JP2010169676A - Quantitative determination method of polychlorinated biphenyl - Google Patents

Quantitative determination method of polychlorinated biphenyl Download PDF

Info

Publication number
JP2010169676A
JP2010169676A JP2009292294A JP2009292294A JP2010169676A JP 2010169676 A JP2010169676 A JP 2010169676A JP 2009292294 A JP2009292294 A JP 2009292294A JP 2009292294 A JP2009292294 A JP 2009292294A JP 2010169676 A JP2010169676 A JP 2010169676A
Authority
JP
Japan
Prior art keywords
sulfuric acid
treatment
sample
oil layer
polychlorinated biphenyls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009292294A
Other languages
Japanese (ja)
Inventor
Yumiko Ito
由美子 伊藤
Makoto Imai
眞 今井
Go Hamada
剛 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2009292294A priority Critical patent/JP2010169676A/en
Publication of JP2010169676A publication Critical patent/JP2010169676A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis method for quantitatively determining polychlorinated biphenyls by fully removing, with an easy operation, coexistent material disturbing the quantitative determination of the polychlorinated biphenyls from a hydrophobic sample containing the polychlorinated biphenyls. <P>SOLUTION: In this method, the hydrophobic sample containing the polychlorinated biphenyls is treated by gel permeation chromatography, a dispensed object that is obtained by the treatment and is mainly made of polychlorinated biphenyls is used; and the polychlorinated biphenyls is quantitatively determined by a gas chromatograph. The dispensed object useful for the gas chromatograph, after the treatment by the gel permeation chromatography is previously treated by concentrated sulfuric acid, then polychlorinated biphenyls are quantitatively determined using the gas chromatograph. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリ塩化ビフェニル類の定量方法に関し、更に詳しくは疎水性試料中のポリ塩化ビフェニル類の定量方法に関するものである。   The present invention relates to a method for quantifying polychlorinated biphenyls, and more particularly to a method for quantifying polychlorinated biphenyls in a hydrophobic sample.

トランスなどに使用されている絶縁油などの疎水性試料に含まれるポリ塩化ビフェニル類〔以下、PCB類と略称することがある。〕を定量するに際しては、PCB類の定量に妨害となる共存物質を予め除去することが必要であるが、このような共存物質には、カラムクロマトグラフ処理などの通常の処理方法だけでは分離が困難なものもある。このため、非特許文献1〔平成12年12月28日厚生省告示第633号で改正された平成4年7月3日厚生省告示第192号の別表第二「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」〕に記載された、いわゆる公定法では、疎水性試料を濃硫酸と液−液接触させて処理する操作を繰り返したのちに、共存物質を上記カラムクロマトグラフ処理などの処理方法により除去する方法が開示されている。また、同様な絶縁油中のPCB分析の前処理として、非特許文献2[絶縁油中のPCBs分析におけるゲルクロマトグラフィーを用いた前処理方法:環境化学Vol.13,No.4,pp.1033−1040,2003]には、試料を硫酸処理し、次いでゲル浸透クロマトグラフィー〔以下、GPCと略称することがある。〕を用いた処理方法が開示されている。   Polychlorinated biphenyls [hereinafter sometimes abbreviated as PCBs] contained in hydrophobic samples such as insulating oil used in transformers and the like. ], It is necessary to remove in advance the coexisting substances that interfere with the quantification of PCBs. However, such coexisting substances cannot be separated by ordinary processing methods such as column chromatography. Some are difficult. Therefore, Non-Patent Document 1 [Attached Table 2 “Special Management General Waste and Special Management Industry of July 3, 1992 revised by the Ministry of Health, Labor and Welfare Notification No. 633 on December 28, 2000” In the so-called official method described in “Standard Test Method for Waste”], after repeating the operation of bringing a hydrophobic sample into contact with concentrated sulfuric acid in liquid-liquid contact, the coexisting substances are subjected to the above column chromatographic treatment. The method of removing by such processing methods is disclosed. Further, as a similar pretreatment for PCB analysis in insulating oil, Non-Patent Document 2 [Pretreatment method using gel chromatography in analysis of PCBs in insulating oil: Environmental Chemistry Vol. 13, no. 4, pp. 1033-1040, 2003], a sample is treated with sulfuric acid, and then gel permeation chromatography [hereinafter abbreviated as GPC]. ] Is disclosed.

GPCでの処理前に、PCB類を含有する疎水性試料を濃硫酸で処理する方法は、絶縁油中に含まれるPCB類の定量に妨害となる共存物質を分解し、GPCで絶縁油等の疎水性試料からPCB類を分離する際に、合わせてこれら分解物も分離できることより極めて有効な方法である。   The method of treating a hydrophobic sample containing PCBs with concentrated sulfuric acid before the treatment with GPC decomposes coexisting substances that hinder the determination of PCBs contained in the insulating oil, and GPC This is an extremely effective method because PCBs can be separated from a hydrophobic sample, and these decomposition products can be separated together.

しかしながら、該試料の前処理方法として予め濃硫酸で処理し、次いでGPCで処理する併用方法においても、PCB類との分離が困難な共存物質を十分に除去し得るものではなく、更に優れた除去方法の出現が望まれている。   However, in the combined method in which the sample is pre-treated with concentrated sulfuric acid and then treated with GPC, coexisting substances that are difficult to separate from PCBs cannot be sufficiently removed, and further excellent removal is achieved. The emergence of methods is desired.

平成12年12月28日厚生省告示第633号で改正された平成4年7月3日厚生省告示第192号の別表第二「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」December 28, 2000 Ministry of Health, Labor and Welfare Notification No. 633, revised on July 3, 1992 Ministry of Health, Labor and Welfare Notification No. 192, Appendix 2 “Examination Methods for Standards Related to Specially Managed General Waste and Specially Managed Industrial Waste” " 絶縁油中のPCBs分析におけるゲルクロマトグラフィーを用いた前処理方法:環境化学Vol.13,No.4,pp.1033−1040,2003Pretreatment method using gel chromatography in PCBs analysis in insulating oil: Environmental Chemistry Vol. 13, no. 4, pp. 1033-1040, 2003

かかる事情下に鑑み、本発明者等はより優れた疎水性試料中よりPCB類の定量に妨害となる共存物質の除去方法を見出すべく鋭意検討した結果、理由は詳らかではないが、従来、PCB類を含有する疎水性試料の前処理として、GPCによる処理(疎水性試料とPCB類の分離)に先立ち行うとされていた濃硫酸での処理を、GPCによる処理後に得られたPCB類に対し行う場合にはPCB類の定量に妨害となる共存物質が著しく減少することを見出し、本発明に至った。   In view of such circumstances, the present inventors have intensively studied to find a method for removing coexisting substances that hinder the quantification of PCBs from a more excellent hydrophobic sample. As a pre-treatment of hydrophobic samples containing sucrose, treatment with concentrated sulfuric acid, which was supposed to be performed prior to GPC treatment (separation of hydrophobic sample and PCBs), was applied to PCBs obtained after treatment with GPC. In the case of carrying out, the present inventors have found that coexisting substances that interfere with the quantification of PCBs are remarkably reduced, leading to the present invention.

すなわち本発明は、ポリ塩化ビフェニル類を含有する疎水性試料を、ゲル浸透クロマトグラフィーで処理した後、該処理で得た主としてポリ塩化ビフェニル類よりなる分取物を用い、ガスクロマトグラフにてポリ塩化ビフェニル類を定量する方法において、ゲル浸透クロマトグラフィーで処理した後のガスクロマトグラフに供する分取物を、予め濃硫酸で処理することを特徴とするポリ塩化ビフェニル類の定量方法を提供するにある。   That is, the present invention treats a hydrophobic sample containing polychlorinated biphenyls by gel permeation chromatography, and then uses a fraction mainly composed of polychlorinated biphenyls obtained by the treatment, followed by polychlorination with a gas chromatograph. In the method for quantifying biphenyls, the present invention provides a method for quantifying polychlorinated biphenyls, characterized in that a fraction to be subjected to gas chromatography after gel permeation chromatography is treated with concentrated sulfuric acid in advance.

また、本発明は、濃硫酸での処理が、分取物と濃硫酸の液−液処理であることを特徴とする上記記載のポリ塩化ビフェニル類の定量方法を提供するにある。   The present invention also provides the method for quantifying polychlorinated biphenyls as described above, wherein the treatment with concentrated sulfuric acid is a liquid-liquid treatment of a fraction and concentrated sulfuric acid.

更に、本発明は、濃硫酸での処理が、分取物と濃硫酸を含浸させた硫酸シリカゲルとの液−固処理であることを特徴とする上記記載のポリ塩化ビフェニル類の定量方法を提供するにある。   Furthermore, the present invention provides the method for quantifying polychlorinated biphenyls as described above, wherein the treatment with concentrated sulfuric acid is a liquid-solid treatment of a fraction and sulfuric acid silica gel impregnated with concentrated sulfuric acid. There is.

加えて、本発明は、ガスクロマトグラフが、高分解能ガスクロマトグラフであることを特徴とする上記記載のポリ塩化ビフェニル類の定量方法を提供するにある。   In addition, the present invention provides a method for quantifying polychlorinated biphenyls as described above, wherein the gas chromatograph is a high-resolution gas chromatograph.

本発明は、従来よく知られていたPCB類を含有する疎水性試料を濃硫酸で処理し、次いでGPCで処理した後、高分解能ガスクロマトグラフを用いて疎水性試料中のPCB類を定量する方法に比較し、PCB類の定量に妨害となる共存物質を著しく減少せしめることができる。   The present invention is a method for quantifying PCBs in a hydrophobic sample using a high-resolution gas chromatograph after treating a hydrophobic sample containing PCBs well known in the art with concentrated sulfuric acid and then with GPC. In comparison with this, the coexisting substances that interfere with the quantitative determination of PCBs can be significantly reduced.

実施例1により得たA社使用済み絶縁油のクロマトグラムである。2 is a chromatogram of used insulating oil of Company A obtained in Example 1. FIG. 実施例2により得たA社使用済み絶縁油のクロマトグラムである。2 is a chromatogram of used insulating oil of Company A obtained in Example 2. FIG. 比較例1により得たA社使用済み絶縁油のクロマトグラムである。2 is a chromatogram of a used insulating oil of Company A obtained in Comparative Example 1. 実施例3により得たB社使用済み絶縁油のクロマトグラムである。2 is a chromatogram of B company used insulating oil obtained in Example 3. FIG. 実施例3により得たC社使用済み絶縁油のクロマトグラムである。4 is a chromatogram of used insulating oil of Company C obtained in Example 3. 実施例4により得たB社使用済み絶縁油のクロマトグラムである。6 is a chromatogram of B company used insulating oil obtained in Example 4. FIG. 実施例4により得たC社使用済み絶縁油のクロマトグラムである。6 is a chromatogram of used insulating oil of Company C obtained in Example 4. FIG. 比較例2により得たB社使用済み絶縁油のクロマトグラムである。6 is a chromatogram of B company used insulating oil obtained by Comparative Example 2. 比較例2により得たC社使用済み絶縁油のクロマトグラムである。6 is a chromatogram of used insulating oil of Company C obtained in Comparative Example 2. PCB標準品のクロマトグラムである。It is a chromatogram of a PCB standard product.

本発明の方法に適用される疎水性試料は、疎水性の液体試料であって、例えばトランス、コンデンサーなどの電気機器に絶縁、冷却などのために封入されて使用される絶縁油、該絶縁油を分解処理して得られる分解処理油などの油性試料が挙げられる。かかる油性試料は希釈されることなくそのまま用いてもよいし、n−ヘキサン、シクロヘキサンなどのような疎水性溶媒で希釈して用いてもよい。 The hydrophobic sample applied to the method of the present invention is a hydrophobic liquid sample, for example, an insulating oil that is used by being sealed in an electrical device such as a transformer or a condenser for insulation or cooling, the insulating oil And oily samples such as cracked oil obtained by cracking. Such an oily sample may be used as it is without being diluted, or may be diluted with a hydrophobic solvent such as n-hexane or cyclohexane.

また、疎水性試料としては、例えば焼却炉から排出される煤塵、燃え殻、土壌から採取される土質試料などの固形試料、雨水、排水などの水質試料などから、n−ヘキサン、トルエンなどのような疎水性溶媒により抽出されたPCB類を含む疎水性溶液も挙げられる。   Examples of hydrophobic samples include solid samples such as soot discharged from incinerators, burning husks, soil samples collected from soil, water samples such as rainwater and drainage, n-hexane, toluene and the like. A hydrophobic solution containing PCBs extracted with a hydrophobic solvent is also mentioned.

固形試料や水質試料から疎水性溶媒によりPCB類を抽出するには、例えば固形試料または水質試料を上記のような疎水性溶媒と接触させればよい。   In order to extract PCBs from a solid sample or a water quality sample with a hydrophobic solvent, for example, the solid sample or the water quality sample may be brought into contact with the hydrophobic solvent as described above.

固形試料または水質試料から疎水性溶媒によりPCB類を抽出することにより得られた疎水性溶媒抽出液は、そのまま疎水性試料として用いてもよいが、通常は、PCB類と共に抽出される他の共存物質を分離するために、n−ヘキサン、トルエンなどの疎水性溶媒抽出液からPCB類を極性有機溶媒でさらに抽出し、得られた極性有機溶媒抽出液からPCB類を疎水性溶媒に転溶させる。かかる極性有機溶媒としては、例えばジメチルスルホキシド、アセトニトリル、メタノール、n−メチルピロリドンなどが挙げられる。極性有機溶媒抽出液から疎水性溶媒に転溶させるには、例えば極性有機溶媒抽出液に水を加えたのち、疎水性溶媒により抽出すればよい。   The hydrophobic solvent extract obtained by extracting PCBs from a solid sample or a water quality sample with a hydrophobic solvent may be used as it is as a hydrophobic sample, but usually other coexistence extracted with PCBs. In order to separate the substances, PCBs are further extracted with a polar organic solvent from a hydrophobic solvent extract such as n-hexane or toluene, and the PCBs are transferred from the obtained polar organic solvent extract to a hydrophobic solvent. . Examples of such a polar organic solvent include dimethyl sulfoxide, acetonitrile, methanol, n-methylpyrrolidone and the like. In order to dissolve the polar organic solvent extract into the hydrophobic solvent, for example, water may be added to the polar organic solvent extract and then extracted with the hydrophobic solvent.

本発明の実施において、PCB類を定量する疎水性試料は、先ずGPC処理に供する。本発明で使用するGPC装置およびその使用条件は特に制限されるものではなく、例えば島津製作所のLC−20AD&CTO−20A−分取装置や米国ウォーターズ社のW2690−Fraction CollectorIIや515&717Plus−WFCIIIなどで液体クロマトグラフ部(カラム層と液送ポンプ)と分取装置が付属のもの等が使用される。また、使用カラムとしてはCLNpak EV−2000(内径20mm、長さ30cm)やCLNpak PAE−800(内径8mm、長さ30cm)等が使用される。溶離液としては酢酸エチル/シクロヘキサン(容量比3/7)、流速4.2ml/分やヘキサン/アセトン(容量比70/30〜90/10)、流速4〜6mL/分、さらにはアセトン/シクロヘキサン(容量比95/5〜80/20)、流速0.8mL/分等がカラム等との組み合わせで使用される。カラムの温度は使用する溶離液の沸点未満で行えばよく、通常約30〜50℃の範囲で実施される。   In the practice of the present invention, a hydrophobic sample for quantifying PCBs is first subjected to GPC treatment. The GPC apparatus used in the present invention and its use conditions are not particularly limited. For example, LC-20AD & CTO-20A-sorting apparatus manufactured by Shimadzu Corporation, W2690-Fraction Collector II, 515 & 717 Plus-WFCIII manufactured by Waters, USA, etc. A graph unit (column layer and liquid feed pump) and a sorter attached are used. Moreover, CLNpak EV-2000 (inner diameter 20 mm, length 30 cm), CLNpak PAE-800 (inner diameter 8 mm, length 30 cm), etc. are used as a column used. As eluents, ethyl acetate / cyclohexane (volume ratio 3/7), flow rate 4.2 ml / min, hexane / acetone (volume ratio 70/30 to 90/10), flow rate 4 to 6 mL / min, and acetone / cyclohexane. (Volume ratio 95/5 to 80/20), a flow rate of 0.8 mL / min, etc. are used in combination with a column or the like. The column temperature may be lower than the boiling point of the eluent to be used, and is usually in the range of about 30 to 50 ° C.

分取したPCB溶出液にはPCB類の定量に妨害となる共存物質が存在するので、濃硫酸と接触せしめPCB類の定量に妨害となる共存物質を分解せしめる。濃硫酸による処理方法は特に制限されないが、例えば、PCB分取液にヘキサンやヘプタン等の有機溶媒を加えた後、容器内に供給し、これに濃硫酸を加え、スターラー等を用いて緩やかに0.5〜5時間、通常1〜3時間攪拌処理する。硫酸処理に用いるPCB分取液を含有する有機溶媒と濃硫酸の混合割合は特に制限されないが、容量比で1:1〜5:1、通常2:1〜3:1の範囲で行えばよい。また、有機溶媒を加えるPCB分取液は必要に応じ溶媒留去等の方法で濃縮して用いてもよい。更に攪拌処理はPCB分取液と濃硫酸の十分な接触によりPCB分取液中のPCB類の定量に妨害となる共存物質を分解せしめる目的で行うものであるから、かかる目的を達成し得る方法であれば、例えば容器を振とうさせPCB分取液と濃硫酸を接触せしめる方法を用いてもよい。攪拌後の処理液は、分液ロート等に移し入れ、静置して非油層(主として濃硫酸)と油層を分離し、非油層は廃棄する。かかる硫酸での処理は1回でもよいが、必要に応じ複数回行ってもよい。次いで残った油層にアルカリ水溶液を添加して中和処理した後、静置して非油層と油層を分離し、非油層は廃棄する。油層中に残存する水溶性不純物を除去する目的で、純水を加え振とう等により混合処理した後、静置して非油層と油層を分離し、非油層は廃棄する。かかる純水による洗浄操作は静置分離した非油層の色等を判断材料として必要に応じ複数回行ってもよい。水洗処理後の油層は脱水材等を加えて脱水処理する。脱水処理後の油層は必要に応じて濃縮し、ガスクロマトグラフを用いてポリ塩化ビフェニル類を定量する試料として供する。ガスクロマトグラフに用いる試料は、通常1μL程度であるから、これに併せて硫酸処理量は決定すればよい。
本発明において濃硫酸とは、90%(質量%)以上の濃度を有する硫酸、普通には、濃度約96〜約98%(質量%)の硫酸を意味するが、好ましくは市販の試薬特級(濃度98%)の適用が推奨される。
Since the collected PCB eluate contains coexisting substances that interfere with the determination of PCBs, the coexisting substances that interfere with the determination of PCBs are decomposed by contacting with concentrated sulfuric acid. The treatment method using concentrated sulfuric acid is not particularly limited. For example, an organic solvent such as hexane or heptane is added to the PCB preparatory solution, and then the solution is supplied into the container. Concentrated sulfuric acid is added to the solution, and then gently using a stirrer or the like. Stir for 0.5-5 hours, usually 1-3 hours. The mixing ratio of the organic solvent containing the PCB fraction used for the sulfuric acid treatment and the concentrated sulfuric acid is not particularly limited, but the volume ratio may be 1: 1 to 5: 1, usually 2: 1 to 3: 1. . Moreover, you may concentrate and use the PCB fraction solution which adds an organic solvent by methods, such as solvent distillation, as needed. Further, the stirring treatment is performed for the purpose of decomposing coexisting substances which interfere with the determination of PCBs in the PCB preparative solution by sufficient contact between the PCB preparative solution and concentrated sulfuric acid. If so, for example, a method may be used in which the container is shaken and the PCB preparative solution is brought into contact with concentrated sulfuric acid. The processing liquid after stirring is transferred to a separating funnel and left to stand to separate the non-oil layer (mainly concentrated sulfuric acid) and the oil layer, and the non-oil layer is discarded. The treatment with sulfuric acid may be performed once, but may be performed a plurality of times as necessary. Next, an aqueous alkaline solution is added to the remaining oil layer to neutralize it, and then left to stand to separate the non-oil layer and the oil layer, and the non-oil layer is discarded. In order to remove water-soluble impurities remaining in the oil layer, pure water is added and mixed by shaking, and then left to stand to separate the non-oil layer and the oil layer, and the non-oil layer is discarded. Such a washing operation with pure water may be performed a plurality of times as necessary using the color of the non-oil layer, which has been allowed to stand and separate, as a judgment material. The oil layer after the water washing treatment is dehydrated by adding a dehydrating material or the like. The oil layer after the dehydration treatment is concentrated as necessary and used as a sample for quantifying polychlorinated biphenyls using a gas chromatograph. Since the sample used for a gas chromatograph is about 1 microliter normally, what is necessary is just to determine the sulfuric acid processing amount in connection with this.
In the present invention, concentrated sulfuric acid means sulfuric acid having a concentration of 90% (mass%) or more, usually sulfuric acid having a concentration of about 96 to about 98% (mass%), preferably a commercially available reagent special grade ( Application of a concentration of 98%) is recommended.

上記方法はいわゆるPCB溶出液を濃硫酸で処理する液−液処理であるが、硫酸処理の別法としてPCB溶出液を濃硫酸を含浸させた硫酸シリカゲルを用い処理することもできる。本発明に適用する濃硫酸を含浸させた硫酸シリカゲルとしては、特に制限されないが、例えば容器底部よりガラス繊維ろ紙、硝酸銀シリカゲル層、シリカゲル層、硫酸シリカゲル層、無水硫酸ナトリウム層が順次積層されたエンプティーリザーバー等の小型濾過用容器(カラム)を用いればよい。このようにして形成された乾式の硫酸シリカゲル・硝酸銀シリカゲルカラムに、PCB分取液を上部より導入し、硫酸と接触処理せしめればよい。カラムに導入するPCB分取液は必要に応じ溶媒留去等の方法で濃縮して用いてもよく、また複数回に分けてカラムに導入してもよい。PCB分取液をカラムに導入後、次いでヘキサン等の溶媒を導入し、カラムに付着するPCB類をヘキサン等の溶媒に溶出し、カラム底部に設置した容器で回収する。回収したPCB類を含有する溶媒は必要に応じて濃縮し、ガスクロマトグラフを用いてポリ塩化ビフェニル類を定量する試料として供すればよい。   The above method is a liquid-liquid treatment in which a so-called PCB eluate is treated with concentrated sulfuric acid. Alternatively, the PCB eluate may be treated with sulfuric acid silica gel impregnated with concentrated sulfuric acid. The sulfuric acid silica gel impregnated with concentrated sulfuric acid to be applied to the present invention is not particularly limited. For example, an empty glass fiber paper, silver nitrate silica gel layer, silica gel layer, sulfuric acid silica gel layer, and anhydrous sodium sulfate layer are sequentially laminated from the bottom of the container. A small filtration container (column) such as a reservoir may be used. A PCB preparatory solution may be introduced from the top into the dry sulfate silica gel / silver nitrate silica gel column formed as described above and contacted with sulfuric acid. The PCB fraction to be introduced into the column may be used after being concentrated by a method such as evaporation of the solvent, if necessary, or may be introduced into the column in a plurality of times. After the PCB fraction is introduced into the column, a solvent such as hexane is then introduced, and PCBs adhering to the column are eluted with a solvent such as hexane and collected in a container installed at the bottom of the column. The recovered solvent containing PCBs may be concentrated as necessary and used as a sample for quantifying polychlorinated biphenyls using a gas chromatograph.

硫酸処理後の試料は次いで、ガスクロマトグラフを用い該試料中のPCB類を定量すればよい。使用するガスクロマトグラフは特に制限されるものではなく公知のものであればよいが、キャピラリーカラムを装着できる高分解能ガスクロマトグラフ(キャピラリーガスクロマトグラフ)がより望ましい。検出器は特に制限されるものではなく公知のものであればよいが、例えばガスクロマトグラフ−質量分析計(GC−MS)、電子捕獲型検出器(ECD)を備えたガスクロマトグラフ〔以下、GC/ECDと略称することがある。〕などが挙げられる。   The sample after the sulfuric acid treatment may then be quantified for PCBs in the sample using a gas chromatograph. The gas chromatograph to be used is not particularly limited and may be any known one, but a high resolution gas chromatograph (capillary gas chromatograph) to which a capillary column can be attached is more desirable. The detector is not particularly limited and may be any known one. For example, a gas chromatograph equipped with a gas chromatograph-mass spectrometer (GC-MS) and an electron capture detector (ECD) [hereinafter, GC / Sometimes abbreviated as ECD. And the like.

本発明において、液−液硫酸処理後の試料はそのままガスクロマトグラフにより試料中に含有されるポリ塩化ビフェニル類を定量してもよく、必要に応じて脱水処理後の油層(試料)を市販のシリカゲル充填層を通過させ、油層中に残存する共存物質を更に除去してもよい。かかるシリカゲル充填層での処理としては、例えばカラムにシリカゲル、水酸化カリウム被覆シリカゲル、硫酸被覆シリカゲルなどを充填したシリカゲルカラムに硫酸処理後の試料を通過させることにより行われる。シリカゲル充填剤は、カラムに単独充填して使用しても良く、多層構成の多層シリカゲルカラムとして使用しても良い。シリカゲルカラム通過後の試料は、溶媒留去などの方法により濃縮してもよい。   In the present invention, the sample after the liquid-liquid sulfuric acid treatment may be quantified as it is by polychromic biphenyls contained in the sample by gas chromatography, and if necessary, the oil layer (sample) after the dehydration treatment may be used as commercially available silica gel. The coexisting substances remaining in the oil layer may be further removed by passing through the packed bed. The treatment in the silica gel packed bed is performed, for example, by passing the sample after the sulfuric acid treatment through a silica gel column packed with silica gel, potassium hydroxide-coated silica gel, sulfuric acid-coated silica gel or the like in the column. The silica gel filler may be used alone in a column or may be used as a multilayer silica gel column having a multilayer structure. The sample after passing through the silica gel column may be concentrated by a method such as solvent distillation.

このようにガスクロマトグラフによる疎水性試料中のPCB類の定量に際し、試料の前処理方法として、GPC処理の後、硫酸処理を行う方法が、何故従来一般的に実施されていた硫酸処理の後GPC処理を行う方法に比較し、PCB類の定量に妨害となる共存物質の除去に著しく優れた効果を発現するのか、その理由は詳らかではないが、疎水性試料に濃硫酸を作用させた場合には、共存物質の分解除去と同時に新たな妨害物質が疎水性試料成分と濃硫酸との反応によって生成し、精製効率が頭打ちとなるが、疎水性試料を硫酸処理に先立ちGPCで処理し、次いで濃硫酸と作用させる場合は、疎水性試料と濃硫酸の反応により生成する新たな妨害物質の量が著しく減少するため、精製効率が向上するものと考えられる。   As described above, when quantifying PCBs in a hydrophobic sample by gas chromatography, a method of performing sulfuric acid treatment after GPC treatment as a pretreatment method of the sample is the GPC after sulfuric acid treatment which has been generally performed. Compared with the method of treatment, it is not clear why the effect of removing coexisting substances that hinder the quantitative determination of PCBs is not clear, but when concentrated sulfuric acid is applied to a hydrophobic sample. At the same time as the coexisting substances are decomposed and removed, a new interfering substance is generated by the reaction of the hydrophobic sample component and concentrated sulfuric acid, and the purification efficiency reaches its peak, but the hydrophobic sample is treated with GPC prior to the sulfuric acid treatment, In the case of reacting with concentrated sulfuric acid, the amount of new interfering substances generated by the reaction between the hydrophobic sample and concentrated sulfuric acid is remarkably reduced, so that it is considered that the purification efficiency is improved.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

実施例1
A社使用済みの絶縁油を用い、該絶縁油中に含有されるPCB類をGC/ECD法で分析した。分析に際し、ガスクロマトグラフ用試料としての前処理は以下の手順、並びに条件で実施した。分析結果を図1に示す。図中、横軸記載の約8.5min〜約32minの範囲がPCB類検出範囲である。尚、比較のため、PCB標準品のクロマトグラムを図10に示す。
Example 1
A used insulating oil of Company A was used, and PCBs contained in the insulating oil were analyzed by the GC / ECD method. In the analysis, pretreatment as a gas chromatograph sample was performed according to the following procedure and conditions. The analysis results are shown in FIG. In the figure, the range of about 8.5 min to about 32 min described on the horizontal axis is the PCB detection range. For comparison, a chromatogram of a standard PCB is shown in FIG.

(GPC処理)
使用済み絶縁油0.8gをGPC溶離液(酢酸エチル/シクロヘキサン---容量比3/7)5mLに溶解して得た試料のうち2mLをGPC装置に注入して、PCB溶出範囲を分取した。この分取液をロータリーエバポレーターを用い5mLまで濃縮し、これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕を加えて10mLに希釈した。
(GPC processing)
Of the sample obtained by dissolving 0.8 g of used insulating oil in 5 mL of GPC eluent (ethyl acetate / cyclohexane --- volume ratio 3/7), 2 mL was injected into the GPC device, and the PCB elution range was fractionated. did. The fractionated solution was concentrated to 5 mL using a rotary evaporator, and n-hexane [Wako Pure Chemical Industries, “residual agricultural chemicals / PCB test 300”] was added thereto and diluted to 10 mL.

(液−液硫酸処理)
100mLの三角フラスコに上記GPC処理で得た希釈液10mLを移し入れ、これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕10mLを添加、次いで濃硫酸(濃度98%)〔和光純薬工業社製、試薬一級〕10mLを添加し、攪拌子を入れスターラーで内部試料が飛びちらないように緩やかに2時間攪拌した。
(Liquid-liquid sulfuric acid treatment)
Into a 100 mL Erlenmeyer flask, 10 mL of the diluted solution obtained by the above GPC treatment was transferred, and 10 mL of n-hexane [manufactured by Wako Pure Chemical Industries, Ltd., “300 for residual agricultural chemicals / PCB test”] was added, followed by concentrated sulfuric acid (concentration) 98%) [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1] was added, and a stir bar was inserted and the mixture was gently stirred for 2 hours with a stirrer so that the internal sample did not fly off.

攪拌後、この溶液を100mLの分液ロートに移し入れ、静置法により油層(n−ヘキサン試料液)と非油層(硫酸)に分離し、非油層は分液ロート下部より排出した。溶液の移し入れに際しては、三角フラスコの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も分液ロートに移し入れた。   After stirring, this solution was transferred to a 100 mL separatory funnel and separated into an oil layer (n-hexane sample solution) and a non-oil layer (sulfuric acid) by a stationary method, and the non-oil layer was discharged from the bottom of the separatory funnel. When transferring the solution, the inner wall of the Erlenmeyer flask was washed with n-hexane (same as above), and this washing solution was also transferred to a separating funnel.

次いで非油層を排出した上記分液ロートに0.1mol/Lの水酸化カリウム溶液〔和光純薬工業社製、試薬一級〕10mLを添加し、手で緩やかに振混ぜた後、約5分間、静置により油層と非油層(KOH)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of a 0.1 mol / L potassium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) was added to the above separating funnel from which the non-oil layer had been discharged, and after gently shaking by hand, about 5 minutes, The oil layer and the non-oil layer (KOH) were separated by standing, and the non-oil layer was discharged from the bottom of the separating funnel.

次いで非油層を排出した上記分液ロート上部より壁面を洗浄するように純水10mLを添加し、手で緩やかに振混ぜた後、約5分間、静置法により油層と非油層(水)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of pure water is added so as to wash the wall surface from the upper part of the separating funnel from which the non-oil layer has been discharged. After gently shaking by hand, the oil layer and the non-oil layer (water) are left standing for about 5 minutes. The non-oil layer was separated and discharged from the bottom of the separatory funnel.

上記、純水での洗浄処理を再度繰り返し、非油層を排出した後、分液ロートに残った油層を100mLのビーカーに移し入れた。溶液の移し入れに際しては、分液ロートの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も上記と同じビーカーに移し入れた。   The washing process with pure water was repeated again to discharge the non-oil layer, and then the oil layer remaining in the separatory funnel was transferred to a 100 mL beaker. When transferring the solution, the inner wall of the separatory funnel was washed with n-hexane (same as above), and this washing solution was also transferred into the same beaker as above.

次いで上記ビーカーに無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」〕5gを添加し、手で緩やかに攪拌した後、ろ紙を使用してろ過分離し、ろ過後の油層をロータリーエバポレーターで1mLまで濃縮した。   Next, 5 g of anhydrous sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., “for residual pesticide test”) was added to the above beaker, gently stirred by hand, filtered and filtered using filter paper, and the oil layer after filtration was rotary. It concentrated to 1 mL with the evaporator.

(ECD測定)
上記で得たn−ヘキサン試料液について、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量した。
(ECD measurement)
The n-hexane sample solution obtained above was quantified for PCBs by a gas chromatograph (with an ECD detector) [GC / ECD apparatus].

定量に用いたGC/ECD装置の構成および条件は以下の通りである。
ガスクロマトグラフ部
カラム:キャピラリーカラム:DB−5ms〔J&W社製:長さ30m、内径0.25mm、膜圧0.1μm〕
カラム温度: 60〜300℃(昇温速度:1〜20℃/分)
注入量:1μL
注入口温度:280℃
キャリアガス:ヘリウムガス、1mL/分
The configuration and conditions of the GC / ECD apparatus used for quantification are as follows.
Gas chromatograph part column: Capillary column: DB-5 ms [manufactured by J & W: length 30 m, inner diameter 0.25 mm, membrane pressure 0.1 μm]
Column temperature: 60 to 300 ° C. (temperature increase rate: 1 to 20 ° C./min)
Injection volume: 1 μL
Inlet temperature: 280 ° C
Carrier gas: helium gas, 1 mL / min

ECD部
温度:300℃
ECD temperature: 300 ° C

実施例2
実施例1と同じ絶縁油を用い、分析に際し、ガスクロマトグラフ用試料としての硫酸処理方法が異なる以外は、実施例1と同じ装置、条件で、該絶縁中に含有されるPCB類をGC/ECD法で分析した。その結果を図2に示す。図中、横軸記載の約8.5min〜約32minの範囲がPCB類検出範囲である。
Example 2
Using the same insulating oil as in Example 1, except that the sulfuric acid treatment method as a gas chromatographic sample is different in the analysis, the PCBs contained in the insulation are GC / ECD under the same apparatus and conditions as in Example 1. Analyzed by the method. The result is shown in FIG. In the figure, the range of about 8.5 min to about 32 min described on the horizontal axis is the PCB detection range.

(GPC処理)
使用済み絶縁油0.8gをGPC溶離液(酢酸エチル/シクロヘキサン---容量比3/7)5mLに溶解して得た試料のうち2mLをGPC装置に注入して、PCB溶出範囲を分取した。この分取液をロータリーエバポレーターを用い0.5mLまで濃縮した。
(GPC processing)
Of the sample obtained by dissolving 0.8 g of used insulating oil in 5 mL of GPC eluent (ethyl acetate / cyclohexane --- volume ratio 3/7), 2 mL was injected into the GPC device, and the PCB elution range was fractionated. did. This aliquot was concentrated to 0.5 mL using a rotary evaporator.

(硫酸シリカゲルの製造)
1000mL分液ロートにシリカゲル(和光純薬工業社製、ワコーゲルDX、238-01781)100gを供給し、これに硫酸(濃度98%)〔和光純薬工業社製、試薬特級〕83gを添加し、添加物がさらさらの状態になるまで約1時間振とうし、44%硫酸シリカゲルを得た。
(Manufacture of sulfuric acid silica gel)
To a 1000 mL separatory funnel, 100 g of silica gel (Wako Pure Chemical Industries, Wakogel DX, 238-01781) is supplied, and 83 g of sulfuric acid (concentration 98%) (manufactured by Wako Pure Chemical Industries, reagent special grade) is added thereto, The mixture was shaken for about 1 hour until the additive became free flowing to obtain 44% silica gel.

(硝酸銀シリカゲル・硫酸シリカゲルカラムの製造)
6mLポリプロピレン製注射筒(ジーエルサイエンス(株)、5010-60102)にガラス繊維ろ紙(Toyo RoshiKaisha,LTD ADVANTEC GLASS FIBER FILTER GA-100,13mm)を敷き、先ず10%硝酸銀シリカゲル(和光純薬工業社製、「ダイオキシン類分析用」、197-11611)0.2gを充填し、次にシリカゲル(和光純薬工業社製、ワコーゲルDX、238-01781)0.5gを上記10%硝酸銀シリカゲル層の上に充填し、次に上記方法で製造した44%硫酸シリカゲル2gを上記シリカゲル層の上に充填し、更に上記硫酸シリカゲル層の上に無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」、197-07125〕0.5gを充填、積層した。
(Manufacture of silver nitrate silica gel / sulfuric acid silica gel columns)
Put a glass fiber filter paper (Toyo RoshiKaisha, LTD ADVANTEC GLASS FIBER FILTER GA-100, 13mm) on a 6 mL polypropylene syringe (GL Science Co., Ltd., 5010-60102). First, 10% silver nitrate silica gel (Wako Pure Chemical Industries, Ltd.) , "Dioxins for analysis", 197-11611) 0.2g, and then 0.5g of silica gel (Wako Pure Chemical Industries, Wakogel DX, 238-01781) is placed on the 10% silver nitrate silica gel layer. Next, 2 g of 44% sulfuric acid silica gel produced by the above method was filled on the silica gel layer, and anhydrous sodium sulfate (made by Wako Pure Chemical Industries, “Residual agricultural chemical test”) was further put on the silica gel silica layer. 197-07125] 0.5 g was filled and laminated.

(液−固硫酸処理)
このようにして得た硝酸銀シリカゲル・硫酸シリカゲルを充填してなる注射筒(カラム)をスピッツ管(内径16.5mm長さ105mm)の上に配設し、GPC処理で得た濃縮液0.5mLをパスツールピペットを使用して注射筒に移し入れ、濾過液はスピッツ管に貯液した。GPC処理で得た濃縮液容器を約1mLのn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕で洗浄し、この洗浄液を注射筒に移し入れた。この操作をスピッツ管への貯液量が7mLになるまで繰り返した後、次いで自動濃縮装置(ユースエンジニアリング(株)社製、AUTOMATIC EVAPORATER ACMD-120)を用いて約0.5mLに濃縮した。これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕を加えて1mLに定容した。
(Liquid-solid sulfuric acid treatment)
The syringe barrel (column) filled with the silver nitrate silica gel / sulfuric acid silica gel thus obtained is placed on a Spitz tube (inner diameter 16.5 mm, length 105 mm), and 0.5 mL of the concentrated solution obtained by GPC treatment is added. The paste was transferred to a syringe using a Pasteur pipette, and the filtrate was stored in a Spitz tube. The concentrated liquid container obtained by the GPC treatment was washed with about 1 mL of n-hexane [Wako Pure Chemical Industries, Ltd., “residual agricultural chemicals / PCB test 300”], and this washing liquid was transferred to a syringe. This operation was repeated until the amount of liquid stored in the Spitz tube became 7 mL, and then concentrated to about 0.5 mL using an automatic concentration apparatus (manufactured by Youth Engineering Co., Ltd., AUTOMATIC EVAPORATER ACMD-120). N-Hexane (Wako Pure Chemical Industries, “residual agricultural chemicals / PCB test 300”) was added thereto, and the volume was adjusted to 1 mL.

(ECD測定)
上記で液−固硫酸処理で得たn−ヘキサン試料液を用い、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量した。定量に用いたGC/ECD装置の構成および条件は実施例1と同一である。
(ECD measurement)
PCBs were quantified by a gas chromatograph (with an ECD detector) [GC / ECD apparatus] using the n-hexane sample solution obtained by the liquid-solid sulfuric acid treatment. The configuration and conditions of the GC / ECD apparatus used for the determination are the same as those in Example 1.

比較例1
実施例1と同じ絶縁油を用い、分析に際し、ガスクロマトグラフ用試料としての前処理条件が違う以外は、実施例1と同じ装置、条件で、該絶縁中に含有されるPCB類をGC/ECD法で分析した。その結果を図3に示す。図中、横軸記載の約8.5min〜約32minの範囲がPCB類検出範囲である。
Comparative Example 1
The same insulating oil as in Example 1 was used, and the PCBs contained in the insulation were GC / ECD using the same equipment and conditions as in Example 1 except that the pretreatment conditions as gas chromatographic samples were different during the analysis. Analyzed by the method. The result is shown in FIG. In the figure, the range of about 8.5 min to about 32 min described on the horizontal axis is the PCB detection range.

(硫酸処理)
100mLの三角フラスコに、実施例1で用いたと同じ使用済み絶縁油(PCBが存在しないもの)0.8gと、n−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕20mLを添加し、これに硫酸(濃度98%)〔和光純薬工業社製、試薬特級〕10mLを添加し、攪拌子を入れスターラーで内部試料が飛びちらないように緩やかに2時間攪拌した。
(Sulfuric acid treatment)
In a 100 mL Erlenmeyer flask, 0.8 g of the same used insulating oil (without PCB) as used in Example 1 and n-hexane [Wako Pure Chemical Industries, Ltd., “300 for residual agricultural chemicals / PCB test”] 20 mL was added, 10 mL of sulfuric acid (concentration 98%) (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was added thereto, and a stir bar was inserted, and the mixture was gently stirred for 2 hours so that the internal sample did not fly off.

攪拌後、この溶液を100mLの分液ロートに移し入れ、静置法により油層(n−ヘキサン試料液)と非油層(硫酸)に分離し、非油層は分液ロート下部より排出した。溶液の移し入れに際しては、三角フラスコの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も分液ロートに移し入れた。   After stirring, this solution was transferred to a 100 mL separatory funnel and separated into an oil layer (n-hexane sample solution) and a non-oil layer (sulfuric acid) by a stationary method, and the non-oil layer was discharged from the bottom of the separatory funnel. When transferring the solution, the inner wall of the Erlenmeyer flask was washed with n-hexane (same as above), and this washing solution was also transferred to a separating funnel.

次いで非油層を排出した上記分液ロートに0.1mol/Lの水酸化カリウム溶液〔和光純薬工業社製、試薬一級〕10mLを添加し、手で振混ぜた後、約5分間、静置法により油層と非油層(KOH)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of a 0.1 mol / L potassium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) is added to the above separating funnel from which the non-oil layer has been discharged, and after shaking by hand, the mixture is left to stand for about 5 minutes. The oil layer and the non-oil layer (KOH) were separated by the method, and the non-oil layer was discharged from the lower part of the separating funnel.

次いで非油層を排出した上記分液ロート上部より壁面を洗浄するように純水10mLを添加し、手で振混ぜた後、約5分間、静置法により油層と非油層(水)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of pure water is added so as to wash the wall surface from the top of the separatory funnel from which the non-oil layer has been discharged. After shaking by hand, the oil layer and the non-oil layer (water) are separated by standing for about 5 minutes. The non-oil layer was discharged from the bottom of the separating funnel.

上記、純水での洗浄処理を再度繰り返し、非油層を排出した後、分液ロートに残った油層を100mLのビーカーに移し入れた。溶液の移し入れに際しては、分液ロートの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も上記と同じビーカーに移し入れた。   The washing process with pure water was repeated again to discharge the non-oil layer, and then the oil layer remaining in the separatory funnel was transferred to a 100 mL beaker. When transferring the solution, the inner wall of the separatory funnel was washed with n-hexane (same as above), and this washing solution was also transferred into the same beaker as above.

次いで上記ビーカーに無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」〕5gを添加し、手で緩やかに攪拌した後、ろ紙を使用してろ過分離し、ろ過後の油層をロータリーエバポレーターで3mLまで濃縮した。   Next, 5 g of anhydrous sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., “for residual pesticide test”) was added to the above beaker, gently stirred by hand, filtered and filtered using filter paper, and the oil layer after filtration was rotary. The solution was concentrated to 3 mL with an evaporator.

(GPC処理)
上記硫酸処理により得た濃縮液(n−ヘキサン試料液)3mLをGPC溶離液(酢酸エチル/シクロヘキサン---容量比3/7)で5mLに定容した。このようにして得た試料2mLをGPC装置に注入して、PCB溶出範囲を分取した。次いで、この分取液をロータリーエバポレーターを用い(0.5mLまで)濃縮し、これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕を加えて1mLに定容した。
(GPC processing)
3 mL of the concentrated solution (n-hexane sample solution) obtained by the sulfuric acid treatment was made up to 5 mL with a GPC eluent (ethyl acetate / cyclohexane--volume ratio 3/7). 2 mL of the sample thus obtained was injected into the GPC apparatus, and the PCB elution range was fractionated. Then, this fractionated solution was concentrated using a rotary evaporator (to 0.5 mL), and n-hexane (Wako Pure Chemical Industries, Ltd., “residual agricultural chemicals / PCB test 300”) was added thereto to a constant volume of 1 mL. did.

(ECD測定)
上記GPC処理で得たn−ヘキサン試料液を用い、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量した。定量に用いたGC/ECD装置の構成および条件は実施例1と同一である。
(ECD measurement)
PCBs were quantified by a gas chromatograph (with an ECD detector) [GC / ECD apparatus] using the n-hexane sample solution obtained by the GPC treatment. The configuration and conditions of the GC / ECD apparatus used for the determination are the same as those in Example 1.

実施例3
B社使用済み絶縁油とC社使用済み絶縁油を用い、該絶縁油中に含有されるPCB類をGC/ECD法で分析した。分析に際し、ガスクロマトグラフ用試料としての前処理は以下の手順、並びに条件で実施した。B社使用済み絶縁油の分析結果を図4、C社使用済み絶縁油の分析結果を図5に示す。図中、横軸記載の約8.5min〜約32minの範囲がPCB類検出範囲である。
Example 3
PCBs contained in the insulating oil were analyzed by GC / ECD method using the insulating oil used by Company B and the insulating oil used by Company C. In the analysis, pretreatment as a gas chromatograph sample was performed according to the following procedure and conditions. FIG. 4 shows the analysis result of the used insulating oil of Company B, and FIG. 5 shows the analysis result of the used insulating oil of Company C. In the figure, the range of about 8.5 min to about 32 min described on the horizontal axis is the PCB detection range.

(GPC処理)
使用済み絶縁油0.7gをGPC溶離液(酢酸エチル/シクロヘキサン---容量比3/7)5mLに溶解して得た試料のうち2mLをGPC装置に注入して、PCB溶出範囲を分取した。この分取液をロータリーエバポレーターを用い5mLまで濃縮し、これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕を加えて10mLに希釈した。
(GPC processing)
Of the sample obtained by dissolving 0.7 g of used insulating oil in 5 mL of GPC eluent (ethyl acetate / cyclohexane --- volume ratio 3/7), 2 mL was injected into the GPC device, and the PCB elution range was fractionated. did. The fractionated solution was concentrated to 5 mL using a rotary evaporator, and n-hexane [Wako Pure Chemical Industries, “residual agricultural chemicals / PCB test 300”] was added thereto and diluted to 10 mL.

(液−液硫酸処理)
100mLの三角フラスコに上記GPC処理で得た希釈液10mLを移し入れ、これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕10mLを添加、次いで濃硫酸(濃度98%)〔和光純薬工業社製、試薬一級〕10mLを添加し、攪拌子を入れスターラーで内部試料が飛びちらないように緩やかに2時間攪拌した。
(Liquid-liquid sulfuric acid treatment)
Into a 100 mL Erlenmeyer flask, 10 mL of the diluted solution obtained by the above GPC treatment was transferred, and 10 mL of n-hexane [manufactured by Wako Pure Chemical Industries, Ltd., “300 for residual agricultural chemicals / PCB test”] was added, followed by concentrated sulfuric acid (concentration) 98%) [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1] was added, and a stir bar was inserted and the mixture was gently stirred for 2 hours with a stirrer so that the internal sample did not fly off.

攪拌後、この溶液を100mLの分液ロートに移し入れ、静置法により油層(n−ヘキサン試料液)と非油層(硫酸)に分離し、非油層は分液ロート下部より排出した。溶液の移し入れに際しては、三角フラスコの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も分液ロートに移し入れた。   After stirring, this solution was transferred to a 100 mL separatory funnel and separated into an oil layer (n-hexane sample solution) and a non-oil layer (sulfuric acid) by a stationary method, and the non-oil layer was discharged from the bottom of the separatory funnel. When transferring the solution, the inner wall of the Erlenmeyer flask was washed with n-hexane (same as above), and this washing solution was also transferred to a separating funnel.

次いで非油層を排出した上記分液ロートに0.1mol/Lの水酸化カリウム溶液〔和光純薬工業社製、試薬一級〕10mLを添加し、手で緩やかに振混ぜた後、約5分間、静置により油層と非油層(KOH)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of a 0.1 mol / L potassium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) was added to the above separating funnel from which the non-oil layer had been discharged, and after gently shaking by hand, about 5 minutes, The oil layer and the non-oil layer (KOH) were separated by standing, and the non-oil layer was discharged from the bottom of the separating funnel.

次いで非油層を排出した上記分液ロート上部より壁面を洗浄するように純水10mLを添加し、手で緩やかに振混ぜた後、約5分間、静置法により油層と非油層(水)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of pure water is added so as to wash the wall surface from the upper part of the separating funnel from which the non-oil layer has been discharged. After gently shaking by hand, the oil layer and the non-oil layer (water) are left standing for about 5 minutes. The non-oil layer was separated and discharged from the bottom of the separatory funnel.

上記、純水での洗浄処理を再度繰り返し、非油層を排出した後、分液ロートに残った油層を100mLのビーカーに移し入れた。溶液の移し入れに際しては、分液ロートの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も上記と同じビーカーに移し入れた。   The washing process with pure water was repeated again to discharge the non-oil layer, and then the oil layer remaining in the separatory funnel was transferred to a 100 mL beaker. When transferring the solution, the inner wall of the separatory funnel was washed with n-hexane (same as above), and this washing solution was also transferred into the same beaker as above.

次いで上記ビーカーに無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」〕5gを添加し、手で緩やかに攪拌した後、ろ紙を使用してろ過分離し、ろ過後の油層をロータリーエバポレーターで1mLまで濃縮した。   Next, 5 g of anhydrous sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., “for residual pesticide test”) was added to the above beaker, gently stirred by hand, filtered and filtered using filter paper, and the oil layer after filtration was rotary. It concentrated to 1 mL with the evaporator.

(ECD測定)
上記で得たn−ヘキサン試料液について、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量した。
(ECD measurement)
The n-hexane sample solution obtained above was quantified for PCBs by a gas chromatograph (with an ECD detector) [GC / ECD apparatus].

定量に用いたGC/ECD装置の構成および条件は以下の通りである。
ガスクロマトグラフ部
カラム:キャピラリーカラム:DB−5ms〔J&W社製:長さ30m、内径0.25mm、膜圧0.1μm〕
カラム温度: 60〜300℃(昇温速度:1〜20℃/分)
注入量:1μL
注入口温度:280℃
キャリアガス:ヘリウムガス、1mL/分
The configuration and conditions of the GC / ECD apparatus used for quantification are as follows.
Gas chromatograph part column: Capillary column: DB-5 ms [manufactured by J & W: length 30 m, inner diameter 0.25 mm, membrane pressure 0.1 μm]
Column temperature: 60 to 300 ° C. (temperature increase rate: 1 to 20 ° C./min)
Injection volume: 1 μL
Inlet temperature: 280 ° C
Carrier gas: helium gas, 1 mL / min

ECD部
温度:300℃
ECD temperature: 300 ° C

実施例4
実施例3と同じ絶縁油を用い、分析に際し、GPC処理およびガスクロマトグラフ用試料としての硫酸処理方法が異なる以外は、実施例3と同じ装置、条件で、該絶縁中に含有されるPCB類をGC/ECD法で分析した。B社使用済み絶縁油の分析結果を図6、C社使用済み絶縁油の分析結果を図7に示す。図中、横軸記載の約8.5min〜約32minの範囲がPCB類検出範囲である。
Example 4
The same insulating oil as in Example 3 was used, and the PCBs contained in the insulation were the same as in Example 3 with the same apparatus and conditions as in Example 3, except that the GPC treatment and the sulfuric acid treatment method as a gas chromatograph sample were different. Analyzed by the GC / ECD method. FIG. 6 shows an analysis result of the used insulating oil of the B company, and FIG. 7 shows an analysis result of the used insulating oil of the C company. In the figure, the range of about 8.5 min to about 32 min described on the horizontal axis is the PCB detection range.

(GPC処理)
使用済み絶縁油0.35gをヘキサンに溶解して1.4mLとし、その中の0.5mLをGPC装置に注入して、PCB溶出範囲を分取した。この分取液をロータリーエバポレーターを用い0.5mLまで濃縮した。
(GPC processing)
Used insulating oil 0.35g was melt | dissolved in hexane to 1.4mL, 0.5mL in it was inject | poured into the GPC apparatus, and the PCB elution range was fractionated. This aliquot was concentrated to 0.5 mL using a rotary evaporator.

(硫酸シリカゲルの製造)
1000mL分液ロートにシリカゲル(和光純薬工業社製、ワコーゲルDX、238-01781)100gを供給し、これに硫酸(濃度98%)〔和光純薬工業社製、試薬特級〕83gを添加し、添加物がさらさらの状態になるまで約1時間振とうし、44%硫酸シリカゲルを得た。
(Manufacture of sulfuric acid silica gel)
To a 1000 mL separatory funnel, 100 g of silica gel (Wako Pure Chemical Industries, Wakogel DX, 238-01781) is supplied, and 83 g of sulfuric acid (concentration 98%) (manufactured by Wako Pure Chemical Industries, reagent special grade) is added thereto, The mixture was shaken for about 1 hour until the additive became free flowing to obtain 44% silica gel.

(硝酸銀シリカゲル・硫酸シリカゲルカラムの製造)
6mLポリプロピレン製注射筒(ジーエルサイエンス(株)、5010-60102)にガラス繊維ろ紙(Toyo RoshiKaisha,LTD ADVANTEC GLASS FIBER FILTER GA-100,13mm)を敷き、先ず10%硝酸銀シリカゲル(和光純薬工業社製、「ダイオキシン類分析用」、197-11611)0.2gを充填し、次にシリカゲル(和光純薬工業社製、ワコーゲルDX、238-01781)0.5gを上記10%硝酸銀シリカゲル層の上に充填し、次に上記方法で製造した44%硫酸シリカゲル2gを上記シリカゲル層の上に充填し、更に上記硫酸シリカゲル層の上に無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」、197-07125〕0.5gを充填、積層した。
(Manufacture of silver nitrate silica gel / sulfuric acid silica gel columns)
Put a glass fiber filter paper (Toyo RoshiKaisha, LTD ADVANTEC GLASS FIBER FILTER GA-100, 13 mm) on a 6 mL polypropylene syringe (GL Science Co., Ltd., 5010-60102). First, 10% silver nitrate silica gel (Wako Pure Chemical Industries, Ltd.) , "Dioxins for analysis", 197-11611) 0.2g, and then 0.5g of silica gel (Wako Pure Chemical Industries, Wakogel DX, 238-01781) is placed on the 10% silver nitrate silica gel layer. Next, 2 g of 44% sulfuric acid silica gel produced by the above method was filled on the silica gel layer, and anhydrous sodium sulfate (made by Wako Pure Chemical Industries, “Residual agricultural chemical test”) was further put on the silica gel silica layer. 197-07125] 0.5 g was filled and laminated.

(液−固硫酸処理)
このようにして得た硝酸銀シリカゲル・硫酸シリカゲルを充填してなる注射筒(カラム)をスピッツ管(内径16.5mm長さ105mm)の上に配設し、GPC処理で得た濃縮液0.5mLをパスツールピペットを使用して注射筒に移し入れ、濾過液はスピッツ管に貯液した。GPC処理で得た濃縮液容器を約1mLのn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕で洗浄し、この洗浄液を注射筒に移し入れた。この操作をスピッツ管への貯液量が7mLになるまで繰り返した後、次いで自動濃縮装置(ユースエンジニアリング(株)社製、AUTOMATIC EVAPORATER ACMD-120)を用いて約0.5mLに濃縮した。これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕を加えて1mLに定容した。
(Liquid-solid sulfuric acid treatment)
The syringe barrel (column) filled with the silver nitrate silica gel / sulfuric acid silica gel thus obtained is placed on a Spitz tube (inner diameter 16.5 mm, length 105 mm), and 0.5 mL of the concentrated solution obtained by GPC treatment is added. The paste was transferred to a syringe using a Pasteur pipette, and the filtrate was stored in a Spitz tube. The concentrated liquid container obtained by the GPC treatment was washed with about 1 mL of n-hexane [Wako Pure Chemical Industries, Ltd., “residual agricultural chemicals / PCB test 300”], and this washing liquid was transferred to a syringe. This operation was repeated until the amount of liquid stored in the Spitz tube became 7 mL, and then concentrated to about 0.5 mL using an automatic concentration apparatus (manufactured by Youth Engineering Co., Ltd., AUTOMATIC EVAPORATER ACMD-120). N-Hexane (Wako Pure Chemical Industries, “residual agricultural chemicals / PCB test 300”) was added thereto, and the volume was adjusted to 1 mL.

(ECD測定)
上記で液−固硫酸処理で得たn−ヘキサン試料液を用い、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量した。定量に用いたGC/ECD装置の構成および条件は実施例3と同一である。
(ECD measurement)
PCBs were quantified by a gas chromatograph (with an ECD detector) [GC / ECD apparatus] using the n-hexane sample solution obtained by the liquid-solid sulfuric acid treatment. The configuration and conditions of the GC / ECD apparatus used for quantification are the same as those in Example 3.

比較例2
実施例3と同じ絶縁油を用い、分析に際し、ガスクロマトグラフ用試料としての前処理条件が違う以外は、実施例3と同じ装置、条件で、該絶縁中に含有されるPCB類をGC/ECD法で分析した。B社使用済み絶縁油の分析結果を図8、C社使用済み絶縁油の分析結果を図9に示す。図中、横軸記載の約8.5min〜約32minの範囲がPCB類検出範囲である。
Comparative Example 2
Using the same insulating oil as in Example 3 and analyzing the PCBs contained in the insulation with the same equipment and conditions as in Example 3, except that the pretreatment conditions as a gas chromatographic sample were different, GC / ECD was used. Analyzed by the method. FIG. 8 shows an analysis result of the used insulating oil of the B company, and FIG. 9 shows an analysis result of the used insulating oil of the C company. In the figure, the range of about 8.5 min to about 32 min described on the horizontal axis is the PCB detection range.

(硫酸処理)
100mLの三角フラスコに、実施例3で用いたと同じ使用済み絶縁油2.5gと、n−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕20mLを添加し、これに硫酸(濃度98%)〔和光純薬工業社製、試薬特級〕10mLを添加し、攪拌子を入れスターラーで内部試料が飛びちらないように緩やかに2時間攪拌した。
(Sulfuric acid treatment)
To a 100 mL Erlenmeyer flask, 2.5 g of the same used insulating oil as used in Example 3 and 20 mL of n-hexane (Wako Pure Chemical Industries, Ltd., “300 for residual agricultural chemicals / PCB test”) were added. 10 mL of sulfuric acid (concentration 98%) [manufactured by Wako Pure Chemical Industries, Ltd., reagent grade] was added, and a stir bar was added and gently stirred for 2 hours with a stirrer so that the internal sample did not fly off.

攪拌後、この溶液を100mLの分液ロートに移し入れ、静置法により油層(n−ヘキサン試料液)と非油層(硫酸)に分離し、非油層は分液ロート下部より排出した。溶液の移し入れに際しては、三角フラスコの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も分液ロートに移し入れた。   After stirring, this solution was transferred to a 100 mL separatory funnel and separated into an oil layer (n-hexane sample solution) and a non-oil layer (sulfuric acid) by a stationary method, and the non-oil layer was discharged from the bottom of the separatory funnel. When transferring the solution, the inner wall of the Erlenmeyer flask was washed with n-hexane (same as above), and this washing solution was also transferred to a separating funnel.

次いで非油層を排出した上記分液ロートに0.1mol/Lの水酸化カリウム溶液〔和光純薬工業社製、試薬一級〕10mLを添加し、手で振混ぜた後、約5分間、静置法により油層と非油層(KOH)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of a 0.1 mol / L potassium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) is added to the above separating funnel from which the non-oil layer has been discharged, and after shaking by hand, the mixture is left to stand for about 5 minutes. The oil layer and the non-oil layer (KOH) were separated by the method, and the non-oil layer was discharged from the lower part of the separating funnel.

次いで非油層を排出した上記分液ロート上部より壁面を洗浄するように純水10mLを添加し、手で振混ぜた後、約5分間、静置法により油層と非油層(水)に分離し、非油層は分液ロート下部より排出した。   Next, 10 mL of pure water is added so as to wash the wall surface from the top of the separatory funnel from which the non-oil layer has been discharged. After shaking by hand, the oil layer and the non-oil layer (water) are separated by standing for about 5 minutes. The non-oil layer was discharged from the bottom of the separating funnel.

上記、純水での洗浄処理を再度繰り返し、非油層を排出した後、分液ロートに残った油層を100mLのビーカーに移し入れた。溶液の移し入れに際しては、分液ロートの内壁をn−ヘキサン(上記と同じ)で洗浄し、この洗浄液も上記と同じビーカーに移し入れた。   The washing process with pure water was repeated again to discharge the non-oil layer, and then the oil layer remaining in the separatory funnel was transferred to a 100 mL beaker. When transferring the solution, the inner wall of the separatory funnel was washed with n-hexane (same as above), and this washing solution was also transferred into the same beaker as above.

次いで上記ビーカーに無水硫酸ナトリウム〔和光純薬工業社製、「残留農薬試験用」〕5gを添加し、手で緩やかに攪拌した後、ろ紙を使用してろ過分離し、ろ過後の油層をロータリーエバポレーターで3mLまで濃縮した。   Next, 5 g of anhydrous sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., “for residual pesticide test”) was added to the above beaker, gently stirred by hand, filtered and filtered using filter paper, and the oil layer after filtration was rotary. The solution was concentrated to 3 mL with an evaporator.

(GPC処理)
上記硫酸処理により得た濃縮液(n−ヘキサン試料液)3mLをGPC溶離液(酢酸エチル/シクロヘキサン---容量比3/7)で5mLに定容した。このようにして得た試料2mLをGPC装置に注入して、PCB溶出範囲を分取した。次いで、この分取液をロータリーエバポレーターを用い(0.5mLまで)濃縮し、これにn−ヘキサン〔和光純薬工業社製、「残留農薬・PCB試験用300」〕を加えて1mLに定容した。
(GPC processing)
3 mL of the concentrated solution (n-hexane sample solution) obtained by the sulfuric acid treatment was made up to 5 mL with a GPC eluent (ethyl acetate / cyclohexane--volume ratio 3/7). 2 mL of the sample thus obtained was injected into the GPC apparatus, and the PCB elution range was fractionated. Then, this fractionated solution was concentrated using a rotary evaporator (to 0.5 mL), and n-hexane (Wako Pure Chemical Industries, Ltd., “residual agricultural chemicals / PCB test 300”) was added thereto to a constant volume of 1 mL. did.

(ECD測定)
上記GPC処理で得たn−ヘキサン試料液を用い、ガスクロマトグラフ(ECD検出器付き)〔GC/ECD装置〕により、PCB類を定量した。定量に用いたGC/ECD装置の構成および条件は実施例3と同一である。
(ECD measurement)
PCBs were quantified by a gas chromatograph (with an ECD detector) [GC / ECD apparatus] using the n-hexane sample solution obtained by the GPC treatment. The configuration and conditions of the GC / ECD apparatus used for quantification are the same as those in Example 3.

実施例1〜実施例4、比較例1および比較例2のクロマトグラムから明らかなように、疎水性溶液よりなる試料を、従来法である濃硫酸で処理し次いでGPC処理する試料の前処理方法に比し、GPC処理後に濃硫酸処理を行う本発明方法はPCB類の定量に妨害となる共存物質を著しく減少し得ることがわかる。   As is apparent from the chromatograms of Examples 1 to 4, Comparative Example 1 and Comparative Example 2, a sample pretreatment method for treating a sample made of a hydrophobic solution with concentrated sulfuric acid, which is a conventional method, followed by GPC treatment It can be seen that the method of the present invention in which concentrated sulfuric acid treatment is performed after GPC treatment can significantly reduce the coexisting substances that hinder the determination of PCBs.

本発明によれば、PCB類を含有する疎水性試料よりガスクロマトグラフを用いポリ塩化ビフェニル類を定量する方法において、極めて簡便な処理方法で従来公知の前処理方法に比較し、PCB類の定量に妨害となる共存物質を著しく減少し得るので、PCB類を容易に正確に定量できることとなり、廃棄物処理等の産業分野における利用可能性は大である。   According to the present invention, in a method of quantifying polychlorinated biphenyls from a hydrophobic sample containing PCBs using a gas chromatograph, the quantification of PCBs can be carried out by an extremely simple treatment method compared to a conventionally known pretreatment method. Since the coexisting substances that interfere can be significantly reduced, PCBs can be easily and accurately quantified, and the applicability in industrial fields such as waste disposal is great.

Claims (4)

ポリ塩化ビフェニル類を含有する疎水性試料を、ゲル浸透クロマトグラフィーで処理した後、該処理で得た主としてポリ塩化ビフェニル類よりなる分取物を用い、ガスクロマトグラフにてポリ塩化ビフェニル類を定量する方法において、ゲル浸透クロマトグラフィーで処理した後のガスクロマトグラフに供する分取物を、予め濃硫酸で処理することを特徴とするポリ塩化ビフェニル類の定量方法。   A hydrophobic sample containing polychlorinated biphenyls is treated by gel permeation chromatography, and then the fraction of polychlorinated biphenyls obtained by the treatment is used to determine the amount of polychlorinated biphenyls by gas chromatography. A method for quantifying polychlorinated biphenyls, characterized in that a fraction to be subjected to gas chromatography after gel permeation chromatography is treated with concentrated sulfuric acid in advance. 濃硫酸での処理が、分取物と濃硫酸の液−液処理であることを特徴とする請求項1記載のポリ塩化ビフェニル類の定量方法。   2. The method for quantifying polychlorinated biphenyls according to claim 1, wherein the treatment with concentrated sulfuric acid is a liquid-liquid treatment of a fraction and concentrated sulfuric acid. 濃硫酸での処理が、分取物と濃硫酸を含浸させた硫酸シリカゲルとの液−固処理であることを特徴とする請求項1記載のポリ塩化ビフェニル類の定量方法。   2. The method for quantifying polychlorinated biphenyls according to claim 1, wherein the treatment with concentrated sulfuric acid is a liquid-solid treatment between a fraction and a sulfuric acid silica gel impregnated with concentrated sulfuric acid. ガスクロマトグラフが、高分解能ガスクロマトグラフであることを特徴とする請求項1記載のポリ塩化ビフェニル類の定量方法。   The method for quantifying polychlorinated biphenyls according to claim 1, wherein the gas chromatograph is a high-resolution gas chromatograph.
JP2009292294A 2008-12-25 2009-12-24 Quantitative determination method of polychlorinated biphenyl Pending JP2010169676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292294A JP2010169676A (en) 2008-12-25 2009-12-24 Quantitative determination method of polychlorinated biphenyl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008329719 2008-12-25
JP2009292294A JP2010169676A (en) 2008-12-25 2009-12-24 Quantitative determination method of polychlorinated biphenyl

Publications (1)

Publication Number Publication Date
JP2010169676A true JP2010169676A (en) 2010-08-05

Family

ID=42701938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292294A Pending JP2010169676A (en) 2008-12-25 2009-12-24 Quantitative determination method of polychlorinated biphenyl

Country Status (1)

Country Link
JP (1) JP2010169676A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928749A (en) * 2012-10-30 2013-02-13 山东电力集团公司烟台供电公司 High-precision transformer oil gas online monitoring device
CZ304011B6 (en) * 2012-10-10 2013-08-14 Ceské vysoké ucení technické v Praze, Fakulta jaderná a fyzikálne inzenýrská Method of reference determination of soil or water contamination with polychlorinated biphenyls and apparatus for making the same
CN111665313A (en) * 2020-07-03 2020-09-15 孟祥龙 Method for determining polychlorinated biphenyl compounds in aquatic products
CN113945650A (en) * 2021-09-09 2022-01-18 国家粮食和物资储备局科学研究院 Method for simultaneously analyzing persistent organic pollutants in grains
CN114660208A (en) * 2020-12-23 2022-06-24 沈阳沈化院测试技术有限公司 Gas chromatography method for simultaneously measuring polychlorinated biphenyl in bottom mud

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304011B6 (en) * 2012-10-10 2013-08-14 Ceské vysoké ucení technické v Praze, Fakulta jaderná a fyzikálne inzenýrská Method of reference determination of soil or water contamination with polychlorinated biphenyls and apparatus for making the same
CN102928749A (en) * 2012-10-30 2013-02-13 山东电力集团公司烟台供电公司 High-precision transformer oil gas online monitoring device
CN111665313A (en) * 2020-07-03 2020-09-15 孟祥龙 Method for determining polychlorinated biphenyl compounds in aquatic products
CN114660208A (en) * 2020-12-23 2022-06-24 沈阳沈化院测试技术有限公司 Gas chromatography method for simultaneously measuring polychlorinated biphenyl in bottom mud
CN113945650A (en) * 2021-09-09 2022-01-18 国家粮食和物资储备局科学研究院 Method for simultaneously analyzing persistent organic pollutants in grains

Similar Documents

Publication Publication Date Title
Makoś et al. Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis
de Voogt et al. Analytical chemistry of perfluoroalkylated substances
Grześkowiak et al. Current approaches in sample preparation for trace analysis of selected endocrine-disrupting compounds: focus on polychlorinated biphenyls, alkylphenols, and parabens
KR101250025B1 (en) Purifying agent for oily liquid containing polybiphenyl chloride
Rallis et al. Determination of organochlorine pesticides and polychlorinated biphenyls in post-mortem human lung by matrix solid-phase dispersion with the aid of response surface methodology and desirability function
JP2010169676A (en) Quantitative determination method of polychlorinated biphenyl
Norin et al. Determination of trihalomethanes (THM) in water using high efficiency solvent extraction
Metcalfe et al. Methods for the analysis of endocrine disrupting chemicals in selected environmental matrixes
Tavendale et al. Analytical methodology for the determination of freely available bleached kraft mill effluent-derived organic constituents in recipient sediments
Nilsson et al. Pressurized-fluid extraction (PFE) of chlorinated paraffins from the biodegradable fraction of source-separated household waste
JP5691120B2 (en) Production method of silica gel containing high concentration sulfuric acid
JPS62216911A (en) Activated carbon-containing silica gel, its production, and analytical method using said gel as packing material of cleanup column
AU2010263365A1 (en) Method for isolation and quantification of naphthenate forming acids (&#34;ARN acids&#34;) in crude oil
Nerin et al. Determination of polyaromatic hydrocarbons and some related compounds in industrial waste oils by GPC-HPLC-UV
KR100740919B1 (en) Method for reproducting of insulating oil by removing polychlorinated biphenyl and insulating oil using the same
JP2005140522A (en) Method for pretreating oily sample containing polychlorinated biphenyls
JP2006177981A (en) Method for analyzing organic halogen compound
Mahindrakar et al. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil
JP3578315B2 (en) Analysis of polychlorinated biphenyls (PCB) in insulating oil
JP2006200907A (en) Analyzing method of pcb in waste oil
JP2010222476A (en) Method and apparatus for extracting aromatic halogen compound
Kiang et al. Development of a screening method for the determination of 49 priority pollutants in soil
Mannila et al. Comparison of SFE with Soxhlet in the analyses of PCDD/PCDFs and PCBs in sediment
JP2003114222A (en) Pcb separation method
JP2007248269A (en) Quantitative method of polybiphenyl chlorides and ampule used therein