Then, band division processing is performed on the frequency axis. The multiplication results are input to the frequency shift circuit 1 23 and the frequency shift circuit 2 23, respectively, and are frequency-shifted on the frequency axis, whereby equivalent frequency conversion is performed. The result of frequency shift is shown in FIG. As can be seen from this figure, the modulation signal of user A is multiplied and shifted by a different weight function, so that one modulation signal is divided into two sub-modulation signals (A1 and A2) on the frequency axis. Is done. The two divided sub-modulated signals are combined again by the adder circuit 24 and subjected to fast Fourier inverse transform processing by the IFFT circuit 25, thereby returning the signal on the frequency axis to the signal on the time axis. Thereafter, the signal is actually transmitted through the RF circuit.

一方、受信装置における帯域合成フィルタバンク4は、受信信号を周波数軸上の信号に変換するフーリエ変換回路41(FFT)と、各サブ変調信号を抽出し、フーリエ変換回路41(FFT)の出力を所定の周波数位置に配置する周波数シフト回路42と、各サブ変調信号を所定の周波数位置から配置変換前の周波数位置に再配置する再合成回路43と、再合成回路43の出力を加算する加算回路44と、波形整形フィルタ関数46を乗算する乗算回路45と、乗算回路45の出力を時間軸上の信号に変換する逆フーリエ変換回路47(IFFT)とを備える。また、再合成回路43は複数の帯域合成重み関数と乗算回路を備える。   On the other hand, the band synthesis filter bank 4 in the receiving apparatus extracts a Fourier transform circuit 41 (FFT) that converts a received signal into a signal on the frequency axis and each sub-modulated signal, and outputs the output of the Fourier transform circuit 41 (FFT). A frequency shift circuit 42 arranged at a predetermined frequency position, a recombination circuit 43 that rearranges each sub-modulated signal from a predetermined frequency position to a frequency position before the arrangement conversion, and an adder circuit that adds the outputs of the resynthesis circuit 43 44, a multiplication circuit 45 that multiplies the waveform shaping filter function 46, and an inverse Fourier transform circuit 47 (IFFT) that converts the output of the multiplication circuit 45 into a signal on the time axis. Further, the re-synthesis circuit 43 includes a plurality of band synthesis weight functions and a multiplication circuit.

具体的な動作は、送信側の信号処理手順と同様になる。受信側において、RF回路で周波数変換された信号がFFT回路41に入力され、時間軸上の受信信号が周波数軸上の受信信号に変換される。変換された周波数軸上の受信信号は、周波数シフト回路42および周波数シフト回路42においてそれぞれ周波数シフトされ帯域合成重み関数と帯域合成重み関数が乗算回路および乗算回路においてそれぞれ独立に乗算される。帯域合成重み関数が乗じられることは周波数軸上での等価的なフィルタ処理となり、帯域合成重み関数の通過域・遷移域以外の帯域における雑音成分が除去される。このフィルタ処理された信号が加算回路44において再び合成される。さらに、乗算回路45において、加算回路44の出力に、波形整形フィルタ関数46が周波数軸上で乗算され、所望帯域外の雑音・信号成分が除去されることで所望の信号を抽出され、IFFT回路47において時間軸上の信号に再び変換された後、復調回路5において復調される。 The specific operation is the same as the signal processing procedure on the transmission side. On the reception side, the signal frequency-converted by the RF circuit is input to the FFT circuit 41, and the reception signal on the time axis is converted to the reception signal on the frequency axis. The converted reception signals on the frequency axis are frequency-shifted in frequency shift circuit 1 42 and frequency shift circuit 2 42, respectively, and band synthesis weight function 1 and band synthesis weight function 2 are independently used in multiplication circuit 1 and multiplication circuit 2 , respectively. Is multiplied. Multiplication by the band synthesis weight function results in equivalent filter processing on the frequency axis, and noise components in bands other than the pass band and transition band of the band synthesis weight function are removed. This filtered signal is synthesized again in the adder circuit 44. Further, the multiplication circuit 45 multiplies the output of the adder circuit 44 by a waveform shaping filter function 46 on the frequency axis, and removes noise / signal components outside the desired band, thereby extracting a desired signal, and an IFFT circuit. After being converted again into a signal on the time axis in 47, it is demodulated in the demodulation circuit 5.

伝搬路検出用信号発生手段および制御器3の実現例として、周波数軸上で挿入したトレーニング信号を送信し、受信側の伝搬路品質検出手段6でそのトレーニング信号から周波数特性を検出し、その情報を送信側にフィードバック通知してもよい。このように、本発明を用いると、通信品質が著しく劣化している周波数領域を避けるように、シングルキャリアの信号帯域を周波数分割配置することで、フェージング等の影響を回避することができる。また、シングルキャリアの信号帯域を部分的に分割して送信することで、キャリヤ数を低減でき、結果としてPAPRを下げることができる。よって、増幅器の小型化も合わせて実現できる。   As an implementation example of the propagation path detection signal generating means and the controller 3, the training signal inserted on the frequency axis is transmitted, the reception side propagation path quality detection means 6 detects the frequency characteristic from the training signal, and the information May be notified to the transmission side as feedback. As described above, when the present invention is used, the influence of fading or the like can be avoided by frequency-dividing the single carrier signal band so as to avoid the frequency region in which the communication quality is remarkably deteriorated. In addition, the number of carriers can be reduced by partially dividing the signal band of the single carrier, and as a result, the PAPR can be lowered. Therefore, downsizing of the amplifier can also be realized.

さらに、本発明で用いる帯域分割手法において、分割前の変調信号に用いるフィルタよりにも、より急峻なフィルタを用いてサブ変調信号を形成すると、重複帯域があるにもかかわらず図7に示すように、分割後のサブ変調信号の帯域総和は、分割前の変調信号帯域よりも狭めることが可能であり、余剰帯域が発生する。なお、サブ変調信号を生成するときには、図7に示す帯域分割規定電力が一致もしくは重複することが、受信側で信号が復元できる条件である。   Furthermore, in the band division method used in the present invention, when the sub-modulation signal is formed using a steeper filter than the filter used for the modulation signal before division, as shown in FIG. In addition, the sum of the bands of the sub-modulation signals after the division can be narrower than the modulation signal bands before the division, and an extra band is generated. When the sub-modulated signal is generated, the condition that the signal can be restored on the receiving side is that the band division prescribed power shown in FIG.

ここで得られた余剰帯域(分割前の変調信号帯域−分割後のサブ変調信号帯域の総和)を、周波数選択性フェージングにより振幅利得が小さくなる帯域に選択的に割り当てることで、総帯域を増加させることなく、フェージングによる信号品質劣化を低減することができる。   The total bandwidth is increased by selectively allocating the surplus bandwidth obtained here (the sum of the modulated signal bandwidth before division minus the sub-modulated signal bandwidth after division) to the bandwidth where the amplitude gain is reduced by frequency selective fading. Without deterioration, signal quality deterioration due to fading can be reduced.

本発明における別の形態において、分割したサブ変調信号の一部または全てを複製し、異なる周波数で送信し、受信側で複製したサブ変調信号を合成してもよい。これを実現する無線装置構成の例としては、送信装置において、図8に示すように乗算回路の出力のサブ変調信号を複成し、複成した信号を所定に周波数に配置して送信し、受信装置において、図9に示すように、複成したサブ変調信号に対して、周波数を所定の位置に戻した後に、複成信号を選択もしくは合成する信号合成選択手段48を付加すればよい。   In another embodiment of the present invention, a part or all of the divided sub-modulated signals may be duplicated, transmitted at different frequencies, and the duplicated sub-modulated signals may be synthesized on the receiving side. As an example of a wireless device configuration that realizes this, in the transmitting device, as shown in FIG. 8, the sub-modulation signal of the output of the multiplication circuit is compounded, and the compounded signal is arranged at a predetermined frequency and transmitted, In the receiving apparatus, as shown in FIG. 9, a signal synthesis selection means 48 for selecting or synthesizing the composite signal after returning the frequency to a predetermined position for the composite sub-modulated signal may be added.

以上のように本発明の無線通信システムは、シングルキャリアの変調信号を、帯域分割して周波数選択性フェージングの影響を回避するようにサブ変調信号を周波数配置することで、フェージング等の影響を回避することが可能となる。さらに、キャリヤの分割数を少なくすることで、PAPRを小さくすることができるため、小型増幅器の適用が可能となる。   As described above, the wireless communication system according to the present invention avoids the influence of fading and the like by frequency-allocating the sub-modulation signal so that the single carrier modulation signal is divided into bands to avoid the influence of frequency selective fading. It becomes possible to do. Furthermore, since the PAPR can be reduced by reducing the number of divided carriers, a small amplifier can be applied.

さらに、サブ変調信号を構成することにより得られる余剰帯域(分割前の変調信号帯域−分割後のサブ変調信号帯域の総和)を、フェージングの影響が大きな周波数位置に割り付けることで、占有帯域幅を増加することなくフェージングの影響を緩和することが可能となる。なお、伝送特性が特に著しく劣化する周波数選択性フェージングは、干渉信号のベクトル合成が限りなく零であるため、非常に急峻な周波数特性を有するため、僅かな余剰帯域で周波数選択性フェージングや狭帯域干渉、ジャミング対策を実現することが可能となる。   Furthermore, by allocating the surplus band (modulation signal band before division−total sub modulation signal band after division) obtained by configuring the sub-modulation signal to the frequency position where the influence of fading is large, the occupied bandwidth is reduced. It is possible to reduce the influence of fading without increasing. It should be noted that frequency selective fading, in which the transmission characteristics are particularly degraded, has extremely steep frequency characteristics because the vector synthesis of the interference signal is infinitely zero. Therefore, frequency selective fading and narrow band in a small excess band. Interference and jamming countermeasures can be realized.

以上に述べた実施形態は、全て本発明を例示的に示すものであって、限定的に示すものではない、本発明は、他の種々の変形形態及び変更態様で実施できる。従って本発明の範囲は、特許請求の範囲及びその均等範囲によってのみ規定されるものである。   The above-described embodiments are all illustrative of the present invention and are not intended to limit the present invention, and the present invention can be implemented in various other variations and modifications. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

1 変調回路
2 帯域分割フィルタバンク
3 伝搬路検出用信号発生手段および制御器
4 帯域合成フィルタバンク
5 復調回路
6 伝搬路品質検出手段
21 フーリエ変換回路
22 分割回路
23 周波数シフト回路
24 加算回路
25 逆フーリエ変換回路
41 フーリエ変換回路
42 周波数シフト回路
43 再合成回路
44 加算回路
45 乗算回路
46 波形整形フィルタ関数
47 逆フーリエ変換回路
48 信号合成選択手段
DESCRIPTION OF SYMBOLS 1 Modulation circuit 2 Band division | segmentation filter bank 3 Signal generation means and controller for propagation path detection 4 Band synthesis filter bank 5 Demodulation circuit 6 Propagation path quality detection means 21 Fourier transform circuit 22 Division circuit 23 Frequency shift circuit 24 Addition circuit 25 Inverse Fourier Conversion circuit 41 Fourier transform circuit 42 Frequency shift circuit 43 Resynthesis circuit 44 Addition circuit 45 Multiplication circuit 46 Waveform shaping filter function 47 Inverse Fourier transform circuit 48 Signal synthesis selection means

Claims (6)

シングルキャリア変調信号を帯域分割して複数のサブ変調信号を生成する分割回路と、
伝送路の通信品質が著しく劣化している周波数領域を回避するように、前記サブ変調信号を周波数配置する周波数シフト回路と、
を備える送信装置と、
受信したサブ変調信号の周波数配置を分割前の周波数位置に再配置して合成する再合成回路
を備える受信装置と、
を備えることを特徴とする無線通信システム。
A division circuit for dividing a single carrier modulation signal into a plurality of bands to generate a plurality of sub modulation signals;
A frequency shift circuit that frequency arranges the sub-modulated signal so as to avoid a frequency region in which the communication quality of the transmission path is significantly degraded;
A transmission device comprising:
A receiving device including a re-synthesis circuit that rearranges and synthesizes the frequency arrangement of the received sub-modulated signal at the frequency position before the division;
A wireless communication system comprising:
前記分割回路は、分割前のシングルキャリア変調信号の帯域より、分割後の各サブ変調信号の帯域の総和が小さくなるように帯域分割することを特徴とする請求項1に記載の無線通信システム。   2. The wireless communication system according to claim 1, wherein the dividing circuit performs band division so that a sum of bands of sub-modulation signals after division is smaller than a band of a single carrier modulation signal before division. 前記送信装置は、生成された前記複数のサブ変調信号の全て、または一部を複製する手段をさらに備え、前記周波数シフト回路は該複製したサブ変調信号を異なる周波数位置に配置し、
前記受信装置は、受信した複製されたサブ変調信号を選択、または合成する信号合成選択手段をさらに備えることを特徴とする請求項1または2に記載の無線通信システム。
The transmission apparatus further includes means for replicating all or part of the generated plurality of submodulation signals, and the frequency shift circuit arranges the replicated submodulation signals at different frequency positions,
The radio communication system according to claim 1 or 2, wherein the receiving device further comprises signal synthesis selection means for selecting or synthesizing the received duplicated submodulation signal.
前記送信装置は、トレーニング信号を周波数軸上で挿入し送信する伝搬路検出用信号発生手段をさらに備え、
前記受信装置は、受信したトレーニング信号から周波数特性を検出し、該周波数特性を前記送信装置に通知する伝搬路品質検出手段をさらに備えることを特徴とする請求項1から3のいずれか1項に記載の無線通信システム。
The transmitter further includes a propagation path detection signal generating means for inserting and transmitting a training signal on the frequency axis,
The said receiving apparatus is further equipped with the propagation path quality detection means which detects a frequency characteristic from the received training signal, and notifies this frequency characteristic to the said transmission apparatus, The any one of Claim 1 to 3 characterized by the above-mentioned. The wireless communication system described.
シングルキャリア変調信号を帯域分割して複数のサブ変調信号を生成する分割回路と、
伝送路の通信品質が著しく劣化している周波数領域を回避するように、前記サブ変調信号を周波数配置する周波数シフト回路と、
を備えることを特徴とする送信装置。
A division circuit for dividing a single carrier modulation signal into a plurality of bands to generate a plurality of sub modulation signals;
A frequency shift circuit that frequency arranges the sub-modulated signal so as to avoid a frequency region in which the communication quality of the transmission path is significantly degraded;
A transmission device comprising:
シングルキャリア変調信号を帯域分割して複数のサブ変調信号を生成する分割ステップと、
伝送路の通信品質が著しく劣化している周波数領域を回避するように、前記サブ変調信号を周波数配置する周波数シフトステップと、
を含むことを特徴とする送信方法。
A division step of dividing a single carrier modulation signal into a plurality of bands to generate a plurality of sub modulation signals;
A frequency shift step of arranging the sub-modulated signals in frequency so as to avoid a frequency region in which the communication quality of the transmission path is significantly degraded;
The transmission method characterized by including.
JP2010037019A 2010-02-23 2010-02-23 Wireless communication system, transmission apparatus and transmission method in wireless communication system Expired - Fee Related JP5208980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037019A JP5208980B2 (en) 2010-02-23 2010-02-23 Wireless communication system, transmission apparatus and transmission method in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037019A JP5208980B2 (en) 2010-02-23 2010-02-23 Wireless communication system, transmission apparatus and transmission method in wireless communication system

Publications (2)

Publication Number Publication Date
JP2011176406A JP2011176406A (en) 2011-09-08
JP5208980B2 true JP5208980B2 (en) 2013-06-12

Family

ID=44688891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037019A Expired - Fee Related JP5208980B2 (en) 2010-02-23 2010-02-23 Wireless communication system, transmission apparatus and transmission method in wireless communication system

Country Status (1)

Country Link
JP (1) JP5208980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893773B1 (en) * 2015-01-07 2016-03-23 日本電信電話株式会社 Receiving method and receiving apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470163B2 (en) * 2010-06-08 2014-04-16 日本電信電話株式会社 Transmission system, transmission device, reception device, transmission method and program
CN103339907B (en) * 2011-02-08 2017-03-15 日本电信电话株式会社 Wireless communication system, dispensing device, reception device and wireless communications method
JP7196679B2 (en) * 2019-02-20 2022-12-27 日本電信電話株式会社 Wireless communication system, transmitter and wireless communication method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268188A (en) * 1992-03-19 1993-10-15 Fujitsu Ltd Multiplex radio modulator-demodulator
JP2000049744A (en) * 1998-05-26 2000-02-18 Victor Co Of Japan Ltd Transmission band division modulation/demodulation device and its method
JP2002101062A (en) * 2000-09-26 2002-04-05 Yrp Kokino Idotai Tsushin Kenkyusho:Kk Multicarrier communication system and radio receiver
JP4067873B2 (en) * 2002-05-24 2008-03-26 三菱電機株式会社 Wireless transmission device
CN102362453B (en) * 2009-04-01 2014-07-16 日本电信电话株式会社 Wireless transmission method, wireless transmission system, and transmission apparatus and reception apparatus of wireless transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893773B1 (en) * 2015-01-07 2016-03-23 日本電信電話株式会社 Receiving method and receiving apparatus

Also Published As

Publication number Publication date
JP2011176406A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
US9240910B2 (en) Out-of-band emission cancellation
JP4871813B2 (en) Wireless communication device, wireless communication method, and peak suppression method
US8964887B2 (en) Wireless transmission device, wireless transmission method, wireless transmission program, and wireless communication system
JP5640990B2 (en) Wireless transmission device, wireless transmission method, storage medium, and baseband circuit
US8054742B2 (en) System and method for sidelobe suppression in communications systems
US9374204B2 (en) Transmission method and apparatus for cancelling inter-carrier interference
KR20160089410A (en) System and method for radio frequency carrier aggregation
KR102269498B1 (en) Method and apparatus for controlling power in multi carrier communication system
JP2008160822A (en) Radio transmission device, radio reception device, radio transmission method, and radio reception method
KR20080045202A (en) Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method
WO2018147775A1 (en) Method and arrangement for signal distortion mitigation
JP5208980B2 (en) Wireless communication system, transmission apparatus and transmission method in wireless communication system
JP4836866B2 (en) Communication device
KR20110079755A (en) Multi-user mimo system, receiver apparatus and transmitter apparatus
JP2013236302A (en) Mobile station device, base station device, transmission method, and wireless communication system
US8477882B2 (en) Radio apparatus
CN112448903B (en) Method and device for eliminating inter-subcarrier interference based on OFDM system
US8891644B2 (en) Communication apparatus and communication method
Anughna et al. Performance analysis on 5G waveform candidates for MIMO technologies
JP3768448B2 (en) OFDM signal transmission apparatus, OFDM signal receiving apparatus, and OFDM signal receiving method
Khan et al. Beamforming for rejection of co-channels interference in an OFDM system
JP5845549B2 (en) Perturbation vector selection device, communication device, perturbation vector selection method, and program
KR101935648B1 (en) Method and Device for Determining SNR loss rate and Designing Precoder Considering Desired PAR
Lian et al. Adaptive OFDM beamformer with constrained weights for cognitive radio
Ramakrishnan et al. An optimization technique for reducing the PAPR in MIMO-OFDM technique by using FPPC scheme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5208980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees