JP5207877B2 - Sensitive minesweeper - Google Patents

Sensitive minesweeper Download PDF

Info

Publication number
JP5207877B2
JP5207877B2 JP2008210395A JP2008210395A JP5207877B2 JP 5207877 B2 JP5207877 B2 JP 5207877B2 JP 2008210395 A JP2008210395 A JP 2008210395A JP 2008210395 A JP2008210395 A JP 2008210395A JP 5207877 B2 JP5207877 B2 JP 5207877B2
Authority
JP
Japan
Prior art keywords
ship
minesweeper
electrode
current
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008210395A
Other languages
Japanese (ja)
Other versions
JP2010047038A (en
Inventor
能央 渡辺
豪 永田
Original Assignee
ユニバーサル特機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル特機株式会社 filed Critical ユニバーサル特機株式会社
Priority to JP2008210395A priority Critical patent/JP5207877B2/en
Publication of JP2010047038A publication Critical patent/JP2010047038A/en
Application granted granted Critical
Publication of JP5207877B2 publication Critical patent/JP5207877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、船舶から発生する磁界と電界を高精度にシミュレートして高知能型機雷を破壊する感応掃海装置に関するものである。   The present invention relates to a sensitive minesweeper that simulates a magnetic field and an electric field generated from a ship with high accuracy to destroy a highly intelligent mine.

従来の掃海装置は、掃海艇に曳航される海中の複数の電極に電流を流して船舶の磁界をシミュレートし、その磁界により海中に敷設された磁気機雷を破壊させるようにしている(例えば、特許文献1参照)。   A conventional minesweeper simulates a ship's magnetic field by passing a current through a plurality of electrodes in the sea towed by a minesweeper, and the magnetic mine laid in the sea is destroyed by the magnetic field (for example, Patent Document 1).

特開2004−306683号公報(第4−6頁、図1、図2)JP 2004-306683 A (page 4-6, FIGS. 1 and 2)

ところで、機雷には、磁気と同時に電界の電位差を検知したときに作動して爆発する高知能型機雷がある。その電界は、船舶の防食電流により発生するものであるが、前述した従来の掃海装置は、船舶の磁気をシミュレートするだけで、磁界と電界とを同時にシミュレートする機能を備えていなかった。   By the way, mine includes a highly intelligent mine that activates and explodes when a potential difference of an electric field is detected simultaneously with magnetism. The electric field is generated by the anticorrosion current of the ship. However, the conventional minesweeper described above only simulates the magnetism of the ship, and does not have a function of simultaneously simulating the magnetic field and the electric field.

本発明は、前記のような課題を解決するためになされたもので、船舶の防食電流により発生する電界もシミュレートする感応掃海装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a sensitive sweeper that simulates an electric field generated by a corrosion protection current of a ship.

本発明に係る感応掃海装置は、掃海艇の進行方向に沿って一列に曳航され、船舶の特性に応じて発生する磁界および電界をシミュレーションする複数の掃海具を備え、その複数の掃海具からの磁界および電界により機雷を作動させて破壊する感応掃海装置において、複数の掃海具には、3軸方向に磁気を発生するコイルが設けられ、船舶の特性に応じてコイルの磁気方向を選択し、当該船舶の磁界をシミュレーションする。 The sensitive minesweeper according to the present invention includes a plurality of minesweepers that are towed in a line along the traveling direction of the minesweeper and that simulate magnetic fields and electric fields that are generated according to the characteristics of the ship. In a sensitive minesweeper that activates and destroys mines with magnetic and electric fields , a plurality of minesweepers are provided with coils that generate magnetism in three axial directions, and select the magnetic direction of the coils according to the characteristics of the ship, Simulate the magnetic field of the ship.

本発明においては、船舶の特性に応じて発生する磁界および電界を複数の掃海具でシミュレートするようにしたので、磁気と同時に電界の電位差を検知したときに作動する高知能型機雷を破壊することが可能になり、船舶の航路をより安全に確保することができる。   In the present invention, since the magnetic field and electric field generated according to the characteristics of the ship are simulated by a plurality of minesweepers, the intelligent mines that operate when the potential difference of the electric field is detected simultaneously with the magnetism are destroyed. It is possible to secure the ship's route more safely.

図1は本発明の実施の形態に係る感応掃海装置の構成を示すブロック図、図2は実施の形態の感応掃海装置を掃海艇に適用して示す概念図、図3は感応掃海装置の掃海具および掃海具のコイルを示す斜視図、図4は船舶の磁界のレベルとその磁界を発生させるのに必要なコイル電流との相関を示す図、図5は船舶の電界のレベルとその電界を発生させるのに必要な電極電流との相関を示す図である。   FIG. 1 is a block diagram showing a configuration of a sensitive sweeper according to an embodiment of the present invention, FIG. 2 is a conceptual diagram showing the sensitive sweeper according to the embodiment applied to a minesweeper, and FIG. 3 is a sweeper of the sensitive sweeper. FIG. 4 is a diagram showing the correlation between the level of the ship's magnetic field and the coil current required to generate the magnetic field, and FIG. 5 shows the level of the ship's electric field and its electric field. It is a figure which shows the correlation with the electrode electric current required to make it generate | occur | produce.

実施の形態の感応掃海装置は、図1に示すように、掃海艇10に搭載された発電機11からの交流電流を入力し直流電流に変換する電源装置12と、シミュレートする船舶の例えば船名や船種(タンカー、客船、貨物船、護衛艦など)を入力するための操作部13と、信号処理装置14と、制御装置15と、例えば5個の掃海具20と、この5個の掃海具20を制御装置15にそれぞれ接続する例えば40芯のケーブル30とを備えている。   As shown in FIG. 1, the sensitive minesweeper according to the embodiment includes a power supply device 12 that inputs an alternating current from a generator 11 mounted on a minesweeper 10 and converts the alternating current into a direct current, and for example, a ship to be simulated. An operation unit 13 for inputting a name and ship type (tanker, passenger ship, cargo ship, escort ship, etc.), a signal processing device 14, a control device 15, for example, five minesweepers 20, and these five minesweepers For example, a 40-core cable 30 for connecting the tool 20 to the control device 15 is provided.

各掃海具20は、図3(a)に示すように外観が流線形状に構成され、後述する3つのコイル21,22,23および1本の電極24と、例えば40極を一組とする二組のコネクタ25(図1参照)とを備えている。このコネクタ25は、掃海具間のケーブル30および掃海具20と制御装置15の間のケーブル30を電気的に接続すると共に、その接続が外れないように各ケーブル30を固定する構造になっている。また、各掃海具20は、掃海艇10によって曳航されているとき、図2に示すように、掃海艇20の進行方向に沿って一列に等間隔に配列され、曳航中の各掃海具20の深度は、最後尾に位置する浮遊ブイ40によってほぼ一定に保たれている。   Each sweeper 20 has a streamlined appearance as shown in FIG. 3A, and includes a set of three coils 21, 22, 23 and one electrode 24, which will be described later, for example, 40 poles. Two sets of connectors 25 (see FIG. 1) are provided. The connector 25 is configured to electrically connect the cable 30 between the sweeper and the cable 30 between the sweeper 20 and the control device 15 and to fix the cables 30 so that the connection is not disconnected. . Further, when the minesweeper 20 is towed by the minesweeper 10, as shown in FIG. 2, the minesweeper 20 is arranged in a line along the traveling direction of the minesweeper 20 at equal intervals. The depth is kept almost constant by the floating buoy 40 located at the end.

前述の信号処理装置14は、シミュレートする船舶の船名および船種に対応して設定されたコイル電流と電極電流の値がデータとして格納されたメモリ(図示せず)を有している。コイル電流は、例えば図4に示すように、船名A,B,Cの各船舶から発生する磁界をシミュレートするための電流値であり、電極電流は、例えば図5に示すように、船名A,B,Cの各船舶の防食電流により発生する電界をシミュレートするための電流値である。また、船舶の船種に対応して設定されたコイル電流と電極電流は、船舶の特性、例えば船舶の大きさ、船体の材質、搭載量などに基づいて得られた電流値である。なお、コイル電流は、各掃海具20にそれぞれ搭載された3つのコイル21,22,23にそれぞれ供給され、そのうち2つのコイル22,23には同じ値のコイル電流が供給される。   The signal processing device 14 described above has a memory (not shown) in which coil current and electrode current values set corresponding to the ship name and ship type of the ship to be simulated are stored as data. For example, as shown in FIG. 4, the coil current is a current value for simulating a magnetic field generated from each ship of ship names A, B, and C, and the electrode current is, for example, as shown in FIG. It is a current value for simulating the electric field generated by the anticorrosion current of each ship of names A, B, and C. Further, the coil current and the electrode current set corresponding to the ship type of the ship are current values obtained based on the characteristics of the ship, for example, the size of the ship, the material of the hull, the loading amount, and the like. The coil current is supplied to the three coils 21, 22, and 23 respectively mounted on the minesweeper 20, and the two coils 22 and 23 are supplied with the same coil current.

制御装置15は、出力側にケーブル30が接続されたコネクタ16を有し、信号処理装置14により設定されたコイル電流と電極電流が各掃海具20にそれぞれ供給されるように電源装置12の直流電流を制御する。コイル電流は、電極電流と比べ、ほぼ百倍以上の電流である。   The control device 15 has a connector 16 to which the cable 30 is connected on the output side, and the direct current of the power supply device 12 is supplied so that the coil current and the electrode current set by the signal processing device 14 are supplied to each of the sweeper tools 20. Control the current. The coil current is almost a hundred times greater than the electrode current.

前述した3つのコイル21,22,23は、図3(b)に示すように、円筒状に形成されたX軸コイル21と、側方から見て長方形のリング状に形成され、X軸コイル21の中空内に交差して配置されたY軸およびZ軸コイル22,23とからなっている。各コイル21,22,23は、掃海具20毎に個別にケーブル30の芯線を介して制御装置15と接続されている。また、同図(c)に示すように、X軸コイル21には、掃海艇10の進行方向(X軸方向)に磁気が発生するようにコイル電流が流れ、Y軸コイル22には、掃海艇10の進行方向を直交する方向(Y軸方向)に磁気が発生するようにコイル電流が流れ、また、Z軸コイル23には、海底に向かう垂直方向(Z軸方向)に磁気が発生するようにコイル電流が流れる。   As shown in FIG. 3B, the three coils 21, 22, and 23 described above are formed in a cylindrical ring shape and a rectangular ring shape when viewed from the side. The Y-axis and Z-axis coils 22 and 23 are arranged so as to intersect with each other in the hollow 21. Each coil 21, 22, 23 is individually connected to the control device 15 via the core wire of the cable 30 for each of the sweeper 20. In addition, as shown in FIG. 3C, a coil current flows through the X-axis coil 21 so that magnetism is generated in the traveling direction (X-axis direction) of the minesweeper 10, and the Y-axis coil 22 has a minesweeping. A coil current flows so that magnetism is generated in a direction orthogonal to the traveling direction of the boat 10 (Y-axis direction), and magnetism is generated in the Z-axis coil 23 in a direction perpendicular to the seabed (Z-axis direction). The coil current flows as follows.

各電極24は、各掃海具20の後端側下部にそれぞれ下方に突出して取り付けられている(図3(a)参照)。例えば5本の電極24のうち、掃海艇10側から見て手前の1番目の掃海具20の電極24を+極、2番目の掃海具20の電極24を−極として、また、3番目と4番目の掃海具20の各電極24を+極、最後尾である5番目の掃海具20の電極24を−極として用いている。前述の電極電流は、1番目および3番目と4番目の掃海具20の各電極24に供給される。この場合、1番目の掃海具20の電極24(+極)から2番目の掃海具20の電極24(−電極)に向けて電極電流が放電され、また、3番目と4番目の掃海具20の各電極24(+極)から最後尾の掃海具20の電極24(−電極)に向けて電極電流が放電される。この放電により、X軸方向とZ軸方向に電界が発生する。X軸方向の電界は、+極の電極24と−極の電極24との間の電極電流により発生し、Z軸方向の電界は、−電極に至らない電極電流によるもので、海底方向に発生している。そのZ軸方向の電界のレベルは、X軸方向の電界よりも大幅に低くなっている。   Each electrode 24 is attached to the lower part of the rear end side of each minesweeper 20 so as to protrude downward (see FIG. 3A). For example, among the five electrodes 24, the electrode 24 of the first sweeping tool 20 in front of the minesweeper 10 side is set as the + pole, the electrode 24 of the second sweeping tool 20 is set as the-pole, and the third Each electrode 24 of the fourth sweeper 20 is used as a + pole, and the last electrode 24 of the fifth sweeper 20 is used as a minus pole. The aforementioned electrode current is supplied to each electrode 24 of the first and third and fourth minesweepers 20. In this case, an electrode current is discharged from the electrode 24 (+ electrode) of the first mining tool 20 toward the electrode 24 (−electrode) of the second mining tool 20, and the third and fourth mining tools 20. Electrode current is discharged from each electrode 24 (+ electrode) to the electrode 24 (−electrode) of the last sweeper 20. This discharge generates an electric field in the X-axis direction and the Z-axis direction. The electric field in the X-axis direction is generated by the electrode current between the positive electrode 24 and the negative electrode 24, and the electric field in the Z-axis direction is generated by the electrode current that does not reach the negative electrode, and is generated in the seabed direction. doing. The electric field level in the Z-axis direction is significantly lower than the electric field in the X-axis direction.

次に、前記のように構成された感応掃海装置の動作を説明する。
掃海艇10の船尾から浮遊ブイ40を海上に投下し、次いで5個の掃海具20を順に投下した後に、操作部13からシミュレートする船舶の例えば船名Aを入力すると、信号処理装置14は、入力された船名Aをキーワードとしてメモリにアクセスし、船名Aに関連付けられたコイル電流と電極電流を読み出し、そのデータを制御装置15に転送する。また、信号処理装置14は、シミュレートする船舶の船種が入力されたときは、その船舶の特性である船舶の大きさ、船体の材質、搭載量などを入力させるメッセージを操作部13の表示部に表示し、この表示により船舶の特性が入力されたときは、その特性に対応して設定されたコイル電流と電極電流をメモリから読み出し、そのデータを制御装置15に転送する。
Next, the operation of the sensitive sweeper configured as described above will be described.
When the floating buoy 40 is dropped onto the sea from the stern of the minesweeper 10 and then the five minesweepers 20 are dropped in sequence, and then, for example, the ship name A of the ship to be simulated is input from the operation unit 13, the signal processing device 14 Then, the memory is accessed using the inputted ship name A as a keyword, the coil current and the electrode current associated with the ship name A are read, and the data is transferred to the control device 15. Further, when the ship type of the ship to be simulated is input, the signal processing device 14 displays a message for inputting the ship size, the material of the hull, the mounted amount, etc., which are the characteristics of the ship, on the operation unit 13. When the characteristic of the ship is input by this display, the coil current and the electrode current set in accordance with the characteristic are read from the memory, and the data is transferred to the control device 15.

制御装置15は、コイル電流と電極電流が入力されると、各掃海具20のX軸コイル21、Y軸コイル22およびZ軸コイル23にそれぞれコイル電流が流れるように電源装置12の直流電流を制御すると共に、掃海艇10側から見て例えば1番目および3番目と4番目の掃海具20の各電極24に前述の電極電流が流れるように電源装置12の直流電流を制御する。この時、各掃海具20に搭載されたコイル21,22,23に流れるコイル電流より発生する3軸方向の磁気による磁界が生じ(図2(a)参照)、1番目の掃海具20の電極24と2番目の掃海具20の電極24との間に放電される電極電流によって電界が発生すると共に、3番目と4番目の掃海具20の各電極24と最後尾の掃海具20の電極24との間に放電される電極電流によって電界(X軸およびZ軸方向)が発生する(図2(b)参照)。   When the coil current and the electrode current are input, the control device 15 changes the direct current of the power supply device 12 so that the coil current flows through the X-axis coil 21, the Y-axis coil 22, and the Z-axis coil 23 of each minesweeper 20. In addition to the control, the DC current of the power supply device 12 is controlled so that the above-described electrode current flows through each electrode 24 of the first, third and fourth minesweeper 20 as viewed from the minesweeper 10 side, for example. At this time, a magnetic field is generated by the magnetism in the three-axis direction generated by the coil currents flowing in the coils 21, 22, and 23 mounted on each sweeper 20 (see FIG. 2A), and the electrodes of the first sweeper 20 24 and the electrode 24 of the second sweeper 20 generates an electric field, and each electrode 24 of the third and fourth sweeper 20 and the electrode 24 of the last sweeper 20 An electric field (X-axis and Z-axis directions) is generated by the electrode current discharged between (see FIG. 2B).

各掃海具20のコイル21、22、23による3軸方向の磁気は、シミュレート対象の船舶から発生するX軸,Y軸およびZ軸方向の磁気レベルとほぼ同じになり(図6参照)、また、各掃海具20の電極24による2軸方向の電界は、前述の船舶の防食電流により発生するX軸およびZ軸方向の電界レベルとほぼ同じになる(図7参照)。   The magnetism in the three-axis directions by the coils 21, 22, and 23 of each minesweeper 20 is substantially the same as the magnetic levels in the X-axis, Y-axis, and Z-axis directions generated from the ship to be simulated (see FIG. 6). Moreover, the electric field of the biaxial direction by the electrode 24 of each minesweeper 20 becomes substantially the same as the electric field level of the X-axis and Z-axis directions generated by the above-described anticorrosive current of the ship (see FIG. 7).

以上のように実施の形態によれば、船舶から発生する磁界および船舶の防食電流により発生する電界を複数の掃海具20でシミュレートするようにしたので、磁界における3軸方向の磁気と同時に電界の電位差を検知したときに作動する高知能型機雷を破壊することが可能になり、船舶の航路をより安全に確保することができる。   As described above, according to the embodiment, since the electric field generated by the magnetic field generated from the ship and the anticorrosive current of the ship is simulated by the plurality of minesweeper 20, the electric field is simultaneously generated in the magnetic field in the triaxial direction. It is possible to destroy the intelligent mine that operates when the potential difference is detected, and the ship's route can be secured more safely.

なお、実施の形態では、磁気の方向を3軸方向として説明したが、シミュレートする船舶に応じて磁気を1軸方向あるいは2軸方向に切り替え可能な回路構成にしてもよい。
また、+極の電極24から−極の電極24に放電する電極電流を直流としたが、+極の電極24から交流の電流を放電するようにしてもよい。
In the embodiment, the direction of magnetism has been described as the three-axis direction. However, a circuit configuration in which the magnetism can be switched to the one-axis direction or the two-axis direction according to the ship to be simulated may be used.
Moreover, although the electrode current discharged from the positive electrode 24 to the negative electrode 24 is a direct current, an alternating current may be discharged from the positive electrode 24.

本発明の実施の形態に係る感応掃海装置の構成を示すブロック図である。It is a block diagram which shows the structure of the sensitive sweeping apparatus which concerns on embodiment of this invention. 実施の形態の感応掃海装置を掃海艇に適用して示す概念図である。It is a conceptual diagram which shows the sensitive sweeping apparatus of embodiment applied to a minesweeper. 感応掃海装置の掃海具および掃海具のコイルを示す斜視図である。It is a perspective view which shows the minesweeper of a sensitive minesweeper, and the coil of minesweeper. 船舶の磁気レベルとその磁気を発生させるのに必要なコイル電流の相関図である。It is a correlation diagram of the coil current required in order to generate the magnetic level of a ship, and the magnetism. 船舶の電界レベルとその電界を発生させるのに必要な電極電流の相関図である。It is a correlation diagram of the electric field level of a ship, and the electrode current required in order to generate the electric field. シミュレーションによる磁界の3軸方向の磁気と高知能型機雷が検知する3軸方向の磁気とを比較して示す一例図である。It is an example figure which compares and compares the magnetic field of the triaxial direction of the magnetic field by simulation, and the magnetic field of the triaxial direction which a highly intelligent mine detects. シミュレーションによる2軸方向の電界と高知能型機雷が検知する2軸方向の電界とを比較して示す一例図である。It is an example figure which compares and compares the electric field of the biaxial direction by simulation, and the electric field of the biaxial direction which a highly intelligent mine detects.

符号の説明Explanation of symbols

10掃海艇、11 発電機、12 電源装置、13 操作部、14 信号処理装置、
15 コネクタ、20 掃海具、21 X軸コイル、22 Y軸コイル、23 Z軸コイル、25 コネクタ、30 ケーブル、40 浮遊ブイ。
10 minesweeper, 11 generator, 12 power supply device, 13 operation unit, 14 signal processing device,
15 connector, 20 minesweeper, 21 X-axis coil, 22 Y-axis coil, 23 Z-axis coil, 25 connector, 30 cable, 40 floating buoy.

Claims (2)

掃海艇の進行方向に沿って一列に曳航され、船舶の特性に応じて発生する磁界および電界をシミュレーションする複数の掃海具を備え、
該複数の掃海具からの磁界および電界により機雷を作動させて破壊する感応掃海装置において、
前記複数の掃海具には、3軸方向に磁気を発生するコイルが設けられ、
船舶の特性に応じて前記コイルの磁気方向を選択し、当該船舶の磁界をシミュレーションすることを特徴とする感応掃海装置。
It is towed in a line along the direction of travel of the minesweeper, and has a plurality of minesweepers that simulate the magnetic and electric fields generated according to the characteristics of the ship,
In sensitive minesweeping device you destroyed by operating mines by magnetic and electric fields from the plurality of minesweeping device,
The plurality of minesweepers are provided with coils that generate magnetism in three axial directions,
A sensitive sweeper , wherein the magnetic direction of the coil is selected according to the characteristics of the ship and the magnetic field of the ship is simulated .
前記複数の掃海具には、それぞれ電極が設けられ、
前記複数の掃海具のうち少なくとも1個の掃海具の電極を+極として、他の各掃海具の電極にそれぞれ電流を放電し、船舶の防食電流により発生する電界をシミュレーションすることを特徴とする請求項1記載の感応掃海装置。
Each of the plurality of minesweepers is provided with electrodes,
The electric field generated by the anticorrosive current of the ship is simulated by discharging the current to the electrodes of each of the other minesweepers using the electrode of at least one minesweeper as a positive pole among the plurality of minesweepers. The sensitive sweeper according to claim 1.
JP2008210395A 2008-08-19 2008-08-19 Sensitive minesweeper Active JP5207877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210395A JP5207877B2 (en) 2008-08-19 2008-08-19 Sensitive minesweeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210395A JP5207877B2 (en) 2008-08-19 2008-08-19 Sensitive minesweeper

Publications (2)

Publication Number Publication Date
JP2010047038A JP2010047038A (en) 2010-03-04
JP5207877B2 true JP5207877B2 (en) 2013-06-12

Family

ID=42064518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210395A Active JP5207877B2 (en) 2008-08-19 2008-08-19 Sensitive minesweeper

Country Status (1)

Country Link
JP (1) JP5207877B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500657A (en) * 1983-04-22 1984-04-19 グ−ルド インコ−ポレイテツド Methods and means of generating electric and magnetic fields in a seawater environment
JPH0812252B2 (en) * 1989-09-05 1996-02-07 株式会社島津製作所 Submarine conductivity measurement tow cable
AU2002953407A0 (en) * 2002-12-18 2003-01-09 Commonwealth Of Australia Mine sweeping device
JP4016115B2 (en) * 2005-02-18 2007-12-05 防衛省技術研究本部長 AC underwater electric field signal or AC magnetic signal extraction method and apparatus for ships

Also Published As

Publication number Publication date
JP2010047038A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
Holmes Exploitation of a ship's magnetic field signatures
US8437979B2 (en) Smart tether system for underwater navigation and cable shape measurement
EP2594966B1 (en) Electromagnetic sensor cable and electrical configuration therefor
US6765487B1 (en) Underwater detection and deterrent system
US8994378B2 (en) Acquisition system and method for towed electromagnetic sensor cable and source
CN101487900A (en) In-sea power generation for marine seismic operations
MX2011000620A (en) Surveying using vertical electromagnetic sources that are towed along with survey receivers.
WO2016089258A1 (en) A system and method for sea bed surveying
US9081106B2 (en) Power converter and electrode combinations for electromagnetic survey source
EP2372401A1 (en) Method for towing marine sensor streamers
JP5207877B2 (en) Sensitive minesweeper
CN101165451A (en) Minesweeping equipment, minesweeping method and minesweeping device
US20160099751A1 (en) Methods and apparatus for underwater electrical near-field signal system
Waldmann et al. MOTH-An underwater glider design study carried out as part of the HGF alliance ROBEX
Zhou et al. The design and development of an affordable unmanned surface vehicle for estuary research and stem education
JP4259327B2 (en) Magnetic measurement method for ships
CN108828328B (en) Portable three-component submarine electric field instrument
Ross et al. Degaussing by normal and superconductive windings
JPH0624381A (en) Magnetic mine sweeping system
Moore et al. Artemis AUV payload development
JP5084472B2 (en) Minesweeper magnetic field detector and minesweeper
Dhanak et al. AUV-based characterization of EMF emissions from submerged power cables
Holmes Past, present, and future of underwater sensor arrays to measure the electromagnetic field signatures of naval vessels
US20170031052A1 (en) Electromagnetic System for Exploring the Seabed
JP4269311B2 (en) Magnetic minesweeper and magnetic minesweeper system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5207877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250