JP5208371B2 - Determination of polychlorinated biphenyls - Google Patents

Determination of polychlorinated biphenyls Download PDF

Info

Publication number
JP5208371B2
JP5208371B2 JP2006072261A JP2006072261A JP5208371B2 JP 5208371 B2 JP5208371 B2 JP 5208371B2 JP 2006072261 A JP2006072261 A JP 2006072261A JP 2006072261 A JP2006072261 A JP 2006072261A JP 5208371 B2 JP5208371 B2 JP 5208371B2
Authority
JP
Japan
Prior art keywords
silica gel
sulfuric acid
fuming sulfuric
impregnated
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006072261A
Other languages
Japanese (ja)
Other versions
JP2007248270A (en
Inventor
眞 今井
克也 今西
尚之 横堀
由美子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2006072261A priority Critical patent/JP5208371B2/en
Publication of JP2007248270A publication Critical patent/JP2007248270A/en
Application granted granted Critical
Publication of JP5208371B2 publication Critical patent/JP5208371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、ポリ塩化ビフェニル類の定量方法に関し、詳しくは疎水性試料に含まれるポリ塩化ビフェニル類を定量する方法に関する。 The present invention relates to a method for quantifying polychlorinated biphenyls, and more particularly to a method for quantifying polychlorinated biphenyls contained in a hydrophobic sample.

トランスなどに使用されている絶縁油などの疎水性試料に含まれるポリ塩化ビフェニル類
〔以下、PCB類と略称することがある。〕を定量するに際しては、PCB類の定量に妨
害となる共存物質を予め除去することが必要であるが、このような共存物質には、カラム
クロマトグラフ処理などの通常の処理方法だけでは分離が困難なものもある。このため、
非特許文献1〔平成12年12月28日厚生省告示第633号で改正された平成4年7月
3日厚生省告示第192号の別表第二「特別管理一般廃棄物及び特別管理産業廃棄物に係
る基準の検定方法」〕に記載された、いわゆる公定法では、疎水性試料を濃硫酸と液−液
接触させて処理する操作を繰り返したのちに、共存物質を上記カラムクロマトグラフ処理
などの処理方法により除去する方法が開示されており、また、濃硫酸に代えて遊離SO3濃度25質量%の発煙硫酸を用いて疎水性試料を処理する方法も知られている。濃硫酸または発煙硫酸と液−液接触させたのちの疎水性試料は、分液操作により濃硫酸または発煙硫酸から分離され、かかる処理方法により、疎水性試料に含まれる分離困難な妨害物質を除去することができる。
Polychlorinated biphenyls [hereinafter sometimes abbreviated as PCBs] contained in hydrophobic samples such as insulating oil used in transformers and the like. ], It is necessary to remove in advance the coexisting substances that interfere with the quantification of PCBs. However, such coexisting substances cannot be separated by ordinary processing methods such as column chromatography. Some are difficult. For this reason,
Non-Patent Document 1 [Attached Table 2 of Special Notification General Waste and Special Management Industrial Waste on July 3, 1992, revised by the Ministry of Health, Labor and Welfare Notification No. 633, December 28, 2000 According to the so-called official method described in “Testing method of such standards”], after repeating the operation of treating a hydrophobic sample with concentrated sulfuric acid in liquid-liquid contact, the coexisting substances are treated by the above column chromatographic treatment or the like. A method of removing by a method is disclosed, and a method of treating a hydrophobic sample using fuming sulfuric acid having a free SO 3 concentration of 25% by mass in place of concentrated sulfuric acid is also known. Hydrophobic samples after liquid-liquid contact with concentrated sulfuric acid or fuming sulfuric acid are separated from concentrated sulfuric acid or fuming sulfuric acid by a liquid separation operation, and this method of treatment removes difficult-to-separate interfering substances contained in hydrophobic samples. can do.

しかし、液−液接触させたのちの疎水性試料を濃硫酸または発煙硫酸から分離する操作を
繰り返すことは煩雑である。
However, it is troublesome to repeat the operation of separating the hydrophobic sample after the liquid-liquid contact from concentrated sulfuric acid or fuming sulfuric acid.

一方、比較的短時間で、簡便に、妨害物質を除去しうる方法としては、疎水性試料を、珪藻土からなる多孔質担体に濃硫酸単独を含浸させた濃硫酸含浸珪藻土と接触させる方法が知られており、特許文献1〔特開2001−116723号公報第9頁の段落番号0082〕には、この濃硫酸含浸珪藻土を充填したカラムに、疎水性試料を通過させたのちに、シリカゲルカラムクロマトグラフ処理を行うことにより、妨害物質の除去を図っている。 On the other hand, as a method for easily removing an interfering substance in a relatively short time, there is known a method in which a hydrophobic sample is contacted with concentrated sulfuric acid-impregnated diatomaceous earth obtained by impregnating a porous carrier made of diatomaceous earth with concentrated sulfuric acid alone. In Patent Document 1 (Japanese Patent Laid-Open No. 2001-116723, page 9, paragraph number 0082), a hydrophobic sample is passed through a column packed with this concentrated sulfuric acid-impregnated diatomaceous earth, and then silica gel column chromatography is used. Interfering substances are removed by performing graph processing.

しかし、濃硫酸単独を用いる従来の分解方法では、PCB類との分離が困難な妨害物質を
十分に除去することができないという問題があった。
However, the conventional decomposition method using concentrated sulfuric acid alone has a problem that it is not possible to sufficiently remove interfering substances that are difficult to separate from PCBs.

平成12年12月28日厚生省告示第633号で改正された平成4年7月3日厚生省告示第192号の別表第二「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」December 28, 2000, Ministry of Health, Labor and Welfare Notification No. 633, revised on July 3, 1992, Ministry of Health, Labor and Welfare Notification No. 192, Approval Method for Standards Related to Special Management General Waste and Special Management Industrial Waste " 特開2001−116723号公報第9頁の段落番号0082Paragraph No. 0082 on page 9 of JP 2001-116723 A

そこで本発明者らは、疎水性試料に含まれ、PCB類の定量に妨害となる共存物質を、簡
便な操作で、十分に除去して、PCB類を定量しうる方法を開発するべく鋭意検討した結
果、本発明に至った。
Therefore, the present inventors have intensively studied to develop a method capable of quantifying PCBs by sufficiently removing coexisting substances contained in a hydrophobic sample and interfering with the quantification of PCBs by a simple operation. As a result, the present invention has been achieved.

すなわち本発明は、PCB類を含む疎水性試料中のPCB類を定量するに際し、前処理工程として、前記疎水性試料を、以下の条件を満たす発煙硫酸含浸シリカゲルと接触させる工程を含むことを特徴とする前記PCB類の定量方法を提供するものである。 That is, the present invention includes a step of bringing the hydrophobic sample into contact with fuming sulfuric acid-impregnated silica gel satisfying the following conditions as a pretreatment step in quantifying PCBs in a hydrophobic sample containing PCBs. A method for quantifying the PCBs is provided.

発煙硫酸含浸シリカゲル:BET比表面積250m2/g〜450m2/g、細孔容積1.4cm3/g〜2.6cm3/gのシリカゲルに、遊離SO3濃度が5質量%〜40質量%である発煙硫酸が含浸されてなる発煙硫酸含浸シリカゲル Oleum impregnated silica gel: BET specific surface area of 250m 2 / g~450m 2 / g, the silica gel pore volume 1.4cm 3 /g~2.6cm 3 / g, free SO 3 concentration of 5% to 40% by weight Fumed sulfuric acid impregnated silica gel impregnated with fuming sulfuric acid

本発明の方法によれば、遊離SO3濃度5〜40質量%の発煙硫酸を本願発明で規定する特定のシリカゲルに含浸させて用いるので、疎水性試料に含まれる上記妨害物質を十分に除去することが可能となる。 According to the method of the present invention, fuming sulfuric acid having a free SO 3 concentration of 5 to 40% by mass is impregnated into the specific silica gel specified in the present invention, so that the interfering substances contained in the hydrophobic sample are sufficiently removed. It becomes possible.

本発明の方法に適用される疎水性試料は、疎水性の液体試料であって、例えばトランス、
コンデンサーなどの電気機器に絶縁、冷却などのために封入されて使用される絶縁油、該
絶縁油を分解処理して得られる分解処理油などの油性試料が挙げられる。かかる油性試料
は希釈されることなくそのまま用いられてもよいし、n−ヘキサン、シクロヘキサンなどのような疎水性溶媒で希釈されて用いられてもよい。
The hydrophobic sample applied to the method of the present invention is a hydrophobic liquid sample, for example, trans,
Examples thereof include an oily sample such as an insulating oil used by being enclosed in an electric device such as a condenser for insulation or cooling, or a decomposition-treated oil obtained by decomposing the insulating oil. Such an oily sample may be used as it is without being diluted, or may be used after being diluted with a hydrophobic solvent such as n-hexane or cyclohexane.

また、疎水性試料としては、例えば焼却炉から排出される煤塵、燃え殻、土壌から採取さ
れる土質試料などの固形試料、雨水、排水などの水質試料などから、n−ヘキサン、トル
エンなどのような疎水性溶媒により抽出されたPCB類を含む疎水性溶液も挙げられる。
Examples of hydrophobic samples include solid samples such as soot discharged from incinerators, burning husks, soil samples collected from soil, water samples such as rainwater and drainage, n-hexane, toluene and the like. A hydrophobic solution containing PCBs extracted with a hydrophobic solvent is also mentioned.

固形試料や水質試料から疎水性溶媒によりPCB類を抽出するには、例えば固形試料また
は水質試料を上記のような疎水性溶媒と接触させればよい。
In order to extract PCBs from a solid sample or a water quality sample with a hydrophobic solvent, for example, the solid sample or the water quality sample may be brought into contact with the hydrophobic solvent as described above.

固形試料または水質試料から疎水性溶媒によりPCB類を抽出することにより得られた疎
水性溶媒抽出液は、そのまま疎水性試料として用いてもよいが、通常は、PCB類と共に
抽出される他の共存物質を分離するために、n−ヘキサン、トルエンなどの疎水性溶媒抽
出液からPCB類を極性有機溶媒でさらに抽出し、得られた極性有機溶媒抽出液からPC
B類を疎水性溶媒に転溶させる。かかる極性有機溶媒としては、例えばジメチルスルホキ
シド、アセトニトリル、メタノール、n−メチルピロリドンなどが挙げられる。極性有機
溶媒抽出液から疎水性溶媒に転溶させるには、例えば極性有機溶媒抽出液に水を加えたの
ち、疎水性溶媒により抽出すればよい。
The hydrophobic solvent extract obtained by extracting PCBs from a solid sample or a water quality sample with a hydrophobic solvent may be used as it is as a hydrophobic sample, but usually other coexistence extracted with PCBs. In order to separate the substances, PCBs are further extracted with a polar organic solvent from a hydrophobic solvent extract such as n-hexane or toluene, and the obtained polar organic solvent extract is subjected to PC.
B is dissolved in a hydrophobic solvent. Examples of such a polar organic solvent include dimethyl sulfoxide, acetonitrile, methanol, n-methylpyrrolidone and the like. In order to dissolve the polar organic solvent extract into the hydrophobic solvent, for example, water may be added to the polar organic solvent extract and then extracted with the hydrophobic solvent.

本発明の方法で用いる発煙硫酸含浸シリカゲルは、シリカゲルに発煙硫酸が含浸されてなるものである。 The fuming sulfuric acid-impregnated silica gel used in the method of the present invention is obtained by impregnating silica gel with fuming sulfuric acid.

シリカゲルとしては、BET比表面積が250m2/g〜450m2/g、好ましくは250m2/g〜350m2/gである。細孔容積が1.4cm3/g〜2.6cm3/g、好ましくは1.6cm3/g〜2.6cm3/gのものが用いられる。 The silica gel, BET specific surface area of 250m 2 / g~450m 2 / g, preferably from 250m 2 / g~350m 2 / g. A pore volume of 1.4cm 3 /g~2.6cm 3 / g, preferably is used as the 1.6cm 3 /g~2.6cm 3 / g.

発煙硫酸は、濃硫酸に三酸化硫黄〔SO3〕ガスを吸収させたものであり、その遊離SO3
濃度は、JIS K8741に従って測定される。一般に市販されている発煙硫酸の遊離
SO3濃度は10質量%〜60質量%であるので、本発明で規定する遊離SO3濃度の発煙硫酸は、例えば市販の発煙硫酸に、濃硫酸、すなわちH2SO4濃度98質量%以上の硫酸を加えて希釈する方法、市販の発煙硫酸または濃硫酸に三酸化硫黄ガスを吹き込んで吸収させる方法などにより調製することができる。
Fuming sulfuric acid is obtained by absorbing sulfur trioxide [SO 3 ] gas in concentrated sulfuric acid, and its free SO 3
The concentration is measured according to JIS K8741. Generally, the free SO 3 concentration of fuming sulfuric acid that is commercially available is 10% by mass to 60% by mass. Therefore, the fuming sulfuric acid having the free SO 3 concentration defined in the present invention is, for example, commercially available fuming sulfuric acid, concentrated sulfuric acid, ie, H It can be prepared by a method of diluting by adding sulfuric acid having a concentration of 2 SO 4 of 98% by mass or more, a method of injecting sulfur trioxide gas into a commercially available fuming sulfuric acid or concentrated sulfuric acid and absorbing it.

発煙硫酸の遊離SO3濃度は、妨害物質を十分に除去しうる点で、5質量%以上、好ましくは15質量%以上であり、PCB類を精度よく定量できる点で、40質量%以下、好ましくは30質量%以下である。 The free SO 3 concentration of fuming sulfuric acid is 5% by mass or more, preferably 15% by mass or more in terms of sufficiently removing interfering substances, and 40% by mass or less, preferably in terms of accurately quantifying PCBs. Is 30% by mass or less.

かかる発煙硫酸のシリカゲルに対する含浸量は、シリカゲルに含浸されて保持されうる量であればよく、通常は、シリカゲルに対して0.5質量倍〜5質量倍であるが、含浸された発煙硫酸がほとんど滲み出さず、また粒子同士が互いに粘着せず、粉末状で流動性の発煙硫酸シリカゲルとなって取扱いが容易である点で、2.5質量倍以下であることが好ましい。 The amount of the fuming sulfuric acid impregnated with respect to the silica gel may be an amount that can be impregnated and retained in the silica gel, and is usually 0.5 to 5 times by mass with respect to the silica gel. The amount is preferably 2.5 times by mass or less in that it hardly oozes out and the particles do not stick to each other and are easy to handle as a powdered and fluid fuming sulfuric acid silica gel.

疎水性試料と発煙硫酸含浸シリカゲルとの接触は、通常は、疎水性試料を、発煙硫酸含浸シリカゲルが充填された発煙硫酸含浸シリカゲルカラムを通過させればよい。 The contact between the hydrophobic sample and the fuming sulfuric acid-impregnated silica gel is usually achieved by passing the hydrophobic sample through a fuming sulfuric acid-impregnated silica gel column packed with fuming sulfuric acid-impregnated silica gel.

このような発煙硫酸含浸シリカゲルカラムを調製するには、例えば前記のシリカゲルを上述の発煙硫酸と混合して発煙硫酸含浸シリカゲルとしたのちカラムに充填すればよい。本発明で規定するBET比表面積および細孔容積のシリカゲルは、比較的多くの発煙硫酸、例えば2質量倍を超える発煙硫酸を含浸させても粉末状態を維持することができることから、カラムへの充填も容易である。 In order to prepare such a fuming sulfuric acid-impregnated silica gel column, for example, the silica gel may be mixed with the above fuming sulfuric acid to form a fuming sulfuric acid-impregnated silica gel and then packed into the column. Since the silica gel having the BET specific surface area and pore volume defined in the present invention can maintain a powder state even when impregnated with a relatively large amount of fuming sulfuric acid, for example, fuming sulfuric acid exceeding 2 times by mass, it is packed in a column. Is also easy.

また、発煙硫酸含浸シリカゲルカラムは、カラムに前記のシリカゲルを充填したのち、上述の発煙硫酸を加えることにより調製することもできる。 A fuming sulfuric acid impregnated silica gel column can also be prepared by adding the above fuming sulfuric acid after the column is filled with the silica gel.

疎水性試料を発煙硫酸含浸シリカゲルと接触させる際の接触温度は、通常0℃〜50℃程度である。接触時間は、通常1分〜20分程度であり、定量の精度に優れ、効率的に測定できる点で、3分〜10分が好ましい。 The contact temperature when the hydrophobic sample is brought into contact with the fuming sulfuric acid-impregnated silica gel is usually about 0 ° C to 50 ° C. The contact time is usually about 1 minute to 20 minutes, preferably 3 minutes to 10 minutes because it is excellent in quantitative accuracy and can be measured efficiently.

疎水性試料の粘度によっては、そのままでは発煙硫酸含浸シリカゲルカラムを通過させることが困難な場合もあるが、このような場合には、適宜、疎水性試料を、例えばn−ヘキサン、ヘプタン、シクロヘキサンなどの疎水性溶媒の溶液として通過させてもよいし、発煙硫酸含浸シリカゲルカラムに疎水性試料を戴置したのち、さらに疎水性溶媒を流下させることにより希釈させながら通過させてもよい。 Depending on the viscosity of the hydrophobic sample, it may be difficult to pass through the fuming sulfuric acid impregnated silica gel column as it is, but in such a case, the hydrophobic sample is appropriately selected, for example, n-hexane, heptane, cyclohexane, etc. The solution may be passed as a solution of the hydrophobic solvent, or after the hydrophobic sample is placed on the fuming sulfuric acid impregnated silica gel column, it may be passed through while being diluted by flowing the hydrophobic solvent down.

疎水性溶媒試料は、あらかじめ脱水されていることが好ましい。脱水させるには、例えば
乾燥剤と接触させればよく、発煙硫酸含浸シリカゲルカラムとして、その上流側にさらに乾燥剤を充填した2層構成のカラムを用い、疎水性試料が、この乾燥剤層を通過することにより脱水されてから、発煙硫酸含浸シリカゲル層を通過するように構成してもよいし、発煙硫酸含浸シリカゲルカラムの上流側に、別途、乾燥剤を充填した乾燥剤カラムを接続して、疎水性試料が、乾燥剤カラムを通過したのちに、発煙硫酸含浸シリカゲルカラムを通過するように構成してもよい。乾燥剤として通常は、無水硫酸ナトリウムなどのような発煙硫酸および濃硫酸に対して不活性な乾燥剤が用いられる。
The hydrophobic solvent sample is preferably dehydrated in advance. In order to dehydrate, for example, it may be brought into contact with a desiccant. As a fuming sulfuric acid impregnated silica gel column, a column having a two-layer structure in which a desiccant is further filled on the upstream side is used. It may be configured to pass through the fuming sulfuric acid impregnated silica gel layer after being dehydrated by passing, or a desiccant column filled with a desiccant is separately connected to the upstream side of the fuming sulfuric acid impregnated silica gel column. The hydrophobic sample may pass through the desiccant column and then pass through the fuming sulfuric acid impregnated silica gel column. As the desiccant, a desiccant inert to fuming sulfuric acid and concentrated sulfuric acid such as anhydrous sodium sulfate is usually used.

このようにして発煙硫酸含浸シリカゲルと接触したのちの疎水性試料を、例えばシリカゲルカラムクロマトグラフ処理することにより、妨害物質を除去することができる。シリカゲルカラムクロマトグラフ処理には、通常、カラムにシリカゲルが充填されたシリカゲルカラムが用いられ、該カラムは、通常、発煙硫酸含浸シリカゲルカラムの下流側に接続されて用いられる。 Interfering substances can be removed by subjecting the hydrophobic sample after contact with the fuming sulfuric acid-impregnated silica gel, for example, to silica gel column chromatography. For silica gel column chromatography, a silica gel column in which the column is filled with silica gel is usually used, and the column is usually connected to the downstream side of the fuming sulfuric acid impregnated silica gel column.

このような処理操作を施したのちの疎水性試料は、必要に応じて、例えば溶媒留去などの
方法により濃縮されてもよい。
The hydrophobic sample after performing such a treatment operation may be concentrated by a method such as evaporation of the solvent, if necessary.

なお、上記の処理操作ののち、疎水性試料に残存する他の共存物質は、必要に応じて更に、通常のカラムクロマトグラフ法などの精製処理を付することにより、除去することができる。 In addition, after the above-described processing operation, other coexisting substances remaining in the hydrophobic sample can be removed by subjecting to a purification treatment such as a normal column chromatography method as necessary.

例えば上記他の共存物質のうち親油性のものは、疎水性試料に含まれるPCB類を極性有
機溶媒で抽出し、得られた極性溶媒抽出液を、親油性吸着剤を充填剤とするカラムクロマ
トグラフ処理することにより、PCB類と分離することができる。極性有機溶媒としては
、上記したと同様のものが挙げられる。親油性吸着剤とは、少なくとも表面が油性の物質
と親和性のある材料で構成された固形の吸着剤であって、通常は粒状のものが用いられる
。かかる親油性吸着剤としては、例えばカラムクロマトグラフ用充填剤、固相抽出用充填
剤、逆相液体クロマトグラフィーのカラム充填剤として広く用いられているものが挙げら
れ、例えばジーエルサイエンス社からカラムクロマト充填剤「C18」、米国ウォーター
ズ(Waters)社から「SEP−PAK−C18」、「SEP−PAK−tC18」
、「SEP−PAK−Vac tC18」などの商品名で市販されているものを用いるこ
とができる。
For example, among the above-mentioned other coexisting substances, lipophilic substances are obtained by extracting PCBs contained in a hydrophobic sample with a polar organic solvent, and using the obtained polar solvent extract as a column chromatography using a lipophilic adsorbent as a filler. By performing graph processing, it can be separated from PCBs. Examples of the polar organic solvent include those described above. The lipophilic adsorbent is a solid adsorbent composed of a material having at least a surface having affinity with an oily substance, and is usually in a granular form. Examples of such lipophilic adsorbents include those widely used as column chromatography packing materials, solid phase extraction packing materials, and column packing materials for reversed-phase liquid chromatography. Filler “C18” from Waters, USA “SEP-PAK-C18”, “SEP-PAK-tC18”
, "SEP-PAK-Vac tC18" or other commercial products can be used.

かかるカラムクロマトグラフ処理は、例えば極性有機溶媒抽出液を、親油性吸着剤を充填したカラムを流下させることにより行われる。流下後の極性溶媒抽出液は、必要に応じて濃縮してもよい。 Such column chromatography is performed, for example, by allowing a polar organic solvent extract to flow down a column filled with a lipophilic adsorbent. The polar solvent extract after flowing down may be concentrated as necessary.

親油性吸着剤によりカラムクロマトグラフ処理したのちの極性有機溶媒抽出液に、他の共
存物質として親水性のものが含まれる場合には、例えば極性有機溶媒抽出液に含まれるP
CB類を疎水性溶媒に転溶させることにより、これを除去することができる。極性有機溶媒抽出液に含まれるPCB類を疎水性溶媒に転溶させるには、例えば極性有機溶媒抽出液に水を加えたのち、疎水性溶媒で抽出すればよい。
When the polar organic solvent extract after column chromatography with a lipophilic adsorbent contains hydrophilic substances as other coexisting substances, for example, P contained in the polar organic solvent extract
This can be removed by transferring CBs into a hydrophobic solvent. In order to dissolve PCBs contained in the polar organic solvent extract in a hydrophobic solvent, for example, water may be added to the polar organic solvent extract and then extracted with the hydrophobic solvent.

このようにして転溶させた転溶液は、必要に応じ、これを多層シリカゲルカラムクロマト処理することにより、残存する共存物質を除去することができる。かかる多層シリカゲルカラムクロマトグラフ処理は、例えばカラムに無処理のシリカゲル、水酸化カリウム被覆シリカゲル、硫酸被覆シリカゲルなどのシリカゲル充填剤が充填された多層構成の多層シリカゲルカラムに転溶液を通過させることにより行われる。通過後の転溶液は、溶媒留去などの方法により濃縮してもよい。 If necessary, the transferred solution thus transferred can be subjected to multilayer silica gel column chromatography to remove the remaining coexisting substances. Such multi-layer silica gel column chromatography is performed by passing the transferred solution through a multi-layer silica gel column having a multi-layer structure in which the column is filled with a silica gel filler such as untreated silica gel, potassium hydroxide-coated silica gel, or sulfuric acid-coated silica gel. Is called. The transferred solution after passing may be concentrated by a method such as solvent distillation.

上述の前処理を施した後、PCB類を定量する方法は特に限定されるものではなく、例えばガスクロマトグラフ−質量分析法(GC−MS法)、検出器として電子捕獲型検出器(ECD)を用いるガスクロマトグラフ法であるGC(ECD)法、ゲルパーミエーションクロマトグラフにより分取したフラクションからGC(ECD)法により定量するGPC−GC(ECD)法などが挙げられる。 The method for quantifying PCBs after the above pretreatment is not particularly limited. For example, a gas chromatograph-mass spectrometry (GC-MS method), an electron capture detector (ECD) as a detector is used. Examples thereof include a GC (ECD) method, which is a gas chromatographic method to be used, and a GPC-GC (ECD) method in which quantification is performed by a GC (ECD) method from a fraction fractionated by a gel permeation chromatograph.

以下、実施例により本発明をより詳細に説明するが、本発明は、これらの実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these Examples.

なお、各実施例で用いたシリカゲルのBET比表面積は、MICROMETRICS社製「流動式比表面積自動測定装置 Flow Sorb 2300」を用いて一点法により測定した。
細孔容積は、MICROMETRICS社製社製「自動ポロシメーター オートポアIII 9420」を用いて細孔半径0.001μm〜100μmの範囲の細孔容積として求めた。
In addition, the BET specific surface area of the silica gel used in each Example was measured by a one-point method using a “flow type specific surface area automatic measuring device Flow Sorb 2300” manufactured by MICROMETRICS.
The pore volume was determined as a pore volume having a pore radius in the range of 0.001 μm to 100 μm using “Auto Porosimeter Autopore III 9420” manufactured by MICROMETRICS.

実施例1
〔模擬絶縁油の調製〕
市販の絶縁油にPCB類を加えて模擬絶縁油を調製した。この模擬絶縁油1gあたりに含まれるPCB類の含有量を非特許文献1〔平成12年12月28日厚生省告示第633号で改正された平成4年7月3日厚生省告示第192号の別表第二「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」〕に従って測定したところ、第1表に示すとおりであった。
Example 1
[Preparation of simulated insulating oil]
A simulated insulating oil was prepared by adding PCBs to a commercially available insulating oil. The content of PCBs contained in 1 g of the simulated insulating oil is shown in Non-Patent Document 1 [Appendix Table of the Ministry of Health and Welfare Notification No. 192 revised on December 28, 2000 by Ministry of Health and Welfare Notification No. 633 It was as shown in Table 1 when it was measured in accordance with “No. 2“ Examination method for standards concerning specially managed municipal waste and specially managed industrial waste ””.

第 1 表
━━━━━━━━━━━
3塩素体 270ng
4塩素体 270ng
5塩素体 230ng
6塩素体 140ng
7塩素体 100ng
8塩素体 40ng
───────────
合計 1050ng
━━━━━━━━━━━
Table 1
━━━━━━━━━━━
3 Chlorine 270 ng
4-chlorine 270 ng
5 Chlorine 230 ng
6 Chlorine 140 ng
7 Chlorine 100 ng
8 Chlorine 40 ng
───────────
1050ng total
━━━━━━━━━━━

〔発煙硫酸含浸シリカゲルの調製〕
BET比表面積252m2/g、細孔容積2.58cm2/gのシリカゲルを150℃で12時間乾燥させた。内容量100mLのバイアル瓶に、このシリカゲル6gを電子天秤で秤量して入れ、遊離SO3濃度25質量%の発煙硫酸〔和光純薬工業社製、試薬一級〕7.3mL(13.5g)を追加したのち素早く密栓し、20分間振とうして、内容物を十分に混合した。内容物は、互いに固着していない流動性の粉末状であった。
[Preparation of fuming sulfuric acid impregnated silica gel]
Silica gel having a BET specific surface area of 252 m 2 / g and a pore volume of 2.58 cm 2 / g was dried at 150 ° C. for 12 hours. 6 g of this silica gel is weighed with an electronic balance into a vial with a capacity of 100 mL, and 7.3 mL (13.5 g) of fuming sulfuric acid having a free SO 3 concentration of 25% by mass (made by Wako Pure Chemical Industries, Ltd., reagent grade 1) is added. After the addition, the cap was quickly sealed and shaken for 20 minutes to thoroughly mix the contents. The contents were in the form of a fluid powder that did not stick to each other.

〔模擬絶縁油の前処理〕
容量10mLのポリプロピレン製ディスポシリンジをカラムとして用い、その底部にガラス繊維ろ紙〔ADVANTEC社製、GA−100〕を敷き、シリカゲル〔和光純薬工業社製、「ワコーゲルDX」〕0.5g、上記で調製した発煙硫酸含浸シリカゲル2g、無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」〕0.5gをこの順で充填して、発煙硫酸含浸シリカゲルカラムを調製した。
[Pretreatment of simulated insulating oil]
A polypropylene disposable syringe having a capacity of 10 mL was used as a column, and a glass fiber filter paper (manufactured by ADVANTEC, GA-100) was laid on the bottom thereof, and 0.5 g of silica gel (manufactured by Wako Pure Chemical Industries, Ltd., “Wakogel DX”) was used. 2 g of the prepared fuming sulfuric acid-impregnated silica gel and 0.5 g of anhydrous sodium sulfate [manufactured by Wako Pure Chemical Industries, Ltd., “for residual agricultural chemical test”] were packed in this order to prepare a fuming sulfuric acid-impregnated silica gel column.

このカラムに、上から、上記で調製した模擬絶縁油590μL(0.5g相当)を加え、n−ヘキサン〔和光純薬工業社製、「ダイオキシン類測定用」〕200μLを添加して5分間静置した。 To this column, 590 μL (corresponding to 0.5 g) of the simulated insulating oil prepared above is added from above, and 200 μL of n-hexane (manufactured by Wako Pure Chemical Industries, Ltd., “for measuring dioxins”) is added, and the mixture is allowed to stand for 5 minutes. I put it.

次にn−ヘキサン〔和光純薬工業社製、「ダイオキシン類測定用」〕15mLを添加し、シリンジの底部から、内容積30mLのナスフラスコに溶出液を回収した。この溶出液にはPCBが含まれている。この溶出液にPCB内部標準物質〔Wellington社製、「MBP−GC Solution Mixture of 1312−PCBs」〕40μLを添加し、ロータリーエバポレーターで減圧濃縮した後、内容積25mLの分液ロートに移した。 Next, 15 mL of n-hexane (manufactured by Wako Pure Chemical Industries, Ltd., “for dioxins measurement”) was added, and the eluate was collected from the bottom of the syringe into an eggplant flask having an internal volume of 30 mL. This eluate contains PCB. 40 μL of PCB internal standard substance (“MBP-GC Solution Mixture of 13 C 12 -PCBs” manufactured by Wellington, Inc.) was added to this eluate, concentrated under reduced pressure using a rotary evaporator, and transferred to a separatory funnel having an internal volume of 25 mL. .

〔カラムクロマトグラフ処理〕
上記で濃縮液を移した後の分液ロートに、ジメチルスルホキシド3.2mLを加え、10分間振とうしたのち静置し、分液してジメチルスルホキシド抽出液を得る操作を3回行い、得られた抽出液を合わせ、直列に接続された2本のtC18カラム〔Waters社製、「Sep−Pak Vac tC18 3cc」〕に加えて通過させた。
[Column Chromatograph Processing]
After adding 3.2 mL of dimethyl sulfoxide to the separatory funnel after transferring the concentrated liquid as described above, shaking for 10 minutes, allowing to stand, and liquid-separating to obtain a dimethyl sulfoxide extract three times. The extracted liquids were combined and passed through two tC 18 columns [Waters, “Sep-Pak Vac tC18 3 cc”] connected in series.

流下液の全量に、36%塩酸〔和光純薬工業社製、残留農薬試験用〕を純水で2倍容積に希釈した希塩酸〔18%塩酸〕12mLを加えて混合したのち、n−ヘキサン6mLで溶媒抽出を行い、得られたn−ヘキサン抽出液を多層シリカゲルカラムに加えたのち、n−ヘキサン90mLで展開し、初流分20mLを除いて後流分を採取した。なお、この多層シリカゲルカラムとしては、内径15mmのガラスカラムに、n−ヘキサンを用いた湿式充填により、下流側から充填剤として、無処理シリカゲル1g、2%水酸化カリウム被覆シリカゲル3g、無処理シリカゲル1g、44%硫酸被覆シリカゲル10g、無処理シリカゲル5g、無水硫酸ナトリウム2gをこの順で充填したものを用いた。 After adding 12 mL of dilute hydrochloric acid [18% hydrochloric acid] obtained by diluting 36% hydrochloric acid [manufactured by Wako Pure Chemical Industries, Ltd., for residual agricultural chemical test] to 2 times volume with pure water, the total amount of the flowing-down solution was mixed, and then 6 mL of n-hexane The resulting n-hexane extract was added to a multilayer silica gel column, and then developed with 90 mL of n-hexane, and the wake was collected except for 20 mL of the initial stream. In addition, as this multilayer silica gel column, a non-treated silica gel 1 g, 2% potassium hydroxide-coated silica gel 3 g, an untreated silica gel as a filler from the downstream side by wet packing using n-hexane into a glass column having an inner diameter of 15 mm. 1 g, 10 g of 44% sulfuric acid-coated silica gel, 5 g of untreated silica gel, and 2 g of anhydrous sodium sulfate were used in this order.

採取した後流分の全量をロータリーエバポレーターにより30℃にて1mLまで濃縮し、さらに、乾燥窒素気流下に溶媒留去して200μLまで濃縮して、n−ヘキサン試料を得た。 The total amount of the collected effluent was concentrated to 1 mL at 30 ° C. by a rotary evaporator, and further the solvent was distilled off under a dry nitrogen stream and concentrated to 200 μL to obtain an n-hexane sample.

〔GC−MS法によるPCB類の定量〕
上記で得たn−ヘキサン試料に、シリンジスパイクとして13Cラベル化7塩化ビフェニル〔Wellington社製、「MBP−170(IUPAC No.170)」、2,2’,3,3’,4,4’,5−ヘプタクロロ[1312]ビフェニル(2,2',3,3',4,4',5-Heptachloro[13C12]biphenyl)〕を加えて試料液を調製し、ガスクロマトグラフ−四重極型質量分析装置〔GC−QMS装置〕により、PCB類を定量し、回収率を求めた。結果を第2表に示す。なお、GC−QMS法による分析では、共存物質に由来するピークは確認できなかった。
[Quantification of PCBs by GC-MS method]
To the n-hexane sample obtained above, 13 C-labeled 7-chloride biphenyl [manufactured by Wellington, “MBP-170 (IUPAC No. 170)”, 2,2 ′, 3,3 ′, 4,4 as a syringe spike ', 5-heptachloro [ 13 C 12 ] biphenyl (2,2', 3,3 ', 4,4', 5-Heptachloro [ 13 C 12 ] biphenyl)] was added to prepare a sample solution, and gas chromatography PCBs were quantified using a quadrupole mass spectrometer [GC-QMS apparatus] to determine the recovery rate. The results are shown in Table 2. In the analysis by the GC-QMS method, no peak derived from the coexisting substance could be confirmed.

用いたGC−QMS装置の構成および条件は以下の通りである。
ガスクロマトグラフ部
カラム:キャピラリーカラム〔長さ30m、内径0.25mm、膜厚0.25μm〕
液相:5%フェニルメチルシリコン〔J&W社製、「DB−5MS」〕
カラム温度:注入後、90℃を1分保持したのち、16℃/分で200℃まで昇温し、次いで6℃/分で300℃まで昇温して、同温度を5分間維持する。
注入法:スプリットレス法、パージ開始時間1.5分
注入量:1μL
注入口温度:280℃
キャリアガス:ヘリウムガス、1mL/分
インターフェース温度:250℃
The configuration and conditions of the used GC-QMS apparatus are as follows.
Gas chromatograph part column: capillary column [length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm]
Liquid phase: 5% phenylmethyl silicon [manufactured by J & W, “DB-5MS”]
Column temperature: After injection, 90 ° C. is maintained for 1 minute, and then the temperature is increased to 200 ° C. at 16 ° C./minute, then to 300 ° C. at 6 ° C./minute, and the same temperature is maintained for 5 minutes.
Injection method: Splitless method, purge start time 1.5 minutes Injection amount: 1 μL
Inlet temperature: 280 ° C
Carrier gas: Helium gas, 1 mL / min Interface temperature: 250 ° C

質量分析部
イオン化法:EI
イオン源温度:250℃
イオン化エネルギー:70eV
検出モード:SIM法
サイクルタイム:1.0秒以下
Mass spectrometer ionization method: EI
Ion source temperature: 250 ° C
Ionization energy: 70 eV
Detection mode: SIM method cycle time: 1.0 sec or less

実施例2
実施例1で使用した発煙硫酸〔遊離SO3濃度25%〕に代えて、遊離SO3濃度20質量%の発煙硫酸〔関東化学工業社製、「試薬特級」〕を用い、模擬絶縁油の採取量を354μL(0.3g相当)にした以外は実施例1と同様に操作して、GC−QMS分析を行い回収率を求めた。結果を第2表に示す。なお、GC−QMS分析では、共存物質に由来するピークは確認できなかった。
Example 2
In place of the fuming sulfuric acid used in Example 1 (free SO 3 concentration 25%), fuming sulfuric acid having a free SO 3 concentration of 20% by mass (manufactured by Kanto Chemical Co., Ltd., “reagent grade”) was used to collect the simulated insulating oil. Except that the amount was 354 μL (corresponding to 0.3 g), the operation was carried out in the same manner as in Example 1, and GC-QMS analysis was performed to obtain the recovery rate. The results are shown in Table 2. In the GC-QMS analysis, no peak derived from the coexisting substance could be confirmed.

実施例3
実施例1で使用した発煙硫酸〔遊離SO3濃度25%〕に代えて、遊離SO3濃度15質量%の発煙硫酸〔関東化学工業社製、「試薬特級」〕を用い、模擬絶縁油の採取量を354μL(0.3g相当)にした以外は実施例1と同様に操作して、GC−QMS分析を行い回収率を求めた。結果を第2表に示す。なお、GC−QMS分析では、共存物質に由来するピークは確認できなかった。
Example 3
In place of the fuming sulfuric acid used in Example 1 (free SO 3 concentration 25%), fuming sulfuric acid having a free SO 3 concentration of 15% by mass (manufactured by Kanto Chemical Industry Co., Ltd., “reagent grade”) was used to collect the simulated insulating oil. Except that the amount was 354 μL (corresponding to 0.3 g), the operation was carried out in the same manner as in Example 1, and GC-QMS analysis was performed to obtain the recovery rate. The results are shown in Table 2. In the GC-QMS analysis, no peak derived from the coexisting substance could be confirmed.

実施例4
実施例1で使用した発煙硫酸〔遊離SO3濃度25%〕に代えて、遊離SO3濃度10質量%の発煙硫酸〔関東化学工業社製、「試薬特級」〕を用いた以外は実施例1と同様に操作して、GC−QMS分析を行い回収率を求めた。結果を第2表に示す。なお、GC−QMS分析では、共存物質に由来するピークは確認できなかった。
Example 4
Example 1 except that fuming sulfuric acid (manufactured by Kanto Chemical Co., Ltd., “reagent grade”) having a free SO 3 concentration of 10% by mass was used instead of the fuming sulfuric acid (free SO 3 concentration 25%) used in Example 1. In the same manner as described above, GC-QMS analysis was performed to obtain the recovery rate. The results are shown in Table 2. In the GC-QMS analysis, no peak derived from the coexisting substance could be confirmed.

実施例5
実施例1で使用した発煙硫酸含浸シリカゲルの調製用シリカゲルに代えて、BET比表面積341m2/g、細孔容積1.66cm2/gのシリカゲルを用い、模擬絶縁油の採取量を295μL(0.25g相当)とし、シリンジスパイクとして、13Cラベル化7塩化ビフェニル〔Wellington社製、「MBP−170(IUPAC No.170)」〕および13Cラベル化3塩化ビフェニル〔Wellington社製、「MBP−37(IUPAC No.37)」3,4,4’−トリクロロ[1312]ビフェニル(3,4,4'-Trichloro[13C12]biphenyl)〕を加えた以外は実施例1と同様に操作して試料液を調製し、ガスクロマトグラフ−二重収束型質量分析装置〔GC−HRMS装置〕により、PCB類を定量し、回収率を求めた。結果を第2表に示す。GC−HRMS法による分析では、共存物質に由来するピークは確認できなかった。
Example 5
Instead of the silica gel for the preparation of fuming sulfuric acid impregnated silica gel used in Example 1, silica gel having a BET specific surface area of 341 m 2 / g and a pore volume of 1.66 cm 2 / g was used, and the amount of simulated insulating oil collected was 295 μL (0 13 C labeled 7-chloride biphenyl (manufactured by Wellington, “MBP-170 (IUPAC No. 170)”) and 13 C-labeled trichloride biphenyl (manufactured by Wellington, “MBP- 37 (IUPAC No. 37) ", except that 3,4,4'-trichloro [ 13 C 12 ] biphenyl (3,4,4'-Trichloro [ 13 C 12 ] biphenyl)] was added. A sample solution was prepared by operation, and PCBs were quantified by a gas chromatograph-double focusing mass spectrometer [GC-HRMS apparatus] to obtain a recovery rate. The results are shown in Table 2. In the analysis by the GC-HRMS method, a peak derived from a coexisting substance could not be confirmed.

なお、用いたGC−HRMS装置の構成および条件は以下の通りである。
ガスクロマトグラフ部
カラム:キャピラリーカラム〔長さ:60m、内径:0.25mm〕
液相:8%フェニルポリカルボラン〔SGE「HT8−PCB」〕
カラム温度(1塩素体〜4塩素体の分析):n−ヘキサン試料の注入後、90℃を1分保持したのち、20℃/分で200℃まで昇温し、次いで4℃/分で275℃まで昇温し、次いで20℃/分で310℃まで昇温して、同温度を5分間維持する。
カラム温度(5塩素体〜10塩素体の分析):n−ヘキサン試料の注入後、90℃を1分保持したのち、20℃/分で200℃まで昇温し、次いで4℃/分で320℃まで昇温して、同温度を3.5分間維持する。
注入法:スプリットレス法、パージ開始時間0.9分
注入量:1μL
注入口温度:280℃
キャリアガス:ヘリウムガス、1mL/分
インターフェース温度:280℃
The configuration and conditions of the used GC-HRMS apparatus are as follows.
Gas chromatograph part column: capillary column [length: 60 m, inner diameter: 0.25 mm]
Liquid phase: 8% phenyl polycarborane [SGE “HT8-PCB”]
Column temperature (analysis of 1 chlorine body to 4 chlorine body): After injecting the n-hexane sample, after maintaining 90 ° C. for 1 minute, the temperature was raised to 200 ° C. at 20 ° C./minute, and then 275 at 4 ° C./minute. Then, the temperature is raised to 310 ° C. at 20 ° C./min, and the same temperature is maintained for 5 minutes.
Column temperature (analysis of 5 chlorine bodies to 10 chlorine bodies): After injecting the n-hexane sample, after maintaining 90 ° C. for 1 minute, the temperature was raised to 200 ° C. at 20 ° C./minute and then 320 ° C. at 4 ° C./minute. The temperature is raised to 0 ° C., and the same temperature is maintained for 3.5 minutes.
Injection method: Splitless method, purge start time 0.9 minutes Injection amount: 1 μL
Inlet temperature: 280 ° C
Carrier gas: Helium gas, 1 mL / min Interface temperature: 280 ° C

質量分析部
イオン化法:EI
イオン源温度:280℃
イオン化エネルギー:35eV
検出モード:SIM法
サイクルタイム:1.0秒以下









Mass spectrometer ionization method: EI
Ion source temperature: 280 ° C
Ionization energy: 35 eV
Detection mode: SIM method cycle time: 1.0 sec or less









第 2 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
遊離SO3濃度 回収率(%)
(質量%) 3塩素体 4塩素体 5塩素体 6塩素体 7塩素体 8塩素体
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 25 74 96 110 119 117 118
実施例2 20 72 101 107 111 111 108
実施例3 15 81 108 111 112 114 112
実施例4 10 94 114 118 115 114 97
実施例5 25 82 100 103 111 131 99
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Free SO 3 concentration Recovery (%)
(Mass%) 3 Chlorine 4 Chlorine 5 Chlorine 6 Chlorine 7 Chlorine 8 Chlorine ━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━
Example 1 25 74 96 110 119 117 118
Example 2 20 72 101 107 111 111 108
Example 3 15 81 108 111 112 114 112
Example 4 10 94 114 118 115 115 114 97
Example 5 25 82 100 103 111 131 99
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例6
使用済の絶縁油3種類について、1gあたりに含まれるPCB類の全含有量を非特許文献1〔平成12年12月28日厚生省告示第633号で改正された平成4年7月3日厚生省告示第192号の別表第二「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」〕に従って測定したところ、第3表に示すとおりであった。
Example 6
Non-Patent Document 1 [July 3, 1992, revised by Ministry of Health, Labor and Welfare Notification No. 633, December 28, 2000, the total content of PCBs contained in 1 g of three types of used insulating oil Measurements were made in accordance with Schedule No. 192, Schedule 2, “Standard Verification Methods for Specially Controlled General Waste and Specially Controlled Industrial Waste”, as shown in Table 3.

第 3 表
━━━━━━━━━━━━━
絶縁油A 18mg/kg
絶縁油B 28mg/kg
絶縁油C 37mg/kg
━━━━━━━━━━━━━
Table 3
━━━━━━━━━━━━━
Insulating oil A 18mg / kg
Insulating oil B 28mg / kg
Insulating oil C 37mg / kg
━━━━━━━━━━━━━

〔発煙硫酸含浸シリカゲルの調製〕
実施例1で使用した発煙硫酸〔遊離SO3濃度25%〕に代えて、遊離SO3濃度10質量%の発煙硫酸〔関東化学工業社製、「試薬特級」〕を用い、実施例1と同様に操作して発煙硫酸含浸シリカゲルを調製した。
[Preparation of fuming sulfuric acid impregnated silica gel]
Instead of fuming sulfuric acid (free SO 3 concentration 25%) used in Example 1, fuming sulfuric acid (manufactured by Kanto Chemical Co., Ltd., “reagent special grade”) having a free SO 3 concentration of 10% by mass was used. A fuming sulfuric acid impregnated silica gel was prepared.

〔絶縁油の前処理〕
絶縁油0.25gをn-ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕で希釈し、ゲルパーミエーションクロマトグラフ〔GPC装置〕に注入して、PCB溶出範囲を分取した。この分取液をロータリーエバポレーターで約0.5mLまで減圧濃縮した。
[Pretreatment of insulating oil]
Dilute 0.25 g of insulating oil with n-hexane (Wako Pure Chemical Industries, “residual agricultural chemicals / PCB test 300”) and inject it into a gel permeation chromatograph [GPC device] to separate the PCB elution range. I took it. This fractionated solution was concentrated under reduced pressure to about 0.5 mL with a rotary evaporator.

次に、容量5mLのポリプロピレン製ディスポシリンジをカラムとして用い、その底部にガラス繊維ろ紙〔ADVANTEC社製、GA−100〕を敷き、シリカゲル〔和光純薬工業社製、「ワコーゲルDX」〕0.5g、上記で調製した発煙硫酸含浸シリカゲル1g、無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」〕1gをこの順で充填し発煙硫酸含浸シリカゲルカラムを調製した。 Next, a 5 mL polypropylene disposable syringe is used as a column, and a glass fiber filter paper (manufactured by ADVANTEC, GA-100) is laid on the bottom, and silica gel (Wako Pure Chemical Industries, “Wakogel DX”) 0.5 g Then, 1 g of fuming sulfuric acid impregnated silica gel prepared above and 1 g of anhydrous sodium sulfate [manufactured by Wako Pure Chemical Industries, Ltd., “for residual agricultural chemical test”] were packed in this order to prepare a fuming sulfuric acid impregnated silica gel column.

このカラムの上部から、上記で得た試料液を移し入れ、n−ヘキサンを添加し、シリンジの底部から、初めの流出液8mLの溶出液を回収した。この溶出液にはPCBが含まれている。この溶出液に窒素を吹き付けて濃縮し、n−ヘキサンで1mLとした。 From the top of this column, the sample solution obtained above was transferred, n-hexane was added, and 8 mL of the first effluent was recovered from the bottom of the syringe. This eluate contains PCB. The eluate was concentrated by blowing nitrogen, and made up to 1 mL with n-hexane.

〔GC/ECD法によるPCB類の定量〕
上記で得たn−ヘキサン試料液について、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量し、回収率を求めた。結果を第4表に示す。また、PCBのピークに近接して出現する夾雑物をPCBと見なし、その残存量を算出した(PCB換算値)。結果を第5表に示す。
[Quantification of PCBs by GC / ECD method]
About n-hexane sample liquid obtained above, PCBs were quantified by the gas chromatograph (with an ECD detector) [GC / ECD apparatus], and recovery was calculated. The results are shown in Table 4. Further, a foreign substance appearing in the vicinity of the PCB peak was regarded as PCB, and the remaining amount was calculated (PCB conversion value). The results are shown in Table 5.

なお、用いたGC/ECD装置の構成および条件は以下の通りである。
ガスクロマトグラフ部
カラム:ガラスカラム〔長さ2m、内径3.2mm〕
液相:2%Silicone OV-17 Chromosorb W AW-DMCS 60/80 〔クロマトパッキングスセンター信和化工株式会社製〕
カラム温度:225℃
注入量:5μL
注入口温度:230℃
キャリアガス:窒素ガス、40mL/分
The configuration and conditions of the used GC / ECD apparatus are as follows.
Gas chromatograph column: glass column [length 2 m, inner diameter 3.2 mm]
Liquid phase: 2% Silicone OV-17 Chromosorb W AW-DMCS 60/80 [Chromatopackings Center Shinwa Kako Co., Ltd.]
Column temperature: 225 ° C
Injection volume: 5 μL
Inlet temperature: 230 ° C
Carrier gas: Nitrogen gas, 40 mL / min

ECD部
温度:230℃
電流:0.5nA
ECD temperature: 230 ° C
Current: 0.5nA

実施例7
実施例6で使用した発煙硫酸〔遊離SO3濃度10%〕に代えて、遊離SO3濃度5質量%の発煙硫酸を用いた以外は実施例6と同様に操作して、GC/ECD分析を行い回収率及び夾雑物の残存量を求めた。結果を第4表及び第5表に示す。
Example 7
The GC / ECD analysis was performed in the same manner as in Example 6 except that fuming sulfuric acid having a free SO 3 concentration of 5% by mass was used instead of the fuming sulfuric acid used in Example 6 (free SO 3 concentration of 10%). The recovery rate and the remaining amount of impurities were determined. The results are shown in Tables 4 and 5.

比較例1
実施例6で使用した発煙硫酸〔遊離SO3濃度10%〕に代えて、濃硫酸〔和光純薬工業社製、濃度98質量%以上、「試薬特級」〕を担体シリカゲルに対して44質量%となるように添加して混合、調製した硫酸含浸シリカゲルを用いた以外は実施例6と同様に操作して、GC/ECD分析を行い、夾雑物の残存量を求めた。結果を第5表に示す。
発煙硫酸含浸シリカゲルは、硫酸含浸シリカゲルに比べPCBのGC/ECD測定で妨害する夾雑物を約40%低減できることが分かる。
Comparative Example 1
Instead of the fuming sulfuric acid [free SO 3 concentration 10%] used in Example 6, concentrated sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., concentration 98 mass% or more, “reagent special grade”) was 44 mass% with respect to the carrier silica gel. GC / ECD analysis was performed in the same manner as in Example 6 except that the sulfuric acid-impregnated silica gel added, mixed, and prepared was used, and the remaining amount of impurities was determined. The results are shown in Table 5.
It can be seen that the fuming sulfuric acid impregnated silica gel can reduce impurities that interfere with the GC / ECD measurement of PCB by about 40% compared to the sulfuric acid impregnated silica gel.

第 4 表
━━━━━━━━━━━━━━━━━━━━━━━━━━
遊離SO3濃度 全PCB回収率(%)
(質量%) 絶縁油A 絶縁油B 絶縁油C
━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例6 10 74 96 110
実施例7 5 72 101 107
━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 4
━━━━━━━━━━━━━━━━━━━━━━━━━━
Free SO 3 concentration Total PCB recovery rate (%)
(Mass%) Insulating oil A Insulating oil B Insulating oil C
━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 6 10 74 96 110
Example 7 5 72 101 107
━━━━━━━━━━━━━━━━━━━━━━━━━━

第 5 表
━━━━━━━━━━━━━━━━━━━━━━━━━━
遊離SO3濃度 夾雑物(PCB換算値mg/kg)
(質量%) 絶縁油A 絶縁油B 絶縁油C
━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例6 10 1.6 3.2 5.1
実施例7 5 1.7 3.5 5.4
比較例1 0 2.6 5.5 8.5
━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 5
━━━━━━━━━━━━━━━━━━━━━━━━━━
Free SO 3 concentration Contaminant (PCB conversion value mg / kg)
(Mass%) Insulating oil A Insulating oil B Insulating oil C
━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 6 10 1.6 3.2 5.1
Example 7 5 1.7 3.5 5.4
Comparative Example 1 0 2.6 5.5 8.5 8.5
━━━━━━━━━━━━━━━━━━━━━━━━━━

Claims (6)

ポリ塩化ビフェニル類を含む疎水性試料中のポリ塩化ビフェニル類を定量するに際し、前
処理工程として、前記疎水性試料を、以下の条件を満たす発煙硫酸含浸シリカゲルと接触
させる工程を含むことを特徴とする前記ポリ塩化ビフェニル類の定量方法。
発煙硫酸含浸シリカゲル:BET比表面積250m2/g〜450m2/g、細孔容積1.
4cm3/g〜2.6cm3/gのシリカゲルに、遊離SO3濃度が5質量%〜40質量%
である発煙硫酸が含浸されてなり、前記発煙硫酸の含浸量が、前記シリカゲルに対して0
.5質量倍〜2.5質量倍である発煙硫酸含浸シリカゲル
When quantifying polychlorinated biphenyls in a hydrophobic sample containing polychlorinated biphenyls, the pretreatment step includes a step of contacting the hydrophobic sample with fuming sulfuric acid-impregnated silica gel that satisfies the following conditions: The method for quantifying the polychlorinated biphenyls.
Oleum impregnated silica gel: BET specific surface area of 250m 2 / g~450m 2 / g, pore volume 1.
4cm 3 /g~2.6cm 3 / in g of silica gel, free SO 3 concentration of 5% to 40% by weight
The fuming sulfuric acid is impregnated, and the impregnation amount of the fuming sulfuric acid is 0 with respect to the silica gel.
. Fumed sulfuric acid impregnated silica gel with 5 to 2.5 mass times
前記発煙硫酸の含浸量が、前記シリカゲルに対して2質量倍以上である請求項1に記載の
定量方法。
The quantitative determination method according to claim 1, wherein an impregnation amount of the fuming sulfuric acid is 2 mass times or more with respect to the silica gel.
カラムに充填された前記発煙硫酸含浸シリカゲルカラムと接触させる請求項1または請求
項2に記載の定量方法。
The method according to claim 1 or 2, wherein the method is brought into contact with the fuming sulfuric acid impregnated silica gel column packed in a column.
ポリ塩化ビフェニル類を含む疎水性試料中のポリ塩化ビフェニル類を定量する際の前処理に用いられる発煙硫酸含浸シリカゲルであり、
BET比表面積250m2/g〜450m2/g、細孔容積1.4cm3/g〜2.6cm3
/gのシリカゲルに、遊離SO3濃度が5質量%〜40質量%である発煙硫酸が含浸され
てなり、前記発煙硫酸の含浸量が、前記シリカゲルに対して0.5質量倍〜2.5質量倍
である発煙硫酸含浸シリカゲル。
A fuming sulfuric acid impregnated silica gel used for pretreatment when quantifying polychlorinated biphenyls in a hydrophobic sample containing polychlorinated biphenyls,
BET specific surface area of 250m 2 / g~450m 2 / g, pore volume 1.4cm 3 /g~2.6cm 3
/ G of silica gel is impregnated with fuming sulfuric acid having a free SO 3 concentration of 5% by mass to 40% by mass, and the impregnation amount of the fuming sulfuric acid is 0.5 mass times to 2.5 times the silica gel. Fumed sulfuric acid impregnated silica gel with mass times.
前記発煙硫酸の含浸量が、前記シリカゲルに対して2質量倍以上である請求項4に記載の
発煙硫酸含浸シリカゲル。
The fuming sulfuric acid-impregnated silica gel according to claim 4, wherein an impregnation amount of the fuming sulfuric acid is 2 mass times or more with respect to the silica gel.
ポリ塩化ビフェニル類を含む疎水性試料中のポリ塩化ビフェニル類を定量する際の前処理に用いられるシリカゲルカラムであり、
請求項4または請求項5に記載の発煙硫酸含浸シリカゲルがカラムに充填されてなるシリ
カゲルカラム。
A silica gel column used for pretreatment when quantifying polychlorinated biphenyls in a hydrophobic sample containing polychlorinated biphenyls;
A silica gel column in which the fuming sulfuric acid-impregnated silica gel according to claim 4 or 5 is packed in a column.
JP2006072261A 2006-03-16 2006-03-16 Determination of polychlorinated biphenyls Active JP5208371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072261A JP5208371B2 (en) 2006-03-16 2006-03-16 Determination of polychlorinated biphenyls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072261A JP5208371B2 (en) 2006-03-16 2006-03-16 Determination of polychlorinated biphenyls

Publications (2)

Publication Number Publication Date
JP2007248270A JP2007248270A (en) 2007-09-27
JP5208371B2 true JP5208371B2 (en) 2013-06-12

Family

ID=38592740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072261A Active JP5208371B2 (en) 2006-03-16 2006-03-16 Determination of polychlorinated biphenyls

Country Status (1)

Country Link
JP (1) JP5208371B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2063430C (en) * 1989-06-22 2000-08-01 Wolfgang Rieper Process for making azo-pigments
JP4535925B2 (en) * 2005-04-14 2010-09-01 株式会社住化分析センター Analysis method for polychlorinated biphenyls

Also Published As

Publication number Publication date
JP2007248270A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4465430B2 (en) Extraction method of polychlorinated biphenyls
Ramírez et al. Comparative study of solvent extraction and thermal desorption methods for determining a wide range of volatile organic compounds in ambient air
TWI425983B (en) Purified preparation of oily liquid containing a poly biphenyl chloride group compound
Jeong et al. Distribution characteristics of PCBs in the sediments of the lower Nakdong River, Korea
WO2020149255A1 (en) Method for fractionating dioxin-type compounds
Balasubramani et al. Efficacy of carbon-based materials for remediating polychlorinated biphenyls (PCBs) in sediment
Persson et al. Testing common sediment–porewater distribution models for their ability to predict dissolved concentrations of POPs in The Grenlandsfjords, Norway
JP4764215B2 (en) Method for quantifying polychlorinated biphenyls and ampoule used therefor
JP5208371B2 (en) Determination of polychlorinated biphenyls
JP2006313125A (en) Method for speedily analyzing pcb on criterion of treated material of pcb waste
JP2010169676A (en) Quantitative determination method of polychlorinated biphenyl
Sinche et al. Optimization of Tenax extraction parameters for polychlorinated biphenyls in contaminated sediments
JP5691120B2 (en) Production method of silica gel containing high concentration sulfuric acid
JP4632813B2 (en) Determination of polychlorinated biphenyls
Chikushi et al. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection
JP4535925B2 (en) Analysis method for polychlorinated biphenyls
Mahindrakar et al. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil
Lulek Levels of polychlorinated biphenyls in some waste motor and transformer oils from Poland
JP4956768B2 (en) Extraction method of polychlorinated biphenyls
JP2005140522A (en) Method for pretreating oily sample containing polychlorinated biphenyls
WO2023119935A1 (en) Treatment tool for mono-ortho polychlorinated biphenyl-containing aliphatic hydrocarbon solvent solution
Murillo-Tovar et al. Selective separation of oxy-PAH from n-alkanes and PAH in complex organic mixtures extracted from airborne PM 2.5
JP2009150742A (en) Analyzing method of sulfoxide-type sulfur component in insulating oil
JP5442925B2 (en) Analysis method for polychlorinated biphenyls
JP5546644B2 (en) Analytical method for polychlorinated biphenyls in oil

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250