JP4259327B2 - Magnetic measurement method for ships - Google Patents

Magnetic measurement method for ships Download PDF

Info

Publication number
JP4259327B2
JP4259327B2 JP2004002568A JP2004002568A JP4259327B2 JP 4259327 B2 JP4259327 B2 JP 4259327B2 JP 2004002568 A JP2004002568 A JP 2004002568A JP 2004002568 A JP2004002568 A JP 2004002568A JP 4259327 B2 JP4259327 B2 JP 4259327B2
Authority
JP
Japan
Prior art keywords
ship
magnetic field
measured
magnetic
axis magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004002568A
Other languages
Japanese (ja)
Other versions
JP2005195479A (en
Inventor
光博 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004002568A priority Critical patent/JP4259327B2/en
Publication of JP2005195479A publication Critical patent/JP2005195479A/en
Application granted granted Critical
Publication of JP4259327B2 publication Critical patent/JP4259327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

この発明は、艦艇の磁気低減処理を行う場合等に必要な艦艇の磁気測定方法に関する。   The present invention relates to a ship's magnetic measurement method necessary for performing a ship's magnetic reduction process.

一般に艦艇は、船体磁気を発する。この船体磁気は、図7に示すように、船体構造上、VM(vertical component of ship’s magnetization:垂直方向)、LM(longitudinal component of ship’s magnetization:船首尾方向)、AM(athwardship component of ship’s magnetization:左右舷方向)の3直交成分に分散される。 Generally, a ship emits a ship's magnetic field. The hull magnetism, as shown in FIG. 7, the hull structure, VM (vertical component of ship's magnetization: vertical), LM (longitudinal comp on ent of ship's magnetization: stern direction), AM (athwardship It is distributed in three orthogonal components of component of ship's management.

また、それぞれの磁気はPM(permnent ship’s magnetization:永久磁気)とIM(induced ship’s magnetization:誘導磁気)とから構成され、船体磁気から発する静磁気は、永久磁気の垂直方向成分PVM、船首尾方向成分PLM、左右舷方向PAMと、誘導磁気の垂直方向成分IVM、船首尾方向成分ILM、左右舷方向成分IAMとからなる。 Further, each of the magnetism PM (perm a nent ship's magnetization : permanent magnet) and IM: constructed from (induced ship's magnetization induced magnetism) and magnetostatic emanating from the hull magnetism, the vertical component of a permanent magnetic PVM, stern direction component PLM, consists of a left-right outboard direction PAM, induced magnetism in the vertical direction component IVM, stern direction component ILM, the port and starboard direction component IAM.

このような船体磁気は、艦艇の航行中に、触雷等を避けるため小さい方が望ましい。そのため、艦船には消磁コイルを設け、この消磁コイルに船体磁気を打ち消すための所定の電流を通電し、消磁を行っている。この種の消磁を行うためには、艦船の船体磁気を測定する必要がある。艦艇の磁界測定方法としては、従来、海底に列状に複数個の磁気センサを配列しておき、艦艇を磁気センサの上を航行させて、あるいは係留して、船体磁気を測定する方法が使用されている(例えば、特許文献1参照)。
特開昭60−182706号公報
Such hull magnetism is desirable to be small in order to avoid thunder and the like while navigating a ship. Therefore, the ship is provided with a degaussing coil, and a predetermined current for canceling the ship magnetism is applied to the degaussing coil to demagnetize it. In order to perform this type of demagnetization, it is necessary to measure the ship's hull magnetism. As a method for measuring the magnetic field of a ship, conventionally, a method has been used in which a plurality of magnetic sensors are arranged in a row on the sea floor and the ship's magnetic force is measured by navigating or mooring the ship over the magnetic sensor. (For example, refer to Patent Document 1).
JP 60-182706 A

上記した従来の艦艇磁界測定方法は、艦艇下の磁界測定のため、船首尾方向永久磁気PLMと、垂直方向磁気VMの分離ができず、この艦艇磁界測定方法で得た磁界を、MコイルとLPコイルに通電して消磁すると、例えば船首尾方向永久磁気PLMをM(垂直)コイルで、また垂直磁気VMをLP(水平)コイルで消磁してしまうことが発生する。このことは、消磁不要の部分に消磁を施していることになり、つまり磁化を着けていることになり、遠方から見れば、艦艇の磁気の低減度はベストとは言えない、という問題がある。   The conventional ship magnetic field measurement method described above cannot separate the stern direction permanent magnetic PLM and the vertical direction magnetic VM for measuring the magnetic field under the ship. The magnetic field obtained by this ship magnetic field measurement method is defined as an M coil. When the LP coil is energized and demagnetized, for example, the fore-and-aft permanent magnetic PLM is demagnetized by the M (vertical) coil and the vertical magnetic VM is demagnetized by the LP (horizontal) coil. This means that demagnetized parts are demagnetized, that is, they are magnetized, and there is a problem that the degree of magnetic reduction of a ship is not the best when viewed from a distance. .

この発明は上記問題点に着目してなされたものであって、艦艇の船首尾方向永久磁気PLMと垂直磁気VMを分離して測定し得る艦艇の磁界測定方法を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a method for measuring the magnetic field of a ship that can measure the ship's stern direction permanent magnetic PLM and the perpendicular magnetic VM separately.

この発明の艦艇の磁気測定方法は、艦艇の船首が北方向及び南方向を向いた状態で、それぞれ当該艦艇の左右両サイドの3軸磁界と、船底下の3軸磁界とを測定し、前記船首が北方向を向いているときの右側の3軸磁界の測定値Hxと左側の3軸磁界の測定値Hxとを加算して2で割り算することにより得た値を船首尾方向磁気LM とし、前記船首が南方向を向いているときの右側の3軸磁界の測定値Hxと左側の3軸磁界の測定値Hxとを加算して2で割り算することにより得た値を船首尾方向磁気LM とし、前記LM から前記LM を減算して2で割算することにより得た値を船首尾方向永久磁気PLMとし、前記艦艇につき複数個のダイポールからなるマルチダイポールモデルを仮定し、前記左右の3軸磁界から算出したPLM波形(Hx、Hy)との誤差が最小となるように、ダイポール値を決定し、このマルチダイポール値から、船底下のPLM波形(Hx、Hy)を計算し、このPLM波形(Hx、Hy)を前記船底下の3軸磁界の測定値PLM+VMの波形から差し引くことにより、PLMと垂直方向磁気VMを分離するようにしている。 The method for measuring a magnetic field of a ship according to the present invention measures the three-axis magnetic field on the left and right sides of the ship and the three-axis magnetic field below the bottom of the ship, with the bow of the ship facing north and south. The value obtained by adding the measured value Hx of the right three-axis magnetic field and the measured value Hx of the left three-axis magnetic field when the bow is facing in the north direction and dividing by 2 is calculated as the stern direction magnetism LM N The value obtained by adding the measured value Hx of the right three-axis magnetic field and the measured value Hx of the left three-axis magnetic field when the bow is facing in the south direction and dividing by 2 is obtained. A value obtained by subtracting the LM S from the LM N and dividing by 2 is defined as a magnetic LM S, and a value obtained by dividing the LM S by a permanent magnetic PLM in the fore and aft direction. , PL calculated from the left and right triaxial magnetic fields A dipole value is determined so that an error from the M waveform (Hx, Hy) is minimized, and a PLM waveform (Hx, Hy) below the ship bottom is calculated from the multi-dipole value, and the PLM waveform (Hx, Hy) is calculated. ) Is subtracted from the waveform of the measured value PLM + VM of the three-axis magnetic field under the ship bottom so that the PLM and the perpendicular magnetic VM are separated .

この発明の艦艇磁気測定方法において、前記左右両サイドの3軸磁界は、艦艇の左右で浮ブイ固定の磁気測定装置で測定し、船底下の3軸磁界は、海底に固定設置される磁気センサ列群で測定することができる。   In the ship magnetic measurement method according to the present invention, the three-axis magnetic fields on both the left and right sides are measured by a magnetic measuring device fixed to the left and right sides of the ship, and the three-axis magnetic field below the bottom of the ship is a magnetic sensor fixedly installed on the sea floor. It can be measured in rows.

また、この発明の艦艇磁気測定方法において、前記左右両サイドの3軸磁界は、搭載したビークルを用い、被測定艦艇から誘導して、ビークルを被測定艦艇の周囲を航走させて搭載の3軸磁界センサで測定することもできる。   In the ship magnetic measurement method according to the present invention, the three-axis magnetic fields on both the left and right sides are mounted on the vehicle by using the mounted vehicle and guiding the vehicle from the measured ship to travel around the measured ship. It can also be measured with an axial magnetic field sensor.

また、この発明の艦艇磁気測定方法において、3軸磁界を縦列接続して、測定ブイに吊るし、この3軸磁界センサ付きの測定ブイを水中に浮遊させ、この近傍を被測定艦艇を走航させて、前記左右サイドの3軸磁界を測定することもできる。   Further, in the ship magnetic measurement method of the present invention, a three-axis magnetic field is connected in cascade, suspended on a measurement buoy, the measurement buoy with the three-axis magnetic field sensor is suspended in water, and the ship to be measured is run in the vicinity. Thus, the three-axis magnetic field on the left and right sides can be measured.

また、この発明の艦艇磁気測定方法において、左右両サイドの3軸磁界は、海底に固定設置される磁気センサ群のうちの艦艇に対し、側方に位置する磁気センサで測定しても良い。   In the ship magnetic field measurement method of the present invention, the three-axis magnetic fields on both the left and right sides may be measured by a magnetic sensor located on the side of the ship in the magnetic sensor group fixedly installed on the seabed.

この発明によれば、船首が北方向を向いているときの左右の3軸磁界の測定値Hxに基づいて船首尾方向磁気LM を算出し、船首が南方向を向いているときの左右の3軸磁界の測定値Hxに基づいて船首尾方向磁気LM を算出し、LM からLM を減算して2で割算して船首尾方向永久磁気PLMを算出し、この算出したPLMをモデル化し、船底下のPLM波形を計算し、この計算したPLM波形を船底下の3軸磁界の測定値PLM+VMの波形から差し引くことにより、PLMと垂直方向磁気VMを分離するので、この分離して得られた船首尾方向永久磁気PLMと垂直方向磁気VMを個別に消磁に使用することにより、艦艇の磁気低減を適性にするのに寄与できる。 According to the invention, the bow based on the left and right three-axis magnetic field measurements Hx when facing north calculates the stern direction magnetic LM N, the left and right when the bow is facing south direction Calculate the stern direction magnetic LM S based on the measured value Hx of the three-axis magnetic field, subtract LM S from LM N and divide by 2 to calculate the stern direction permanent magnetic PLM. Modeling, calculating the PLM waveform under the ship bottom, and subtracting this calculated PLM waveform from the measured PLM + VM waveform of the 3-axis magnetic field under the ship bottom separates the PLM and the vertical magnetic VM. By using the obtained stern direction permanent magnetism PLM and perpendicular direction magnetism VM individually for demagnetization, it is possible to contribute to making the magnetic reduction of the ship suitable.

以下、実施の形態により、この発明をさらに詳細に説明する。図1は、この発明の一実施形態を説明する3軸磁気センサの配置を示す図である。図1において、被測定艦艇1の右側に3軸磁気センサ2が配置され、被測定艦艇1の左側に3軸磁気センサ3が配置され、更に被測定艦艇1のキール下の海底に、3軸磁気センサ4が配置されている。ここで、3軸磁気センサ2、3は、例えば後述するビークルにより、連続点として測定する。   Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a view showing the arrangement of a three-axis magnetic sensor for explaining an embodiment of the present invention. In FIG. 1, a three-axis magnetic sensor 2 is arranged on the right side of the ship 1 to be measured, a three-axis magnetic sensor 3 is arranged on the left side of the ship 1 to be measured, and three axes are arranged on the sea floor under the keel of the ship 1 to be measured. A magnetic sensor 4 is arranged. Here, the triaxial magnetic sensors 2 and 3 are measured as continuous points by a vehicle to be described later, for example.

今、被測定艦艇1の船首をN(北)方向に向けた状態で、左右の3軸磁気センサ2、3で、被測定艦艇1からの磁界を測定した例を図2に示す。図2において、左側に示す実線の波形a1は、被測定艦艇1の船首尾方向磁気LMの3軸センサ3による測定Hx成分を示し、同じ左側に示す破線の波形b1は、被測定艦艇1の左右舷方向磁気AMの3軸センサ3によるHx成分を示す。また、右側に示す実線の波形a2は、被測定艦艇1の船首尾方向磁気LMの3軸センサ2による測定Hx成分を示し、同じ右側に示す破線の波形b2は、被測定艦艇1の左右舷方向磁気AMの3軸センサ2による測定Hx成分を示している。   FIG. 2 shows an example in which the magnetic field from the measured ship 1 is measured by the left and right three-axis magnetic sensors 2 and 3 with the bow of the measured ship 1 directed in the N (north) direction. In FIG. 2, the solid line waveform a1 shown on the left side shows the Hx component measured by the three-axis sensor 3 of the bow-direction magnetic LM of the ship 1 to be measured, and the broken line waveform b1 shown on the left side of the ship 1 is The Hx component by the three-axis sensor 3 of the left and right saddle direction magnetic AM is shown. The solid line waveform a2 shown on the right side shows the Hx component measured by the three-axis sensor 2 of the stern direction magnetic LM of the ship 1 to be measured, and the broken line waveform b2 shown on the right side shows the left and right side of the ship 1 to be measured. The Hx component measured by the three-axis sensor 2 of the directional magnetic AM is shown.

図2において、船首尾方向磁気LMの左の波形a1と右の波形a2は、同極の波形であり、また左右舷方向磁気AMの左の波形b1と右の波形b2は、逆極性の波形なので、3軸センサ2のHx成分と3軸センサ3のHx成分を足して2で割算することにより、LM成分が得られ、3軸磁気センサ2のHx成分から3軸磁気センサ3のHx成分を減じて2で割算することにより、AM成分が得られる。これにより、船首尾方向磁気LMと左右舷方向磁気AMを分離することができる。   In FIG. 2, the left waveform a1 and the right waveform a2 of the stern direction magnetism LM are the same polarity waveforms, and the left waveform b1 and the right waveform b2 of the left and right direction magnetism AM are waveforms having opposite polarities. Therefore, the LM component is obtained by adding the Hx component of the triaxial sensor 2 and the Hx component of the triaxial sensor 3 and dividing by 2, and the Hx component of the triaxial magnetic sensor 2 is obtained from the Hx component of the triaxial magnetic sensor 2. By subtracting the component and dividing by 2, the AM component is obtained. Thereby, the fore-and-aft direction magnetism LM and the left-and-right direction magnetism AM can be separated.

次に、被測定艦艇1の船首をS(南)方向に向けた状態で、左右の各3軸磁気センサ2、3で被測定艦艇1からの磁界を測定した例を図3に示す。図3において、左側に示す実線の波形a1は、被測定艦艇1の船首尾方向磁気LMの3軸センサ3による測定Hx成分を示し、同じ左側に示す破線の波形b1は、被測定艦艇1の左右舷方向磁気AMの3軸センサ3によるHx成分を示す。また、右側に示す実線の波形a2は、被測定艦艇1の船首尾方向磁気LMの3軸センサ2による測定Hx成分を示し、同じ右側に示す破線の波形b2は、被測定艦艇1の左右舷方向磁気AMの3軸センサ2による測定Hx成分を示している。   Next, FIG. 3 shows an example in which the magnetic field from the measured ship 1 is measured by the left and right three-axis magnetic sensors 2 and 3 with the bow of the measured ship 1 directed in the S (south) direction. In FIG. 3, a solid line waveform a <b> 1 shown on the left side shows the Hx component measured by the three-axis sensor 3 of the bow direction magnetic LM of the ship 1 to be measured, and a broken line waveform b <b> 1 shown on the left side of the ship 1 is The Hx component by the three-axis sensor 3 of the left and right saddle direction magnetic AM is shown. The solid line waveform a2 shown on the right side shows the Hx component measured by the three-axis sensor 2 of the stern direction magnetic LM of the ship 1 to be measured, and the broken line waveform b2 shown on the right side shows the left and right side of the ship 1 to be measured. The Hx component measured by the three-axis sensor 2 of the directional magnetic AM is shown.

図3において、船首尾方向磁気LMの左の波形a1と右の波形a2は、同極の波形であり、また左右舷方向磁気AMの左の波形b1と右の波形b2は、逆極性の波形なので、3軸センサ2のHx成分と3軸センサ3のHx成分を足して2で割算することにより、LM成分が得られ、3軸磁気センサ2のHx成分から3軸磁気センサ3のHx成分を減じて2で割算することにより、AM成分が得られる。これにより、船首尾方向磁気LMと左右舷方向磁気AMを分離することができる。   In FIG. 3, the left waveform a1 and the right waveform a2 of the forehead direction magnetic LM are of the same polarity, and the left waveform b1 and the right waveform b2 of the left and right direction magnetism AM are waveforms of opposite polarity. Therefore, the LM component is obtained by adding the Hx component of the triaxial sensor 2 and the Hx component of the triaxial sensor 3 and dividing by 2, and the Hx component of the triaxial magnetic sensor 2 is obtained from the Hx component of the triaxial magnetic sensor 2. By subtracting the component and dividing by 2, the AM component is obtained. Thereby, the fore-and-aft direction magnetism LM and the left-and-right direction magnetism AM can be separated.

また、図3においては、PLMとILMの方向が逆なので、船首尾方向磁気LMが、図2の場合に比し(図2の場合、PLMとILMは同方向)小さくなる。したがって、図2の方法で得た船首尾方向磁気LMと図3の方法で得た船首尾方向磁気LMを加算して2で割算、あるいは減算して2で割算することにより、PLMとILMが得られ、PLMを分離することができる。   In FIG. 3, since the directions of PLM and ILM are opposite, the stern direction magnetic LM is smaller than in the case of FIG. 2 (in the case of FIG. 2, PLM and ILM are in the same direction). Therefore, by adding the stern direction magnetic LM obtained by the method of FIG. 2 and the stern direction magnetic LM obtained by the method of FIG. 3 and dividing by 2, or subtracting and dividing by 2, the PLM and An ILM is obtained and the PLM can be isolated.

また、キール下の3軸磁気センサ4によるHz(Hx)について、VM+PLMが得られるため、左右サイドの3軸磁界センサ2、3の出力から算出したPLMをモデル化し、キール下波形換算することにより、VMとPLMを分離することができる。   Moreover, since VM + PLM is obtained for Hz (Hx) by the triaxial magnetic sensor 4 under the keel, the PLM calculated from the outputs of the left and right triaxial magnetic field sensors 2 and 3 is modeled and converted into a waveform under the keel. , VM and PLM can be separated.

上記実施形態において、3軸センサ2、3、4の具体的な設置例を説明する。図4は、海底に3軸磁気センサ4を、センサ列として設置した場合であり、左右の3軸磁気センサ2、3は、浮ブイ型センサとしてブイで浮かせてある。この3軸磁気2、3の間を、被測定艦艇1が通過して、測定を実行する。この方式は構成上、実現性が高く、3軸磁気センサ2、3が被測定艦艇の航走目標となる。   In the above embodiment, a specific installation example of the three-axis sensors 2, 3, 4 will be described. FIG. 4 shows a case where the three-axis magnetic sensor 4 is installed as a sensor array on the sea floor. The ship 1 to be measured passes between the three-axis magnets 2 and 3 to perform measurement. This method is highly feasible in terms of configuration, and the three-axis magnetic sensors 2 and 3 are the navigation targets of the ship to be measured.

なお、この図4に示す実施形態において、3軸磁気センサ2、3はブイで浮かせているが、これに代えて、これら3軸磁気センサ2、3をブイの真下の海底に設置しても良い。つまり、海底に設置する3軸磁気センサ列4の左右両端に、艦艇の左右両サイドの磁気測定用の3軸磁気センサ2、3をそれぞれ配置する。艦艇の側方に設けられるので、水平成分を分離可能であり、水深≪側方距離であれば、十分に実用的である。   In the embodiment shown in FIG. 4, the three-axis magnetic sensors 2 and 3 are floated by buoys. Alternatively, the three-axis magnetic sensors 2 and 3 may be installed on the sea floor directly under the buoys. good. That is, the three-axis magnetic sensors 2 and 3 for measuring the magnetism on both the left and right sides of the ship are arranged at the left and right ends of the three-axis magnetic sensor array 4 installed on the seabed. Since it is provided on the side of the ship, the horizontal component can be separated, and if the water depth << side distance, it is sufficiently practical.

図5は、水中ビークル5に3軸磁気センサを搭載し、被測定艦艇1からビークル5を誘導して測定する。この方法では、センサ設置工程が不要であり、測定時間短縮が期待できる。また、被測定艦艇1は航走しないで、測定が可能である。 図6は、測定ブイ6に複数個の3軸磁気センサ2(3)を吊るして、投げ込み、海中に浮かしておく。この測定ブイ6の近傍横を被測定艦艇が走航することにより測定を行う。この方法ではセンサ設置工程時間が短縮できる。   In FIG. 5, a three-axis magnetic sensor is mounted on the underwater vehicle 5, and the vehicle 5 is guided from the ship 1 to be measured for measurement. This method does not require a sensor installation process and can be expected to shorten the measurement time. Further, the ship 1 to be measured can perform measurement without sailing. In FIG. 6, a plurality of three-axis magnetic sensors 2 (3) are hung on a measurement buoy 6, thrown, and floated in the sea. The measurement is performed by the ship to be measured running in the vicinity of the measurement buoy 6. This method can shorten the sensor installation process time.

次に、上記実施形態で使用する船体磁界測定システムについて説明する。図8は、その船体磁界測定システムの構成を示すブロック図である。この船体磁界測定システムは、データ処理装置10と、これに接続される3軸磁気センサ2、3、4と船首方向センサ11とから構成されている。データ処理装置10は、センサI/F12と、CPU13と、メモリ14と、表示部15と、記憶部16とから構成されている。ハード構成自体は、よく知られたデータ処理装置と特に変わるところはない。このデータ処理装置10は、艦艇上、又は陸上に設置する。3軸センサ2、3、4は、図1等で示すものである。船首方向センサ11は、被測定艦艇1の船首がN(北)方向を向いているか、S(南)方向を向いているか、検出するセンサである。この船首方向センサ11は、測定者が方向を入力するようにして配備を省略しても良い。   Next, the hull magnetic field measurement system used in the above embodiment will be described. FIG. 8 is a block diagram showing the configuration of the hull magnetic field measurement system. This hull magnetic field measurement system is composed of a data processing device 10, three-axis magnetic sensors 2, 3, 4 connected to the data processing device 10, and a bow direction sensor 11. The data processing apparatus 10 includes a sensor I / F 12, a CPU 13, a memory 14, a display unit 15, and a storage unit 16. The hardware configuration itself is not particularly different from a well-known data processing apparatus. The data processing device 10 is installed on a ship or on land. The triaxial sensors 2, 3, and 4 are those shown in FIG. The bow direction sensor 11 is a sensor that detects whether the bow of the ship 1 to be measured is facing the N (north) direction or the S (south) direction. The bow direction sensor 11 may be omitted as the measurer inputs the direction.

この船体磁界測定システムにより、船体磁界を測定する場合の処理動作を、図9に示すフロー図を参照して説明する。処理開始後、先ずステップST1において、船首方向センサ11により、被測定艦艇1の船首方向がNを向いているか否か判定する。船首がNを向いている状態を確認すると、ステップST2へ移行する。ステップST2においては、被測定艦艇1の船首をN方向に向けた状態で、3軸磁気センサ2、3、4により磁界測定を行う。次に、ステップST3において、各測定値は、メモリ14に記憶する。次に、ステップST4へ移行する。   With reference to the flowchart shown in FIG. 9, the processing operation when measuring the hull magnetic field by this hull magnetic field measurement system will be described. After the process starts, first, in step ST1, it is determined by the bow direction sensor 11 whether the bow direction of the ship 1 to be measured is facing N. When it is confirmed that the bow is facing N, the process proceeds to step ST2. In step ST2, the magnetic field is measured by the three-axis magnetic sensors 2, 3, and 4 with the bow of the ship 1 to be measured facing in the N direction. Next, in step ST3, each measured value is stored in the memory 14. Next, the process proceeds to step ST4.

ステップST4において、被測定艦艇1の船首がS方向を向いているか否かを判定する。被測定艦艇の向きが変えられ、S方向に向いた状態となると、ステップST5へ移行する。ステップST5においては、被測定艦艇1の船首をS方向に向けた状態で、3軸磁気センサ2、3、4により、磁界測定を行う。次に、ステップST6において、各測定値をメモリ14に記憶する。続いて、ステップST7へ移行する。   In step ST4, it is determined whether or not the bow of the ship 1 to be measured is facing the S direction. When the direction of the ship to be measured is changed and turned to the S direction, the process proceeds to step ST5. In step ST5, the magnetic field is measured by the three-axis magnetic sensors 2, 3, and 4 with the bow of the ship 1 to be measured oriented in the S direction. Next, in step ST6, each measured value is stored in the memory 14. Subsequently, the process proceeds to step ST7.

ステップST7においては、メモリ14より、船首がN方向を向いている時の3軸磁気センサ2の各測定値Hxと、3軸磁気センサ3の各測定値Hxを読み出し、加算して2で割算し、算出して得た値を船首尾方向磁気LMとして、メモリ14に記憶する。次に、ステップST8へ移行する。ステップST8においては、メモリ14から読み出した3軸磁気センサ2の各測定値Hxから3軸磁気センサ3の各測定Hxを減算して、2で割算し、算出して得た値を左右舷方向磁気AMとして、メモリ14へ記憶する。続いて、ステップST9へ移行する。 In step ST7, the measured values Hx of the triaxial magnetic sensor 2 and the measured values Hx of the triaxial magnetic sensor 3 when the bow is directed in the N direction are read from the memory 14, added, and divided by two. calculated, and the calculated and obtained value as stern direction magnetic LM N, stored in the memory 14. Next, the process proceeds to step ST8. In step ST8, each measurement value Hx of the three-axis magnetic sensor 3 read out from the memory 14 is subtracted from each measurement value Hx of the three-axis magnetic sensor 3, and divided by two. as-direction magnetic AM N, and stores in the memory 14. Subsequently, the process proceeds to step ST9.

ステップST9においては、メモリ14より、船首がS方向を向いている時の3軸磁気センサ2の各測定値Hxと、3軸磁気センサ3の各測定値Hxを読み出し、加算して2で割算し、算出して得た値を船首尾方向磁気LMとして、メモリ14に記憶する。次に、ステップST10へ移行する。ステップST10においては、メモリ14から読み出した船首方向S時に測定した3軸磁気センサ2の各測定値Hxから3軸磁気センサ3の各測定Hxを減算して、2で割算し、算出して得た値を左右舷方向磁気AM として、メモリ14へ記憶する。次にステップST11へ移行する。 In step ST9, each measured value Hx of the triaxial magnetic sensor 2 and the measured value Hx of the triaxial magnetic sensor 3 when the bow is directed in the S direction are read from the memory 14, added, and divided by two. calculated, and the calculated and obtained value as stern direction magnetic LM S, stored in the memory 14. Next, the process proceeds to step ST10. In step ST10, each measurement value Hx of the triaxial magnetic sensor 3 measured in the bow direction S read from the memory 14 is subtracted from each measurement value Hx of the triaxial magnetic sensor 3, and divided by 2. the value obtained as a lateral outboard direction magnetic AM S, stored in the memory 14. Next, the process proceeds to step ST11.

ステップST11においては、メモリ14に記憶したLM、LMを読み出して、これを加算し、2で割算し、算出して得たILM(船首尾方向の誘導磁気)をメモリ14に記憶する。次に、ステップST12へ移行する。ステップST12においては、メモリ14から読み出したLMからLMを減算し、2で割算し、算出して得たPLM(船首尾方向の永久磁気)を記憶する。 In step ST11, LM N and LM S stored in the memory 14 are read out, added together, divided by 2, and the calculated ILM (inductive magnetism in the stern direction) is stored in the memory 14. . Next, the process proceeds to step ST12. In step ST 12, the LM S is subtracted from the LM N read from the memory 14, divided by 2, and stores the calculated-obtained PLM (stern direction of the permanent magnetic).

次に、PLMとVM(垂直方向磁気)を分離するために、艦艇1につき、複数個のダイポールからなるマルチダイポールモデルを仮定し、左右サイドのPLM波形(Hx、Hy)との誤差が最小となるように、ダイポール値を決定する。このマルチダイポール値から、船底下のPLM波形(Hx、Hy)を計算し、測定したPLM+VM残りの波形から差し引いてPLMとVM残りを分離する。   Next, in order to separate PLM and VM (vertical magnetism), a multi-dipole model consisting of a plurality of dipoles is assumed per ship 1, and the error from the left and right PLM waveforms (Hx, Hy) is minimized. The dipole value is determined so that From this multi-dipole value, a PLM waveform (Hx, Hy) below the ship bottom is calculated and subtracted from the measured PLM + VM remaining waveform to separate the PLM and VM remaining.

この発明の一実施形態を説明する3軸磁気センサの配置を示す図である。It is a figure which shows arrangement | positioning of the triaxial magnetic sensor explaining one Embodiment of this invention. 同実施形態において被測定艦艇の船首を北に向けた場合の磁気測定波形を説明する図である。It is a figure explaining the magnetic measurement waveform at the time of turning the bow of a to-be-measured ship to the north in the embodiment. 同実施形態において被測定艦艇の船首を南に向けた場合の磁気測定波形を説明する図である。It is a figure explaining the magnetic measurement waveform at the time of turning the bow of a to-be-measured ship to the south in the embodiment. 同実施形態で使用する左右設置の3軸磁気センサの具体例の1つを説明する図である。It is a figure explaining one of the specific examples of the triaxial magnetic sensor of right-and-left installation used in the embodiment. 同実施形態で使用する左右設置の3軸磁気センサの他の具体例を説明する図である。It is a figure explaining the other specific example of the triaxial magnetic sensor of right-and-left installation used in the embodiment. 同実施形態で使用する左右設置の3軸磁気センサの更に他の具体例を示す図である。It is a figure which shows the other specific example of the triaxial magnetic sensor of right-and-left installation used in the embodiment. 艦艇から発する船体磁気を説明する図である。It is a figure explaining the hull magnetism emitted from a ship. 上記実施形態で使用する船体磁界測定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the hull magnetic field measurement system used by the said embodiment. 同船体磁界測定システムの測定処理を説明するためのフロー図である。It is a flowchart for demonstrating the measurement process of the hull magnetic field measurement system.

符号の説明Explanation of symbols

1 被測定艦艇
2 右用3軸磁気センサ
3 左用3軸磁気センサ
4 船底用3軸磁気センサ
5 水中ビークル
6 測定ブイ
10 データ処理装置
11 船首方向センサ
12 センサI/F
13 CPU
14 メモリ
15 表示部
16 記録部
DESCRIPTION OF SYMBOLS 1 Ship to be measured 2 Triaxial magnetic sensor for right 3 Triaxial magnetic sensor for left 4 Triaxial magnetic sensor for ship bottom 5 Underwater vehicle 6 Measurement buoy 10 Data processor 11 Bow direction sensor 12 Sensor I / F
13 CPU
14 memory 15 display unit 16 recording unit

Claims (5)

艦艇の船首が北方向及び南方向を向いた状態で、それぞれ当該艦艇の左右両サイドの3軸磁界と、船底下の3軸磁界とを測定し、前記船首が北方向を向いているときの右側の3軸磁界の測定値Hxと左側の3軸磁界の測定値Hxとを加算して2で割り算することにより得た値を船首尾方向磁気LM とし、前記船首が南方向を向いているときの右側の3軸磁界の測定値Hxと左側の3軸磁界の測定値Hxとを加算して2で割り算することにより得た値を船首尾方向磁気LM とし、前記LM から前記LM を減算して2で割算することにより得た値を船首尾方向永久磁気PLMとし、前記艦艇につき複数個のダイポールからなるマルチダイポールモデルを仮定し、前記左右の3軸磁界から算出したPLM波形(Hx、Hy)との誤差が最小となるように、ダイポール値を決定し、このマルチダイポール値から、船底下のPLM波形(Hx、Hy)を計算し、このPLM波形(Hx、Hy)を前記船底下の3軸磁界の測定値PLM+VMの波形から差し引くことにより、PLMと垂直方向磁気VMを分離することを特徴とする艦艇磁気測定方法。 With the bow of the ship facing north and south , measure the three-axis magnetic field on the left and right sides of the ship and the three-axis magnetic field below the bottom of the ship , respectively . the value obtained by dividing by 2 by adding the measured values Hx three-axis magnetic field measurements Hx and the left of the right three-axis magnetic field and stern direction magnetic LM N, the bow is facing south direction the value obtained by dividing by adding to 2 the measured values Hx measurements Hx and left three-axis magnetic field of the right three-axis magnetic field and stern direction magnetic LM S when you are, the from the LM N The value obtained by subtracting LM S and dividing by 2 is defined as the stern direction permanent magnetic PLM, assuming a multi-dipole model consisting of a plurality of dipoles per ship, and calculated from the left and right triaxial magnetic fields. Error with PLM waveform (Hx, Hy) The dipole value is determined so as to be small, the PLM waveform (Hx, Hy) below the ship bottom is calculated from the multi-dipole value, and the PLM waveform (Hx, Hy) is measured for the three-axis magnetic field below the ship bottom. A ship magnetic measurement method, characterized in that the PLM and the perpendicular magnetic VM are separated by subtracting from the waveform of the value PLM + VM . 前記左右両サイドの3軸磁界は、艦艇の左右で浮ブイ固定の磁気測定装置で測定し、船底下の3軸磁界は、海底に固定設置される磁気センサ列群で測定することを特徴とする請求項1記載の艦艇磁気測定方法。   The three-axis magnetic field on both the left and right sides is measured with a magnetic measuring device that is fixed to the left and right sides of the ship, and the three-axis magnetic field under the bottom of the ship is measured with a group of magnetic sensors fixedly installed on the sea floor. The ship magnetic field measuring method according to claim 1. 前記左右両サイドの3軸磁界は、海底に固定設置される磁気センサ列群のうちの艦艇に対し側方に位置する磁気センサで測定し、船底下の3軸磁界は、海底に固定設置される磁気センサ列群で測定することを特徴とする請求項2記載の艦艇磁気測定方法。   The three-axis magnetic field on both the left and right sides is measured by a magnetic sensor located laterally with respect to the ship in the group of magnetic sensor arrays fixedly installed on the sea floor, and the three-axis magnetic field below the ship bottom is fixedly installed on the sea floor. 3. The ship magnetic measurement method according to claim 2, wherein the measurement is performed by a magnetic sensor array group. 前記左右両サイドの3軸磁界は、搭載したビークルを用い、被測定艦艇から誘導して、ビークルを被測定艦艇の周囲を航走させて搭載の3軸磁界センサで測定することを特徴とする請求項1記載の艦艇磁気測定方法。   The three-axis magnetic field on both the left and right sides is measured by using a mounted vehicle, guiding the vehicle from the ship to be measured, and traveling the vehicle around the ship to be measured, using the mounted three-axis magnetic field sensor. The ship magnetic field measuring method according to claim 1. 3軸磁界を縦列接続して、測定ブイに吊るし、この3軸磁界センサ付きの測定ブイを水中に浮遊させ、この近傍を被測定艦艇を走航させて、前記左右サイドの3軸磁界を測定することを特徴とする請求項1記載の艦艇磁気測定方法。   A 3-axis magnetic field is connected in cascade, suspended on a measurement buoy, a measurement buoy with this 3-axis magnetic field sensor is suspended in water, and the vessel to be measured is run in the vicinity to measure the 3-axis magnetic field on the left and right sides. The ship magnetic field measuring method according to claim 1, wherein:
JP2004002568A 2004-01-08 2004-01-08 Magnetic measurement method for ships Expired - Fee Related JP4259327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002568A JP4259327B2 (en) 2004-01-08 2004-01-08 Magnetic measurement method for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002568A JP4259327B2 (en) 2004-01-08 2004-01-08 Magnetic measurement method for ships

Publications (2)

Publication Number Publication Date
JP2005195479A JP2005195479A (en) 2005-07-21
JP4259327B2 true JP4259327B2 (en) 2009-04-30

Family

ID=34817723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002568A Expired - Fee Related JP4259327B2 (en) 2004-01-08 2004-01-08 Magnetic measurement method for ships

Country Status (1)

Country Link
JP (1) JP4259327B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082231B2 (en) * 2005-12-05 2012-11-28 東芝三菱電機産業システム株式会社 Ship degaussing device
JP4826836B2 (en) * 2008-12-15 2011-11-30 株式会社島津製作所 Automatic demagnetizing coil adjuster for ships
JP5597421B2 (en) * 2010-03-23 2014-10-01 東芝三菱電機産業システム株式会社 Magnetic control apparatus and method
RU2477494C2 (en) * 2011-05-23 2013-03-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Device for controlling magnetic field of surface (underwater) object
RU2489727C2 (en) * 2011-08-08 2013-08-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Method of measuring magnetic field of surface or underwater object with adjustment of electromagnetic compensation system thereof
RU2606649C2 (en) * 2015-05-18 2017-01-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of surface or underwater object magnetic field parameters measuring on stationary magnetic test bench
FR3042604B1 (en) * 2015-10-16 2019-06-07 Eca Robotics METHOD AND DEVICE FOR MOBILE MAGNETIC MEASUREMENTS FOR CONTROLLING THE MAGNETIC SIGNATURE OF A VESSEL
DE102018131564B4 (en) * 2018-12-10 2024-02-08 Stl Systems Ag Degaussing and signature measurement system
JP7435036B2 (en) 2020-03-03 2024-02-21 株式会社島津製作所 magnetic detection system

Also Published As

Publication number Publication date
JP2005195479A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
CN103649783B (en) Declination compensation for seismic survey
JP4259327B2 (en) Magnetic measurement method for ships
CN102826208B (en) High precision marine magnetometry trailing device
CN105824036B (en) Position locking of a vessel using an auxiliary water craft
GB2508096A (en) A signal source is steered using a mechanism based on data from location and heading information of a streamer.
NO20130038A1 (en) PROCEDURE FOR DEPLOYMENT, PROCEDURE AND DEVICE FOR SEISMIC EXPLORATION IN AN AQUATIC MEDIUM
JP4647475B2 (en) Moving object position estimation detection method, apparatus, and moving object position estimation detection program
CN108761470A (en) A kind of object localization method based on the parsing of towing cable shape equation
JP2007245791A (en) Demagnetizing coil settling method, demagnetization control method, demagnetization control device and marine vessel and demagnetizing coil settling program
BR102014005647A2 (en) FLAGS WITHOUT TAIL FLOATS
Allen et al. Mitigation of platform generated magnetic noise impressed on a magnetic sensor mounted in an autonomous underwater vehicle
Allen et al. Initial evaluation of the new real-time tracking gradiometer designed for small unmanned underwater vehicles
Varma Design of degaussing system and demonstration of signature reduction on ship model through laboratory experiments
US20130229894A1 (en) Underwater sensor arrays linearized by weight and buoyance distribution
Lucas et al. A novel technique for modelling ship magnetic signatures
EP0242391B1 (en) A magnetic self-ranging system for use in the degaussing of ships
CN113703059B (en) Remote magnetic detection method for water ferromagnetic target clusters
JP4470805B2 (en) Magnetic sensor position measurement method
Birsan et al. The effect of roll and pitch motion on ship magnetic signature
JP4635732B2 (en) Hull magnetic measurement system
Schipf et al. Using AUV-acquired survey data to derive a magnetic model for a surface vessel
CN207129106U (en) A kind of marine marker with Underwater Noise Sources Passive Positioning function
ATE473160T1 (en) DEVICE AND METHOD FOR STABILIZING A SHIP
KR20140139147A (en) Degaussing System for War Vessels
CN117471571A (en) Underwater magnetoelectric detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees